intel_hdmi.c 46 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567
  1. /*
  2. * Copyright 2006 Dave Airlie <airlied@linux.ie>
  3. * Copyright © 2006-2009 Intel Corporation
  4. *
  5. * Permission is hereby granted, free of charge, to any person obtaining a
  6. * copy of this software and associated documentation files (the "Software"),
  7. * to deal in the Software without restriction, including without limitation
  8. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  9. * and/or sell copies of the Software, and to permit persons to whom the
  10. * Software is furnished to do so, subject to the following conditions:
  11. *
  12. * The above copyright notice and this permission notice (including the next
  13. * paragraph) shall be included in all copies or substantial portions of the
  14. * Software.
  15. *
  16. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  21. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  22. * DEALINGS IN THE SOFTWARE.
  23. *
  24. * Authors:
  25. * Eric Anholt <eric@anholt.net>
  26. * Jesse Barnes <jesse.barnes@intel.com>
  27. */
  28. #include <linux/i2c.h>
  29. #include <linux/slab.h>
  30. #include <linux/delay.h>
  31. #include <linux/hdmi.h>
  32. #include <drm/drmP.h>
  33. #include <drm/drm_crtc.h>
  34. #include <drm/drm_edid.h>
  35. #include "intel_drv.h"
  36. #include <drm/i915_drm.h>
  37. #include "i915_drv.h"
  38. static struct drm_device *intel_hdmi_to_dev(struct intel_hdmi *intel_hdmi)
  39. {
  40. return hdmi_to_dig_port(intel_hdmi)->base.base.dev;
  41. }
  42. static void
  43. assert_hdmi_port_disabled(struct intel_hdmi *intel_hdmi)
  44. {
  45. struct drm_device *dev = intel_hdmi_to_dev(intel_hdmi);
  46. struct drm_i915_private *dev_priv = dev->dev_private;
  47. uint32_t enabled_bits;
  48. enabled_bits = HAS_DDI(dev) ? DDI_BUF_CTL_ENABLE : SDVO_ENABLE;
  49. WARN(I915_READ(intel_hdmi->hdmi_reg) & enabled_bits,
  50. "HDMI port enabled, expecting disabled\n");
  51. }
  52. struct intel_hdmi *enc_to_intel_hdmi(struct drm_encoder *encoder)
  53. {
  54. struct intel_digital_port *intel_dig_port =
  55. container_of(encoder, struct intel_digital_port, base.base);
  56. return &intel_dig_port->hdmi;
  57. }
  58. static struct intel_hdmi *intel_attached_hdmi(struct drm_connector *connector)
  59. {
  60. return enc_to_intel_hdmi(&intel_attached_encoder(connector)->base);
  61. }
  62. static u32 g4x_infoframe_index(enum hdmi_infoframe_type type)
  63. {
  64. switch (type) {
  65. case HDMI_INFOFRAME_TYPE_AVI:
  66. return VIDEO_DIP_SELECT_AVI;
  67. case HDMI_INFOFRAME_TYPE_SPD:
  68. return VIDEO_DIP_SELECT_SPD;
  69. case HDMI_INFOFRAME_TYPE_VENDOR:
  70. return VIDEO_DIP_SELECT_VENDOR;
  71. default:
  72. DRM_DEBUG_DRIVER("unknown info frame type %d\n", type);
  73. return 0;
  74. }
  75. }
  76. static u32 g4x_infoframe_enable(enum hdmi_infoframe_type type)
  77. {
  78. switch (type) {
  79. case HDMI_INFOFRAME_TYPE_AVI:
  80. return VIDEO_DIP_ENABLE_AVI;
  81. case HDMI_INFOFRAME_TYPE_SPD:
  82. return VIDEO_DIP_ENABLE_SPD;
  83. case HDMI_INFOFRAME_TYPE_VENDOR:
  84. return VIDEO_DIP_ENABLE_VENDOR;
  85. default:
  86. DRM_DEBUG_DRIVER("unknown info frame type %d\n", type);
  87. return 0;
  88. }
  89. }
  90. static u32 hsw_infoframe_enable(enum hdmi_infoframe_type type)
  91. {
  92. switch (type) {
  93. case HDMI_INFOFRAME_TYPE_AVI:
  94. return VIDEO_DIP_ENABLE_AVI_HSW;
  95. case HDMI_INFOFRAME_TYPE_SPD:
  96. return VIDEO_DIP_ENABLE_SPD_HSW;
  97. case HDMI_INFOFRAME_TYPE_VENDOR:
  98. return VIDEO_DIP_ENABLE_VS_HSW;
  99. default:
  100. DRM_DEBUG_DRIVER("unknown info frame type %d\n", type);
  101. return 0;
  102. }
  103. }
  104. static u32 hsw_infoframe_data_reg(enum hdmi_infoframe_type type,
  105. enum transcoder cpu_transcoder,
  106. struct drm_i915_private *dev_priv)
  107. {
  108. switch (type) {
  109. case HDMI_INFOFRAME_TYPE_AVI:
  110. return HSW_TVIDEO_DIP_AVI_DATA(cpu_transcoder);
  111. case HDMI_INFOFRAME_TYPE_SPD:
  112. return HSW_TVIDEO_DIP_SPD_DATA(cpu_transcoder);
  113. case HDMI_INFOFRAME_TYPE_VENDOR:
  114. return HSW_TVIDEO_DIP_VS_DATA(cpu_transcoder);
  115. default:
  116. DRM_DEBUG_DRIVER("unknown info frame type %d\n", type);
  117. return 0;
  118. }
  119. }
  120. static void g4x_write_infoframe(struct drm_encoder *encoder,
  121. enum hdmi_infoframe_type type,
  122. const void *frame, ssize_t len)
  123. {
  124. const uint32_t *data = frame;
  125. struct drm_device *dev = encoder->dev;
  126. struct drm_i915_private *dev_priv = dev->dev_private;
  127. u32 val = I915_READ(VIDEO_DIP_CTL);
  128. int i;
  129. WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n");
  130. val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
  131. val |= g4x_infoframe_index(type);
  132. val &= ~g4x_infoframe_enable(type);
  133. I915_WRITE(VIDEO_DIP_CTL, val);
  134. mmiowb();
  135. for (i = 0; i < len; i += 4) {
  136. I915_WRITE(VIDEO_DIP_DATA, *data);
  137. data++;
  138. }
  139. /* Write every possible data byte to force correct ECC calculation. */
  140. for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
  141. I915_WRITE(VIDEO_DIP_DATA, 0);
  142. mmiowb();
  143. val |= g4x_infoframe_enable(type);
  144. val &= ~VIDEO_DIP_FREQ_MASK;
  145. val |= VIDEO_DIP_FREQ_VSYNC;
  146. I915_WRITE(VIDEO_DIP_CTL, val);
  147. POSTING_READ(VIDEO_DIP_CTL);
  148. }
  149. static void ibx_write_infoframe(struct drm_encoder *encoder,
  150. enum hdmi_infoframe_type type,
  151. const void *frame, ssize_t len)
  152. {
  153. const uint32_t *data = frame;
  154. struct drm_device *dev = encoder->dev;
  155. struct drm_i915_private *dev_priv = dev->dev_private;
  156. struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
  157. int i, reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
  158. u32 val = I915_READ(reg);
  159. WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n");
  160. val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
  161. val |= g4x_infoframe_index(type);
  162. val &= ~g4x_infoframe_enable(type);
  163. I915_WRITE(reg, val);
  164. mmiowb();
  165. for (i = 0; i < len; i += 4) {
  166. I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), *data);
  167. data++;
  168. }
  169. /* Write every possible data byte to force correct ECC calculation. */
  170. for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
  171. I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), 0);
  172. mmiowb();
  173. val |= g4x_infoframe_enable(type);
  174. val &= ~VIDEO_DIP_FREQ_MASK;
  175. val |= VIDEO_DIP_FREQ_VSYNC;
  176. I915_WRITE(reg, val);
  177. POSTING_READ(reg);
  178. }
  179. static void cpt_write_infoframe(struct drm_encoder *encoder,
  180. enum hdmi_infoframe_type type,
  181. const void *frame, ssize_t len)
  182. {
  183. const uint32_t *data = frame;
  184. struct drm_device *dev = encoder->dev;
  185. struct drm_i915_private *dev_priv = dev->dev_private;
  186. struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
  187. int i, reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
  188. u32 val = I915_READ(reg);
  189. WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n");
  190. val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
  191. val |= g4x_infoframe_index(type);
  192. /* The DIP control register spec says that we need to update the AVI
  193. * infoframe without clearing its enable bit */
  194. if (type != HDMI_INFOFRAME_TYPE_AVI)
  195. val &= ~g4x_infoframe_enable(type);
  196. I915_WRITE(reg, val);
  197. mmiowb();
  198. for (i = 0; i < len; i += 4) {
  199. I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), *data);
  200. data++;
  201. }
  202. /* Write every possible data byte to force correct ECC calculation. */
  203. for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
  204. I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), 0);
  205. mmiowb();
  206. val |= g4x_infoframe_enable(type);
  207. val &= ~VIDEO_DIP_FREQ_MASK;
  208. val |= VIDEO_DIP_FREQ_VSYNC;
  209. I915_WRITE(reg, val);
  210. POSTING_READ(reg);
  211. }
  212. static void vlv_write_infoframe(struct drm_encoder *encoder,
  213. enum hdmi_infoframe_type type,
  214. const void *frame, ssize_t len)
  215. {
  216. const uint32_t *data = frame;
  217. struct drm_device *dev = encoder->dev;
  218. struct drm_i915_private *dev_priv = dev->dev_private;
  219. struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
  220. int i, reg = VLV_TVIDEO_DIP_CTL(intel_crtc->pipe);
  221. u32 val = I915_READ(reg);
  222. WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n");
  223. val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
  224. val |= g4x_infoframe_index(type);
  225. val &= ~g4x_infoframe_enable(type);
  226. I915_WRITE(reg, val);
  227. mmiowb();
  228. for (i = 0; i < len; i += 4) {
  229. I915_WRITE(VLV_TVIDEO_DIP_DATA(intel_crtc->pipe), *data);
  230. data++;
  231. }
  232. /* Write every possible data byte to force correct ECC calculation. */
  233. for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
  234. I915_WRITE(VLV_TVIDEO_DIP_DATA(intel_crtc->pipe), 0);
  235. mmiowb();
  236. val |= g4x_infoframe_enable(type);
  237. val &= ~VIDEO_DIP_FREQ_MASK;
  238. val |= VIDEO_DIP_FREQ_VSYNC;
  239. I915_WRITE(reg, val);
  240. POSTING_READ(reg);
  241. }
  242. static void hsw_write_infoframe(struct drm_encoder *encoder,
  243. enum hdmi_infoframe_type type,
  244. const void *frame, ssize_t len)
  245. {
  246. const uint32_t *data = frame;
  247. struct drm_device *dev = encoder->dev;
  248. struct drm_i915_private *dev_priv = dev->dev_private;
  249. struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
  250. u32 ctl_reg = HSW_TVIDEO_DIP_CTL(intel_crtc->config.cpu_transcoder);
  251. u32 data_reg;
  252. int i;
  253. u32 val = I915_READ(ctl_reg);
  254. data_reg = hsw_infoframe_data_reg(type,
  255. intel_crtc->config.cpu_transcoder,
  256. dev_priv);
  257. if (data_reg == 0)
  258. return;
  259. val &= ~hsw_infoframe_enable(type);
  260. I915_WRITE(ctl_reg, val);
  261. mmiowb();
  262. for (i = 0; i < len; i += 4) {
  263. I915_WRITE(data_reg + i, *data);
  264. data++;
  265. }
  266. /* Write every possible data byte to force correct ECC calculation. */
  267. for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
  268. I915_WRITE(data_reg + i, 0);
  269. mmiowb();
  270. val |= hsw_infoframe_enable(type);
  271. I915_WRITE(ctl_reg, val);
  272. POSTING_READ(ctl_reg);
  273. }
  274. /*
  275. * The data we write to the DIP data buffer registers is 1 byte bigger than the
  276. * HDMI infoframe size because of an ECC/reserved byte at position 3 (starting
  277. * at 0). It's also a byte used by DisplayPort so the same DIP registers can be
  278. * used for both technologies.
  279. *
  280. * DW0: Reserved/ECC/DP | HB2 | HB1 | HB0
  281. * DW1: DB3 | DB2 | DB1 | DB0
  282. * DW2: DB7 | DB6 | DB5 | DB4
  283. * DW3: ...
  284. *
  285. * (HB is Header Byte, DB is Data Byte)
  286. *
  287. * The hdmi pack() functions don't know about that hardware specific hole so we
  288. * trick them by giving an offset into the buffer and moving back the header
  289. * bytes by one.
  290. */
  291. static void intel_write_infoframe(struct drm_encoder *encoder,
  292. union hdmi_infoframe *frame)
  293. {
  294. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
  295. uint8_t buffer[VIDEO_DIP_DATA_SIZE];
  296. ssize_t len;
  297. /* see comment above for the reason for this offset */
  298. len = hdmi_infoframe_pack(frame, buffer + 1, sizeof(buffer) - 1);
  299. if (len < 0)
  300. return;
  301. /* Insert the 'hole' (see big comment above) at position 3 */
  302. buffer[0] = buffer[1];
  303. buffer[1] = buffer[2];
  304. buffer[2] = buffer[3];
  305. buffer[3] = 0;
  306. len++;
  307. intel_hdmi->write_infoframe(encoder, frame->any.type, buffer, len);
  308. }
  309. static void intel_hdmi_set_avi_infoframe(struct drm_encoder *encoder,
  310. struct drm_display_mode *adjusted_mode)
  311. {
  312. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
  313. struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
  314. union hdmi_infoframe frame;
  315. int ret;
  316. ret = drm_hdmi_avi_infoframe_from_display_mode(&frame.avi,
  317. adjusted_mode);
  318. if (ret < 0) {
  319. DRM_ERROR("couldn't fill AVI infoframe\n");
  320. return;
  321. }
  322. if (intel_hdmi->rgb_quant_range_selectable) {
  323. if (intel_crtc->config.limited_color_range)
  324. frame.avi.quantization_range =
  325. HDMI_QUANTIZATION_RANGE_LIMITED;
  326. else
  327. frame.avi.quantization_range =
  328. HDMI_QUANTIZATION_RANGE_FULL;
  329. }
  330. intel_write_infoframe(encoder, &frame);
  331. }
  332. static void intel_hdmi_set_spd_infoframe(struct drm_encoder *encoder)
  333. {
  334. union hdmi_infoframe frame;
  335. int ret;
  336. ret = hdmi_spd_infoframe_init(&frame.spd, "Intel", "Integrated gfx");
  337. if (ret < 0) {
  338. DRM_ERROR("couldn't fill SPD infoframe\n");
  339. return;
  340. }
  341. frame.spd.sdi = HDMI_SPD_SDI_PC;
  342. intel_write_infoframe(encoder, &frame);
  343. }
  344. static void
  345. intel_hdmi_set_hdmi_infoframe(struct drm_encoder *encoder,
  346. struct drm_display_mode *adjusted_mode)
  347. {
  348. union hdmi_infoframe frame;
  349. int ret;
  350. ret = drm_hdmi_vendor_infoframe_from_display_mode(&frame.vendor.hdmi,
  351. adjusted_mode);
  352. if (ret < 0)
  353. return;
  354. intel_write_infoframe(encoder, &frame);
  355. }
  356. static void g4x_set_infoframes(struct drm_encoder *encoder,
  357. bool enable,
  358. struct drm_display_mode *adjusted_mode)
  359. {
  360. struct drm_i915_private *dev_priv = encoder->dev->dev_private;
  361. struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
  362. struct intel_hdmi *intel_hdmi = &intel_dig_port->hdmi;
  363. u32 reg = VIDEO_DIP_CTL;
  364. u32 val = I915_READ(reg);
  365. u32 port = VIDEO_DIP_PORT(intel_dig_port->port);
  366. assert_hdmi_port_disabled(intel_hdmi);
  367. /* If the registers were not initialized yet, they might be zeroes,
  368. * which means we're selecting the AVI DIP and we're setting its
  369. * frequency to once. This seems to really confuse the HW and make
  370. * things stop working (the register spec says the AVI always needs to
  371. * be sent every VSync). So here we avoid writing to the register more
  372. * than we need and also explicitly select the AVI DIP and explicitly
  373. * set its frequency to every VSync. Avoiding to write it twice seems to
  374. * be enough to solve the problem, but being defensive shouldn't hurt us
  375. * either. */
  376. val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
  377. if (!enable) {
  378. if (!(val & VIDEO_DIP_ENABLE))
  379. return;
  380. val &= ~VIDEO_DIP_ENABLE;
  381. I915_WRITE(reg, val);
  382. POSTING_READ(reg);
  383. return;
  384. }
  385. if (port != (val & VIDEO_DIP_PORT_MASK)) {
  386. if (val & VIDEO_DIP_ENABLE) {
  387. val &= ~VIDEO_DIP_ENABLE;
  388. I915_WRITE(reg, val);
  389. POSTING_READ(reg);
  390. }
  391. val &= ~VIDEO_DIP_PORT_MASK;
  392. val |= port;
  393. }
  394. val |= VIDEO_DIP_ENABLE;
  395. val &= ~VIDEO_DIP_ENABLE_VENDOR;
  396. I915_WRITE(reg, val);
  397. POSTING_READ(reg);
  398. intel_hdmi_set_avi_infoframe(encoder, adjusted_mode);
  399. intel_hdmi_set_spd_infoframe(encoder);
  400. intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode);
  401. }
  402. static void ibx_set_infoframes(struct drm_encoder *encoder,
  403. bool enable,
  404. struct drm_display_mode *adjusted_mode)
  405. {
  406. struct drm_i915_private *dev_priv = encoder->dev->dev_private;
  407. struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
  408. struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
  409. struct intel_hdmi *intel_hdmi = &intel_dig_port->hdmi;
  410. u32 reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
  411. u32 val = I915_READ(reg);
  412. u32 port = VIDEO_DIP_PORT(intel_dig_port->port);
  413. assert_hdmi_port_disabled(intel_hdmi);
  414. /* See the big comment in g4x_set_infoframes() */
  415. val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
  416. if (!enable) {
  417. if (!(val & VIDEO_DIP_ENABLE))
  418. return;
  419. val &= ~VIDEO_DIP_ENABLE;
  420. I915_WRITE(reg, val);
  421. POSTING_READ(reg);
  422. return;
  423. }
  424. if (port != (val & VIDEO_DIP_PORT_MASK)) {
  425. if (val & VIDEO_DIP_ENABLE) {
  426. val &= ~VIDEO_DIP_ENABLE;
  427. I915_WRITE(reg, val);
  428. POSTING_READ(reg);
  429. }
  430. val &= ~VIDEO_DIP_PORT_MASK;
  431. val |= port;
  432. }
  433. val |= VIDEO_DIP_ENABLE;
  434. val &= ~(VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
  435. VIDEO_DIP_ENABLE_GCP);
  436. I915_WRITE(reg, val);
  437. POSTING_READ(reg);
  438. intel_hdmi_set_avi_infoframe(encoder, adjusted_mode);
  439. intel_hdmi_set_spd_infoframe(encoder);
  440. intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode);
  441. }
  442. static void cpt_set_infoframes(struct drm_encoder *encoder,
  443. bool enable,
  444. struct drm_display_mode *adjusted_mode)
  445. {
  446. struct drm_i915_private *dev_priv = encoder->dev->dev_private;
  447. struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
  448. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
  449. u32 reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
  450. u32 val = I915_READ(reg);
  451. assert_hdmi_port_disabled(intel_hdmi);
  452. /* See the big comment in g4x_set_infoframes() */
  453. val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
  454. if (!enable) {
  455. if (!(val & VIDEO_DIP_ENABLE))
  456. return;
  457. val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI);
  458. I915_WRITE(reg, val);
  459. POSTING_READ(reg);
  460. return;
  461. }
  462. /* Set both together, unset both together: see the spec. */
  463. val |= VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI;
  464. val &= ~(VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
  465. VIDEO_DIP_ENABLE_GCP);
  466. I915_WRITE(reg, val);
  467. POSTING_READ(reg);
  468. intel_hdmi_set_avi_infoframe(encoder, adjusted_mode);
  469. intel_hdmi_set_spd_infoframe(encoder);
  470. intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode);
  471. }
  472. static void vlv_set_infoframes(struct drm_encoder *encoder,
  473. bool enable,
  474. struct drm_display_mode *adjusted_mode)
  475. {
  476. struct drm_i915_private *dev_priv = encoder->dev->dev_private;
  477. struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
  478. struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
  479. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
  480. u32 reg = VLV_TVIDEO_DIP_CTL(intel_crtc->pipe);
  481. u32 val = I915_READ(reg);
  482. u32 port = VIDEO_DIP_PORT(intel_dig_port->port);
  483. assert_hdmi_port_disabled(intel_hdmi);
  484. /* See the big comment in g4x_set_infoframes() */
  485. val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
  486. if (!enable) {
  487. if (!(val & VIDEO_DIP_ENABLE))
  488. return;
  489. val &= ~VIDEO_DIP_ENABLE;
  490. I915_WRITE(reg, val);
  491. POSTING_READ(reg);
  492. return;
  493. }
  494. if (port != (val & VIDEO_DIP_PORT_MASK)) {
  495. if (val & VIDEO_DIP_ENABLE) {
  496. val &= ~VIDEO_DIP_ENABLE;
  497. I915_WRITE(reg, val);
  498. POSTING_READ(reg);
  499. }
  500. val &= ~VIDEO_DIP_PORT_MASK;
  501. val |= port;
  502. }
  503. val |= VIDEO_DIP_ENABLE;
  504. val &= ~(VIDEO_DIP_ENABLE_AVI | VIDEO_DIP_ENABLE_VENDOR |
  505. VIDEO_DIP_ENABLE_GAMUT | VIDEO_DIP_ENABLE_GCP);
  506. I915_WRITE(reg, val);
  507. POSTING_READ(reg);
  508. intel_hdmi_set_avi_infoframe(encoder, adjusted_mode);
  509. intel_hdmi_set_spd_infoframe(encoder);
  510. intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode);
  511. }
  512. static void hsw_set_infoframes(struct drm_encoder *encoder,
  513. bool enable,
  514. struct drm_display_mode *adjusted_mode)
  515. {
  516. struct drm_i915_private *dev_priv = encoder->dev->dev_private;
  517. struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
  518. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
  519. u32 reg = HSW_TVIDEO_DIP_CTL(intel_crtc->config.cpu_transcoder);
  520. u32 val = I915_READ(reg);
  521. assert_hdmi_port_disabled(intel_hdmi);
  522. if (!enable) {
  523. I915_WRITE(reg, 0);
  524. POSTING_READ(reg);
  525. return;
  526. }
  527. val &= ~(VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_GCP_HSW |
  528. VIDEO_DIP_ENABLE_VS_HSW | VIDEO_DIP_ENABLE_GMP_HSW);
  529. I915_WRITE(reg, val);
  530. POSTING_READ(reg);
  531. intel_hdmi_set_avi_infoframe(encoder, adjusted_mode);
  532. intel_hdmi_set_spd_infoframe(encoder);
  533. intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode);
  534. }
  535. static void intel_hdmi_prepare(struct intel_encoder *encoder)
  536. {
  537. struct drm_device *dev = encoder->base.dev;
  538. struct drm_i915_private *dev_priv = dev->dev_private;
  539. struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
  540. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
  541. struct drm_display_mode *adjusted_mode = &crtc->config.adjusted_mode;
  542. u32 hdmi_val;
  543. hdmi_val = SDVO_ENCODING_HDMI;
  544. if (!HAS_PCH_SPLIT(dev))
  545. hdmi_val |= intel_hdmi->color_range;
  546. if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
  547. hdmi_val |= SDVO_VSYNC_ACTIVE_HIGH;
  548. if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
  549. hdmi_val |= SDVO_HSYNC_ACTIVE_HIGH;
  550. if (crtc->config.pipe_bpp > 24)
  551. hdmi_val |= HDMI_COLOR_FORMAT_12bpc;
  552. else
  553. hdmi_val |= SDVO_COLOR_FORMAT_8bpc;
  554. if (crtc->config.has_hdmi_sink)
  555. hdmi_val |= HDMI_MODE_SELECT_HDMI;
  556. if (crtc->config.has_audio) {
  557. WARN_ON(!crtc->config.has_hdmi_sink);
  558. DRM_DEBUG_DRIVER("Enabling HDMI audio on pipe %c\n",
  559. pipe_name(crtc->pipe));
  560. hdmi_val |= SDVO_AUDIO_ENABLE;
  561. intel_write_eld(&encoder->base, adjusted_mode);
  562. }
  563. if (HAS_PCH_CPT(dev))
  564. hdmi_val |= SDVO_PIPE_SEL_CPT(crtc->pipe);
  565. else if (IS_CHERRYVIEW(dev))
  566. hdmi_val |= SDVO_PIPE_SEL_CHV(crtc->pipe);
  567. else
  568. hdmi_val |= SDVO_PIPE_SEL(crtc->pipe);
  569. I915_WRITE(intel_hdmi->hdmi_reg, hdmi_val);
  570. POSTING_READ(intel_hdmi->hdmi_reg);
  571. }
  572. static bool intel_hdmi_get_hw_state(struct intel_encoder *encoder,
  573. enum pipe *pipe)
  574. {
  575. struct drm_device *dev = encoder->base.dev;
  576. struct drm_i915_private *dev_priv = dev->dev_private;
  577. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
  578. enum intel_display_power_domain power_domain;
  579. u32 tmp;
  580. power_domain = intel_display_port_power_domain(encoder);
  581. if (!intel_display_power_enabled(dev_priv, power_domain))
  582. return false;
  583. tmp = I915_READ(intel_hdmi->hdmi_reg);
  584. if (!(tmp & SDVO_ENABLE))
  585. return false;
  586. if (HAS_PCH_CPT(dev))
  587. *pipe = PORT_TO_PIPE_CPT(tmp);
  588. else if (IS_CHERRYVIEW(dev))
  589. *pipe = SDVO_PORT_TO_PIPE_CHV(tmp);
  590. else
  591. *pipe = PORT_TO_PIPE(tmp);
  592. return true;
  593. }
  594. static void intel_hdmi_get_config(struct intel_encoder *encoder,
  595. struct intel_crtc_config *pipe_config)
  596. {
  597. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
  598. struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
  599. u32 tmp, flags = 0;
  600. int dotclock;
  601. tmp = I915_READ(intel_hdmi->hdmi_reg);
  602. if (tmp & SDVO_HSYNC_ACTIVE_HIGH)
  603. flags |= DRM_MODE_FLAG_PHSYNC;
  604. else
  605. flags |= DRM_MODE_FLAG_NHSYNC;
  606. if (tmp & SDVO_VSYNC_ACTIVE_HIGH)
  607. flags |= DRM_MODE_FLAG_PVSYNC;
  608. else
  609. flags |= DRM_MODE_FLAG_NVSYNC;
  610. if (tmp & HDMI_MODE_SELECT_HDMI)
  611. pipe_config->has_hdmi_sink = true;
  612. if (tmp & HDMI_MODE_SELECT_HDMI)
  613. pipe_config->has_audio = true;
  614. pipe_config->adjusted_mode.flags |= flags;
  615. if ((tmp & SDVO_COLOR_FORMAT_MASK) == HDMI_COLOR_FORMAT_12bpc)
  616. dotclock = pipe_config->port_clock * 2 / 3;
  617. else
  618. dotclock = pipe_config->port_clock;
  619. if (HAS_PCH_SPLIT(dev_priv->dev))
  620. ironlake_check_encoder_dotclock(pipe_config, dotclock);
  621. pipe_config->adjusted_mode.crtc_clock = dotclock;
  622. }
  623. static void intel_enable_hdmi(struct intel_encoder *encoder)
  624. {
  625. struct drm_device *dev = encoder->base.dev;
  626. struct drm_i915_private *dev_priv = dev->dev_private;
  627. struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
  628. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
  629. u32 temp;
  630. u32 enable_bits = SDVO_ENABLE;
  631. if (intel_crtc->config.has_audio)
  632. enable_bits |= SDVO_AUDIO_ENABLE;
  633. temp = I915_READ(intel_hdmi->hdmi_reg);
  634. /* HW workaround for IBX, we need to move the port to transcoder A
  635. * before disabling it, so restore the transcoder select bit here. */
  636. if (HAS_PCH_IBX(dev))
  637. enable_bits |= SDVO_PIPE_SEL(intel_crtc->pipe);
  638. /* HW workaround, need to toggle enable bit off and on for 12bpc, but
  639. * we do this anyway which shows more stable in testing.
  640. */
  641. if (HAS_PCH_SPLIT(dev)) {
  642. I915_WRITE(intel_hdmi->hdmi_reg, temp & ~SDVO_ENABLE);
  643. POSTING_READ(intel_hdmi->hdmi_reg);
  644. }
  645. temp |= enable_bits;
  646. I915_WRITE(intel_hdmi->hdmi_reg, temp);
  647. POSTING_READ(intel_hdmi->hdmi_reg);
  648. /* HW workaround, need to write this twice for issue that may result
  649. * in first write getting masked.
  650. */
  651. if (HAS_PCH_SPLIT(dev)) {
  652. I915_WRITE(intel_hdmi->hdmi_reg, temp);
  653. POSTING_READ(intel_hdmi->hdmi_reg);
  654. }
  655. }
  656. static void vlv_enable_hdmi(struct intel_encoder *encoder)
  657. {
  658. }
  659. static void intel_disable_hdmi(struct intel_encoder *encoder)
  660. {
  661. struct drm_device *dev = encoder->base.dev;
  662. struct drm_i915_private *dev_priv = dev->dev_private;
  663. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
  664. u32 temp;
  665. u32 enable_bits = SDVO_ENABLE | SDVO_AUDIO_ENABLE;
  666. temp = I915_READ(intel_hdmi->hdmi_reg);
  667. /* HW workaround for IBX, we need to move the port to transcoder A
  668. * before disabling it. */
  669. if (HAS_PCH_IBX(dev)) {
  670. struct drm_crtc *crtc = encoder->base.crtc;
  671. int pipe = crtc ? to_intel_crtc(crtc)->pipe : -1;
  672. if (temp & SDVO_PIPE_B_SELECT) {
  673. temp &= ~SDVO_PIPE_B_SELECT;
  674. I915_WRITE(intel_hdmi->hdmi_reg, temp);
  675. POSTING_READ(intel_hdmi->hdmi_reg);
  676. /* Again we need to write this twice. */
  677. I915_WRITE(intel_hdmi->hdmi_reg, temp);
  678. POSTING_READ(intel_hdmi->hdmi_reg);
  679. /* Transcoder selection bits only update
  680. * effectively on vblank. */
  681. if (crtc)
  682. intel_wait_for_vblank(dev, pipe);
  683. else
  684. msleep(50);
  685. }
  686. }
  687. /* HW workaround, need to toggle enable bit off and on for 12bpc, but
  688. * we do this anyway which shows more stable in testing.
  689. */
  690. if (HAS_PCH_SPLIT(dev)) {
  691. I915_WRITE(intel_hdmi->hdmi_reg, temp & ~SDVO_ENABLE);
  692. POSTING_READ(intel_hdmi->hdmi_reg);
  693. }
  694. temp &= ~enable_bits;
  695. I915_WRITE(intel_hdmi->hdmi_reg, temp);
  696. POSTING_READ(intel_hdmi->hdmi_reg);
  697. /* HW workaround, need to write this twice for issue that may result
  698. * in first write getting masked.
  699. */
  700. if (HAS_PCH_SPLIT(dev)) {
  701. I915_WRITE(intel_hdmi->hdmi_reg, temp);
  702. POSTING_READ(intel_hdmi->hdmi_reg);
  703. }
  704. }
  705. static int hdmi_portclock_limit(struct intel_hdmi *hdmi, bool respect_dvi_limit)
  706. {
  707. struct drm_device *dev = intel_hdmi_to_dev(hdmi);
  708. if ((respect_dvi_limit && !hdmi->has_hdmi_sink) || IS_G4X(dev))
  709. return 165000;
  710. else if (IS_HASWELL(dev) || INTEL_INFO(dev)->gen >= 8)
  711. return 300000;
  712. else
  713. return 225000;
  714. }
  715. static enum drm_mode_status
  716. intel_hdmi_mode_valid(struct drm_connector *connector,
  717. struct drm_display_mode *mode)
  718. {
  719. if (mode->clock > hdmi_portclock_limit(intel_attached_hdmi(connector),
  720. true))
  721. return MODE_CLOCK_HIGH;
  722. if (mode->clock < 20000)
  723. return MODE_CLOCK_LOW;
  724. if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
  725. return MODE_NO_DBLESCAN;
  726. return MODE_OK;
  727. }
  728. static bool hdmi_12bpc_possible(struct intel_crtc *crtc)
  729. {
  730. struct drm_device *dev = crtc->base.dev;
  731. struct intel_encoder *encoder;
  732. int count = 0, count_hdmi = 0;
  733. if (!HAS_PCH_SPLIT(dev))
  734. return false;
  735. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  736. if (encoder->new_crtc != crtc)
  737. continue;
  738. count_hdmi += encoder->type == INTEL_OUTPUT_HDMI;
  739. count++;
  740. }
  741. /*
  742. * HDMI 12bpc affects the clocks, so it's only possible
  743. * when not cloning with other encoder types.
  744. */
  745. return count_hdmi > 0 && count_hdmi == count;
  746. }
  747. bool intel_hdmi_compute_config(struct intel_encoder *encoder,
  748. struct intel_crtc_config *pipe_config)
  749. {
  750. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
  751. struct drm_device *dev = encoder->base.dev;
  752. struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
  753. int clock_12bpc = pipe_config->adjusted_mode.crtc_clock * 3 / 2;
  754. int portclock_limit = hdmi_portclock_limit(intel_hdmi, false);
  755. int desired_bpp;
  756. pipe_config->has_hdmi_sink = intel_hdmi->has_hdmi_sink;
  757. if (intel_hdmi->color_range_auto) {
  758. /* See CEA-861-E - 5.1 Default Encoding Parameters */
  759. if (pipe_config->has_hdmi_sink &&
  760. drm_match_cea_mode(adjusted_mode) > 1)
  761. intel_hdmi->color_range = HDMI_COLOR_RANGE_16_235;
  762. else
  763. intel_hdmi->color_range = 0;
  764. }
  765. if (intel_hdmi->color_range)
  766. pipe_config->limited_color_range = true;
  767. if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev))
  768. pipe_config->has_pch_encoder = true;
  769. if (pipe_config->has_hdmi_sink && intel_hdmi->has_audio)
  770. pipe_config->has_audio = true;
  771. /*
  772. * HDMI is either 12 or 8, so if the display lets 10bpc sneak
  773. * through, clamp it down. Note that g4x/vlv don't support 12bpc hdmi
  774. * outputs. We also need to check that the higher clock still fits
  775. * within limits.
  776. */
  777. if (pipe_config->pipe_bpp > 8*3 && pipe_config->has_hdmi_sink &&
  778. clock_12bpc <= portclock_limit &&
  779. hdmi_12bpc_possible(encoder->new_crtc)) {
  780. DRM_DEBUG_KMS("picking bpc to 12 for HDMI output\n");
  781. desired_bpp = 12*3;
  782. /* Need to adjust the port link by 1.5x for 12bpc. */
  783. pipe_config->port_clock = clock_12bpc;
  784. } else {
  785. DRM_DEBUG_KMS("picking bpc to 8 for HDMI output\n");
  786. desired_bpp = 8*3;
  787. }
  788. if (!pipe_config->bw_constrained) {
  789. DRM_DEBUG_KMS("forcing pipe bpc to %i for HDMI\n", desired_bpp);
  790. pipe_config->pipe_bpp = desired_bpp;
  791. }
  792. if (adjusted_mode->crtc_clock > portclock_limit) {
  793. DRM_DEBUG_KMS("too high HDMI clock, rejecting mode\n");
  794. return false;
  795. }
  796. return true;
  797. }
  798. static enum drm_connector_status
  799. intel_hdmi_detect(struct drm_connector *connector, bool force)
  800. {
  801. struct drm_device *dev = connector->dev;
  802. struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
  803. struct intel_digital_port *intel_dig_port =
  804. hdmi_to_dig_port(intel_hdmi);
  805. struct intel_encoder *intel_encoder = &intel_dig_port->base;
  806. struct drm_i915_private *dev_priv = dev->dev_private;
  807. struct edid *edid;
  808. enum intel_display_power_domain power_domain;
  809. enum drm_connector_status status = connector_status_disconnected;
  810. DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
  811. connector->base.id, connector->name);
  812. power_domain = intel_display_port_power_domain(intel_encoder);
  813. intel_display_power_get(dev_priv, power_domain);
  814. intel_hdmi->has_hdmi_sink = false;
  815. intel_hdmi->has_audio = false;
  816. intel_hdmi->rgb_quant_range_selectable = false;
  817. edid = drm_get_edid(connector,
  818. intel_gmbus_get_adapter(dev_priv,
  819. intel_hdmi->ddc_bus));
  820. if (edid) {
  821. if (edid->input & DRM_EDID_INPUT_DIGITAL) {
  822. status = connector_status_connected;
  823. if (intel_hdmi->force_audio != HDMI_AUDIO_OFF_DVI)
  824. intel_hdmi->has_hdmi_sink =
  825. drm_detect_hdmi_monitor(edid);
  826. intel_hdmi->has_audio = drm_detect_monitor_audio(edid);
  827. intel_hdmi->rgb_quant_range_selectable =
  828. drm_rgb_quant_range_selectable(edid);
  829. }
  830. kfree(edid);
  831. }
  832. if (status == connector_status_connected) {
  833. if (intel_hdmi->force_audio != HDMI_AUDIO_AUTO)
  834. intel_hdmi->has_audio =
  835. (intel_hdmi->force_audio == HDMI_AUDIO_ON);
  836. intel_encoder->type = INTEL_OUTPUT_HDMI;
  837. }
  838. intel_display_power_put(dev_priv, power_domain);
  839. return status;
  840. }
  841. static int intel_hdmi_get_modes(struct drm_connector *connector)
  842. {
  843. struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
  844. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
  845. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  846. enum intel_display_power_domain power_domain;
  847. int ret;
  848. /* We should parse the EDID data and find out if it's an HDMI sink so
  849. * we can send audio to it.
  850. */
  851. power_domain = intel_display_port_power_domain(intel_encoder);
  852. intel_display_power_get(dev_priv, power_domain);
  853. ret = intel_ddc_get_modes(connector,
  854. intel_gmbus_get_adapter(dev_priv,
  855. intel_hdmi->ddc_bus));
  856. intel_display_power_put(dev_priv, power_domain);
  857. return ret;
  858. }
  859. static bool
  860. intel_hdmi_detect_audio(struct drm_connector *connector)
  861. {
  862. struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
  863. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
  864. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  865. enum intel_display_power_domain power_domain;
  866. struct edid *edid;
  867. bool has_audio = false;
  868. power_domain = intel_display_port_power_domain(intel_encoder);
  869. intel_display_power_get(dev_priv, power_domain);
  870. edid = drm_get_edid(connector,
  871. intel_gmbus_get_adapter(dev_priv,
  872. intel_hdmi->ddc_bus));
  873. if (edid) {
  874. if (edid->input & DRM_EDID_INPUT_DIGITAL)
  875. has_audio = drm_detect_monitor_audio(edid);
  876. kfree(edid);
  877. }
  878. intel_display_power_put(dev_priv, power_domain);
  879. return has_audio;
  880. }
  881. static int
  882. intel_hdmi_set_property(struct drm_connector *connector,
  883. struct drm_property *property,
  884. uint64_t val)
  885. {
  886. struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
  887. struct intel_digital_port *intel_dig_port =
  888. hdmi_to_dig_port(intel_hdmi);
  889. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  890. int ret;
  891. ret = drm_object_property_set_value(&connector->base, property, val);
  892. if (ret)
  893. return ret;
  894. if (property == dev_priv->force_audio_property) {
  895. enum hdmi_force_audio i = val;
  896. bool has_audio;
  897. if (i == intel_hdmi->force_audio)
  898. return 0;
  899. intel_hdmi->force_audio = i;
  900. if (i == HDMI_AUDIO_AUTO)
  901. has_audio = intel_hdmi_detect_audio(connector);
  902. else
  903. has_audio = (i == HDMI_AUDIO_ON);
  904. if (i == HDMI_AUDIO_OFF_DVI)
  905. intel_hdmi->has_hdmi_sink = 0;
  906. intel_hdmi->has_audio = has_audio;
  907. goto done;
  908. }
  909. if (property == dev_priv->broadcast_rgb_property) {
  910. bool old_auto = intel_hdmi->color_range_auto;
  911. uint32_t old_range = intel_hdmi->color_range;
  912. switch (val) {
  913. case INTEL_BROADCAST_RGB_AUTO:
  914. intel_hdmi->color_range_auto = true;
  915. break;
  916. case INTEL_BROADCAST_RGB_FULL:
  917. intel_hdmi->color_range_auto = false;
  918. intel_hdmi->color_range = 0;
  919. break;
  920. case INTEL_BROADCAST_RGB_LIMITED:
  921. intel_hdmi->color_range_auto = false;
  922. intel_hdmi->color_range = HDMI_COLOR_RANGE_16_235;
  923. break;
  924. default:
  925. return -EINVAL;
  926. }
  927. if (old_auto == intel_hdmi->color_range_auto &&
  928. old_range == intel_hdmi->color_range)
  929. return 0;
  930. goto done;
  931. }
  932. return -EINVAL;
  933. done:
  934. if (intel_dig_port->base.base.crtc)
  935. intel_crtc_restore_mode(intel_dig_port->base.base.crtc);
  936. return 0;
  937. }
  938. static void intel_hdmi_pre_enable(struct intel_encoder *encoder)
  939. {
  940. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
  941. struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
  942. struct drm_display_mode *adjusted_mode =
  943. &intel_crtc->config.adjusted_mode;
  944. intel_hdmi_prepare(encoder);
  945. intel_hdmi->set_infoframes(&encoder->base,
  946. intel_crtc->config.has_hdmi_sink,
  947. adjusted_mode);
  948. }
  949. static void vlv_hdmi_pre_enable(struct intel_encoder *encoder)
  950. {
  951. struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
  952. struct intel_hdmi *intel_hdmi = &dport->hdmi;
  953. struct drm_device *dev = encoder->base.dev;
  954. struct drm_i915_private *dev_priv = dev->dev_private;
  955. struct intel_crtc *intel_crtc =
  956. to_intel_crtc(encoder->base.crtc);
  957. struct drm_display_mode *adjusted_mode =
  958. &intel_crtc->config.adjusted_mode;
  959. enum dpio_channel port = vlv_dport_to_channel(dport);
  960. int pipe = intel_crtc->pipe;
  961. u32 val;
  962. /* Enable clock channels for this port */
  963. mutex_lock(&dev_priv->dpio_lock);
  964. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
  965. val = 0;
  966. if (pipe)
  967. val |= (1<<21);
  968. else
  969. val &= ~(1<<21);
  970. val |= 0x001000c4;
  971. vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
  972. /* HDMI 1.0V-2dB */
  973. vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0);
  974. vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), 0x2b245f5f);
  975. vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port), 0x5578b83a);
  976. vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0c782040);
  977. vlv_dpio_write(dev_priv, pipe, VLV_TX3_DW4(port), 0x2b247878);
  978. vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
  979. vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), 0x00002000);
  980. vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), DPIO_TX_OCALINIT_EN);
  981. /* Program lane clock */
  982. vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
  983. vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
  984. mutex_unlock(&dev_priv->dpio_lock);
  985. intel_hdmi->set_infoframes(&encoder->base,
  986. intel_crtc->config.has_hdmi_sink,
  987. adjusted_mode);
  988. intel_enable_hdmi(encoder);
  989. vlv_wait_port_ready(dev_priv, dport);
  990. }
  991. static void vlv_hdmi_pre_pll_enable(struct intel_encoder *encoder)
  992. {
  993. struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
  994. struct drm_device *dev = encoder->base.dev;
  995. struct drm_i915_private *dev_priv = dev->dev_private;
  996. struct intel_crtc *intel_crtc =
  997. to_intel_crtc(encoder->base.crtc);
  998. enum dpio_channel port = vlv_dport_to_channel(dport);
  999. int pipe = intel_crtc->pipe;
  1000. intel_hdmi_prepare(encoder);
  1001. /* Program Tx lane resets to default */
  1002. mutex_lock(&dev_priv->dpio_lock);
  1003. vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
  1004. DPIO_PCS_TX_LANE2_RESET |
  1005. DPIO_PCS_TX_LANE1_RESET);
  1006. vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
  1007. DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
  1008. DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
  1009. (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
  1010. DPIO_PCS_CLK_SOFT_RESET);
  1011. /* Fix up inter-pair skew failure */
  1012. vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
  1013. vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
  1014. vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
  1015. vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), 0x00002000);
  1016. vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), DPIO_TX_OCALINIT_EN);
  1017. mutex_unlock(&dev_priv->dpio_lock);
  1018. }
  1019. static void vlv_hdmi_post_disable(struct intel_encoder *encoder)
  1020. {
  1021. struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
  1022. struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
  1023. struct intel_crtc *intel_crtc =
  1024. to_intel_crtc(encoder->base.crtc);
  1025. enum dpio_channel port = vlv_dport_to_channel(dport);
  1026. int pipe = intel_crtc->pipe;
  1027. /* Reset lanes to avoid HDMI flicker (VLV w/a) */
  1028. mutex_lock(&dev_priv->dpio_lock);
  1029. vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port), 0x00000000);
  1030. vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port), 0x00e00060);
  1031. mutex_unlock(&dev_priv->dpio_lock);
  1032. }
  1033. static void chv_hdmi_post_disable(struct intel_encoder *encoder)
  1034. {
  1035. struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
  1036. struct drm_device *dev = encoder->base.dev;
  1037. struct drm_i915_private *dev_priv = dev->dev_private;
  1038. struct intel_crtc *intel_crtc =
  1039. to_intel_crtc(encoder->base.crtc);
  1040. enum dpio_channel ch = vlv_dport_to_channel(dport);
  1041. enum pipe pipe = intel_crtc->pipe;
  1042. u32 val;
  1043. mutex_lock(&dev_priv->dpio_lock);
  1044. /* Propagate soft reset to data lane reset */
  1045. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
  1046. val |= CHV_PCS_REQ_SOFTRESET_EN;
  1047. vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
  1048. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
  1049. val |= CHV_PCS_REQ_SOFTRESET_EN;
  1050. vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
  1051. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
  1052. val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
  1053. vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
  1054. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
  1055. val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
  1056. vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
  1057. mutex_unlock(&dev_priv->dpio_lock);
  1058. }
  1059. static void chv_hdmi_pre_enable(struct intel_encoder *encoder)
  1060. {
  1061. struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
  1062. struct drm_device *dev = encoder->base.dev;
  1063. struct drm_i915_private *dev_priv = dev->dev_private;
  1064. struct intel_crtc *intel_crtc =
  1065. to_intel_crtc(encoder->base.crtc);
  1066. enum dpio_channel ch = vlv_dport_to_channel(dport);
  1067. int pipe = intel_crtc->pipe;
  1068. int data, i;
  1069. u32 val;
  1070. mutex_lock(&dev_priv->dpio_lock);
  1071. /* Deassert soft data lane reset*/
  1072. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
  1073. val |= CHV_PCS_REQ_SOFTRESET_EN;
  1074. vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
  1075. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
  1076. val |= CHV_PCS_REQ_SOFTRESET_EN;
  1077. vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
  1078. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
  1079. val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
  1080. vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
  1081. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
  1082. val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
  1083. vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
  1084. /* Program Tx latency optimal setting */
  1085. for (i = 0; i < 4; i++) {
  1086. /* Set the latency optimal bit */
  1087. data = (i == 1) ? 0x0 : 0x6;
  1088. vlv_dpio_write(dev_priv, pipe, CHV_TX_DW11(ch, i),
  1089. data << DPIO_FRC_LATENCY_SHFIT);
  1090. /* Set the upar bit */
  1091. data = (i == 1) ? 0x0 : 0x1;
  1092. vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
  1093. data << DPIO_UPAR_SHIFT);
  1094. }
  1095. /* Data lane stagger programming */
  1096. /* FIXME: Fix up value only after power analysis */
  1097. /* Clear calc init */
  1098. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
  1099. val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
  1100. vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
  1101. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
  1102. val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
  1103. vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
  1104. /* FIXME: Program the support xxx V-dB */
  1105. /* Use 800mV-0dB */
  1106. for (i = 0; i < 4; i++) {
  1107. val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i));
  1108. val &= ~DPIO_SWING_DEEMPH9P5_MASK;
  1109. val |= 128 << DPIO_SWING_DEEMPH9P5_SHIFT;
  1110. vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val);
  1111. }
  1112. for (i = 0; i < 4; i++) {
  1113. val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
  1114. val &= ~DPIO_SWING_MARGIN_MASK;
  1115. val |= 102 << DPIO_SWING_MARGIN_SHIFT;
  1116. vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
  1117. }
  1118. /* Disable unique transition scale */
  1119. for (i = 0; i < 4; i++) {
  1120. val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
  1121. val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
  1122. vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
  1123. }
  1124. /* Additional steps for 1200mV-0dB */
  1125. #if 0
  1126. val = vlv_dpio_read(dev_priv, pipe, VLV_TX_DW3(ch));
  1127. if (ch)
  1128. val |= DPIO_TX_UNIQ_TRANS_SCALE_CH1;
  1129. else
  1130. val |= DPIO_TX_UNIQ_TRANS_SCALE_CH0;
  1131. vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(ch), val);
  1132. vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(ch),
  1133. vlv_dpio_read(dev_priv, pipe, VLV_TX_DW2(ch)) |
  1134. (0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT));
  1135. #endif
  1136. /* Start swing calculation */
  1137. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
  1138. val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
  1139. vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
  1140. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
  1141. val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
  1142. vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
  1143. /* LRC Bypass */
  1144. val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW30);
  1145. val |= DPIO_LRC_BYPASS;
  1146. vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW30, val);
  1147. mutex_unlock(&dev_priv->dpio_lock);
  1148. intel_enable_hdmi(encoder);
  1149. vlv_wait_port_ready(dev_priv, dport);
  1150. }
  1151. static void intel_hdmi_destroy(struct drm_connector *connector)
  1152. {
  1153. drm_connector_cleanup(connector);
  1154. kfree(connector);
  1155. }
  1156. static const struct drm_connector_funcs intel_hdmi_connector_funcs = {
  1157. .dpms = intel_connector_dpms,
  1158. .detect = intel_hdmi_detect,
  1159. .fill_modes = drm_helper_probe_single_connector_modes,
  1160. .set_property = intel_hdmi_set_property,
  1161. .destroy = intel_hdmi_destroy,
  1162. };
  1163. static const struct drm_connector_helper_funcs intel_hdmi_connector_helper_funcs = {
  1164. .get_modes = intel_hdmi_get_modes,
  1165. .mode_valid = intel_hdmi_mode_valid,
  1166. .best_encoder = intel_best_encoder,
  1167. };
  1168. static const struct drm_encoder_funcs intel_hdmi_enc_funcs = {
  1169. .destroy = intel_encoder_destroy,
  1170. };
  1171. static void
  1172. intel_hdmi_add_properties(struct intel_hdmi *intel_hdmi, struct drm_connector *connector)
  1173. {
  1174. intel_attach_force_audio_property(connector);
  1175. intel_attach_broadcast_rgb_property(connector);
  1176. intel_hdmi->color_range_auto = true;
  1177. }
  1178. void intel_hdmi_init_connector(struct intel_digital_port *intel_dig_port,
  1179. struct intel_connector *intel_connector)
  1180. {
  1181. struct drm_connector *connector = &intel_connector->base;
  1182. struct intel_hdmi *intel_hdmi = &intel_dig_port->hdmi;
  1183. struct intel_encoder *intel_encoder = &intel_dig_port->base;
  1184. struct drm_device *dev = intel_encoder->base.dev;
  1185. struct drm_i915_private *dev_priv = dev->dev_private;
  1186. enum port port = intel_dig_port->port;
  1187. drm_connector_init(dev, connector, &intel_hdmi_connector_funcs,
  1188. DRM_MODE_CONNECTOR_HDMIA);
  1189. drm_connector_helper_add(connector, &intel_hdmi_connector_helper_funcs);
  1190. connector->interlace_allowed = 1;
  1191. connector->doublescan_allowed = 0;
  1192. connector->stereo_allowed = 1;
  1193. switch (port) {
  1194. case PORT_B:
  1195. intel_hdmi->ddc_bus = GMBUS_PORT_DPB;
  1196. intel_encoder->hpd_pin = HPD_PORT_B;
  1197. break;
  1198. case PORT_C:
  1199. intel_hdmi->ddc_bus = GMBUS_PORT_DPC;
  1200. intel_encoder->hpd_pin = HPD_PORT_C;
  1201. break;
  1202. case PORT_D:
  1203. if (IS_CHERRYVIEW(dev))
  1204. intel_hdmi->ddc_bus = GMBUS_PORT_DPD_CHV;
  1205. else
  1206. intel_hdmi->ddc_bus = GMBUS_PORT_DPD;
  1207. intel_encoder->hpd_pin = HPD_PORT_D;
  1208. break;
  1209. case PORT_A:
  1210. intel_encoder->hpd_pin = HPD_PORT_A;
  1211. /* Internal port only for eDP. */
  1212. default:
  1213. BUG();
  1214. }
  1215. if (IS_VALLEYVIEW(dev)) {
  1216. intel_hdmi->write_infoframe = vlv_write_infoframe;
  1217. intel_hdmi->set_infoframes = vlv_set_infoframes;
  1218. } else if (!HAS_PCH_SPLIT(dev)) {
  1219. intel_hdmi->write_infoframe = g4x_write_infoframe;
  1220. intel_hdmi->set_infoframes = g4x_set_infoframes;
  1221. } else if (HAS_DDI(dev)) {
  1222. intel_hdmi->write_infoframe = hsw_write_infoframe;
  1223. intel_hdmi->set_infoframes = hsw_set_infoframes;
  1224. } else if (HAS_PCH_IBX(dev)) {
  1225. intel_hdmi->write_infoframe = ibx_write_infoframe;
  1226. intel_hdmi->set_infoframes = ibx_set_infoframes;
  1227. } else {
  1228. intel_hdmi->write_infoframe = cpt_write_infoframe;
  1229. intel_hdmi->set_infoframes = cpt_set_infoframes;
  1230. }
  1231. if (HAS_DDI(dev))
  1232. intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
  1233. else
  1234. intel_connector->get_hw_state = intel_connector_get_hw_state;
  1235. intel_connector->unregister = intel_connector_unregister;
  1236. intel_hdmi_add_properties(intel_hdmi, connector);
  1237. intel_connector_attach_encoder(intel_connector, intel_encoder);
  1238. drm_sysfs_connector_add(connector);
  1239. /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
  1240. * 0xd. Failure to do so will result in spurious interrupts being
  1241. * generated on the port when a cable is not attached.
  1242. */
  1243. if (IS_G4X(dev) && !IS_GM45(dev)) {
  1244. u32 temp = I915_READ(PEG_BAND_GAP_DATA);
  1245. I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
  1246. }
  1247. }
  1248. void intel_hdmi_init(struct drm_device *dev, int hdmi_reg, enum port port)
  1249. {
  1250. struct intel_digital_port *intel_dig_port;
  1251. struct intel_encoder *intel_encoder;
  1252. struct intel_connector *intel_connector;
  1253. intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
  1254. if (!intel_dig_port)
  1255. return;
  1256. intel_connector = kzalloc(sizeof(*intel_connector), GFP_KERNEL);
  1257. if (!intel_connector) {
  1258. kfree(intel_dig_port);
  1259. return;
  1260. }
  1261. intel_encoder = &intel_dig_port->base;
  1262. drm_encoder_init(dev, &intel_encoder->base, &intel_hdmi_enc_funcs,
  1263. DRM_MODE_ENCODER_TMDS);
  1264. intel_encoder->compute_config = intel_hdmi_compute_config;
  1265. intel_encoder->disable = intel_disable_hdmi;
  1266. intel_encoder->get_hw_state = intel_hdmi_get_hw_state;
  1267. intel_encoder->get_config = intel_hdmi_get_config;
  1268. if (IS_CHERRYVIEW(dev)) {
  1269. intel_encoder->pre_enable = chv_hdmi_pre_enable;
  1270. intel_encoder->enable = vlv_enable_hdmi;
  1271. intel_encoder->post_disable = chv_hdmi_post_disable;
  1272. } else if (IS_VALLEYVIEW(dev)) {
  1273. intel_encoder->pre_pll_enable = vlv_hdmi_pre_pll_enable;
  1274. intel_encoder->pre_enable = vlv_hdmi_pre_enable;
  1275. intel_encoder->enable = vlv_enable_hdmi;
  1276. intel_encoder->post_disable = vlv_hdmi_post_disable;
  1277. } else {
  1278. intel_encoder->pre_enable = intel_hdmi_pre_enable;
  1279. intel_encoder->enable = intel_enable_hdmi;
  1280. }
  1281. intel_encoder->type = INTEL_OUTPUT_HDMI;
  1282. if (IS_CHERRYVIEW(dev)) {
  1283. if (port == PORT_D)
  1284. intel_encoder->crtc_mask = 1 << 2;
  1285. else
  1286. intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
  1287. } else {
  1288. intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
  1289. }
  1290. intel_encoder->cloneable = 1 << INTEL_OUTPUT_ANALOG;
  1291. /*
  1292. * BSpec is unclear about HDMI+HDMI cloning on g4x, but it seems
  1293. * to work on real hardware. And since g4x can send infoframes to
  1294. * only one port anyway, nothing is lost by allowing it.
  1295. */
  1296. if (IS_G4X(dev))
  1297. intel_encoder->cloneable |= 1 << INTEL_OUTPUT_HDMI;
  1298. intel_dig_port->port = port;
  1299. intel_dig_port->hdmi.hdmi_reg = hdmi_reg;
  1300. intel_dig_port->dp.output_reg = 0;
  1301. intel_hdmi_init_connector(intel_dig_port, intel_connector);
  1302. }