ltr501.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445
  1. /*
  2. * ltr501.c - Support for Lite-On LTR501 ambient light and proximity sensor
  3. *
  4. * Copyright 2014 Peter Meerwald <pmeerw@pmeerw.net>
  5. *
  6. * This file is subject to the terms and conditions of version 2 of
  7. * the GNU General Public License. See the file COPYING in the main
  8. * directory of this archive for more details.
  9. *
  10. * 7-bit I2C slave address 0x23
  11. *
  12. * TODO: interrupt, threshold, measurement rate, IR LED characteristics
  13. */
  14. #include <linux/module.h>
  15. #include <linux/i2c.h>
  16. #include <linux/err.h>
  17. #include <linux/delay.h>
  18. #include <linux/iio/iio.h>
  19. #include <linux/iio/sysfs.h>
  20. #include <linux/iio/trigger_consumer.h>
  21. #include <linux/iio/buffer.h>
  22. #include <linux/iio/triggered_buffer.h>
  23. #define LTR501_DRV_NAME "ltr501"
  24. #define LTR501_ALS_CONTR 0x80 /* ALS operation mode, SW reset */
  25. #define LTR501_PS_CONTR 0x81 /* PS operation mode */
  26. #define LTR501_PART_ID 0x86
  27. #define LTR501_MANUFAC_ID 0x87
  28. #define LTR501_ALS_DATA1 0x88 /* 16-bit, little endian */
  29. #define LTR501_ALS_DATA0 0x8a /* 16-bit, little endian */
  30. #define LTR501_ALS_PS_STATUS 0x8c
  31. #define LTR501_PS_DATA 0x8d /* 16-bit, little endian */
  32. #define LTR501_ALS_CONTR_SW_RESET BIT(2)
  33. #define LTR501_CONTR_PS_GAIN_MASK (BIT(3) | BIT(2))
  34. #define LTR501_CONTR_PS_GAIN_SHIFT 2
  35. #define LTR501_CONTR_ALS_GAIN_MASK BIT(3)
  36. #define LTR501_CONTR_ACTIVE BIT(1)
  37. #define LTR501_STATUS_ALS_RDY BIT(2)
  38. #define LTR501_STATUS_PS_RDY BIT(0)
  39. #define LTR501_PS_DATA_MASK 0x7ff
  40. struct ltr501_data {
  41. struct i2c_client *client;
  42. struct mutex lock_als, lock_ps;
  43. u8 als_contr, ps_contr;
  44. };
  45. static int ltr501_drdy(struct ltr501_data *data, u8 drdy_mask)
  46. {
  47. int tries = 100;
  48. int ret;
  49. while (tries--) {
  50. ret = i2c_smbus_read_byte_data(data->client,
  51. LTR501_ALS_PS_STATUS);
  52. if (ret < 0)
  53. return ret;
  54. if ((ret & drdy_mask) == drdy_mask)
  55. return 0;
  56. msleep(25);
  57. }
  58. dev_err(&data->client->dev, "ltr501_drdy() failed, data not ready\n");
  59. return -EIO;
  60. }
  61. static int ltr501_read_als(struct ltr501_data *data, __le16 buf[2])
  62. {
  63. int ret = ltr501_drdy(data, LTR501_STATUS_ALS_RDY);
  64. if (ret < 0)
  65. return ret;
  66. /* always read both ALS channels in given order */
  67. return i2c_smbus_read_i2c_block_data(data->client,
  68. LTR501_ALS_DATA1, 2 * sizeof(__le16), (u8 *) buf);
  69. }
  70. static int ltr501_read_ps(struct ltr501_data *data)
  71. {
  72. int ret = ltr501_drdy(data, LTR501_STATUS_PS_RDY);
  73. if (ret < 0)
  74. return ret;
  75. return i2c_smbus_read_word_data(data->client, LTR501_PS_DATA);
  76. }
  77. #define LTR501_INTENSITY_CHANNEL(_idx, _addr, _mod, _shared) { \
  78. .type = IIO_INTENSITY, \
  79. .modified = 1, \
  80. .address = (_addr), \
  81. .channel2 = (_mod), \
  82. .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
  83. .info_mask_shared_by_type = (_shared), \
  84. .scan_index = (_idx), \
  85. .scan_type = { \
  86. .sign = 'u', \
  87. .realbits = 16, \
  88. .storagebits = 16, \
  89. .endianness = IIO_CPU, \
  90. } \
  91. }
  92. static const struct iio_chan_spec ltr501_channels[] = {
  93. LTR501_INTENSITY_CHANNEL(0, LTR501_ALS_DATA0, IIO_MOD_LIGHT_BOTH, 0),
  94. LTR501_INTENSITY_CHANNEL(1, LTR501_ALS_DATA1, IIO_MOD_LIGHT_IR,
  95. BIT(IIO_CHAN_INFO_SCALE)),
  96. {
  97. .type = IIO_PROXIMITY,
  98. .address = LTR501_PS_DATA,
  99. .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
  100. BIT(IIO_CHAN_INFO_SCALE),
  101. .scan_index = 2,
  102. .scan_type = {
  103. .sign = 'u',
  104. .realbits = 11,
  105. .storagebits = 16,
  106. .endianness = IIO_CPU,
  107. },
  108. },
  109. IIO_CHAN_SOFT_TIMESTAMP(3),
  110. };
  111. static const int ltr501_ps_gain[4][2] = {
  112. {1, 0}, {0, 250000}, {0, 125000}, {0, 62500}
  113. };
  114. static int ltr501_read_raw(struct iio_dev *indio_dev,
  115. struct iio_chan_spec const *chan,
  116. int *val, int *val2, long mask)
  117. {
  118. struct ltr501_data *data = iio_priv(indio_dev);
  119. __le16 buf[2];
  120. int ret, i;
  121. switch (mask) {
  122. case IIO_CHAN_INFO_RAW:
  123. if (iio_buffer_enabled(indio_dev))
  124. return -EBUSY;
  125. switch (chan->type) {
  126. case IIO_INTENSITY:
  127. mutex_lock(&data->lock_als);
  128. ret = ltr501_read_als(data, buf);
  129. mutex_unlock(&data->lock_als);
  130. if (ret < 0)
  131. return ret;
  132. *val = le16_to_cpu(chan->address == LTR501_ALS_DATA1 ?
  133. buf[0] : buf[1]);
  134. return IIO_VAL_INT;
  135. case IIO_PROXIMITY:
  136. mutex_lock(&data->lock_ps);
  137. ret = ltr501_read_ps(data);
  138. mutex_unlock(&data->lock_ps);
  139. if (ret < 0)
  140. return ret;
  141. *val = ret & LTR501_PS_DATA_MASK;
  142. return IIO_VAL_INT;
  143. default:
  144. return -EINVAL;
  145. }
  146. case IIO_CHAN_INFO_SCALE:
  147. switch (chan->type) {
  148. case IIO_INTENSITY:
  149. if (data->als_contr & LTR501_CONTR_ALS_GAIN_MASK) {
  150. *val = 0;
  151. *val2 = 5000;
  152. return IIO_VAL_INT_PLUS_MICRO;
  153. } else {
  154. *val = 1;
  155. *val2 = 0;
  156. return IIO_VAL_INT;
  157. }
  158. case IIO_PROXIMITY:
  159. i = (data->ps_contr & LTR501_CONTR_PS_GAIN_MASK) >>
  160. LTR501_CONTR_PS_GAIN_SHIFT;
  161. *val = ltr501_ps_gain[i][0];
  162. *val2 = ltr501_ps_gain[i][1];
  163. return IIO_VAL_INT_PLUS_MICRO;
  164. default:
  165. return -EINVAL;
  166. }
  167. }
  168. return -EINVAL;
  169. }
  170. static int ltr501_get_ps_gain_index(int val, int val2)
  171. {
  172. int i;
  173. for (i = 0; i < ARRAY_SIZE(ltr501_ps_gain); i++)
  174. if (val == ltr501_ps_gain[i][0] && val2 == ltr501_ps_gain[i][1])
  175. return i;
  176. return -1;
  177. }
  178. static int ltr501_write_raw(struct iio_dev *indio_dev,
  179. struct iio_chan_spec const *chan,
  180. int val, int val2, long mask)
  181. {
  182. struct ltr501_data *data = iio_priv(indio_dev);
  183. int i;
  184. if (iio_buffer_enabled(indio_dev))
  185. return -EBUSY;
  186. switch (mask) {
  187. case IIO_CHAN_INFO_SCALE:
  188. switch (chan->type) {
  189. case IIO_INTENSITY:
  190. if (val == 0 && val2 == 5000)
  191. data->als_contr |= LTR501_CONTR_ALS_GAIN_MASK;
  192. else if (val == 1 && val2 == 0)
  193. data->als_contr &= ~LTR501_CONTR_ALS_GAIN_MASK;
  194. else
  195. return -EINVAL;
  196. return i2c_smbus_write_byte_data(data->client,
  197. LTR501_ALS_CONTR, data->als_contr);
  198. case IIO_PROXIMITY:
  199. i = ltr501_get_ps_gain_index(val, val2);
  200. if (i < 0)
  201. return -EINVAL;
  202. data->ps_contr &= ~LTR501_CONTR_PS_GAIN_MASK;
  203. data->ps_contr |= i << LTR501_CONTR_PS_GAIN_SHIFT;
  204. return i2c_smbus_write_byte_data(data->client,
  205. LTR501_PS_CONTR, data->ps_contr);
  206. default:
  207. return -EINVAL;
  208. }
  209. }
  210. return -EINVAL;
  211. }
  212. static IIO_CONST_ATTR(in_proximity_scale_available, "1 0.25 0.125 0.0625");
  213. static IIO_CONST_ATTR(in_intensity_scale_available, "1 0.005");
  214. static struct attribute *ltr501_attributes[] = {
  215. &iio_const_attr_in_proximity_scale_available.dev_attr.attr,
  216. &iio_const_attr_in_intensity_scale_available.dev_attr.attr,
  217. NULL
  218. };
  219. static const struct attribute_group ltr501_attribute_group = {
  220. .attrs = ltr501_attributes,
  221. };
  222. static const struct iio_info ltr501_info = {
  223. .read_raw = ltr501_read_raw,
  224. .write_raw = ltr501_write_raw,
  225. .attrs = &ltr501_attribute_group,
  226. .driver_module = THIS_MODULE,
  227. };
  228. static int ltr501_write_contr(struct i2c_client *client, u8 als_val, u8 ps_val)
  229. {
  230. int ret = i2c_smbus_write_byte_data(client, LTR501_ALS_CONTR, als_val);
  231. if (ret < 0)
  232. return ret;
  233. return i2c_smbus_write_byte_data(client, LTR501_PS_CONTR, ps_val);
  234. }
  235. static irqreturn_t ltr501_trigger_handler(int irq, void *p)
  236. {
  237. struct iio_poll_func *pf = p;
  238. struct iio_dev *indio_dev = pf->indio_dev;
  239. struct ltr501_data *data = iio_priv(indio_dev);
  240. u16 buf[8];
  241. __le16 als_buf[2];
  242. u8 mask = 0;
  243. int j = 0;
  244. int ret;
  245. memset(buf, 0, sizeof(buf));
  246. /* figure out which data needs to be ready */
  247. if (test_bit(0, indio_dev->active_scan_mask) ||
  248. test_bit(1, indio_dev->active_scan_mask))
  249. mask |= LTR501_STATUS_ALS_RDY;
  250. if (test_bit(2, indio_dev->active_scan_mask))
  251. mask |= LTR501_STATUS_PS_RDY;
  252. ret = ltr501_drdy(data, mask);
  253. if (ret < 0)
  254. goto done;
  255. if (mask & LTR501_STATUS_ALS_RDY) {
  256. ret = i2c_smbus_read_i2c_block_data(data->client,
  257. LTR501_ALS_DATA1, sizeof(als_buf), (u8 *) als_buf);
  258. if (ret < 0)
  259. return ret;
  260. if (test_bit(0, indio_dev->active_scan_mask))
  261. buf[j++] = le16_to_cpu(als_buf[1]);
  262. if (test_bit(1, indio_dev->active_scan_mask))
  263. buf[j++] = le16_to_cpu(als_buf[0]);
  264. }
  265. if (mask & LTR501_STATUS_PS_RDY) {
  266. ret = i2c_smbus_read_word_data(data->client, LTR501_PS_DATA);
  267. if (ret < 0)
  268. goto done;
  269. buf[j++] = ret & LTR501_PS_DATA_MASK;
  270. }
  271. iio_push_to_buffers_with_timestamp(indio_dev, buf,
  272. iio_get_time_ns());
  273. done:
  274. iio_trigger_notify_done(indio_dev->trig);
  275. return IRQ_HANDLED;
  276. }
  277. static int ltr501_init(struct ltr501_data *data)
  278. {
  279. int ret;
  280. ret = i2c_smbus_read_byte_data(data->client, LTR501_ALS_CONTR);
  281. if (ret < 0)
  282. return ret;
  283. data->als_contr = ret | LTR501_CONTR_ACTIVE;
  284. ret = i2c_smbus_read_byte_data(data->client, LTR501_PS_CONTR);
  285. if (ret < 0)
  286. return ret;
  287. data->ps_contr = ret | LTR501_CONTR_ACTIVE;
  288. return ltr501_write_contr(data->client, data->als_contr,
  289. data->ps_contr);
  290. }
  291. static int ltr501_probe(struct i2c_client *client,
  292. const struct i2c_device_id *id)
  293. {
  294. struct ltr501_data *data;
  295. struct iio_dev *indio_dev;
  296. int ret;
  297. indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data));
  298. if (!indio_dev)
  299. return -ENOMEM;
  300. data = iio_priv(indio_dev);
  301. i2c_set_clientdata(client, indio_dev);
  302. data->client = client;
  303. mutex_init(&data->lock_als);
  304. mutex_init(&data->lock_ps);
  305. ret = i2c_smbus_read_byte_data(data->client, LTR501_PART_ID);
  306. if (ret < 0)
  307. return ret;
  308. if ((ret >> 4) != 0x8)
  309. return -ENODEV;
  310. indio_dev->dev.parent = &client->dev;
  311. indio_dev->info = &ltr501_info;
  312. indio_dev->channels = ltr501_channels;
  313. indio_dev->num_channels = ARRAY_SIZE(ltr501_channels);
  314. indio_dev->name = LTR501_DRV_NAME;
  315. indio_dev->modes = INDIO_DIRECT_MODE;
  316. ret = ltr501_init(data);
  317. if (ret < 0)
  318. return ret;
  319. ret = iio_triggered_buffer_setup(indio_dev, NULL,
  320. ltr501_trigger_handler, NULL);
  321. if (ret)
  322. return ret;
  323. ret = iio_device_register(indio_dev);
  324. if (ret)
  325. goto error_unreg_buffer;
  326. return 0;
  327. error_unreg_buffer:
  328. iio_triggered_buffer_cleanup(indio_dev);
  329. return ret;
  330. }
  331. static int ltr501_powerdown(struct ltr501_data *data)
  332. {
  333. return ltr501_write_contr(data->client,
  334. data->als_contr & ~LTR501_CONTR_ACTIVE,
  335. data->ps_contr & ~LTR501_CONTR_ACTIVE);
  336. }
  337. static int ltr501_remove(struct i2c_client *client)
  338. {
  339. struct iio_dev *indio_dev = i2c_get_clientdata(client);
  340. iio_device_unregister(indio_dev);
  341. iio_triggered_buffer_cleanup(indio_dev);
  342. ltr501_powerdown(iio_priv(indio_dev));
  343. return 0;
  344. }
  345. #ifdef CONFIG_PM_SLEEP
  346. static int ltr501_suspend(struct device *dev)
  347. {
  348. struct ltr501_data *data = iio_priv(i2c_get_clientdata(
  349. to_i2c_client(dev)));
  350. return ltr501_powerdown(data);
  351. }
  352. static int ltr501_resume(struct device *dev)
  353. {
  354. struct ltr501_data *data = iio_priv(i2c_get_clientdata(
  355. to_i2c_client(dev)));
  356. return ltr501_write_contr(data->client, data->als_contr,
  357. data->ps_contr);
  358. }
  359. #endif
  360. static SIMPLE_DEV_PM_OPS(ltr501_pm_ops, ltr501_suspend, ltr501_resume);
  361. static const struct i2c_device_id ltr501_id[] = {
  362. { "ltr501", 0 },
  363. { }
  364. };
  365. MODULE_DEVICE_TABLE(i2c, ltr501_id);
  366. static struct i2c_driver ltr501_driver = {
  367. .driver = {
  368. .name = LTR501_DRV_NAME,
  369. .pm = &ltr501_pm_ops,
  370. .owner = THIS_MODULE,
  371. },
  372. .probe = ltr501_probe,
  373. .remove = ltr501_remove,
  374. .id_table = ltr501_id,
  375. };
  376. module_i2c_driver(ltr501_driver);
  377. MODULE_AUTHOR("Peter Meerwald <pmeerw@pmeerw.net>");
  378. MODULE_DESCRIPTION("Lite-On LTR501 ambient light and proximity sensor driver");
  379. MODULE_LICENSE("GPL");