i915_sysfs.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609
  1. /*
  2. * Copyright © 2012 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Ben Widawsky <ben@bwidawsk.net>
  25. *
  26. */
  27. #include <linux/device.h>
  28. #include <linux/module.h>
  29. #include <linux/stat.h>
  30. #include <linux/sysfs.h>
  31. #include "intel_drv.h"
  32. #include "i915_drv.h"
  33. #define dev_to_drm_minor(d) dev_get_drvdata((d))
  34. #ifdef CONFIG_PM
  35. static u32 calc_residency(struct drm_device *dev, const u32 reg)
  36. {
  37. struct drm_i915_private *dev_priv = dev->dev_private;
  38. u64 raw_time; /* 32b value may overflow during fixed point math */
  39. u64 units = 128ULL, div = 100000ULL, bias = 100ULL;
  40. u32 ret;
  41. if (!intel_enable_rc6(dev))
  42. return 0;
  43. intel_runtime_pm_get(dev_priv);
  44. /* On VLV, residency time is in CZ units rather than 1.28us */
  45. if (IS_VALLEYVIEW(dev)) {
  46. u32 clkctl2;
  47. clkctl2 = I915_READ(VLV_CLK_CTL2) >>
  48. CLK_CTL2_CZCOUNT_30NS_SHIFT;
  49. if (!clkctl2) {
  50. WARN(!clkctl2, "bogus CZ count value");
  51. ret = 0;
  52. goto out;
  53. }
  54. units = DIV_ROUND_UP_ULL(30ULL * bias, (u64)clkctl2);
  55. if (I915_READ(VLV_COUNTER_CONTROL) & VLV_COUNT_RANGE_HIGH)
  56. units <<= 8;
  57. div = 1000000ULL * bias;
  58. }
  59. raw_time = I915_READ(reg) * units;
  60. ret = DIV_ROUND_UP_ULL(raw_time, div);
  61. out:
  62. intel_runtime_pm_put(dev_priv);
  63. return ret;
  64. }
  65. static ssize_t
  66. show_rc6_mask(struct device *kdev, struct device_attribute *attr, char *buf)
  67. {
  68. struct drm_minor *dminor = dev_to_drm_minor(kdev);
  69. return snprintf(buf, PAGE_SIZE, "%x\n", intel_enable_rc6(dminor->dev));
  70. }
  71. static ssize_t
  72. show_rc6_ms(struct device *kdev, struct device_attribute *attr, char *buf)
  73. {
  74. struct drm_minor *dminor = dev_get_drvdata(kdev);
  75. u32 rc6_residency = calc_residency(dminor->dev, GEN6_GT_GFX_RC6);
  76. return snprintf(buf, PAGE_SIZE, "%u\n", rc6_residency);
  77. }
  78. static ssize_t
  79. show_rc6p_ms(struct device *kdev, struct device_attribute *attr, char *buf)
  80. {
  81. struct drm_minor *dminor = dev_to_drm_minor(kdev);
  82. u32 rc6p_residency = calc_residency(dminor->dev, GEN6_GT_GFX_RC6p);
  83. if (IS_VALLEYVIEW(dminor->dev))
  84. rc6p_residency = 0;
  85. return snprintf(buf, PAGE_SIZE, "%u\n", rc6p_residency);
  86. }
  87. static ssize_t
  88. show_rc6pp_ms(struct device *kdev, struct device_attribute *attr, char *buf)
  89. {
  90. struct drm_minor *dminor = dev_to_drm_minor(kdev);
  91. u32 rc6pp_residency = calc_residency(dminor->dev, GEN6_GT_GFX_RC6pp);
  92. if (IS_VALLEYVIEW(dminor->dev))
  93. rc6pp_residency = 0;
  94. return snprintf(buf, PAGE_SIZE, "%u\n", rc6pp_residency);
  95. }
  96. static DEVICE_ATTR(rc6_enable, S_IRUGO, show_rc6_mask, NULL);
  97. static DEVICE_ATTR(rc6_residency_ms, S_IRUGO, show_rc6_ms, NULL);
  98. static DEVICE_ATTR(rc6p_residency_ms, S_IRUGO, show_rc6p_ms, NULL);
  99. static DEVICE_ATTR(rc6pp_residency_ms, S_IRUGO, show_rc6pp_ms, NULL);
  100. static struct attribute *rc6_attrs[] = {
  101. &dev_attr_rc6_enable.attr,
  102. &dev_attr_rc6_residency_ms.attr,
  103. &dev_attr_rc6p_residency_ms.attr,
  104. &dev_attr_rc6pp_residency_ms.attr,
  105. NULL
  106. };
  107. static struct attribute_group rc6_attr_group = {
  108. .name = power_group_name,
  109. .attrs = rc6_attrs
  110. };
  111. #endif
  112. static int l3_access_valid(struct drm_device *dev, loff_t offset)
  113. {
  114. if (!HAS_L3_DPF(dev))
  115. return -EPERM;
  116. if (offset % 4 != 0)
  117. return -EINVAL;
  118. if (offset >= GEN7_L3LOG_SIZE)
  119. return -ENXIO;
  120. return 0;
  121. }
  122. static ssize_t
  123. i915_l3_read(struct file *filp, struct kobject *kobj,
  124. struct bin_attribute *attr, char *buf,
  125. loff_t offset, size_t count)
  126. {
  127. struct device *dev = container_of(kobj, struct device, kobj);
  128. struct drm_minor *dminor = dev_to_drm_minor(dev);
  129. struct drm_device *drm_dev = dminor->dev;
  130. struct drm_i915_private *dev_priv = drm_dev->dev_private;
  131. int slice = (int)(uintptr_t)attr->private;
  132. int ret;
  133. count = round_down(count, 4);
  134. ret = l3_access_valid(drm_dev, offset);
  135. if (ret)
  136. return ret;
  137. count = min_t(size_t, GEN7_L3LOG_SIZE - offset, count);
  138. ret = i915_mutex_lock_interruptible(drm_dev);
  139. if (ret)
  140. return ret;
  141. if (dev_priv->l3_parity.remap_info[slice])
  142. memcpy(buf,
  143. dev_priv->l3_parity.remap_info[slice] + (offset/4),
  144. count);
  145. else
  146. memset(buf, 0, count);
  147. mutex_unlock(&drm_dev->struct_mutex);
  148. return count;
  149. }
  150. static ssize_t
  151. i915_l3_write(struct file *filp, struct kobject *kobj,
  152. struct bin_attribute *attr, char *buf,
  153. loff_t offset, size_t count)
  154. {
  155. struct device *dev = container_of(kobj, struct device, kobj);
  156. struct drm_minor *dminor = dev_to_drm_minor(dev);
  157. struct drm_device *drm_dev = dminor->dev;
  158. struct drm_i915_private *dev_priv = drm_dev->dev_private;
  159. struct intel_context *ctx;
  160. u32 *temp = NULL; /* Just here to make handling failures easy */
  161. int slice = (int)(uintptr_t)attr->private;
  162. int ret;
  163. if (!HAS_HW_CONTEXTS(drm_dev))
  164. return -ENXIO;
  165. ret = l3_access_valid(drm_dev, offset);
  166. if (ret)
  167. return ret;
  168. ret = i915_mutex_lock_interruptible(drm_dev);
  169. if (ret)
  170. return ret;
  171. if (!dev_priv->l3_parity.remap_info[slice]) {
  172. temp = kzalloc(GEN7_L3LOG_SIZE, GFP_KERNEL);
  173. if (!temp) {
  174. mutex_unlock(&drm_dev->struct_mutex);
  175. return -ENOMEM;
  176. }
  177. }
  178. ret = i915_gpu_idle(drm_dev);
  179. if (ret) {
  180. kfree(temp);
  181. mutex_unlock(&drm_dev->struct_mutex);
  182. return ret;
  183. }
  184. /* TODO: Ideally we really want a GPU reset here to make sure errors
  185. * aren't propagated. Since I cannot find a stable way to reset the GPU
  186. * at this point it is left as a TODO.
  187. */
  188. if (temp)
  189. dev_priv->l3_parity.remap_info[slice] = temp;
  190. memcpy(dev_priv->l3_parity.remap_info[slice] + (offset/4), buf, count);
  191. /* NB: We defer the remapping until we switch to the context */
  192. list_for_each_entry(ctx, &dev_priv->context_list, link)
  193. ctx->remap_slice |= (1<<slice);
  194. mutex_unlock(&drm_dev->struct_mutex);
  195. return count;
  196. }
  197. static struct bin_attribute dpf_attrs = {
  198. .attr = {.name = "l3_parity", .mode = (S_IRUSR | S_IWUSR)},
  199. .size = GEN7_L3LOG_SIZE,
  200. .read = i915_l3_read,
  201. .write = i915_l3_write,
  202. .mmap = NULL,
  203. .private = (void *)0
  204. };
  205. static struct bin_attribute dpf_attrs_1 = {
  206. .attr = {.name = "l3_parity_slice_1", .mode = (S_IRUSR | S_IWUSR)},
  207. .size = GEN7_L3LOG_SIZE,
  208. .read = i915_l3_read,
  209. .write = i915_l3_write,
  210. .mmap = NULL,
  211. .private = (void *)1
  212. };
  213. static ssize_t gt_cur_freq_mhz_show(struct device *kdev,
  214. struct device_attribute *attr, char *buf)
  215. {
  216. struct drm_minor *minor = dev_to_drm_minor(kdev);
  217. struct drm_device *dev = minor->dev;
  218. struct drm_i915_private *dev_priv = dev->dev_private;
  219. int ret;
  220. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  221. intel_runtime_pm_get(dev_priv);
  222. mutex_lock(&dev_priv->rps.hw_lock);
  223. if (IS_VALLEYVIEW(dev_priv->dev)) {
  224. u32 freq;
  225. freq = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  226. ret = vlv_gpu_freq(dev_priv, (freq >> 8) & 0xff);
  227. } else {
  228. ret = dev_priv->rps.cur_freq * GT_FREQUENCY_MULTIPLIER;
  229. }
  230. mutex_unlock(&dev_priv->rps.hw_lock);
  231. intel_runtime_pm_put(dev_priv);
  232. return snprintf(buf, PAGE_SIZE, "%d\n", ret);
  233. }
  234. static ssize_t vlv_rpe_freq_mhz_show(struct device *kdev,
  235. struct device_attribute *attr, char *buf)
  236. {
  237. struct drm_minor *minor = dev_to_drm_minor(kdev);
  238. struct drm_device *dev = minor->dev;
  239. struct drm_i915_private *dev_priv = dev->dev_private;
  240. return snprintf(buf, PAGE_SIZE, "%d\n",
  241. vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
  242. }
  243. static ssize_t gt_max_freq_mhz_show(struct device *kdev, struct device_attribute *attr, char *buf)
  244. {
  245. struct drm_minor *minor = dev_to_drm_minor(kdev);
  246. struct drm_device *dev = minor->dev;
  247. struct drm_i915_private *dev_priv = dev->dev_private;
  248. int ret;
  249. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  250. mutex_lock(&dev_priv->rps.hw_lock);
  251. if (IS_VALLEYVIEW(dev_priv->dev))
  252. ret = vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit);
  253. else
  254. ret = dev_priv->rps.max_freq_softlimit * GT_FREQUENCY_MULTIPLIER;
  255. mutex_unlock(&dev_priv->rps.hw_lock);
  256. return snprintf(buf, PAGE_SIZE, "%d\n", ret);
  257. }
  258. static ssize_t gt_max_freq_mhz_store(struct device *kdev,
  259. struct device_attribute *attr,
  260. const char *buf, size_t count)
  261. {
  262. struct drm_minor *minor = dev_to_drm_minor(kdev);
  263. struct drm_device *dev = minor->dev;
  264. struct drm_i915_private *dev_priv = dev->dev_private;
  265. u32 val;
  266. ssize_t ret;
  267. ret = kstrtou32(buf, 0, &val);
  268. if (ret)
  269. return ret;
  270. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  271. mutex_lock(&dev_priv->rps.hw_lock);
  272. if (IS_VALLEYVIEW(dev_priv->dev))
  273. val = vlv_freq_opcode(dev_priv, val);
  274. else
  275. val /= GT_FREQUENCY_MULTIPLIER;
  276. if (val < dev_priv->rps.min_freq ||
  277. val > dev_priv->rps.max_freq ||
  278. val < dev_priv->rps.min_freq_softlimit) {
  279. mutex_unlock(&dev_priv->rps.hw_lock);
  280. return -EINVAL;
  281. }
  282. if (val > dev_priv->rps.rp0_freq)
  283. DRM_DEBUG("User requested overclocking to %d\n",
  284. val * GT_FREQUENCY_MULTIPLIER);
  285. dev_priv->rps.max_freq_softlimit = val;
  286. if (dev_priv->rps.cur_freq > val) {
  287. if (IS_VALLEYVIEW(dev))
  288. valleyview_set_rps(dev, val);
  289. else
  290. gen6_set_rps(dev, val);
  291. } else if (!IS_VALLEYVIEW(dev)) {
  292. /* We still need gen6_set_rps to process the new max_delay and
  293. * update the interrupt limits even though frequency request is
  294. * unchanged. */
  295. gen6_set_rps(dev, dev_priv->rps.cur_freq);
  296. }
  297. mutex_unlock(&dev_priv->rps.hw_lock);
  298. return count;
  299. }
  300. static ssize_t gt_min_freq_mhz_show(struct device *kdev, struct device_attribute *attr, char *buf)
  301. {
  302. struct drm_minor *minor = dev_to_drm_minor(kdev);
  303. struct drm_device *dev = minor->dev;
  304. struct drm_i915_private *dev_priv = dev->dev_private;
  305. int ret;
  306. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  307. mutex_lock(&dev_priv->rps.hw_lock);
  308. if (IS_VALLEYVIEW(dev_priv->dev))
  309. ret = vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit);
  310. else
  311. ret = dev_priv->rps.min_freq_softlimit * GT_FREQUENCY_MULTIPLIER;
  312. mutex_unlock(&dev_priv->rps.hw_lock);
  313. return snprintf(buf, PAGE_SIZE, "%d\n", ret);
  314. }
  315. static ssize_t gt_min_freq_mhz_store(struct device *kdev,
  316. struct device_attribute *attr,
  317. const char *buf, size_t count)
  318. {
  319. struct drm_minor *minor = dev_to_drm_minor(kdev);
  320. struct drm_device *dev = minor->dev;
  321. struct drm_i915_private *dev_priv = dev->dev_private;
  322. u32 val;
  323. ssize_t ret;
  324. ret = kstrtou32(buf, 0, &val);
  325. if (ret)
  326. return ret;
  327. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  328. mutex_lock(&dev_priv->rps.hw_lock);
  329. if (IS_VALLEYVIEW(dev))
  330. val = vlv_freq_opcode(dev_priv, val);
  331. else
  332. val /= GT_FREQUENCY_MULTIPLIER;
  333. if (val < dev_priv->rps.min_freq ||
  334. val > dev_priv->rps.max_freq ||
  335. val > dev_priv->rps.max_freq_softlimit) {
  336. mutex_unlock(&dev_priv->rps.hw_lock);
  337. return -EINVAL;
  338. }
  339. dev_priv->rps.min_freq_softlimit = val;
  340. if (dev_priv->rps.cur_freq < val) {
  341. if (IS_VALLEYVIEW(dev))
  342. valleyview_set_rps(dev, val);
  343. else
  344. gen6_set_rps(dev, val);
  345. } else if (!IS_VALLEYVIEW(dev)) {
  346. /* We still need gen6_set_rps to process the new min_delay and
  347. * update the interrupt limits even though frequency request is
  348. * unchanged. */
  349. gen6_set_rps(dev, dev_priv->rps.cur_freq);
  350. }
  351. mutex_unlock(&dev_priv->rps.hw_lock);
  352. return count;
  353. }
  354. static DEVICE_ATTR(gt_cur_freq_mhz, S_IRUGO, gt_cur_freq_mhz_show, NULL);
  355. static DEVICE_ATTR(gt_max_freq_mhz, S_IRUGO | S_IWUSR, gt_max_freq_mhz_show, gt_max_freq_mhz_store);
  356. static DEVICE_ATTR(gt_min_freq_mhz, S_IRUGO | S_IWUSR, gt_min_freq_mhz_show, gt_min_freq_mhz_store);
  357. static DEVICE_ATTR(vlv_rpe_freq_mhz, S_IRUGO, vlv_rpe_freq_mhz_show, NULL);
  358. static ssize_t gt_rp_mhz_show(struct device *kdev, struct device_attribute *attr, char *buf);
  359. static DEVICE_ATTR(gt_RP0_freq_mhz, S_IRUGO, gt_rp_mhz_show, NULL);
  360. static DEVICE_ATTR(gt_RP1_freq_mhz, S_IRUGO, gt_rp_mhz_show, NULL);
  361. static DEVICE_ATTR(gt_RPn_freq_mhz, S_IRUGO, gt_rp_mhz_show, NULL);
  362. /* For now we have a static number of RP states */
  363. static ssize_t gt_rp_mhz_show(struct device *kdev, struct device_attribute *attr, char *buf)
  364. {
  365. struct drm_minor *minor = dev_to_drm_minor(kdev);
  366. struct drm_device *dev = minor->dev;
  367. struct drm_i915_private *dev_priv = dev->dev_private;
  368. u32 val, rp_state_cap;
  369. ssize_t ret;
  370. ret = mutex_lock_interruptible(&dev->struct_mutex);
  371. if (ret)
  372. return ret;
  373. intel_runtime_pm_get(dev_priv);
  374. rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
  375. intel_runtime_pm_put(dev_priv);
  376. mutex_unlock(&dev->struct_mutex);
  377. if (attr == &dev_attr_gt_RP0_freq_mhz) {
  378. val = ((rp_state_cap & 0x0000ff) >> 0) * GT_FREQUENCY_MULTIPLIER;
  379. } else if (attr == &dev_attr_gt_RP1_freq_mhz) {
  380. val = ((rp_state_cap & 0x00ff00) >> 8) * GT_FREQUENCY_MULTIPLIER;
  381. } else if (attr == &dev_attr_gt_RPn_freq_mhz) {
  382. val = ((rp_state_cap & 0xff0000) >> 16) * GT_FREQUENCY_MULTIPLIER;
  383. } else {
  384. BUG();
  385. }
  386. return snprintf(buf, PAGE_SIZE, "%d\n", val);
  387. }
  388. static const struct attribute *gen6_attrs[] = {
  389. &dev_attr_gt_cur_freq_mhz.attr,
  390. &dev_attr_gt_max_freq_mhz.attr,
  391. &dev_attr_gt_min_freq_mhz.attr,
  392. &dev_attr_gt_RP0_freq_mhz.attr,
  393. &dev_attr_gt_RP1_freq_mhz.attr,
  394. &dev_attr_gt_RPn_freq_mhz.attr,
  395. NULL,
  396. };
  397. static const struct attribute *vlv_attrs[] = {
  398. &dev_attr_gt_cur_freq_mhz.attr,
  399. &dev_attr_gt_max_freq_mhz.attr,
  400. &dev_attr_gt_min_freq_mhz.attr,
  401. &dev_attr_vlv_rpe_freq_mhz.attr,
  402. NULL,
  403. };
  404. static ssize_t error_state_read(struct file *filp, struct kobject *kobj,
  405. struct bin_attribute *attr, char *buf,
  406. loff_t off, size_t count)
  407. {
  408. struct device *kdev = container_of(kobj, struct device, kobj);
  409. struct drm_minor *minor = dev_to_drm_minor(kdev);
  410. struct drm_device *dev = minor->dev;
  411. struct i915_error_state_file_priv error_priv;
  412. struct drm_i915_error_state_buf error_str;
  413. ssize_t ret_count = 0;
  414. int ret;
  415. memset(&error_priv, 0, sizeof(error_priv));
  416. ret = i915_error_state_buf_init(&error_str, count, off);
  417. if (ret)
  418. return ret;
  419. error_priv.dev = dev;
  420. i915_error_state_get(dev, &error_priv);
  421. ret = i915_error_state_to_str(&error_str, &error_priv);
  422. if (ret)
  423. goto out;
  424. ret_count = count < error_str.bytes ? count : error_str.bytes;
  425. memcpy(buf, error_str.buf, ret_count);
  426. out:
  427. i915_error_state_put(&error_priv);
  428. i915_error_state_buf_release(&error_str);
  429. return ret ?: ret_count;
  430. }
  431. static ssize_t error_state_write(struct file *file, struct kobject *kobj,
  432. struct bin_attribute *attr, char *buf,
  433. loff_t off, size_t count)
  434. {
  435. struct device *kdev = container_of(kobj, struct device, kobj);
  436. struct drm_minor *minor = dev_to_drm_minor(kdev);
  437. struct drm_device *dev = minor->dev;
  438. int ret;
  439. DRM_DEBUG_DRIVER("Resetting error state\n");
  440. ret = mutex_lock_interruptible(&dev->struct_mutex);
  441. if (ret)
  442. return ret;
  443. i915_destroy_error_state(dev);
  444. mutex_unlock(&dev->struct_mutex);
  445. return count;
  446. }
  447. static struct bin_attribute error_state_attr = {
  448. .attr.name = "error",
  449. .attr.mode = S_IRUSR | S_IWUSR,
  450. .size = 0,
  451. .read = error_state_read,
  452. .write = error_state_write,
  453. };
  454. void i915_setup_sysfs(struct drm_device *dev)
  455. {
  456. int ret;
  457. #ifdef CONFIG_PM
  458. if (INTEL_INFO(dev)->gen >= 6) {
  459. ret = sysfs_merge_group(&dev->primary->kdev->kobj,
  460. &rc6_attr_group);
  461. if (ret)
  462. DRM_ERROR("RC6 residency sysfs setup failed\n");
  463. }
  464. #endif
  465. if (HAS_L3_DPF(dev)) {
  466. ret = device_create_bin_file(dev->primary->kdev, &dpf_attrs);
  467. if (ret)
  468. DRM_ERROR("l3 parity sysfs setup failed\n");
  469. if (NUM_L3_SLICES(dev) > 1) {
  470. ret = device_create_bin_file(dev->primary->kdev,
  471. &dpf_attrs_1);
  472. if (ret)
  473. DRM_ERROR("l3 parity slice 1 setup failed\n");
  474. }
  475. }
  476. ret = 0;
  477. if (IS_VALLEYVIEW(dev))
  478. ret = sysfs_create_files(&dev->primary->kdev->kobj, vlv_attrs);
  479. else if (INTEL_INFO(dev)->gen >= 6)
  480. ret = sysfs_create_files(&dev->primary->kdev->kobj, gen6_attrs);
  481. if (ret)
  482. DRM_ERROR("RPS sysfs setup failed\n");
  483. ret = sysfs_create_bin_file(&dev->primary->kdev->kobj,
  484. &error_state_attr);
  485. if (ret)
  486. DRM_ERROR("error_state sysfs setup failed\n");
  487. }
  488. void i915_teardown_sysfs(struct drm_device *dev)
  489. {
  490. sysfs_remove_bin_file(&dev->primary->kdev->kobj, &error_state_attr);
  491. if (IS_VALLEYVIEW(dev))
  492. sysfs_remove_files(&dev->primary->kdev->kobj, vlv_attrs);
  493. else
  494. sysfs_remove_files(&dev->primary->kdev->kobj, gen6_attrs);
  495. device_remove_bin_file(dev->primary->kdev, &dpf_attrs_1);
  496. device_remove_bin_file(dev->primary->kdev, &dpf_attrs);
  497. #ifdef CONFIG_PM
  498. sysfs_unmerge_group(&dev->primary->kdev->kobj, &rc6_attr_group);
  499. #endif
  500. }