xilinx-xadc-core.c 34 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333
  1. /*
  2. * Xilinx XADC driver
  3. *
  4. * Copyright 2013-2014 Analog Devices Inc.
  5. * Author: Lars-Peter Clauen <lars@metafoo.de>
  6. *
  7. * Licensed under the GPL-2.
  8. *
  9. * Documentation for the parts can be found at:
  10. * - XADC hardmacro: Xilinx UG480
  11. * - ZYNQ XADC interface: Xilinx UG585
  12. * - AXI XADC interface: Xilinx PG019
  13. */
  14. #include <linux/clk.h>
  15. #include <linux/device.h>
  16. #include <linux/err.h>
  17. #include <linux/interrupt.h>
  18. #include <linux/io.h>
  19. #include <linux/kernel.h>
  20. #include <linux/module.h>
  21. #include <linux/of.h>
  22. #include <linux/platform_device.h>
  23. #include <linux/slab.h>
  24. #include <linux/sysfs.h>
  25. #include <linux/iio/buffer.h>
  26. #include <linux/iio/events.h>
  27. #include <linux/iio/iio.h>
  28. #include <linux/iio/sysfs.h>
  29. #include <linux/iio/trigger.h>
  30. #include <linux/iio/trigger_consumer.h>
  31. #include <linux/iio/triggered_buffer.h>
  32. #include "xilinx-xadc.h"
  33. static const unsigned int XADC_ZYNQ_UNMASK_TIMEOUT = 500;
  34. /* ZYNQ register definitions */
  35. #define XADC_ZYNQ_REG_CFG 0x00
  36. #define XADC_ZYNQ_REG_INTSTS 0x04
  37. #define XADC_ZYNQ_REG_INTMSK 0x08
  38. #define XADC_ZYNQ_REG_STATUS 0x0c
  39. #define XADC_ZYNQ_REG_CFIFO 0x10
  40. #define XADC_ZYNQ_REG_DFIFO 0x14
  41. #define XADC_ZYNQ_REG_CTL 0x18
  42. #define XADC_ZYNQ_CFG_ENABLE BIT(31)
  43. #define XADC_ZYNQ_CFG_CFIFOTH_MASK (0xf << 20)
  44. #define XADC_ZYNQ_CFG_CFIFOTH_OFFSET 20
  45. #define XADC_ZYNQ_CFG_DFIFOTH_MASK (0xf << 16)
  46. #define XADC_ZYNQ_CFG_DFIFOTH_OFFSET 16
  47. #define XADC_ZYNQ_CFG_WEDGE BIT(13)
  48. #define XADC_ZYNQ_CFG_REDGE BIT(12)
  49. #define XADC_ZYNQ_CFG_TCKRATE_MASK (0x3 << 8)
  50. #define XADC_ZYNQ_CFG_TCKRATE_DIV2 (0x0 << 8)
  51. #define XADC_ZYNQ_CFG_TCKRATE_DIV4 (0x1 << 8)
  52. #define XADC_ZYNQ_CFG_TCKRATE_DIV8 (0x2 << 8)
  53. #define XADC_ZYNQ_CFG_TCKRATE_DIV16 (0x3 << 8)
  54. #define XADC_ZYNQ_CFG_IGAP_MASK 0x1f
  55. #define XADC_ZYNQ_CFG_IGAP(x) (x)
  56. #define XADC_ZYNQ_INT_CFIFO_LTH BIT(9)
  57. #define XADC_ZYNQ_INT_DFIFO_GTH BIT(8)
  58. #define XADC_ZYNQ_INT_ALARM_MASK 0xff
  59. #define XADC_ZYNQ_INT_ALARM_OFFSET 0
  60. #define XADC_ZYNQ_STATUS_CFIFO_LVL_MASK (0xf << 16)
  61. #define XADC_ZYNQ_STATUS_CFIFO_LVL_OFFSET 16
  62. #define XADC_ZYNQ_STATUS_DFIFO_LVL_MASK (0xf << 12)
  63. #define XADC_ZYNQ_STATUS_DFIFO_LVL_OFFSET 12
  64. #define XADC_ZYNQ_STATUS_CFIFOF BIT(11)
  65. #define XADC_ZYNQ_STATUS_CFIFOE BIT(10)
  66. #define XADC_ZYNQ_STATUS_DFIFOF BIT(9)
  67. #define XADC_ZYNQ_STATUS_DFIFOE BIT(8)
  68. #define XADC_ZYNQ_STATUS_OT BIT(7)
  69. #define XADC_ZYNQ_STATUS_ALM(x) BIT(x)
  70. #define XADC_ZYNQ_CTL_RESET BIT(4)
  71. #define XADC_ZYNQ_CMD_NOP 0x00
  72. #define XADC_ZYNQ_CMD_READ 0x01
  73. #define XADC_ZYNQ_CMD_WRITE 0x02
  74. #define XADC_ZYNQ_CMD(cmd, addr, data) (((cmd) << 26) | ((addr) << 16) | (data))
  75. /* AXI register definitions */
  76. #define XADC_AXI_REG_RESET 0x00
  77. #define XADC_AXI_REG_STATUS 0x04
  78. #define XADC_AXI_REG_ALARM_STATUS 0x08
  79. #define XADC_AXI_REG_CONVST 0x0c
  80. #define XADC_AXI_REG_XADC_RESET 0x10
  81. #define XADC_AXI_REG_GIER 0x5c
  82. #define XADC_AXI_REG_IPISR 0x60
  83. #define XADC_AXI_REG_IPIER 0x68
  84. #define XADC_AXI_ADC_REG_OFFSET 0x200
  85. #define XADC_AXI_RESET_MAGIC 0xa
  86. #define XADC_AXI_GIER_ENABLE BIT(31)
  87. #define XADC_AXI_INT_EOS BIT(4)
  88. #define XADC_AXI_INT_ALARM_MASK 0x3c0f
  89. #define XADC_FLAGS_BUFFERED BIT(0)
  90. static void xadc_write_reg(struct xadc *xadc, unsigned int reg,
  91. uint32_t val)
  92. {
  93. writel(val, xadc->base + reg);
  94. }
  95. static void xadc_read_reg(struct xadc *xadc, unsigned int reg,
  96. uint32_t *val)
  97. {
  98. *val = readl(xadc->base + reg);
  99. }
  100. /*
  101. * The ZYNQ interface uses two asynchronous FIFOs for communication with the
  102. * XADC. Reads and writes to the XADC register are performed by submitting a
  103. * request to the command FIFO (CFIFO), once the request has been completed the
  104. * result can be read from the data FIFO (DFIFO). The method currently used in
  105. * this driver is to submit the request for a read/write operation, then go to
  106. * sleep and wait for an interrupt that signals that a response is available in
  107. * the data FIFO.
  108. */
  109. static void xadc_zynq_write_fifo(struct xadc *xadc, uint32_t *cmd,
  110. unsigned int n)
  111. {
  112. unsigned int i;
  113. for (i = 0; i < n; i++)
  114. xadc_write_reg(xadc, XADC_ZYNQ_REG_CFIFO, cmd[i]);
  115. }
  116. static void xadc_zynq_drain_fifo(struct xadc *xadc)
  117. {
  118. uint32_t status, tmp;
  119. xadc_read_reg(xadc, XADC_ZYNQ_REG_STATUS, &status);
  120. while (!(status & XADC_ZYNQ_STATUS_DFIFOE)) {
  121. xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &tmp);
  122. xadc_read_reg(xadc, XADC_ZYNQ_REG_STATUS, &status);
  123. }
  124. }
  125. static void xadc_zynq_update_intmsk(struct xadc *xadc, unsigned int mask,
  126. unsigned int val)
  127. {
  128. xadc->zynq_intmask &= ~mask;
  129. xadc->zynq_intmask |= val;
  130. xadc_write_reg(xadc, XADC_ZYNQ_REG_INTMSK,
  131. xadc->zynq_intmask | xadc->zynq_masked_alarm);
  132. }
  133. static int xadc_zynq_write_adc_reg(struct xadc *xadc, unsigned int reg,
  134. uint16_t val)
  135. {
  136. uint32_t cmd[1];
  137. uint32_t tmp;
  138. int ret;
  139. spin_lock_irq(&xadc->lock);
  140. xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH,
  141. XADC_ZYNQ_INT_DFIFO_GTH);
  142. reinit_completion(&xadc->completion);
  143. cmd[0] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_WRITE, reg, val);
  144. xadc_zynq_write_fifo(xadc, cmd, ARRAY_SIZE(cmd));
  145. xadc_read_reg(xadc, XADC_ZYNQ_REG_CFG, &tmp);
  146. tmp &= ~XADC_ZYNQ_CFG_DFIFOTH_MASK;
  147. tmp |= 0 << XADC_ZYNQ_CFG_DFIFOTH_OFFSET;
  148. xadc_write_reg(xadc, XADC_ZYNQ_REG_CFG, tmp);
  149. xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH, 0);
  150. spin_unlock_irq(&xadc->lock);
  151. ret = wait_for_completion_interruptible_timeout(&xadc->completion, HZ);
  152. if (ret == 0)
  153. ret = -EIO;
  154. else
  155. ret = 0;
  156. xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &tmp);
  157. return ret;
  158. }
  159. static int xadc_zynq_read_adc_reg(struct xadc *xadc, unsigned int reg,
  160. uint16_t *val)
  161. {
  162. uint32_t cmd[2];
  163. uint32_t resp, tmp;
  164. int ret;
  165. cmd[0] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_READ, reg, 0);
  166. cmd[1] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_NOP, 0, 0);
  167. spin_lock_irq(&xadc->lock);
  168. xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH,
  169. XADC_ZYNQ_INT_DFIFO_GTH);
  170. xadc_zynq_drain_fifo(xadc);
  171. reinit_completion(&xadc->completion);
  172. xadc_zynq_write_fifo(xadc, cmd, ARRAY_SIZE(cmd));
  173. xadc_read_reg(xadc, XADC_ZYNQ_REG_CFG, &tmp);
  174. tmp &= ~XADC_ZYNQ_CFG_DFIFOTH_MASK;
  175. tmp |= 1 << XADC_ZYNQ_CFG_DFIFOTH_OFFSET;
  176. xadc_write_reg(xadc, XADC_ZYNQ_REG_CFG, tmp);
  177. xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH, 0);
  178. spin_unlock_irq(&xadc->lock);
  179. ret = wait_for_completion_interruptible_timeout(&xadc->completion, HZ);
  180. if (ret == 0)
  181. ret = -EIO;
  182. if (ret < 0)
  183. return ret;
  184. xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &resp);
  185. xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &resp);
  186. *val = resp & 0xffff;
  187. return 0;
  188. }
  189. static unsigned int xadc_zynq_transform_alarm(unsigned int alarm)
  190. {
  191. return ((alarm & 0x80) >> 4) |
  192. ((alarm & 0x78) << 1) |
  193. (alarm & 0x07);
  194. }
  195. /*
  196. * The ZYNQ threshold interrupts are level sensitive. Since we can't make the
  197. * threshold condition go way from within the interrupt handler, this means as
  198. * soon as a threshold condition is present we would enter the interrupt handler
  199. * again and again. To work around this we mask all active thresholds interrupts
  200. * in the interrupt handler and start a timer. In this timer we poll the
  201. * interrupt status and only if the interrupt is inactive we unmask it again.
  202. */
  203. static void xadc_zynq_unmask_worker(struct work_struct *work)
  204. {
  205. struct xadc *xadc = container_of(work, struct xadc, zynq_unmask_work.work);
  206. unsigned int misc_sts, unmask;
  207. xadc_read_reg(xadc, XADC_ZYNQ_REG_STATUS, &misc_sts);
  208. misc_sts &= XADC_ZYNQ_INT_ALARM_MASK;
  209. spin_lock_irq(&xadc->lock);
  210. /* Clear those bits which are not active anymore */
  211. unmask = (xadc->zynq_masked_alarm ^ misc_sts) & xadc->zynq_masked_alarm;
  212. xadc->zynq_masked_alarm &= misc_sts;
  213. /* Also clear those which are masked out anyway */
  214. xadc->zynq_masked_alarm &= ~xadc->zynq_intmask;
  215. /* Clear the interrupts before we unmask them */
  216. xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, unmask);
  217. xadc_zynq_update_intmsk(xadc, 0, 0);
  218. spin_unlock_irq(&xadc->lock);
  219. /* if still pending some alarm re-trigger the timer */
  220. if (xadc->zynq_masked_alarm) {
  221. schedule_delayed_work(&xadc->zynq_unmask_work,
  222. msecs_to_jiffies(XADC_ZYNQ_UNMASK_TIMEOUT));
  223. }
  224. }
  225. static irqreturn_t xadc_zynq_threaded_interrupt_handler(int irq, void *devid)
  226. {
  227. struct iio_dev *indio_dev = devid;
  228. struct xadc *xadc = iio_priv(indio_dev);
  229. unsigned int alarm;
  230. spin_lock_irq(&xadc->lock);
  231. alarm = xadc->zynq_alarm;
  232. xadc->zynq_alarm = 0;
  233. spin_unlock_irq(&xadc->lock);
  234. xadc_handle_events(indio_dev, xadc_zynq_transform_alarm(alarm));
  235. /* unmask the required interrupts in timer. */
  236. schedule_delayed_work(&xadc->zynq_unmask_work,
  237. msecs_to_jiffies(XADC_ZYNQ_UNMASK_TIMEOUT));
  238. return IRQ_HANDLED;
  239. }
  240. static irqreturn_t xadc_zynq_interrupt_handler(int irq, void *devid)
  241. {
  242. struct iio_dev *indio_dev = devid;
  243. struct xadc *xadc = iio_priv(indio_dev);
  244. irqreturn_t ret = IRQ_HANDLED;
  245. uint32_t status;
  246. xadc_read_reg(xadc, XADC_ZYNQ_REG_INTSTS, &status);
  247. status &= ~(xadc->zynq_intmask | xadc->zynq_masked_alarm);
  248. if (!status)
  249. return IRQ_NONE;
  250. spin_lock(&xadc->lock);
  251. xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, status);
  252. if (status & XADC_ZYNQ_INT_DFIFO_GTH) {
  253. xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH,
  254. XADC_ZYNQ_INT_DFIFO_GTH);
  255. complete(&xadc->completion);
  256. }
  257. status &= XADC_ZYNQ_INT_ALARM_MASK;
  258. if (status) {
  259. xadc->zynq_alarm |= status;
  260. xadc->zynq_masked_alarm |= status;
  261. /*
  262. * mask the current event interrupt,
  263. * unmask it when the interrupt is no more active.
  264. */
  265. xadc_zynq_update_intmsk(xadc, 0, 0);
  266. ret = IRQ_WAKE_THREAD;
  267. }
  268. spin_unlock(&xadc->lock);
  269. return ret;
  270. }
  271. #define XADC_ZYNQ_TCK_RATE_MAX 50000000
  272. #define XADC_ZYNQ_IGAP_DEFAULT 20
  273. static int xadc_zynq_setup(struct platform_device *pdev,
  274. struct iio_dev *indio_dev, int irq)
  275. {
  276. struct xadc *xadc = iio_priv(indio_dev);
  277. unsigned long pcap_rate;
  278. unsigned int tck_div;
  279. unsigned int div;
  280. unsigned int igap;
  281. unsigned int tck_rate;
  282. /* TODO: Figure out how to make igap and tck_rate configurable */
  283. igap = XADC_ZYNQ_IGAP_DEFAULT;
  284. tck_rate = XADC_ZYNQ_TCK_RATE_MAX;
  285. xadc->zynq_intmask = ~0;
  286. pcap_rate = clk_get_rate(xadc->clk);
  287. if (tck_rate > XADC_ZYNQ_TCK_RATE_MAX)
  288. tck_rate = XADC_ZYNQ_TCK_RATE_MAX;
  289. if (tck_rate > pcap_rate / 2) {
  290. div = 2;
  291. } else {
  292. div = pcap_rate / tck_rate;
  293. if (pcap_rate / div > XADC_ZYNQ_TCK_RATE_MAX)
  294. div++;
  295. }
  296. if (div <= 3)
  297. tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV2;
  298. else if (div <= 7)
  299. tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV4;
  300. else if (div <= 15)
  301. tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV8;
  302. else
  303. tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV16;
  304. xadc_write_reg(xadc, XADC_ZYNQ_REG_CTL, XADC_ZYNQ_CTL_RESET);
  305. xadc_write_reg(xadc, XADC_ZYNQ_REG_CTL, 0);
  306. xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, ~0);
  307. xadc_write_reg(xadc, XADC_ZYNQ_REG_INTMSK, xadc->zynq_intmask);
  308. xadc_write_reg(xadc, XADC_ZYNQ_REG_CFG, XADC_ZYNQ_CFG_ENABLE |
  309. XADC_ZYNQ_CFG_REDGE | XADC_ZYNQ_CFG_WEDGE |
  310. tck_div | XADC_ZYNQ_CFG_IGAP(igap));
  311. return 0;
  312. }
  313. static unsigned long xadc_zynq_get_dclk_rate(struct xadc *xadc)
  314. {
  315. unsigned int div;
  316. uint32_t val;
  317. xadc_read_reg(xadc, XADC_ZYNQ_REG_CFG, &val);
  318. switch (val & XADC_ZYNQ_CFG_TCKRATE_MASK) {
  319. case XADC_ZYNQ_CFG_TCKRATE_DIV4:
  320. div = 4;
  321. break;
  322. case XADC_ZYNQ_CFG_TCKRATE_DIV8:
  323. div = 8;
  324. break;
  325. case XADC_ZYNQ_CFG_TCKRATE_DIV16:
  326. div = 16;
  327. break;
  328. default:
  329. div = 2;
  330. break;
  331. }
  332. return clk_get_rate(xadc->clk) / div;
  333. }
  334. static void xadc_zynq_update_alarm(struct xadc *xadc, unsigned int alarm)
  335. {
  336. unsigned long flags;
  337. uint32_t status;
  338. /* Move OT to bit 7 */
  339. alarm = ((alarm & 0x08) << 4) | ((alarm & 0xf0) >> 1) | (alarm & 0x07);
  340. spin_lock_irqsave(&xadc->lock, flags);
  341. /* Clear previous interrupts if any. */
  342. xadc_read_reg(xadc, XADC_ZYNQ_REG_INTSTS, &status);
  343. xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, status & alarm);
  344. xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_ALARM_MASK,
  345. ~alarm & XADC_ZYNQ_INT_ALARM_MASK);
  346. spin_unlock_irqrestore(&xadc->lock, flags);
  347. }
  348. static const struct xadc_ops xadc_zynq_ops = {
  349. .read = xadc_zynq_read_adc_reg,
  350. .write = xadc_zynq_write_adc_reg,
  351. .setup = xadc_zynq_setup,
  352. .get_dclk_rate = xadc_zynq_get_dclk_rate,
  353. .interrupt_handler = xadc_zynq_interrupt_handler,
  354. .threaded_interrupt_handler = xadc_zynq_threaded_interrupt_handler,
  355. .update_alarm = xadc_zynq_update_alarm,
  356. };
  357. static int xadc_axi_read_adc_reg(struct xadc *xadc, unsigned int reg,
  358. uint16_t *val)
  359. {
  360. uint32_t val32;
  361. xadc_read_reg(xadc, XADC_AXI_ADC_REG_OFFSET + reg * 4, &val32);
  362. *val = val32 & 0xffff;
  363. return 0;
  364. }
  365. static int xadc_axi_write_adc_reg(struct xadc *xadc, unsigned int reg,
  366. uint16_t val)
  367. {
  368. xadc_write_reg(xadc, XADC_AXI_ADC_REG_OFFSET + reg * 4, val);
  369. return 0;
  370. }
  371. static int xadc_axi_setup(struct platform_device *pdev,
  372. struct iio_dev *indio_dev, int irq)
  373. {
  374. struct xadc *xadc = iio_priv(indio_dev);
  375. xadc_write_reg(xadc, XADC_AXI_REG_RESET, XADC_AXI_RESET_MAGIC);
  376. xadc_write_reg(xadc, XADC_AXI_REG_GIER, XADC_AXI_GIER_ENABLE);
  377. return 0;
  378. }
  379. static irqreturn_t xadc_axi_interrupt_handler(int irq, void *devid)
  380. {
  381. struct iio_dev *indio_dev = devid;
  382. struct xadc *xadc = iio_priv(indio_dev);
  383. uint32_t status, mask;
  384. unsigned int events;
  385. xadc_read_reg(xadc, XADC_AXI_REG_IPISR, &status);
  386. xadc_read_reg(xadc, XADC_AXI_REG_IPIER, &mask);
  387. status &= mask;
  388. if (!status)
  389. return IRQ_NONE;
  390. if ((status & XADC_AXI_INT_EOS) && xadc->trigger)
  391. iio_trigger_poll(xadc->trigger, 0);
  392. if (status & XADC_AXI_INT_ALARM_MASK) {
  393. /*
  394. * The order of the bits in the AXI-XADC status register does
  395. * not match the order of the bits in the XADC alarm enable
  396. * register. xadc_handle_events() expects the events to be in
  397. * the same order as the XADC alarm enable register.
  398. */
  399. events = (status & 0x000e) >> 1;
  400. events |= (status & 0x0001) << 3;
  401. events |= (status & 0x3c00) >> 6;
  402. xadc_handle_events(indio_dev, events);
  403. }
  404. xadc_write_reg(xadc, XADC_AXI_REG_IPISR, status);
  405. return IRQ_HANDLED;
  406. }
  407. static void xadc_axi_update_alarm(struct xadc *xadc, unsigned int alarm)
  408. {
  409. uint32_t val;
  410. unsigned long flags;
  411. /*
  412. * The order of the bits in the AXI-XADC status register does not match
  413. * the order of the bits in the XADC alarm enable register. We get
  414. * passed the alarm mask in the same order as in the XADC alarm enable
  415. * register.
  416. */
  417. alarm = ((alarm & 0x07) << 1) | ((alarm & 0x08) >> 3) |
  418. ((alarm & 0xf0) << 6);
  419. spin_lock_irqsave(&xadc->lock, flags);
  420. xadc_read_reg(xadc, XADC_AXI_REG_IPIER, &val);
  421. val &= ~XADC_AXI_INT_ALARM_MASK;
  422. val |= alarm;
  423. xadc_write_reg(xadc, XADC_AXI_REG_IPIER, val);
  424. spin_unlock_irqrestore(&xadc->lock, flags);
  425. }
  426. static unsigned long xadc_axi_get_dclk(struct xadc *xadc)
  427. {
  428. return clk_get_rate(xadc->clk);
  429. }
  430. static const struct xadc_ops xadc_axi_ops = {
  431. .read = xadc_axi_read_adc_reg,
  432. .write = xadc_axi_write_adc_reg,
  433. .setup = xadc_axi_setup,
  434. .get_dclk_rate = xadc_axi_get_dclk,
  435. .update_alarm = xadc_axi_update_alarm,
  436. .interrupt_handler = xadc_axi_interrupt_handler,
  437. .flags = XADC_FLAGS_BUFFERED,
  438. };
  439. static int _xadc_update_adc_reg(struct xadc *xadc, unsigned int reg,
  440. uint16_t mask, uint16_t val)
  441. {
  442. uint16_t tmp;
  443. int ret;
  444. ret = _xadc_read_adc_reg(xadc, reg, &tmp);
  445. if (ret)
  446. return ret;
  447. return _xadc_write_adc_reg(xadc, reg, (tmp & ~mask) | val);
  448. }
  449. static int xadc_update_adc_reg(struct xadc *xadc, unsigned int reg,
  450. uint16_t mask, uint16_t val)
  451. {
  452. int ret;
  453. mutex_lock(&xadc->mutex);
  454. ret = _xadc_update_adc_reg(xadc, reg, mask, val);
  455. mutex_unlock(&xadc->mutex);
  456. return ret;
  457. }
  458. static unsigned long xadc_get_dclk_rate(struct xadc *xadc)
  459. {
  460. return xadc->ops->get_dclk_rate(xadc);
  461. }
  462. static int xadc_update_scan_mode(struct iio_dev *indio_dev,
  463. const unsigned long *mask)
  464. {
  465. struct xadc *xadc = iio_priv(indio_dev);
  466. unsigned int n;
  467. n = bitmap_weight(mask, indio_dev->masklength);
  468. kfree(xadc->data);
  469. xadc->data = kcalloc(n, sizeof(*xadc->data), GFP_KERNEL);
  470. if (!xadc->data)
  471. return -ENOMEM;
  472. return 0;
  473. }
  474. static unsigned int xadc_scan_index_to_channel(unsigned int scan_index)
  475. {
  476. switch (scan_index) {
  477. case 5:
  478. return XADC_REG_VCCPINT;
  479. case 6:
  480. return XADC_REG_VCCPAUX;
  481. case 7:
  482. return XADC_REG_VCCO_DDR;
  483. case 8:
  484. return XADC_REG_TEMP;
  485. case 9:
  486. return XADC_REG_VCCINT;
  487. case 10:
  488. return XADC_REG_VCCAUX;
  489. case 11:
  490. return XADC_REG_VPVN;
  491. case 12:
  492. return XADC_REG_VREFP;
  493. case 13:
  494. return XADC_REG_VREFN;
  495. case 14:
  496. return XADC_REG_VCCBRAM;
  497. default:
  498. return XADC_REG_VAUX(scan_index - 16);
  499. }
  500. }
  501. static irqreturn_t xadc_trigger_handler(int irq, void *p)
  502. {
  503. struct iio_poll_func *pf = p;
  504. struct iio_dev *indio_dev = pf->indio_dev;
  505. struct xadc *xadc = iio_priv(indio_dev);
  506. unsigned int chan;
  507. int i, j;
  508. if (!xadc->data)
  509. goto out;
  510. j = 0;
  511. for_each_set_bit(i, indio_dev->active_scan_mask,
  512. indio_dev->masklength) {
  513. chan = xadc_scan_index_to_channel(i);
  514. xadc_read_adc_reg(xadc, chan, &xadc->data[j]);
  515. j++;
  516. }
  517. iio_push_to_buffers(indio_dev, xadc->data);
  518. out:
  519. iio_trigger_notify_done(indio_dev->trig);
  520. return IRQ_HANDLED;
  521. }
  522. static int xadc_trigger_set_state(struct iio_trigger *trigger, bool state)
  523. {
  524. struct xadc *xadc = iio_trigger_get_drvdata(trigger);
  525. unsigned long flags;
  526. unsigned int convst;
  527. unsigned int val;
  528. int ret = 0;
  529. mutex_lock(&xadc->mutex);
  530. if (state) {
  531. /* Only one of the two triggers can be active at the a time. */
  532. if (xadc->trigger != NULL) {
  533. ret = -EBUSY;
  534. goto err_out;
  535. } else {
  536. xadc->trigger = trigger;
  537. if (trigger == xadc->convst_trigger)
  538. convst = XADC_CONF0_EC;
  539. else
  540. convst = 0;
  541. }
  542. ret = _xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF0_EC,
  543. convst);
  544. if (ret)
  545. goto err_out;
  546. } else {
  547. xadc->trigger = NULL;
  548. }
  549. spin_lock_irqsave(&xadc->lock, flags);
  550. xadc_read_reg(xadc, XADC_AXI_REG_IPIER, &val);
  551. xadc_write_reg(xadc, XADC_AXI_REG_IPISR, val & XADC_AXI_INT_EOS);
  552. if (state)
  553. val |= XADC_AXI_INT_EOS;
  554. else
  555. val &= ~XADC_AXI_INT_EOS;
  556. xadc_write_reg(xadc, XADC_AXI_REG_IPIER, val);
  557. spin_unlock_irqrestore(&xadc->lock, flags);
  558. err_out:
  559. mutex_unlock(&xadc->mutex);
  560. return ret;
  561. }
  562. static const struct iio_trigger_ops xadc_trigger_ops = {
  563. .owner = THIS_MODULE,
  564. .set_trigger_state = &xadc_trigger_set_state,
  565. };
  566. static struct iio_trigger *xadc_alloc_trigger(struct iio_dev *indio_dev,
  567. const char *name)
  568. {
  569. struct iio_trigger *trig;
  570. int ret;
  571. trig = iio_trigger_alloc("%s%d-%s", indio_dev->name,
  572. indio_dev->id, name);
  573. if (trig == NULL)
  574. return ERR_PTR(-ENOMEM);
  575. trig->dev.parent = indio_dev->dev.parent;
  576. trig->ops = &xadc_trigger_ops;
  577. iio_trigger_set_drvdata(trig, iio_priv(indio_dev));
  578. ret = iio_trigger_register(trig);
  579. if (ret)
  580. goto error_free_trig;
  581. return trig;
  582. error_free_trig:
  583. iio_trigger_free(trig);
  584. return ERR_PTR(ret);
  585. }
  586. static int xadc_power_adc_b(struct xadc *xadc, unsigned int seq_mode)
  587. {
  588. uint16_t val;
  589. switch (seq_mode) {
  590. case XADC_CONF1_SEQ_SIMULTANEOUS:
  591. case XADC_CONF1_SEQ_INDEPENDENT:
  592. val = XADC_CONF2_PD_ADC_B;
  593. break;
  594. default:
  595. val = 0;
  596. break;
  597. }
  598. return xadc_update_adc_reg(xadc, XADC_REG_CONF2, XADC_CONF2_PD_MASK,
  599. val);
  600. }
  601. static int xadc_get_seq_mode(struct xadc *xadc, unsigned long scan_mode)
  602. {
  603. unsigned int aux_scan_mode = scan_mode >> 16;
  604. if (xadc->external_mux_mode == XADC_EXTERNAL_MUX_DUAL)
  605. return XADC_CONF1_SEQ_SIMULTANEOUS;
  606. if ((aux_scan_mode & 0xff00) == 0 ||
  607. (aux_scan_mode & 0x00ff) == 0)
  608. return XADC_CONF1_SEQ_CONTINUOUS;
  609. return XADC_CONF1_SEQ_SIMULTANEOUS;
  610. }
  611. static int xadc_postdisable(struct iio_dev *indio_dev)
  612. {
  613. struct xadc *xadc = iio_priv(indio_dev);
  614. unsigned long scan_mask;
  615. int ret;
  616. int i;
  617. scan_mask = 1; /* Run calibration as part of the sequence */
  618. for (i = 0; i < indio_dev->num_channels; i++)
  619. scan_mask |= BIT(indio_dev->channels[i].scan_index);
  620. /* Enable all channels and calibration */
  621. ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(0), scan_mask & 0xffff);
  622. if (ret)
  623. return ret;
  624. ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(1), scan_mask >> 16);
  625. if (ret)
  626. return ret;
  627. ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_SEQ_MASK,
  628. XADC_CONF1_SEQ_CONTINUOUS);
  629. if (ret)
  630. return ret;
  631. return xadc_power_adc_b(xadc, XADC_CONF1_SEQ_CONTINUOUS);
  632. }
  633. static int xadc_preenable(struct iio_dev *indio_dev)
  634. {
  635. struct xadc *xadc = iio_priv(indio_dev);
  636. unsigned long scan_mask;
  637. int seq_mode;
  638. int ret;
  639. ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_SEQ_MASK,
  640. XADC_CONF1_SEQ_DEFAULT);
  641. if (ret)
  642. goto err;
  643. scan_mask = *indio_dev->active_scan_mask;
  644. seq_mode = xadc_get_seq_mode(xadc, scan_mask);
  645. ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(0), scan_mask & 0xffff);
  646. if (ret)
  647. goto err;
  648. ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(1), scan_mask >> 16);
  649. if (ret)
  650. goto err;
  651. ret = xadc_power_adc_b(xadc, seq_mode);
  652. if (ret)
  653. goto err;
  654. ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_SEQ_MASK,
  655. seq_mode);
  656. if (ret)
  657. goto err;
  658. return 0;
  659. err:
  660. xadc_postdisable(indio_dev);
  661. return ret;
  662. }
  663. static struct iio_buffer_setup_ops xadc_buffer_ops = {
  664. .preenable = &xadc_preenable,
  665. .postenable = &iio_triggered_buffer_postenable,
  666. .predisable = &iio_triggered_buffer_predisable,
  667. .postdisable = &xadc_postdisable,
  668. };
  669. static int xadc_read_raw(struct iio_dev *indio_dev,
  670. struct iio_chan_spec const *chan, int *val, int *val2, long info)
  671. {
  672. struct xadc *xadc = iio_priv(indio_dev);
  673. unsigned int div;
  674. uint16_t val16;
  675. int ret;
  676. switch (info) {
  677. case IIO_CHAN_INFO_RAW:
  678. if (iio_buffer_enabled(indio_dev))
  679. return -EBUSY;
  680. ret = xadc_read_adc_reg(xadc, chan->address, &val16);
  681. if (ret < 0)
  682. return ret;
  683. val16 >>= 4;
  684. if (chan->scan_type.sign == 'u')
  685. *val = val16;
  686. else
  687. *val = sign_extend32(val16, 11);
  688. return IIO_VAL_INT;
  689. case IIO_CHAN_INFO_SCALE:
  690. switch (chan->type) {
  691. case IIO_VOLTAGE:
  692. /* V = (val * 3.0) / 4096 */
  693. switch (chan->address) {
  694. case XADC_REG_VCCINT:
  695. case XADC_REG_VCCAUX:
  696. case XADC_REG_VCCBRAM:
  697. case XADC_REG_VCCPINT:
  698. case XADC_REG_VCCPAUX:
  699. case XADC_REG_VCCO_DDR:
  700. *val = 3000;
  701. break;
  702. default:
  703. *val = 1000;
  704. break;
  705. }
  706. *val2 = 12;
  707. return IIO_VAL_FRACTIONAL_LOG2;
  708. case IIO_TEMP:
  709. /* Temp in C = (val * 503.975) / 4096 - 273.15 */
  710. *val = 503975;
  711. *val2 = 12;
  712. return IIO_VAL_FRACTIONAL_LOG2;
  713. default:
  714. return -EINVAL;
  715. }
  716. case IIO_CHAN_INFO_OFFSET:
  717. /* Only the temperature channel has an offset */
  718. *val = -((273150 << 12) / 503975);
  719. return IIO_VAL_INT;
  720. case IIO_CHAN_INFO_SAMP_FREQ:
  721. ret = xadc_read_adc_reg(xadc, XADC_REG_CONF2, &val16);
  722. if (ret)
  723. return ret;
  724. div = (val16 & XADC_CONF2_DIV_MASK) >> XADC_CONF2_DIV_OFFSET;
  725. if (div < 2)
  726. div = 2;
  727. *val = xadc_get_dclk_rate(xadc) / div / 26;
  728. return IIO_VAL_INT;
  729. default:
  730. return -EINVAL;
  731. }
  732. }
  733. static int xadc_write_raw(struct iio_dev *indio_dev,
  734. struct iio_chan_spec const *chan, int val, int val2, long info)
  735. {
  736. struct xadc *xadc = iio_priv(indio_dev);
  737. unsigned long clk_rate = xadc_get_dclk_rate(xadc);
  738. unsigned int div;
  739. if (info != IIO_CHAN_INFO_SAMP_FREQ)
  740. return -EINVAL;
  741. if (val <= 0)
  742. return -EINVAL;
  743. /* Max. 150 kSPS */
  744. if (val > 150000)
  745. val = 150000;
  746. val *= 26;
  747. /* Min 1MHz */
  748. if (val < 1000000)
  749. val = 1000000;
  750. /*
  751. * We want to round down, but only if we do not exceed the 150 kSPS
  752. * limit.
  753. */
  754. div = clk_rate / val;
  755. if (clk_rate / div / 26 > 150000)
  756. div++;
  757. if (div < 2)
  758. div = 2;
  759. else if (div > 0xff)
  760. div = 0xff;
  761. return xadc_update_adc_reg(xadc, XADC_REG_CONF2, XADC_CONF2_DIV_MASK,
  762. div << XADC_CONF2_DIV_OFFSET);
  763. }
  764. static const struct iio_event_spec xadc_temp_events[] = {
  765. {
  766. .type = IIO_EV_TYPE_THRESH,
  767. .dir = IIO_EV_DIR_RISING,
  768. .mask_separate = BIT(IIO_EV_INFO_ENABLE) |
  769. BIT(IIO_EV_INFO_VALUE) |
  770. BIT(IIO_EV_INFO_HYSTERESIS),
  771. },
  772. };
  773. /* Separate values for upper and lower thresholds, but only a shared enabled */
  774. static const struct iio_event_spec xadc_voltage_events[] = {
  775. {
  776. .type = IIO_EV_TYPE_THRESH,
  777. .dir = IIO_EV_DIR_RISING,
  778. .mask_separate = BIT(IIO_EV_INFO_VALUE),
  779. }, {
  780. .type = IIO_EV_TYPE_THRESH,
  781. .dir = IIO_EV_DIR_FALLING,
  782. .mask_separate = BIT(IIO_EV_INFO_VALUE),
  783. }, {
  784. .type = IIO_EV_TYPE_THRESH,
  785. .dir = IIO_EV_DIR_EITHER,
  786. .mask_separate = BIT(IIO_EV_INFO_ENABLE),
  787. },
  788. };
  789. #define XADC_CHAN_TEMP(_chan, _scan_index, _addr) { \
  790. .type = IIO_TEMP, \
  791. .indexed = 1, \
  792. .channel = (_chan), \
  793. .address = (_addr), \
  794. .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
  795. BIT(IIO_CHAN_INFO_SCALE) | \
  796. BIT(IIO_CHAN_INFO_OFFSET), \
  797. .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), \
  798. .event_spec = xadc_temp_events, \
  799. .num_event_specs = ARRAY_SIZE(xadc_temp_events), \
  800. .scan_index = (_scan_index), \
  801. .scan_type = { \
  802. .sign = 'u', \
  803. .realbits = 12, \
  804. .storagebits = 16, \
  805. .shift = 4, \
  806. .endianness = IIO_CPU, \
  807. }, \
  808. }
  809. #define XADC_CHAN_VOLTAGE(_chan, _scan_index, _addr, _ext, _alarm) { \
  810. .type = IIO_VOLTAGE, \
  811. .indexed = 1, \
  812. .channel = (_chan), \
  813. .address = (_addr), \
  814. .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
  815. BIT(IIO_CHAN_INFO_SCALE), \
  816. .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), \
  817. .event_spec = (_alarm) ? xadc_voltage_events : NULL, \
  818. .num_event_specs = (_alarm) ? ARRAY_SIZE(xadc_voltage_events) : 0, \
  819. .scan_index = (_scan_index), \
  820. .scan_type = { \
  821. .sign = 'u', \
  822. .realbits = 12, \
  823. .storagebits = 16, \
  824. .shift = 4, \
  825. .endianness = IIO_CPU, \
  826. }, \
  827. .extend_name = _ext, \
  828. }
  829. static const struct iio_chan_spec xadc_channels[] = {
  830. XADC_CHAN_TEMP(0, 8, XADC_REG_TEMP),
  831. XADC_CHAN_VOLTAGE(0, 9, XADC_REG_VCCINT, "vccint", true),
  832. XADC_CHAN_VOLTAGE(1, 10, XADC_REG_VCCINT, "vccaux", true),
  833. XADC_CHAN_VOLTAGE(2, 14, XADC_REG_VCCBRAM, "vccbram", true),
  834. XADC_CHAN_VOLTAGE(3, 5, XADC_REG_VCCPINT, "vccpint", true),
  835. XADC_CHAN_VOLTAGE(4, 6, XADC_REG_VCCPAUX, "vccpaux", true),
  836. XADC_CHAN_VOLTAGE(5, 7, XADC_REG_VCCO_DDR, "vccoddr", true),
  837. XADC_CHAN_VOLTAGE(6, 12, XADC_REG_VREFP, "vrefp", false),
  838. XADC_CHAN_VOLTAGE(7, 13, XADC_REG_VREFN, "vrefn", false),
  839. XADC_CHAN_VOLTAGE(8, 11, XADC_REG_VPVN, NULL, false),
  840. XADC_CHAN_VOLTAGE(9, 16, XADC_REG_VAUX(0), NULL, false),
  841. XADC_CHAN_VOLTAGE(10, 17, XADC_REG_VAUX(1), NULL, false),
  842. XADC_CHAN_VOLTAGE(11, 18, XADC_REG_VAUX(2), NULL, false),
  843. XADC_CHAN_VOLTAGE(12, 19, XADC_REG_VAUX(3), NULL, false),
  844. XADC_CHAN_VOLTAGE(13, 20, XADC_REG_VAUX(4), NULL, false),
  845. XADC_CHAN_VOLTAGE(14, 21, XADC_REG_VAUX(5), NULL, false),
  846. XADC_CHAN_VOLTAGE(15, 22, XADC_REG_VAUX(6), NULL, false),
  847. XADC_CHAN_VOLTAGE(16, 23, XADC_REG_VAUX(7), NULL, false),
  848. XADC_CHAN_VOLTAGE(17, 24, XADC_REG_VAUX(8), NULL, false),
  849. XADC_CHAN_VOLTAGE(18, 25, XADC_REG_VAUX(9), NULL, false),
  850. XADC_CHAN_VOLTAGE(19, 26, XADC_REG_VAUX(10), NULL, false),
  851. XADC_CHAN_VOLTAGE(20, 27, XADC_REG_VAUX(11), NULL, false),
  852. XADC_CHAN_VOLTAGE(21, 28, XADC_REG_VAUX(12), NULL, false),
  853. XADC_CHAN_VOLTAGE(22, 29, XADC_REG_VAUX(13), NULL, false),
  854. XADC_CHAN_VOLTAGE(23, 30, XADC_REG_VAUX(14), NULL, false),
  855. XADC_CHAN_VOLTAGE(24, 31, XADC_REG_VAUX(15), NULL, false),
  856. };
  857. static const struct iio_info xadc_info = {
  858. .read_raw = &xadc_read_raw,
  859. .write_raw = &xadc_write_raw,
  860. .read_event_config = &xadc_read_event_config,
  861. .write_event_config = &xadc_write_event_config,
  862. .read_event_value = &xadc_read_event_value,
  863. .write_event_value = &xadc_write_event_value,
  864. .update_scan_mode = &xadc_update_scan_mode,
  865. .driver_module = THIS_MODULE,
  866. };
  867. static const struct of_device_id xadc_of_match_table[] = {
  868. { .compatible = "xlnx,zynq-xadc-1.00.a", (void *)&xadc_zynq_ops },
  869. { .compatible = "xlnx,axi-xadc-1.00.a", (void *)&xadc_axi_ops },
  870. { },
  871. };
  872. MODULE_DEVICE_TABLE(of, xadc_of_match_table);
  873. static int xadc_parse_dt(struct iio_dev *indio_dev, struct device_node *np,
  874. unsigned int *conf)
  875. {
  876. struct xadc *xadc = iio_priv(indio_dev);
  877. struct iio_chan_spec *channels, *chan;
  878. struct device_node *chan_node, *child;
  879. unsigned int num_channels;
  880. const char *external_mux;
  881. u32 ext_mux_chan;
  882. int reg;
  883. int ret;
  884. *conf = 0;
  885. ret = of_property_read_string(np, "xlnx,external-mux", &external_mux);
  886. if (ret < 0 || strcasecmp(external_mux, "none") == 0)
  887. xadc->external_mux_mode = XADC_EXTERNAL_MUX_NONE;
  888. else if (strcasecmp(external_mux, "single") == 0)
  889. xadc->external_mux_mode = XADC_EXTERNAL_MUX_SINGLE;
  890. else if (strcasecmp(external_mux, "dual") == 0)
  891. xadc->external_mux_mode = XADC_EXTERNAL_MUX_DUAL;
  892. else
  893. return -EINVAL;
  894. if (xadc->external_mux_mode != XADC_EXTERNAL_MUX_NONE) {
  895. ret = of_property_read_u32(np, "xlnx,external-mux-channel",
  896. &ext_mux_chan);
  897. if (ret < 0)
  898. return ret;
  899. if (xadc->external_mux_mode == XADC_EXTERNAL_MUX_SINGLE) {
  900. if (ext_mux_chan == 0)
  901. ext_mux_chan = XADC_REG_VPVN;
  902. else if (ext_mux_chan <= 16)
  903. ext_mux_chan = XADC_REG_VAUX(ext_mux_chan - 1);
  904. else
  905. return -EINVAL;
  906. } else {
  907. if (ext_mux_chan > 0 && ext_mux_chan <= 8)
  908. ext_mux_chan = XADC_REG_VAUX(ext_mux_chan - 1);
  909. else
  910. return -EINVAL;
  911. }
  912. *conf |= XADC_CONF0_MUX | XADC_CONF0_CHAN(ext_mux_chan);
  913. }
  914. channels = kmemdup(xadc_channels, sizeof(xadc_channels), GFP_KERNEL);
  915. if (!channels)
  916. return -ENOMEM;
  917. num_channels = 9;
  918. chan = &channels[9];
  919. chan_node = of_get_child_by_name(np, "xlnx,channels");
  920. if (chan_node) {
  921. for_each_child_of_node(chan_node, child) {
  922. if (num_channels >= ARRAY_SIZE(xadc_channels)) {
  923. of_node_put(child);
  924. break;
  925. }
  926. ret = of_property_read_u32(child, "reg", &reg);
  927. if (ret || reg > 16)
  928. continue;
  929. if (of_property_read_bool(child, "xlnx,bipolar"))
  930. chan->scan_type.sign = 's';
  931. if (reg == 0) {
  932. chan->scan_index = 11;
  933. chan->address = XADC_REG_VPVN;
  934. } else {
  935. chan->scan_index = 15 + reg;
  936. chan->scan_index = XADC_REG_VAUX(reg - 1);
  937. }
  938. num_channels++;
  939. chan++;
  940. }
  941. }
  942. of_node_put(chan_node);
  943. indio_dev->num_channels = num_channels;
  944. indio_dev->channels = krealloc(channels, sizeof(*channels) *
  945. num_channels, GFP_KERNEL);
  946. /* If we can't resize the channels array, just use the original */
  947. if (!indio_dev->channels)
  948. indio_dev->channels = channels;
  949. return 0;
  950. }
  951. static int xadc_probe(struct platform_device *pdev)
  952. {
  953. const struct of_device_id *id;
  954. struct iio_dev *indio_dev;
  955. unsigned int bipolar_mask;
  956. struct resource *mem;
  957. unsigned int conf0;
  958. struct xadc *xadc;
  959. int ret;
  960. int irq;
  961. int i;
  962. if (!pdev->dev.of_node)
  963. return -ENODEV;
  964. id = of_match_node(xadc_of_match_table, pdev->dev.of_node);
  965. if (!id)
  966. return -EINVAL;
  967. irq = platform_get_irq(pdev, 0);
  968. if (irq <= 0)
  969. return -ENXIO;
  970. indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*xadc));
  971. if (!indio_dev)
  972. return -ENOMEM;
  973. xadc = iio_priv(indio_dev);
  974. xadc->ops = id->data;
  975. init_completion(&xadc->completion);
  976. mutex_init(&xadc->mutex);
  977. spin_lock_init(&xadc->lock);
  978. INIT_DELAYED_WORK(&xadc->zynq_unmask_work, xadc_zynq_unmask_worker);
  979. mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  980. xadc->base = devm_ioremap_resource(&pdev->dev, mem);
  981. if (IS_ERR(xadc->base))
  982. return PTR_ERR(xadc->base);
  983. indio_dev->dev.parent = &pdev->dev;
  984. indio_dev->dev.of_node = pdev->dev.of_node;
  985. indio_dev->name = "xadc";
  986. indio_dev->modes = INDIO_DIRECT_MODE;
  987. indio_dev->info = &xadc_info;
  988. ret = xadc_parse_dt(indio_dev, pdev->dev.of_node, &conf0);
  989. if (ret)
  990. goto err_device_free;
  991. if (xadc->ops->flags & XADC_FLAGS_BUFFERED) {
  992. ret = iio_triggered_buffer_setup(indio_dev,
  993. &iio_pollfunc_store_time, &xadc_trigger_handler,
  994. &xadc_buffer_ops);
  995. if (ret)
  996. goto err_device_free;
  997. xadc->convst_trigger = xadc_alloc_trigger(indio_dev, "convst");
  998. if (IS_ERR(xadc->convst_trigger))
  999. goto err_triggered_buffer_cleanup;
  1000. xadc->samplerate_trigger = xadc_alloc_trigger(indio_dev,
  1001. "samplerate");
  1002. if (IS_ERR(xadc->samplerate_trigger))
  1003. goto err_free_convst_trigger;
  1004. }
  1005. xadc->clk = devm_clk_get(&pdev->dev, NULL);
  1006. if (IS_ERR(xadc->clk)) {
  1007. ret = PTR_ERR(xadc->clk);
  1008. goto err_free_samplerate_trigger;
  1009. }
  1010. clk_prepare_enable(xadc->clk);
  1011. ret = xadc->ops->setup(pdev, indio_dev, irq);
  1012. if (ret)
  1013. goto err_free_samplerate_trigger;
  1014. ret = request_threaded_irq(irq, xadc->ops->interrupt_handler,
  1015. xadc->ops->threaded_interrupt_handler,
  1016. 0, dev_name(&pdev->dev), indio_dev);
  1017. if (ret)
  1018. goto err_clk_disable_unprepare;
  1019. for (i = 0; i < 16; i++)
  1020. xadc_read_adc_reg(xadc, XADC_REG_THRESHOLD(i),
  1021. &xadc->threshold[i]);
  1022. ret = xadc_write_adc_reg(xadc, XADC_REG_CONF0, conf0);
  1023. if (ret)
  1024. goto err_free_irq;
  1025. bipolar_mask = 0;
  1026. for (i = 0; i < indio_dev->num_channels; i++) {
  1027. if (indio_dev->channels[i].scan_type.sign == 's')
  1028. bipolar_mask |= BIT(indio_dev->channels[i].scan_index);
  1029. }
  1030. ret = xadc_write_adc_reg(xadc, XADC_REG_INPUT_MODE(0), bipolar_mask);
  1031. if (ret)
  1032. goto err_free_irq;
  1033. ret = xadc_write_adc_reg(xadc, XADC_REG_INPUT_MODE(1),
  1034. bipolar_mask >> 16);
  1035. if (ret)
  1036. goto err_free_irq;
  1037. /* Disable all alarms */
  1038. xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_ALARM_MASK,
  1039. XADC_CONF1_ALARM_MASK);
  1040. /* Set thresholds to min/max */
  1041. for (i = 0; i < 16; i++) {
  1042. /*
  1043. * Set max voltage threshold and both temperature thresholds to
  1044. * 0xffff, min voltage threshold to 0.
  1045. */
  1046. if (i % 8 < 4 || i == 7)
  1047. xadc->threshold[i] = 0xffff;
  1048. else
  1049. xadc->threshold[i] = 0;
  1050. xadc_write_adc_reg(xadc, XADC_REG_THRESHOLD(i),
  1051. xadc->threshold[i]);
  1052. }
  1053. /* Go to non-buffered mode */
  1054. xadc_postdisable(indio_dev);
  1055. ret = iio_device_register(indio_dev);
  1056. if (ret)
  1057. goto err_free_irq;
  1058. platform_set_drvdata(pdev, indio_dev);
  1059. return 0;
  1060. err_free_irq:
  1061. free_irq(irq, indio_dev);
  1062. err_free_samplerate_trigger:
  1063. if (xadc->ops->flags & XADC_FLAGS_BUFFERED)
  1064. iio_trigger_free(xadc->samplerate_trigger);
  1065. err_free_convst_trigger:
  1066. if (xadc->ops->flags & XADC_FLAGS_BUFFERED)
  1067. iio_trigger_free(xadc->convst_trigger);
  1068. err_triggered_buffer_cleanup:
  1069. if (xadc->ops->flags & XADC_FLAGS_BUFFERED)
  1070. iio_triggered_buffer_cleanup(indio_dev);
  1071. err_clk_disable_unprepare:
  1072. clk_disable_unprepare(xadc->clk);
  1073. err_device_free:
  1074. kfree(indio_dev->channels);
  1075. return ret;
  1076. }
  1077. static int xadc_remove(struct platform_device *pdev)
  1078. {
  1079. struct iio_dev *indio_dev = platform_get_drvdata(pdev);
  1080. struct xadc *xadc = iio_priv(indio_dev);
  1081. int irq = platform_get_irq(pdev, 0);
  1082. iio_device_unregister(indio_dev);
  1083. if (xadc->ops->flags & XADC_FLAGS_BUFFERED) {
  1084. iio_trigger_free(xadc->samplerate_trigger);
  1085. iio_trigger_free(xadc->convst_trigger);
  1086. iio_triggered_buffer_cleanup(indio_dev);
  1087. }
  1088. free_irq(irq, indio_dev);
  1089. clk_disable_unprepare(xadc->clk);
  1090. cancel_delayed_work(&xadc->zynq_unmask_work);
  1091. kfree(xadc->data);
  1092. kfree(indio_dev->channels);
  1093. return 0;
  1094. }
  1095. static struct platform_driver xadc_driver = {
  1096. .probe = xadc_probe,
  1097. .remove = xadc_remove,
  1098. .driver = {
  1099. .name = "xadc",
  1100. .owner = THIS_MODULE,
  1101. .of_match_table = xadc_of_match_table,
  1102. },
  1103. };
  1104. module_platform_driver(xadc_driver);
  1105. MODULE_LICENSE("GPL v2");
  1106. MODULE_AUTHOR("Lars-Peter Clausen <lars@metafoo.de>");
  1107. MODULE_DESCRIPTION("Xilinx XADC IIO driver");