iser_memory.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800
  1. /*
  2. * Copyright (c) 2004, 2005, 2006 Voltaire, Inc. All rights reserved.
  3. * Copyright (c) 2013-2014 Mellanox Technologies. All rights reserved.
  4. *
  5. * This software is available to you under a choice of one of two
  6. * licenses. You may choose to be licensed under the terms of the GNU
  7. * General Public License (GPL) Version 2, available from the file
  8. * COPYING in the main directory of this source tree, or the
  9. * OpenIB.org BSD license below:
  10. *
  11. * Redistribution and use in source and binary forms, with or
  12. * without modification, are permitted provided that the following
  13. * conditions are met:
  14. *
  15. * - Redistributions of source code must retain the above
  16. * copyright notice, this list of conditions and the following
  17. * disclaimer.
  18. *
  19. * - Redistributions in binary form must reproduce the above
  20. * copyright notice, this list of conditions and the following
  21. * disclaimer in the documentation and/or other materials
  22. * provided with the distribution.
  23. *
  24. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  25. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  26. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  27. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  28. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  29. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  30. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  31. * SOFTWARE.
  32. */
  33. #include <linux/module.h>
  34. #include <linux/kernel.h>
  35. #include <linux/slab.h>
  36. #include <linux/mm.h>
  37. #include <linux/highmem.h>
  38. #include <linux/scatterlist.h>
  39. #include "iscsi_iser.h"
  40. #define ISER_KMALLOC_THRESHOLD 0x20000 /* 128K - kmalloc limit */
  41. /**
  42. * iser_start_rdma_unaligned_sg
  43. */
  44. static int iser_start_rdma_unaligned_sg(struct iscsi_iser_task *iser_task,
  45. struct iser_data_buf *data,
  46. struct iser_data_buf *data_copy,
  47. enum iser_data_dir cmd_dir)
  48. {
  49. struct ib_device *dev = iser_task->ib_conn->device->ib_device;
  50. struct scatterlist *sgl = (struct scatterlist *)data->buf;
  51. struct scatterlist *sg;
  52. char *mem = NULL;
  53. unsigned long cmd_data_len = 0;
  54. int dma_nents, i;
  55. for_each_sg(sgl, sg, data->size, i)
  56. cmd_data_len += ib_sg_dma_len(dev, sg);
  57. if (cmd_data_len > ISER_KMALLOC_THRESHOLD)
  58. mem = (void *)__get_free_pages(GFP_ATOMIC,
  59. ilog2(roundup_pow_of_two(cmd_data_len)) - PAGE_SHIFT);
  60. else
  61. mem = kmalloc(cmd_data_len, GFP_ATOMIC);
  62. if (mem == NULL) {
  63. iser_err("Failed to allocate mem size %d %d for copying sglist\n",
  64. data->size, (int)cmd_data_len);
  65. return -ENOMEM;
  66. }
  67. if (cmd_dir == ISER_DIR_OUT) {
  68. /* copy the unaligned sg the buffer which is used for RDMA */
  69. int i;
  70. char *p, *from;
  71. sgl = (struct scatterlist *)data->buf;
  72. p = mem;
  73. for_each_sg(sgl, sg, data->size, i) {
  74. from = kmap_atomic(sg_page(sg));
  75. memcpy(p,
  76. from + sg->offset,
  77. sg->length);
  78. kunmap_atomic(from);
  79. p += sg->length;
  80. }
  81. }
  82. sg_init_one(&data_copy->sg_single, mem, cmd_data_len);
  83. data_copy->buf = &data_copy->sg_single;
  84. data_copy->size = 1;
  85. data_copy->copy_buf = mem;
  86. dma_nents = ib_dma_map_sg(dev, &data_copy->sg_single, 1,
  87. (cmd_dir == ISER_DIR_OUT) ?
  88. DMA_TO_DEVICE : DMA_FROM_DEVICE);
  89. BUG_ON(dma_nents == 0);
  90. data_copy->dma_nents = dma_nents;
  91. data_copy->data_len = cmd_data_len;
  92. return 0;
  93. }
  94. /**
  95. * iser_finalize_rdma_unaligned_sg
  96. */
  97. void iser_finalize_rdma_unaligned_sg(struct iscsi_iser_task *iser_task,
  98. struct iser_data_buf *data,
  99. struct iser_data_buf *data_copy,
  100. enum iser_data_dir cmd_dir)
  101. {
  102. struct ib_device *dev;
  103. unsigned long cmd_data_len;
  104. dev = iser_task->ib_conn->device->ib_device;
  105. ib_dma_unmap_sg(dev, &data_copy->sg_single, 1,
  106. (cmd_dir == ISER_DIR_OUT) ?
  107. DMA_TO_DEVICE : DMA_FROM_DEVICE);
  108. if (cmd_dir == ISER_DIR_IN) {
  109. char *mem;
  110. struct scatterlist *sgl, *sg;
  111. unsigned char *p, *to;
  112. unsigned int sg_size;
  113. int i;
  114. /* copy back read RDMA to unaligned sg */
  115. mem = data_copy->copy_buf;
  116. sgl = (struct scatterlist *)data->buf;
  117. sg_size = data->size;
  118. p = mem;
  119. for_each_sg(sgl, sg, sg_size, i) {
  120. to = kmap_atomic(sg_page(sg));
  121. memcpy(to + sg->offset,
  122. p,
  123. sg->length);
  124. kunmap_atomic(to);
  125. p += sg->length;
  126. }
  127. }
  128. cmd_data_len = data->data_len;
  129. if (cmd_data_len > ISER_KMALLOC_THRESHOLD)
  130. free_pages((unsigned long)data_copy->copy_buf,
  131. ilog2(roundup_pow_of_two(cmd_data_len)) - PAGE_SHIFT);
  132. else
  133. kfree(data_copy->copy_buf);
  134. data_copy->copy_buf = NULL;
  135. }
  136. #define IS_4K_ALIGNED(addr) ((((unsigned long)addr) & ~MASK_4K) == 0)
  137. /**
  138. * iser_sg_to_page_vec - Translates scatterlist entries to physical addresses
  139. * and returns the length of resulting physical address array (may be less than
  140. * the original due to possible compaction).
  141. *
  142. * we build a "page vec" under the assumption that the SG meets the RDMA
  143. * alignment requirements. Other then the first and last SG elements, all
  144. * the "internal" elements can be compacted into a list whose elements are
  145. * dma addresses of physical pages. The code supports also the weird case
  146. * where --few fragments of the same page-- are present in the SG as
  147. * consecutive elements. Also, it handles one entry SG.
  148. */
  149. static int iser_sg_to_page_vec(struct iser_data_buf *data,
  150. struct ib_device *ibdev, u64 *pages,
  151. int *offset, int *data_size)
  152. {
  153. struct scatterlist *sg, *sgl = (struct scatterlist *)data->buf;
  154. u64 start_addr, end_addr, page, chunk_start = 0;
  155. unsigned long total_sz = 0;
  156. unsigned int dma_len;
  157. int i, new_chunk, cur_page, last_ent = data->dma_nents - 1;
  158. /* compute the offset of first element */
  159. *offset = (u64) sgl[0].offset & ~MASK_4K;
  160. new_chunk = 1;
  161. cur_page = 0;
  162. for_each_sg(sgl, sg, data->dma_nents, i) {
  163. start_addr = ib_sg_dma_address(ibdev, sg);
  164. if (new_chunk)
  165. chunk_start = start_addr;
  166. dma_len = ib_sg_dma_len(ibdev, sg);
  167. end_addr = start_addr + dma_len;
  168. total_sz += dma_len;
  169. /* collect page fragments until aligned or end of SG list */
  170. if (!IS_4K_ALIGNED(end_addr) && i < last_ent) {
  171. new_chunk = 0;
  172. continue;
  173. }
  174. new_chunk = 1;
  175. /* address of the first page in the contiguous chunk;
  176. masking relevant for the very first SG entry,
  177. which might be unaligned */
  178. page = chunk_start & MASK_4K;
  179. do {
  180. pages[cur_page++] = page;
  181. page += SIZE_4K;
  182. } while (page < end_addr);
  183. }
  184. *data_size = total_sz;
  185. iser_dbg("page_vec->data_size:%d cur_page %d\n",
  186. *data_size, cur_page);
  187. return cur_page;
  188. }
  189. /**
  190. * iser_data_buf_aligned_len - Tries to determine the maximal correctly aligned
  191. * for RDMA sub-list of a scatter-gather list of memory buffers, and returns
  192. * the number of entries which are aligned correctly. Supports the case where
  193. * consecutive SG elements are actually fragments of the same physcial page.
  194. */
  195. static int iser_data_buf_aligned_len(struct iser_data_buf *data,
  196. struct ib_device *ibdev)
  197. {
  198. struct scatterlist *sgl, *sg, *next_sg = NULL;
  199. u64 start_addr, end_addr;
  200. int i, ret_len, start_check = 0;
  201. if (data->dma_nents == 1)
  202. return 1;
  203. sgl = (struct scatterlist *)data->buf;
  204. start_addr = ib_sg_dma_address(ibdev, sgl);
  205. for_each_sg(sgl, sg, data->dma_nents, i) {
  206. if (start_check && !IS_4K_ALIGNED(start_addr))
  207. break;
  208. next_sg = sg_next(sg);
  209. if (!next_sg)
  210. break;
  211. end_addr = start_addr + ib_sg_dma_len(ibdev, sg);
  212. start_addr = ib_sg_dma_address(ibdev, next_sg);
  213. if (end_addr == start_addr) {
  214. start_check = 0;
  215. continue;
  216. } else
  217. start_check = 1;
  218. if (!IS_4K_ALIGNED(end_addr))
  219. break;
  220. }
  221. ret_len = (next_sg) ? i : i+1;
  222. iser_dbg("Found %d aligned entries out of %d in sg:0x%p\n",
  223. ret_len, data->dma_nents, data);
  224. return ret_len;
  225. }
  226. static void iser_data_buf_dump(struct iser_data_buf *data,
  227. struct ib_device *ibdev)
  228. {
  229. struct scatterlist *sgl = (struct scatterlist *)data->buf;
  230. struct scatterlist *sg;
  231. int i;
  232. for_each_sg(sgl, sg, data->dma_nents, i)
  233. iser_dbg("sg[%d] dma_addr:0x%lX page:0x%p "
  234. "off:0x%x sz:0x%x dma_len:0x%x\n",
  235. i, (unsigned long)ib_sg_dma_address(ibdev, sg),
  236. sg_page(sg), sg->offset,
  237. sg->length, ib_sg_dma_len(ibdev, sg));
  238. }
  239. static void iser_dump_page_vec(struct iser_page_vec *page_vec)
  240. {
  241. int i;
  242. iser_err("page vec length %d data size %d\n",
  243. page_vec->length, page_vec->data_size);
  244. for (i = 0; i < page_vec->length; i++)
  245. iser_err("%d %lx\n",i,(unsigned long)page_vec->pages[i]);
  246. }
  247. static void iser_page_vec_build(struct iser_data_buf *data,
  248. struct iser_page_vec *page_vec,
  249. struct ib_device *ibdev)
  250. {
  251. int page_vec_len = 0;
  252. page_vec->length = 0;
  253. page_vec->offset = 0;
  254. iser_dbg("Translating sg sz: %d\n", data->dma_nents);
  255. page_vec_len = iser_sg_to_page_vec(data, ibdev, page_vec->pages,
  256. &page_vec->offset,
  257. &page_vec->data_size);
  258. iser_dbg("sg len %d page_vec_len %d\n", data->dma_nents, page_vec_len);
  259. page_vec->length = page_vec_len;
  260. if (page_vec_len * SIZE_4K < page_vec->data_size) {
  261. iser_err("page_vec too short to hold this SG\n");
  262. iser_data_buf_dump(data, ibdev);
  263. iser_dump_page_vec(page_vec);
  264. BUG();
  265. }
  266. }
  267. int iser_dma_map_task_data(struct iscsi_iser_task *iser_task,
  268. struct iser_data_buf *data,
  269. enum iser_data_dir iser_dir,
  270. enum dma_data_direction dma_dir)
  271. {
  272. struct ib_device *dev;
  273. iser_task->dir[iser_dir] = 1;
  274. dev = iser_task->ib_conn->device->ib_device;
  275. data->dma_nents = ib_dma_map_sg(dev, data->buf, data->size, dma_dir);
  276. if (data->dma_nents == 0) {
  277. iser_err("dma_map_sg failed!!!\n");
  278. return -EINVAL;
  279. }
  280. return 0;
  281. }
  282. void iser_dma_unmap_task_data(struct iscsi_iser_task *iser_task,
  283. struct iser_data_buf *data)
  284. {
  285. struct ib_device *dev;
  286. dev = iser_task->ib_conn->device->ib_device;
  287. ib_dma_unmap_sg(dev, data->buf, data->size, DMA_FROM_DEVICE);
  288. }
  289. static int fall_to_bounce_buf(struct iscsi_iser_task *iser_task,
  290. struct ib_device *ibdev,
  291. struct iser_data_buf *mem,
  292. struct iser_data_buf *mem_copy,
  293. enum iser_data_dir cmd_dir,
  294. int aligned_len)
  295. {
  296. struct iscsi_conn *iscsi_conn = iser_task->ib_conn->iscsi_conn;
  297. iscsi_conn->fmr_unalign_cnt++;
  298. iser_warn("rdma alignment violation (%d/%d aligned) or FMR not supported\n",
  299. aligned_len, mem->size);
  300. if (iser_debug_level > 0)
  301. iser_data_buf_dump(mem, ibdev);
  302. /* unmap the command data before accessing it */
  303. iser_dma_unmap_task_data(iser_task, mem);
  304. /* allocate copy buf, if we are writing, copy the */
  305. /* unaligned scatterlist, dma map the copy */
  306. if (iser_start_rdma_unaligned_sg(iser_task, mem, mem_copy, cmd_dir) != 0)
  307. return -ENOMEM;
  308. return 0;
  309. }
  310. /**
  311. * iser_reg_rdma_mem_fmr - Registers memory intended for RDMA,
  312. * using FMR (if possible) obtaining rkey and va
  313. *
  314. * returns 0 on success, errno code on failure
  315. */
  316. int iser_reg_rdma_mem_fmr(struct iscsi_iser_task *iser_task,
  317. enum iser_data_dir cmd_dir)
  318. {
  319. struct iser_conn *ib_conn = iser_task->ib_conn;
  320. struct iser_device *device = ib_conn->device;
  321. struct ib_device *ibdev = device->ib_device;
  322. struct iser_data_buf *mem = &iser_task->data[cmd_dir];
  323. struct iser_regd_buf *regd_buf;
  324. int aligned_len;
  325. int err;
  326. int i;
  327. struct scatterlist *sg;
  328. regd_buf = &iser_task->rdma_regd[cmd_dir];
  329. aligned_len = iser_data_buf_aligned_len(mem, ibdev);
  330. if (aligned_len != mem->dma_nents) {
  331. err = fall_to_bounce_buf(iser_task, ibdev, mem,
  332. &iser_task->data_copy[cmd_dir],
  333. cmd_dir, aligned_len);
  334. if (err) {
  335. iser_err("failed to allocate bounce buffer\n");
  336. return err;
  337. }
  338. mem = &iser_task->data_copy[cmd_dir];
  339. }
  340. /* if there a single dma entry, FMR is not needed */
  341. if (mem->dma_nents == 1) {
  342. sg = (struct scatterlist *)mem->buf;
  343. regd_buf->reg.lkey = device->mr->lkey;
  344. regd_buf->reg.rkey = device->mr->rkey;
  345. regd_buf->reg.len = ib_sg_dma_len(ibdev, &sg[0]);
  346. regd_buf->reg.va = ib_sg_dma_address(ibdev, &sg[0]);
  347. regd_buf->reg.is_mr = 0;
  348. iser_dbg("PHYSICAL Mem.register: lkey: 0x%08X rkey: 0x%08X "
  349. "va: 0x%08lX sz: %ld]\n",
  350. (unsigned int)regd_buf->reg.lkey,
  351. (unsigned int)regd_buf->reg.rkey,
  352. (unsigned long)regd_buf->reg.va,
  353. (unsigned long)regd_buf->reg.len);
  354. } else { /* use FMR for multiple dma entries */
  355. iser_page_vec_build(mem, ib_conn->fmr.page_vec, ibdev);
  356. err = iser_reg_page_vec(ib_conn, ib_conn->fmr.page_vec,
  357. &regd_buf->reg);
  358. if (err && err != -EAGAIN) {
  359. iser_data_buf_dump(mem, ibdev);
  360. iser_err("mem->dma_nents = %d (dlength = 0x%x)\n",
  361. mem->dma_nents,
  362. ntoh24(iser_task->desc.iscsi_header.dlength));
  363. iser_err("page_vec: data_size = 0x%x, length = %d, offset = 0x%x\n",
  364. ib_conn->fmr.page_vec->data_size,
  365. ib_conn->fmr.page_vec->length,
  366. ib_conn->fmr.page_vec->offset);
  367. for (i = 0; i < ib_conn->fmr.page_vec->length; i++)
  368. iser_err("page_vec[%d] = 0x%llx\n", i,
  369. (unsigned long long) ib_conn->fmr.page_vec->pages[i]);
  370. }
  371. if (err)
  372. return err;
  373. }
  374. return 0;
  375. }
  376. static inline enum ib_t10_dif_type
  377. scsi2ib_prot_type(unsigned char prot_type)
  378. {
  379. switch (prot_type) {
  380. case SCSI_PROT_DIF_TYPE0:
  381. return IB_T10DIF_NONE;
  382. case SCSI_PROT_DIF_TYPE1:
  383. return IB_T10DIF_TYPE1;
  384. case SCSI_PROT_DIF_TYPE2:
  385. return IB_T10DIF_TYPE2;
  386. case SCSI_PROT_DIF_TYPE3:
  387. return IB_T10DIF_TYPE3;
  388. default:
  389. return IB_T10DIF_NONE;
  390. }
  391. }
  392. static int
  393. iser_set_sig_attrs(struct scsi_cmnd *sc, struct ib_sig_attrs *sig_attrs)
  394. {
  395. unsigned char scsi_ptype = scsi_get_prot_type(sc);
  396. sig_attrs->mem.sig_type = IB_SIG_TYPE_T10_DIF;
  397. sig_attrs->wire.sig_type = IB_SIG_TYPE_T10_DIF;
  398. sig_attrs->mem.sig.dif.pi_interval = sc->device->sector_size;
  399. sig_attrs->wire.sig.dif.pi_interval = sc->device->sector_size;
  400. switch (scsi_get_prot_op(sc)) {
  401. case SCSI_PROT_WRITE_INSERT:
  402. case SCSI_PROT_READ_STRIP:
  403. sig_attrs->mem.sig.dif.type = IB_T10DIF_NONE;
  404. sig_attrs->wire.sig.dif.type = scsi2ib_prot_type(scsi_ptype);
  405. sig_attrs->wire.sig.dif.bg_type = IB_T10DIF_CRC;
  406. sig_attrs->wire.sig.dif.ref_tag = scsi_get_lba(sc) &
  407. 0xffffffff;
  408. break;
  409. case SCSI_PROT_READ_INSERT:
  410. case SCSI_PROT_WRITE_STRIP:
  411. sig_attrs->mem.sig.dif.type = scsi2ib_prot_type(scsi_ptype);
  412. sig_attrs->mem.sig.dif.bg_type = IB_T10DIF_CRC;
  413. sig_attrs->mem.sig.dif.ref_tag = scsi_get_lba(sc) &
  414. 0xffffffff;
  415. sig_attrs->wire.sig.dif.type = IB_T10DIF_NONE;
  416. break;
  417. case SCSI_PROT_READ_PASS:
  418. case SCSI_PROT_WRITE_PASS:
  419. sig_attrs->mem.sig.dif.type = scsi2ib_prot_type(scsi_ptype);
  420. sig_attrs->mem.sig.dif.bg_type = IB_T10DIF_CRC;
  421. sig_attrs->mem.sig.dif.ref_tag = scsi_get_lba(sc) &
  422. 0xffffffff;
  423. sig_attrs->wire.sig.dif.type = scsi2ib_prot_type(scsi_ptype);
  424. sig_attrs->wire.sig.dif.bg_type = IB_T10DIF_CRC;
  425. sig_attrs->wire.sig.dif.ref_tag = scsi_get_lba(sc) &
  426. 0xffffffff;
  427. break;
  428. default:
  429. iser_err("Unsupported PI operation %d\n",
  430. scsi_get_prot_op(sc));
  431. return -EINVAL;
  432. }
  433. return 0;
  434. }
  435. static int
  436. iser_set_prot_checks(struct scsi_cmnd *sc, u8 *mask)
  437. {
  438. switch (scsi_get_prot_type(sc)) {
  439. case SCSI_PROT_DIF_TYPE0:
  440. *mask = 0x0;
  441. break;
  442. case SCSI_PROT_DIF_TYPE1:
  443. case SCSI_PROT_DIF_TYPE2:
  444. *mask = ISER_CHECK_GUARD | ISER_CHECK_REFTAG;
  445. break;
  446. case SCSI_PROT_DIF_TYPE3:
  447. *mask = ISER_CHECK_GUARD;
  448. break;
  449. default:
  450. iser_err("Unsupported protection type %d\n",
  451. scsi_get_prot_type(sc));
  452. return -EINVAL;
  453. }
  454. return 0;
  455. }
  456. static int
  457. iser_reg_sig_mr(struct iscsi_iser_task *iser_task,
  458. struct fast_reg_descriptor *desc, struct ib_sge *data_sge,
  459. struct ib_sge *prot_sge, struct ib_sge *sig_sge)
  460. {
  461. struct iser_conn *ib_conn = iser_task->ib_conn;
  462. struct iser_pi_context *pi_ctx = desc->pi_ctx;
  463. struct ib_send_wr sig_wr, inv_wr;
  464. struct ib_send_wr *bad_wr, *wr = NULL;
  465. struct ib_sig_attrs sig_attrs;
  466. int ret;
  467. u32 key;
  468. memset(&sig_attrs, 0, sizeof(sig_attrs));
  469. ret = iser_set_sig_attrs(iser_task->sc, &sig_attrs);
  470. if (ret)
  471. goto err;
  472. ret = iser_set_prot_checks(iser_task->sc, &sig_attrs.check_mask);
  473. if (ret)
  474. goto err;
  475. if (!(desc->reg_indicators & ISER_SIG_KEY_VALID)) {
  476. memset(&inv_wr, 0, sizeof(inv_wr));
  477. inv_wr.opcode = IB_WR_LOCAL_INV;
  478. inv_wr.wr_id = ISER_FASTREG_LI_WRID;
  479. inv_wr.ex.invalidate_rkey = pi_ctx->sig_mr->rkey;
  480. wr = &inv_wr;
  481. /* Bump the key */
  482. key = (u8)(pi_ctx->sig_mr->rkey & 0x000000FF);
  483. ib_update_fast_reg_key(pi_ctx->sig_mr, ++key);
  484. }
  485. memset(&sig_wr, 0, sizeof(sig_wr));
  486. sig_wr.opcode = IB_WR_REG_SIG_MR;
  487. sig_wr.wr_id = ISER_FASTREG_LI_WRID;
  488. sig_wr.sg_list = data_sge;
  489. sig_wr.num_sge = 1;
  490. sig_wr.wr.sig_handover.sig_attrs = &sig_attrs;
  491. sig_wr.wr.sig_handover.sig_mr = pi_ctx->sig_mr;
  492. if (scsi_prot_sg_count(iser_task->sc))
  493. sig_wr.wr.sig_handover.prot = prot_sge;
  494. sig_wr.wr.sig_handover.access_flags = IB_ACCESS_LOCAL_WRITE |
  495. IB_ACCESS_REMOTE_READ |
  496. IB_ACCESS_REMOTE_WRITE;
  497. if (!wr)
  498. wr = &sig_wr;
  499. else
  500. wr->next = &sig_wr;
  501. ret = ib_post_send(ib_conn->qp, wr, &bad_wr);
  502. if (ret) {
  503. iser_err("reg_sig_mr failed, ret:%d\n", ret);
  504. goto err;
  505. }
  506. desc->reg_indicators &= ~ISER_SIG_KEY_VALID;
  507. sig_sge->lkey = pi_ctx->sig_mr->lkey;
  508. sig_sge->addr = 0;
  509. sig_sge->length = data_sge->length + prot_sge->length;
  510. if (scsi_get_prot_op(iser_task->sc) == SCSI_PROT_WRITE_INSERT ||
  511. scsi_get_prot_op(iser_task->sc) == SCSI_PROT_READ_STRIP) {
  512. sig_sge->length += (data_sge->length /
  513. iser_task->sc->device->sector_size) * 8;
  514. }
  515. iser_dbg("sig_sge: addr: 0x%llx length: %u lkey: 0x%x\n",
  516. sig_sge->addr, sig_sge->length,
  517. sig_sge->lkey);
  518. err:
  519. return ret;
  520. }
  521. static int iser_fast_reg_mr(struct iscsi_iser_task *iser_task,
  522. struct iser_regd_buf *regd_buf,
  523. struct iser_data_buf *mem,
  524. enum iser_reg_indicator ind,
  525. struct ib_sge *sge)
  526. {
  527. struct fast_reg_descriptor *desc = regd_buf->reg.mem_h;
  528. struct iser_conn *ib_conn = iser_task->ib_conn;
  529. struct iser_device *device = ib_conn->device;
  530. struct ib_device *ibdev = device->ib_device;
  531. struct ib_mr *mr;
  532. struct ib_fast_reg_page_list *frpl;
  533. struct ib_send_wr fastreg_wr, inv_wr;
  534. struct ib_send_wr *bad_wr, *wr = NULL;
  535. u8 key;
  536. int ret, offset, size, plen;
  537. /* if there a single dma entry, dma mr suffices */
  538. if (mem->dma_nents == 1) {
  539. struct scatterlist *sg = (struct scatterlist *)mem->buf;
  540. sge->lkey = device->mr->lkey;
  541. sge->addr = ib_sg_dma_address(ibdev, &sg[0]);
  542. sge->length = ib_sg_dma_len(ibdev, &sg[0]);
  543. iser_dbg("Single DMA entry: lkey=0x%x, addr=0x%llx, length=0x%x\n",
  544. sge->lkey, sge->addr, sge->length);
  545. return 0;
  546. }
  547. if (ind == ISER_DATA_KEY_VALID) {
  548. mr = desc->data_mr;
  549. frpl = desc->data_frpl;
  550. } else {
  551. mr = desc->pi_ctx->prot_mr;
  552. frpl = desc->pi_ctx->prot_frpl;
  553. }
  554. plen = iser_sg_to_page_vec(mem, device->ib_device, frpl->page_list,
  555. &offset, &size);
  556. if (plen * SIZE_4K < size) {
  557. iser_err("fast reg page_list too short to hold this SG\n");
  558. return -EINVAL;
  559. }
  560. if (!(desc->reg_indicators & ind)) {
  561. memset(&inv_wr, 0, sizeof(inv_wr));
  562. inv_wr.wr_id = ISER_FASTREG_LI_WRID;
  563. inv_wr.opcode = IB_WR_LOCAL_INV;
  564. inv_wr.ex.invalidate_rkey = mr->rkey;
  565. wr = &inv_wr;
  566. /* Bump the key */
  567. key = (u8)(mr->rkey & 0x000000FF);
  568. ib_update_fast_reg_key(mr, ++key);
  569. }
  570. /* Prepare FASTREG WR */
  571. memset(&fastreg_wr, 0, sizeof(fastreg_wr));
  572. fastreg_wr.wr_id = ISER_FASTREG_LI_WRID;
  573. fastreg_wr.opcode = IB_WR_FAST_REG_MR;
  574. fastreg_wr.wr.fast_reg.iova_start = frpl->page_list[0] + offset;
  575. fastreg_wr.wr.fast_reg.page_list = frpl;
  576. fastreg_wr.wr.fast_reg.page_list_len = plen;
  577. fastreg_wr.wr.fast_reg.page_shift = SHIFT_4K;
  578. fastreg_wr.wr.fast_reg.length = size;
  579. fastreg_wr.wr.fast_reg.rkey = mr->rkey;
  580. fastreg_wr.wr.fast_reg.access_flags = (IB_ACCESS_LOCAL_WRITE |
  581. IB_ACCESS_REMOTE_WRITE |
  582. IB_ACCESS_REMOTE_READ);
  583. if (!wr)
  584. wr = &fastreg_wr;
  585. else
  586. wr->next = &fastreg_wr;
  587. ret = ib_post_send(ib_conn->qp, wr, &bad_wr);
  588. if (ret) {
  589. iser_err("fast registration failed, ret:%d\n", ret);
  590. return ret;
  591. }
  592. desc->reg_indicators &= ~ind;
  593. sge->lkey = mr->lkey;
  594. sge->addr = frpl->page_list[0] + offset;
  595. sge->length = size;
  596. return ret;
  597. }
  598. /**
  599. * iser_reg_rdma_mem_fastreg - Registers memory intended for RDMA,
  600. * using Fast Registration WR (if possible) obtaining rkey and va
  601. *
  602. * returns 0 on success, errno code on failure
  603. */
  604. int iser_reg_rdma_mem_fastreg(struct iscsi_iser_task *iser_task,
  605. enum iser_data_dir cmd_dir)
  606. {
  607. struct iser_conn *ib_conn = iser_task->ib_conn;
  608. struct iser_device *device = ib_conn->device;
  609. struct ib_device *ibdev = device->ib_device;
  610. struct iser_data_buf *mem = &iser_task->data[cmd_dir];
  611. struct iser_regd_buf *regd_buf = &iser_task->rdma_regd[cmd_dir];
  612. struct fast_reg_descriptor *desc = NULL;
  613. struct ib_sge data_sge;
  614. int err, aligned_len;
  615. unsigned long flags;
  616. aligned_len = iser_data_buf_aligned_len(mem, ibdev);
  617. if (aligned_len != mem->dma_nents) {
  618. err = fall_to_bounce_buf(iser_task, ibdev, mem,
  619. &iser_task->data_copy[cmd_dir],
  620. cmd_dir, aligned_len);
  621. if (err) {
  622. iser_err("failed to allocate bounce buffer\n");
  623. return err;
  624. }
  625. mem = &iser_task->data_copy[cmd_dir];
  626. }
  627. if (mem->dma_nents != 1 ||
  628. scsi_get_prot_op(iser_task->sc) != SCSI_PROT_NORMAL) {
  629. spin_lock_irqsave(&ib_conn->lock, flags);
  630. desc = list_first_entry(&ib_conn->fastreg.pool,
  631. struct fast_reg_descriptor, list);
  632. list_del(&desc->list);
  633. spin_unlock_irqrestore(&ib_conn->lock, flags);
  634. regd_buf->reg.mem_h = desc;
  635. }
  636. err = iser_fast_reg_mr(iser_task, regd_buf, mem,
  637. ISER_DATA_KEY_VALID, &data_sge);
  638. if (err)
  639. goto err_reg;
  640. if (scsi_get_prot_op(iser_task->sc) != SCSI_PROT_NORMAL) {
  641. struct ib_sge prot_sge, sig_sge;
  642. memset(&prot_sge, 0, sizeof(prot_sge));
  643. if (scsi_prot_sg_count(iser_task->sc)) {
  644. mem = &iser_task->prot[cmd_dir];
  645. aligned_len = iser_data_buf_aligned_len(mem, ibdev);
  646. if (aligned_len != mem->dma_nents) {
  647. err = fall_to_bounce_buf(iser_task, ibdev, mem,
  648. &iser_task->prot_copy[cmd_dir],
  649. cmd_dir, aligned_len);
  650. if (err) {
  651. iser_err("failed to allocate bounce buffer\n");
  652. return err;
  653. }
  654. mem = &iser_task->prot_copy[cmd_dir];
  655. }
  656. err = iser_fast_reg_mr(iser_task, regd_buf, mem,
  657. ISER_PROT_KEY_VALID, &prot_sge);
  658. if (err)
  659. goto err_reg;
  660. }
  661. err = iser_reg_sig_mr(iser_task, desc, &data_sge,
  662. &prot_sge, &sig_sge);
  663. if (err) {
  664. iser_err("Failed to register signature mr\n");
  665. return err;
  666. }
  667. desc->reg_indicators |= ISER_FASTREG_PROTECTED;
  668. regd_buf->reg.lkey = sig_sge.lkey;
  669. regd_buf->reg.rkey = desc->pi_ctx->sig_mr->rkey;
  670. regd_buf->reg.va = sig_sge.addr;
  671. regd_buf->reg.len = sig_sge.length;
  672. regd_buf->reg.is_mr = 1;
  673. } else {
  674. if (desc) {
  675. regd_buf->reg.rkey = desc->data_mr->rkey;
  676. regd_buf->reg.is_mr = 1;
  677. } else {
  678. regd_buf->reg.rkey = device->mr->rkey;
  679. regd_buf->reg.is_mr = 0;
  680. }
  681. regd_buf->reg.lkey = data_sge.lkey;
  682. regd_buf->reg.va = data_sge.addr;
  683. regd_buf->reg.len = data_sge.length;
  684. }
  685. return 0;
  686. err_reg:
  687. if (desc) {
  688. spin_lock_irqsave(&ib_conn->lock, flags);
  689. list_add_tail(&desc->list, &ib_conn->fastreg.pool);
  690. spin_unlock_irqrestore(&ib_conn->lock, flags);
  691. }
  692. return err;
  693. }