i915_gem_gtt.c 56 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150
  1. /*
  2. * Copyright © 2010 Daniel Vetter
  3. * Copyright © 2011-2014 Intel Corporation
  4. *
  5. * Permission is hereby granted, free of charge, to any person obtaining a
  6. * copy of this software and associated documentation files (the "Software"),
  7. * to deal in the Software without restriction, including without limitation
  8. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  9. * and/or sell copies of the Software, and to permit persons to whom the
  10. * Software is furnished to do so, subject to the following conditions:
  11. *
  12. * The above copyright notice and this permission notice (including the next
  13. * paragraph) shall be included in all copies or substantial portions of the
  14. * Software.
  15. *
  16. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  21. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  22. * IN THE SOFTWARE.
  23. *
  24. */
  25. #include <linux/seq_file.h>
  26. #include <drm/drmP.h>
  27. #include <drm/i915_drm.h>
  28. #include "i915_drv.h"
  29. #include "i915_trace.h"
  30. #include "intel_drv.h"
  31. static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv);
  32. static void chv_setup_private_ppat(struct drm_i915_private *dev_priv);
  33. bool intel_enable_ppgtt(struct drm_device *dev, bool full)
  34. {
  35. if (i915.enable_ppgtt == 0)
  36. return false;
  37. if (i915.enable_ppgtt == 1 && full)
  38. return false;
  39. return true;
  40. }
  41. static int sanitize_enable_ppgtt(struct drm_device *dev, int enable_ppgtt)
  42. {
  43. if (enable_ppgtt == 0 || !HAS_ALIASING_PPGTT(dev))
  44. return 0;
  45. if (enable_ppgtt == 1)
  46. return 1;
  47. if (enable_ppgtt == 2 && HAS_PPGTT(dev))
  48. return 2;
  49. #ifdef CONFIG_INTEL_IOMMU
  50. /* Disable ppgtt on SNB if VT-d is on. */
  51. if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped) {
  52. DRM_INFO("Disabling PPGTT because VT-d is on\n");
  53. return 0;
  54. }
  55. #endif
  56. return HAS_ALIASING_PPGTT(dev) ? 1 : 0;
  57. }
  58. static void ppgtt_bind_vma(struct i915_vma *vma,
  59. enum i915_cache_level cache_level,
  60. u32 flags);
  61. static void ppgtt_unbind_vma(struct i915_vma *vma);
  62. static int gen8_ppgtt_enable(struct i915_hw_ppgtt *ppgtt);
  63. static inline gen8_gtt_pte_t gen8_pte_encode(dma_addr_t addr,
  64. enum i915_cache_level level,
  65. bool valid)
  66. {
  67. gen8_gtt_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0;
  68. pte |= addr;
  69. switch (level) {
  70. case I915_CACHE_NONE:
  71. pte |= PPAT_UNCACHED_INDEX;
  72. break;
  73. case I915_CACHE_WT:
  74. pte |= PPAT_DISPLAY_ELLC_INDEX;
  75. break;
  76. default:
  77. pte |= PPAT_CACHED_INDEX;
  78. break;
  79. }
  80. return pte;
  81. }
  82. static inline gen8_ppgtt_pde_t gen8_pde_encode(struct drm_device *dev,
  83. dma_addr_t addr,
  84. enum i915_cache_level level)
  85. {
  86. gen8_ppgtt_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
  87. pde |= addr;
  88. if (level != I915_CACHE_NONE)
  89. pde |= PPAT_CACHED_PDE_INDEX;
  90. else
  91. pde |= PPAT_UNCACHED_INDEX;
  92. return pde;
  93. }
  94. static gen6_gtt_pte_t snb_pte_encode(dma_addr_t addr,
  95. enum i915_cache_level level,
  96. bool valid)
  97. {
  98. gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
  99. pte |= GEN6_PTE_ADDR_ENCODE(addr);
  100. switch (level) {
  101. case I915_CACHE_L3_LLC:
  102. case I915_CACHE_LLC:
  103. pte |= GEN6_PTE_CACHE_LLC;
  104. break;
  105. case I915_CACHE_NONE:
  106. pte |= GEN6_PTE_UNCACHED;
  107. break;
  108. default:
  109. WARN_ON(1);
  110. }
  111. return pte;
  112. }
  113. static gen6_gtt_pte_t ivb_pte_encode(dma_addr_t addr,
  114. enum i915_cache_level level,
  115. bool valid)
  116. {
  117. gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
  118. pte |= GEN6_PTE_ADDR_ENCODE(addr);
  119. switch (level) {
  120. case I915_CACHE_L3_LLC:
  121. pte |= GEN7_PTE_CACHE_L3_LLC;
  122. break;
  123. case I915_CACHE_LLC:
  124. pte |= GEN6_PTE_CACHE_LLC;
  125. break;
  126. case I915_CACHE_NONE:
  127. pte |= GEN6_PTE_UNCACHED;
  128. break;
  129. default:
  130. WARN_ON(1);
  131. }
  132. return pte;
  133. }
  134. static gen6_gtt_pte_t byt_pte_encode(dma_addr_t addr,
  135. enum i915_cache_level level,
  136. bool valid)
  137. {
  138. gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
  139. pte |= GEN6_PTE_ADDR_ENCODE(addr);
  140. /* Mark the page as writeable. Other platforms don't have a
  141. * setting for read-only/writable, so this matches that behavior.
  142. */
  143. pte |= BYT_PTE_WRITEABLE;
  144. if (level != I915_CACHE_NONE)
  145. pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
  146. return pte;
  147. }
  148. static gen6_gtt_pte_t hsw_pte_encode(dma_addr_t addr,
  149. enum i915_cache_level level,
  150. bool valid)
  151. {
  152. gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
  153. pte |= HSW_PTE_ADDR_ENCODE(addr);
  154. if (level != I915_CACHE_NONE)
  155. pte |= HSW_WB_LLC_AGE3;
  156. return pte;
  157. }
  158. static gen6_gtt_pte_t iris_pte_encode(dma_addr_t addr,
  159. enum i915_cache_level level,
  160. bool valid)
  161. {
  162. gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
  163. pte |= HSW_PTE_ADDR_ENCODE(addr);
  164. switch (level) {
  165. case I915_CACHE_NONE:
  166. break;
  167. case I915_CACHE_WT:
  168. pte |= HSW_WT_ELLC_LLC_AGE3;
  169. break;
  170. default:
  171. pte |= HSW_WB_ELLC_LLC_AGE3;
  172. break;
  173. }
  174. return pte;
  175. }
  176. /* Broadwell Page Directory Pointer Descriptors */
  177. static int gen8_write_pdp(struct intel_engine_cs *ring, unsigned entry,
  178. uint64_t val, bool synchronous)
  179. {
  180. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  181. int ret;
  182. BUG_ON(entry >= 4);
  183. if (synchronous) {
  184. I915_WRITE(GEN8_RING_PDP_UDW(ring, entry), val >> 32);
  185. I915_WRITE(GEN8_RING_PDP_LDW(ring, entry), (u32)val);
  186. return 0;
  187. }
  188. ret = intel_ring_begin(ring, 6);
  189. if (ret)
  190. return ret;
  191. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
  192. intel_ring_emit(ring, GEN8_RING_PDP_UDW(ring, entry));
  193. intel_ring_emit(ring, (u32)(val >> 32));
  194. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
  195. intel_ring_emit(ring, GEN8_RING_PDP_LDW(ring, entry));
  196. intel_ring_emit(ring, (u32)(val));
  197. intel_ring_advance(ring);
  198. return 0;
  199. }
  200. static int gen8_mm_switch(struct i915_hw_ppgtt *ppgtt,
  201. struct intel_engine_cs *ring,
  202. bool synchronous)
  203. {
  204. int i, ret;
  205. /* bit of a hack to find the actual last used pd */
  206. int used_pd = ppgtt->num_pd_entries / GEN8_PDES_PER_PAGE;
  207. for (i = used_pd - 1; i >= 0; i--) {
  208. dma_addr_t addr = ppgtt->pd_dma_addr[i];
  209. ret = gen8_write_pdp(ring, i, addr, synchronous);
  210. if (ret)
  211. return ret;
  212. }
  213. return 0;
  214. }
  215. static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
  216. uint64_t start,
  217. uint64_t length,
  218. bool use_scratch)
  219. {
  220. struct i915_hw_ppgtt *ppgtt =
  221. container_of(vm, struct i915_hw_ppgtt, base);
  222. gen8_gtt_pte_t *pt_vaddr, scratch_pte;
  223. unsigned pdpe = start >> GEN8_PDPE_SHIFT & GEN8_PDPE_MASK;
  224. unsigned pde = start >> GEN8_PDE_SHIFT & GEN8_PDE_MASK;
  225. unsigned pte = start >> GEN8_PTE_SHIFT & GEN8_PTE_MASK;
  226. unsigned num_entries = length >> PAGE_SHIFT;
  227. unsigned last_pte, i;
  228. scratch_pte = gen8_pte_encode(ppgtt->base.scratch.addr,
  229. I915_CACHE_LLC, use_scratch);
  230. while (num_entries) {
  231. struct page *page_table = ppgtt->gen8_pt_pages[pdpe][pde];
  232. last_pte = pte + num_entries;
  233. if (last_pte > GEN8_PTES_PER_PAGE)
  234. last_pte = GEN8_PTES_PER_PAGE;
  235. pt_vaddr = kmap_atomic(page_table);
  236. for (i = pte; i < last_pte; i++) {
  237. pt_vaddr[i] = scratch_pte;
  238. num_entries--;
  239. }
  240. if (!HAS_LLC(ppgtt->base.dev))
  241. drm_clflush_virt_range(pt_vaddr, PAGE_SIZE);
  242. kunmap_atomic(pt_vaddr);
  243. pte = 0;
  244. if (++pde == GEN8_PDES_PER_PAGE) {
  245. pdpe++;
  246. pde = 0;
  247. }
  248. }
  249. }
  250. static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
  251. struct sg_table *pages,
  252. uint64_t start,
  253. enum i915_cache_level cache_level)
  254. {
  255. struct i915_hw_ppgtt *ppgtt =
  256. container_of(vm, struct i915_hw_ppgtt, base);
  257. gen8_gtt_pte_t *pt_vaddr;
  258. unsigned pdpe = start >> GEN8_PDPE_SHIFT & GEN8_PDPE_MASK;
  259. unsigned pde = start >> GEN8_PDE_SHIFT & GEN8_PDE_MASK;
  260. unsigned pte = start >> GEN8_PTE_SHIFT & GEN8_PTE_MASK;
  261. struct sg_page_iter sg_iter;
  262. pt_vaddr = NULL;
  263. for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
  264. if (WARN_ON(pdpe >= GEN8_LEGACY_PDPS))
  265. break;
  266. if (pt_vaddr == NULL)
  267. pt_vaddr = kmap_atomic(ppgtt->gen8_pt_pages[pdpe][pde]);
  268. pt_vaddr[pte] =
  269. gen8_pte_encode(sg_page_iter_dma_address(&sg_iter),
  270. cache_level, true);
  271. if (++pte == GEN8_PTES_PER_PAGE) {
  272. if (!HAS_LLC(ppgtt->base.dev))
  273. drm_clflush_virt_range(pt_vaddr, PAGE_SIZE);
  274. kunmap_atomic(pt_vaddr);
  275. pt_vaddr = NULL;
  276. if (++pde == GEN8_PDES_PER_PAGE) {
  277. pdpe++;
  278. pde = 0;
  279. }
  280. pte = 0;
  281. }
  282. }
  283. if (pt_vaddr) {
  284. if (!HAS_LLC(ppgtt->base.dev))
  285. drm_clflush_virt_range(pt_vaddr, PAGE_SIZE);
  286. kunmap_atomic(pt_vaddr);
  287. }
  288. }
  289. static void gen8_free_page_tables(struct page **pt_pages)
  290. {
  291. int i;
  292. if (pt_pages == NULL)
  293. return;
  294. for (i = 0; i < GEN8_PDES_PER_PAGE; i++)
  295. if (pt_pages[i])
  296. __free_pages(pt_pages[i], 0);
  297. }
  298. static void gen8_ppgtt_free(const struct i915_hw_ppgtt *ppgtt)
  299. {
  300. int i;
  301. for (i = 0; i < ppgtt->num_pd_pages; i++) {
  302. gen8_free_page_tables(ppgtt->gen8_pt_pages[i]);
  303. kfree(ppgtt->gen8_pt_pages[i]);
  304. kfree(ppgtt->gen8_pt_dma_addr[i]);
  305. }
  306. __free_pages(ppgtt->pd_pages, get_order(ppgtt->num_pd_pages << PAGE_SHIFT));
  307. }
  308. static void gen8_ppgtt_unmap_pages(struct i915_hw_ppgtt *ppgtt)
  309. {
  310. struct pci_dev *hwdev = ppgtt->base.dev->pdev;
  311. int i, j;
  312. for (i = 0; i < ppgtt->num_pd_pages; i++) {
  313. /* TODO: In the future we'll support sparse mappings, so this
  314. * will have to change. */
  315. if (!ppgtt->pd_dma_addr[i])
  316. continue;
  317. pci_unmap_page(hwdev, ppgtt->pd_dma_addr[i], PAGE_SIZE,
  318. PCI_DMA_BIDIRECTIONAL);
  319. for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
  320. dma_addr_t addr = ppgtt->gen8_pt_dma_addr[i][j];
  321. if (addr)
  322. pci_unmap_page(hwdev, addr, PAGE_SIZE,
  323. PCI_DMA_BIDIRECTIONAL);
  324. }
  325. }
  326. }
  327. static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
  328. {
  329. struct i915_hw_ppgtt *ppgtt =
  330. container_of(vm, struct i915_hw_ppgtt, base);
  331. list_del(&vm->global_link);
  332. drm_mm_takedown(&vm->mm);
  333. gen8_ppgtt_unmap_pages(ppgtt);
  334. gen8_ppgtt_free(ppgtt);
  335. }
  336. static struct page **__gen8_alloc_page_tables(void)
  337. {
  338. struct page **pt_pages;
  339. int i;
  340. pt_pages = kcalloc(GEN8_PDES_PER_PAGE, sizeof(struct page *), GFP_KERNEL);
  341. if (!pt_pages)
  342. return ERR_PTR(-ENOMEM);
  343. for (i = 0; i < GEN8_PDES_PER_PAGE; i++) {
  344. pt_pages[i] = alloc_page(GFP_KERNEL);
  345. if (!pt_pages[i])
  346. goto bail;
  347. }
  348. return pt_pages;
  349. bail:
  350. gen8_free_page_tables(pt_pages);
  351. kfree(pt_pages);
  352. return ERR_PTR(-ENOMEM);
  353. }
  354. static int gen8_ppgtt_allocate_page_tables(struct i915_hw_ppgtt *ppgtt,
  355. const int max_pdp)
  356. {
  357. struct page **pt_pages[GEN8_LEGACY_PDPS];
  358. int i, ret;
  359. for (i = 0; i < max_pdp; i++) {
  360. pt_pages[i] = __gen8_alloc_page_tables();
  361. if (IS_ERR(pt_pages[i])) {
  362. ret = PTR_ERR(pt_pages[i]);
  363. goto unwind_out;
  364. }
  365. }
  366. /* NB: Avoid touching gen8_pt_pages until last to keep the allocation,
  367. * "atomic" - for cleanup purposes.
  368. */
  369. for (i = 0; i < max_pdp; i++)
  370. ppgtt->gen8_pt_pages[i] = pt_pages[i];
  371. return 0;
  372. unwind_out:
  373. while (i--) {
  374. gen8_free_page_tables(pt_pages[i]);
  375. kfree(pt_pages[i]);
  376. }
  377. return ret;
  378. }
  379. static int gen8_ppgtt_allocate_dma(struct i915_hw_ppgtt *ppgtt)
  380. {
  381. int i;
  382. for (i = 0; i < ppgtt->num_pd_pages; i++) {
  383. ppgtt->gen8_pt_dma_addr[i] = kcalloc(GEN8_PDES_PER_PAGE,
  384. sizeof(dma_addr_t),
  385. GFP_KERNEL);
  386. if (!ppgtt->gen8_pt_dma_addr[i])
  387. return -ENOMEM;
  388. }
  389. return 0;
  390. }
  391. static int gen8_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt,
  392. const int max_pdp)
  393. {
  394. ppgtt->pd_pages = alloc_pages(GFP_KERNEL, get_order(max_pdp << PAGE_SHIFT));
  395. if (!ppgtt->pd_pages)
  396. return -ENOMEM;
  397. ppgtt->num_pd_pages = 1 << get_order(max_pdp << PAGE_SHIFT);
  398. BUG_ON(ppgtt->num_pd_pages > GEN8_LEGACY_PDPS);
  399. return 0;
  400. }
  401. static int gen8_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt,
  402. const int max_pdp)
  403. {
  404. int ret;
  405. ret = gen8_ppgtt_allocate_page_directories(ppgtt, max_pdp);
  406. if (ret)
  407. return ret;
  408. ret = gen8_ppgtt_allocate_page_tables(ppgtt, max_pdp);
  409. if (ret) {
  410. __free_pages(ppgtt->pd_pages, get_order(max_pdp << PAGE_SHIFT));
  411. return ret;
  412. }
  413. ppgtt->num_pd_entries = max_pdp * GEN8_PDES_PER_PAGE;
  414. ret = gen8_ppgtt_allocate_dma(ppgtt);
  415. if (ret)
  416. gen8_ppgtt_free(ppgtt);
  417. return ret;
  418. }
  419. static int gen8_ppgtt_setup_page_directories(struct i915_hw_ppgtt *ppgtt,
  420. const int pd)
  421. {
  422. dma_addr_t pd_addr;
  423. int ret;
  424. pd_addr = pci_map_page(ppgtt->base.dev->pdev,
  425. &ppgtt->pd_pages[pd], 0,
  426. PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
  427. ret = pci_dma_mapping_error(ppgtt->base.dev->pdev, pd_addr);
  428. if (ret)
  429. return ret;
  430. ppgtt->pd_dma_addr[pd] = pd_addr;
  431. return 0;
  432. }
  433. static int gen8_ppgtt_setup_page_tables(struct i915_hw_ppgtt *ppgtt,
  434. const int pd,
  435. const int pt)
  436. {
  437. dma_addr_t pt_addr;
  438. struct page *p;
  439. int ret;
  440. p = ppgtt->gen8_pt_pages[pd][pt];
  441. pt_addr = pci_map_page(ppgtt->base.dev->pdev,
  442. p, 0, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
  443. ret = pci_dma_mapping_error(ppgtt->base.dev->pdev, pt_addr);
  444. if (ret)
  445. return ret;
  446. ppgtt->gen8_pt_dma_addr[pd][pt] = pt_addr;
  447. return 0;
  448. }
  449. /**
  450. * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
  451. * with a net effect resembling a 2-level page table in normal x86 terms. Each
  452. * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
  453. * space.
  454. *
  455. * FIXME: split allocation into smaller pieces. For now we only ever do this
  456. * once, but with full PPGTT, the multiple contiguous allocations will be bad.
  457. * TODO: Do something with the size parameter
  458. */
  459. static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt, uint64_t size)
  460. {
  461. const int max_pdp = DIV_ROUND_UP(size, 1 << 30);
  462. const int min_pt_pages = GEN8_PDES_PER_PAGE * max_pdp;
  463. int i, j, ret;
  464. if (size % (1<<30))
  465. DRM_INFO("Pages will be wasted unless GTT size (%llu) is divisible by 1GB\n", size);
  466. /* 1. Do all our allocations for page directories and page tables. */
  467. ret = gen8_ppgtt_alloc(ppgtt, max_pdp);
  468. if (ret)
  469. return ret;
  470. /*
  471. * 2. Create DMA mappings for the page directories and page tables.
  472. */
  473. for (i = 0; i < max_pdp; i++) {
  474. ret = gen8_ppgtt_setup_page_directories(ppgtt, i);
  475. if (ret)
  476. goto bail;
  477. for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
  478. ret = gen8_ppgtt_setup_page_tables(ppgtt, i, j);
  479. if (ret)
  480. goto bail;
  481. }
  482. }
  483. /*
  484. * 3. Map all the page directory entires to point to the page tables
  485. * we've allocated.
  486. *
  487. * For now, the PPGTT helper functions all require that the PDEs are
  488. * plugged in correctly. So we do that now/here. For aliasing PPGTT, we
  489. * will never need to touch the PDEs again.
  490. */
  491. for (i = 0; i < max_pdp; i++) {
  492. gen8_ppgtt_pde_t *pd_vaddr;
  493. pd_vaddr = kmap_atomic(&ppgtt->pd_pages[i]);
  494. for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
  495. dma_addr_t addr = ppgtt->gen8_pt_dma_addr[i][j];
  496. pd_vaddr[j] = gen8_pde_encode(ppgtt->base.dev, addr,
  497. I915_CACHE_LLC);
  498. }
  499. if (!HAS_LLC(ppgtt->base.dev))
  500. drm_clflush_virt_range(pd_vaddr, PAGE_SIZE);
  501. kunmap_atomic(pd_vaddr);
  502. }
  503. ppgtt->enable = gen8_ppgtt_enable;
  504. ppgtt->switch_mm = gen8_mm_switch;
  505. ppgtt->base.clear_range = gen8_ppgtt_clear_range;
  506. ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
  507. ppgtt->base.cleanup = gen8_ppgtt_cleanup;
  508. ppgtt->base.start = 0;
  509. ppgtt->base.total = ppgtt->num_pd_entries * GEN8_PTES_PER_PAGE * PAGE_SIZE;
  510. ppgtt->base.clear_range(&ppgtt->base, 0, ppgtt->base.total, true);
  511. DRM_DEBUG_DRIVER("Allocated %d pages for page directories (%d wasted)\n",
  512. ppgtt->num_pd_pages, ppgtt->num_pd_pages - max_pdp);
  513. DRM_DEBUG_DRIVER("Allocated %d pages for page tables (%lld wasted)\n",
  514. ppgtt->num_pd_entries,
  515. (ppgtt->num_pd_entries - min_pt_pages) + size % (1<<30));
  516. return 0;
  517. bail:
  518. gen8_ppgtt_unmap_pages(ppgtt);
  519. gen8_ppgtt_free(ppgtt);
  520. return ret;
  521. }
  522. static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
  523. {
  524. struct drm_i915_private *dev_priv = ppgtt->base.dev->dev_private;
  525. struct i915_address_space *vm = &ppgtt->base;
  526. gen6_gtt_pte_t __iomem *pd_addr;
  527. gen6_gtt_pte_t scratch_pte;
  528. uint32_t pd_entry;
  529. int pte, pde;
  530. scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true);
  531. pd_addr = (gen6_gtt_pte_t __iomem *)dev_priv->gtt.gsm +
  532. ppgtt->pd_offset / sizeof(gen6_gtt_pte_t);
  533. seq_printf(m, " VM %p (pd_offset %x-%x):\n", vm,
  534. ppgtt->pd_offset, ppgtt->pd_offset + ppgtt->num_pd_entries);
  535. for (pde = 0; pde < ppgtt->num_pd_entries; pde++) {
  536. u32 expected;
  537. gen6_gtt_pte_t *pt_vaddr;
  538. dma_addr_t pt_addr = ppgtt->pt_dma_addr[pde];
  539. pd_entry = readl(pd_addr + pde);
  540. expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
  541. if (pd_entry != expected)
  542. seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
  543. pde,
  544. pd_entry,
  545. expected);
  546. seq_printf(m, "\tPDE: %x\n", pd_entry);
  547. pt_vaddr = kmap_atomic(ppgtt->pt_pages[pde]);
  548. for (pte = 0; pte < I915_PPGTT_PT_ENTRIES; pte+=4) {
  549. unsigned long va =
  550. (pde * PAGE_SIZE * I915_PPGTT_PT_ENTRIES) +
  551. (pte * PAGE_SIZE);
  552. int i;
  553. bool found = false;
  554. for (i = 0; i < 4; i++)
  555. if (pt_vaddr[pte + i] != scratch_pte)
  556. found = true;
  557. if (!found)
  558. continue;
  559. seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
  560. for (i = 0; i < 4; i++) {
  561. if (pt_vaddr[pte + i] != scratch_pte)
  562. seq_printf(m, " %08x", pt_vaddr[pte + i]);
  563. else
  564. seq_puts(m, " SCRATCH ");
  565. }
  566. seq_puts(m, "\n");
  567. }
  568. kunmap_atomic(pt_vaddr);
  569. }
  570. }
  571. static void gen6_write_pdes(struct i915_hw_ppgtt *ppgtt)
  572. {
  573. struct drm_i915_private *dev_priv = ppgtt->base.dev->dev_private;
  574. gen6_gtt_pte_t __iomem *pd_addr;
  575. uint32_t pd_entry;
  576. int i;
  577. WARN_ON(ppgtt->pd_offset & 0x3f);
  578. pd_addr = (gen6_gtt_pte_t __iomem*)dev_priv->gtt.gsm +
  579. ppgtt->pd_offset / sizeof(gen6_gtt_pte_t);
  580. for (i = 0; i < ppgtt->num_pd_entries; i++) {
  581. dma_addr_t pt_addr;
  582. pt_addr = ppgtt->pt_dma_addr[i];
  583. pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
  584. pd_entry |= GEN6_PDE_VALID;
  585. writel(pd_entry, pd_addr + i);
  586. }
  587. readl(pd_addr);
  588. }
  589. static uint32_t get_pd_offset(struct i915_hw_ppgtt *ppgtt)
  590. {
  591. BUG_ON(ppgtt->pd_offset & 0x3f);
  592. return (ppgtt->pd_offset / 64) << 16;
  593. }
  594. static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
  595. struct intel_engine_cs *ring,
  596. bool synchronous)
  597. {
  598. struct drm_device *dev = ppgtt->base.dev;
  599. struct drm_i915_private *dev_priv = dev->dev_private;
  600. int ret;
  601. /* If we're in reset, we can assume the GPU is sufficiently idle to
  602. * manually frob these bits. Ideally we could use the ring functions,
  603. * except our error handling makes it quite difficult (can't use
  604. * intel_ring_begin, ring->flush, or intel_ring_advance)
  605. *
  606. * FIXME: We should try not to special case reset
  607. */
  608. if (synchronous ||
  609. i915_reset_in_progress(&dev_priv->gpu_error)) {
  610. WARN_ON(ppgtt != dev_priv->mm.aliasing_ppgtt);
  611. I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
  612. I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
  613. POSTING_READ(RING_PP_DIR_BASE(ring));
  614. return 0;
  615. }
  616. /* NB: TLBs must be flushed and invalidated before a switch */
  617. ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
  618. if (ret)
  619. return ret;
  620. ret = intel_ring_begin(ring, 6);
  621. if (ret)
  622. return ret;
  623. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
  624. intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
  625. intel_ring_emit(ring, PP_DIR_DCLV_2G);
  626. intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
  627. intel_ring_emit(ring, get_pd_offset(ppgtt));
  628. intel_ring_emit(ring, MI_NOOP);
  629. intel_ring_advance(ring);
  630. return 0;
  631. }
  632. static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
  633. struct intel_engine_cs *ring,
  634. bool synchronous)
  635. {
  636. struct drm_device *dev = ppgtt->base.dev;
  637. struct drm_i915_private *dev_priv = dev->dev_private;
  638. int ret;
  639. /* If we're in reset, we can assume the GPU is sufficiently idle to
  640. * manually frob these bits. Ideally we could use the ring functions,
  641. * except our error handling makes it quite difficult (can't use
  642. * intel_ring_begin, ring->flush, or intel_ring_advance)
  643. *
  644. * FIXME: We should try not to special case reset
  645. */
  646. if (synchronous ||
  647. i915_reset_in_progress(&dev_priv->gpu_error)) {
  648. WARN_ON(ppgtt != dev_priv->mm.aliasing_ppgtt);
  649. I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
  650. I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
  651. POSTING_READ(RING_PP_DIR_BASE(ring));
  652. return 0;
  653. }
  654. /* NB: TLBs must be flushed and invalidated before a switch */
  655. ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
  656. if (ret)
  657. return ret;
  658. ret = intel_ring_begin(ring, 6);
  659. if (ret)
  660. return ret;
  661. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
  662. intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
  663. intel_ring_emit(ring, PP_DIR_DCLV_2G);
  664. intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
  665. intel_ring_emit(ring, get_pd_offset(ppgtt));
  666. intel_ring_emit(ring, MI_NOOP);
  667. intel_ring_advance(ring);
  668. /* XXX: RCS is the only one to auto invalidate the TLBs? */
  669. if (ring->id != RCS) {
  670. ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
  671. if (ret)
  672. return ret;
  673. }
  674. return 0;
  675. }
  676. static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
  677. struct intel_engine_cs *ring,
  678. bool synchronous)
  679. {
  680. struct drm_device *dev = ppgtt->base.dev;
  681. struct drm_i915_private *dev_priv = dev->dev_private;
  682. if (!synchronous)
  683. return 0;
  684. I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
  685. I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
  686. POSTING_READ(RING_PP_DIR_DCLV(ring));
  687. return 0;
  688. }
  689. static int gen8_ppgtt_enable(struct i915_hw_ppgtt *ppgtt)
  690. {
  691. struct drm_device *dev = ppgtt->base.dev;
  692. struct drm_i915_private *dev_priv = dev->dev_private;
  693. struct intel_engine_cs *ring;
  694. int j, ret;
  695. for_each_ring(ring, dev_priv, j) {
  696. I915_WRITE(RING_MODE_GEN7(ring),
  697. _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
  698. /* We promise to do a switch later with FULL PPGTT. If this is
  699. * aliasing, this is the one and only switch we'll do */
  700. if (USES_FULL_PPGTT(dev))
  701. continue;
  702. ret = ppgtt->switch_mm(ppgtt, ring, true);
  703. if (ret)
  704. goto err_out;
  705. }
  706. return 0;
  707. err_out:
  708. for_each_ring(ring, dev_priv, j)
  709. I915_WRITE(RING_MODE_GEN7(ring),
  710. _MASKED_BIT_DISABLE(GFX_PPGTT_ENABLE));
  711. return ret;
  712. }
  713. static int gen7_ppgtt_enable(struct i915_hw_ppgtt *ppgtt)
  714. {
  715. struct drm_device *dev = ppgtt->base.dev;
  716. struct drm_i915_private *dev_priv = dev->dev_private;
  717. struct intel_engine_cs *ring;
  718. uint32_t ecochk, ecobits;
  719. int i;
  720. ecobits = I915_READ(GAC_ECO_BITS);
  721. I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
  722. ecochk = I915_READ(GAM_ECOCHK);
  723. if (IS_HASWELL(dev)) {
  724. ecochk |= ECOCHK_PPGTT_WB_HSW;
  725. } else {
  726. ecochk |= ECOCHK_PPGTT_LLC_IVB;
  727. ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
  728. }
  729. I915_WRITE(GAM_ECOCHK, ecochk);
  730. for_each_ring(ring, dev_priv, i) {
  731. int ret;
  732. /* GFX_MODE is per-ring on gen7+ */
  733. I915_WRITE(RING_MODE_GEN7(ring),
  734. _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
  735. /* We promise to do a switch later with FULL PPGTT. If this is
  736. * aliasing, this is the one and only switch we'll do */
  737. if (USES_FULL_PPGTT(dev))
  738. continue;
  739. ret = ppgtt->switch_mm(ppgtt, ring, true);
  740. if (ret)
  741. return ret;
  742. }
  743. return 0;
  744. }
  745. static int gen6_ppgtt_enable(struct i915_hw_ppgtt *ppgtt)
  746. {
  747. struct drm_device *dev = ppgtt->base.dev;
  748. struct drm_i915_private *dev_priv = dev->dev_private;
  749. struct intel_engine_cs *ring;
  750. uint32_t ecochk, gab_ctl, ecobits;
  751. int i;
  752. ecobits = I915_READ(GAC_ECO_BITS);
  753. I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
  754. ECOBITS_PPGTT_CACHE64B);
  755. gab_ctl = I915_READ(GAB_CTL);
  756. I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
  757. ecochk = I915_READ(GAM_ECOCHK);
  758. I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
  759. I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
  760. for_each_ring(ring, dev_priv, i) {
  761. int ret = ppgtt->switch_mm(ppgtt, ring, true);
  762. if (ret)
  763. return ret;
  764. }
  765. return 0;
  766. }
  767. /* PPGTT support for Sandybdrige/Gen6 and later */
  768. static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
  769. uint64_t start,
  770. uint64_t length,
  771. bool use_scratch)
  772. {
  773. struct i915_hw_ppgtt *ppgtt =
  774. container_of(vm, struct i915_hw_ppgtt, base);
  775. gen6_gtt_pte_t *pt_vaddr, scratch_pte;
  776. unsigned first_entry = start >> PAGE_SHIFT;
  777. unsigned num_entries = length >> PAGE_SHIFT;
  778. unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES;
  779. unsigned first_pte = first_entry % I915_PPGTT_PT_ENTRIES;
  780. unsigned last_pte, i;
  781. scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true);
  782. while (num_entries) {
  783. last_pte = first_pte + num_entries;
  784. if (last_pte > I915_PPGTT_PT_ENTRIES)
  785. last_pte = I915_PPGTT_PT_ENTRIES;
  786. pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
  787. for (i = first_pte; i < last_pte; i++)
  788. pt_vaddr[i] = scratch_pte;
  789. kunmap_atomic(pt_vaddr);
  790. num_entries -= last_pte - first_pte;
  791. first_pte = 0;
  792. act_pt++;
  793. }
  794. }
  795. static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
  796. struct sg_table *pages,
  797. uint64_t start,
  798. enum i915_cache_level cache_level)
  799. {
  800. struct i915_hw_ppgtt *ppgtt =
  801. container_of(vm, struct i915_hw_ppgtt, base);
  802. gen6_gtt_pte_t *pt_vaddr;
  803. unsigned first_entry = start >> PAGE_SHIFT;
  804. unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES;
  805. unsigned act_pte = first_entry % I915_PPGTT_PT_ENTRIES;
  806. struct sg_page_iter sg_iter;
  807. pt_vaddr = NULL;
  808. for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
  809. if (pt_vaddr == NULL)
  810. pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
  811. pt_vaddr[act_pte] =
  812. vm->pte_encode(sg_page_iter_dma_address(&sg_iter),
  813. cache_level, true);
  814. if (++act_pte == I915_PPGTT_PT_ENTRIES) {
  815. kunmap_atomic(pt_vaddr);
  816. pt_vaddr = NULL;
  817. act_pt++;
  818. act_pte = 0;
  819. }
  820. }
  821. if (pt_vaddr)
  822. kunmap_atomic(pt_vaddr);
  823. }
  824. static void gen6_ppgtt_unmap_pages(struct i915_hw_ppgtt *ppgtt)
  825. {
  826. int i;
  827. if (ppgtt->pt_dma_addr) {
  828. for (i = 0; i < ppgtt->num_pd_entries; i++)
  829. pci_unmap_page(ppgtt->base.dev->pdev,
  830. ppgtt->pt_dma_addr[i],
  831. 4096, PCI_DMA_BIDIRECTIONAL);
  832. }
  833. }
  834. static void gen6_ppgtt_free(struct i915_hw_ppgtt *ppgtt)
  835. {
  836. int i;
  837. kfree(ppgtt->pt_dma_addr);
  838. for (i = 0; i < ppgtt->num_pd_entries; i++)
  839. __free_page(ppgtt->pt_pages[i]);
  840. kfree(ppgtt->pt_pages);
  841. }
  842. static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
  843. {
  844. struct i915_hw_ppgtt *ppgtt =
  845. container_of(vm, struct i915_hw_ppgtt, base);
  846. list_del(&vm->global_link);
  847. drm_mm_takedown(&ppgtt->base.mm);
  848. drm_mm_remove_node(&ppgtt->node);
  849. gen6_ppgtt_unmap_pages(ppgtt);
  850. gen6_ppgtt_free(ppgtt);
  851. }
  852. static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
  853. {
  854. struct drm_device *dev = ppgtt->base.dev;
  855. struct drm_i915_private *dev_priv = dev->dev_private;
  856. bool retried = false;
  857. int ret;
  858. /* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
  859. * allocator works in address space sizes, so it's multiplied by page
  860. * size. We allocate at the top of the GTT to avoid fragmentation.
  861. */
  862. BUG_ON(!drm_mm_initialized(&dev_priv->gtt.base.mm));
  863. alloc:
  864. ret = drm_mm_insert_node_in_range_generic(&dev_priv->gtt.base.mm,
  865. &ppgtt->node, GEN6_PD_SIZE,
  866. GEN6_PD_ALIGN, 0,
  867. 0, dev_priv->gtt.base.total,
  868. DRM_MM_TOPDOWN);
  869. if (ret == -ENOSPC && !retried) {
  870. ret = i915_gem_evict_something(dev, &dev_priv->gtt.base,
  871. GEN6_PD_SIZE, GEN6_PD_ALIGN,
  872. I915_CACHE_NONE,
  873. 0, dev_priv->gtt.base.total,
  874. 0);
  875. if (ret)
  876. return ret;
  877. retried = true;
  878. goto alloc;
  879. }
  880. if (ppgtt->node.start < dev_priv->gtt.mappable_end)
  881. DRM_DEBUG("Forced to use aperture for PDEs\n");
  882. ppgtt->num_pd_entries = GEN6_PPGTT_PD_ENTRIES;
  883. return ret;
  884. }
  885. static int gen6_ppgtt_allocate_page_tables(struct i915_hw_ppgtt *ppgtt)
  886. {
  887. int i;
  888. ppgtt->pt_pages = kcalloc(ppgtt->num_pd_entries, sizeof(struct page *),
  889. GFP_KERNEL);
  890. if (!ppgtt->pt_pages)
  891. return -ENOMEM;
  892. for (i = 0; i < ppgtt->num_pd_entries; i++) {
  893. ppgtt->pt_pages[i] = alloc_page(GFP_KERNEL);
  894. if (!ppgtt->pt_pages[i]) {
  895. gen6_ppgtt_free(ppgtt);
  896. return -ENOMEM;
  897. }
  898. }
  899. return 0;
  900. }
  901. static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt)
  902. {
  903. int ret;
  904. ret = gen6_ppgtt_allocate_page_directories(ppgtt);
  905. if (ret)
  906. return ret;
  907. ret = gen6_ppgtt_allocate_page_tables(ppgtt);
  908. if (ret) {
  909. drm_mm_remove_node(&ppgtt->node);
  910. return ret;
  911. }
  912. ppgtt->pt_dma_addr = kcalloc(ppgtt->num_pd_entries, sizeof(dma_addr_t),
  913. GFP_KERNEL);
  914. if (!ppgtt->pt_dma_addr) {
  915. drm_mm_remove_node(&ppgtt->node);
  916. gen6_ppgtt_free(ppgtt);
  917. return -ENOMEM;
  918. }
  919. return 0;
  920. }
  921. static int gen6_ppgtt_setup_page_tables(struct i915_hw_ppgtt *ppgtt)
  922. {
  923. struct drm_device *dev = ppgtt->base.dev;
  924. int i;
  925. for (i = 0; i < ppgtt->num_pd_entries; i++) {
  926. dma_addr_t pt_addr;
  927. pt_addr = pci_map_page(dev->pdev, ppgtt->pt_pages[i], 0, 4096,
  928. PCI_DMA_BIDIRECTIONAL);
  929. if (pci_dma_mapping_error(dev->pdev, pt_addr)) {
  930. gen6_ppgtt_unmap_pages(ppgtt);
  931. return -EIO;
  932. }
  933. ppgtt->pt_dma_addr[i] = pt_addr;
  934. }
  935. return 0;
  936. }
  937. static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
  938. {
  939. struct drm_device *dev = ppgtt->base.dev;
  940. struct drm_i915_private *dev_priv = dev->dev_private;
  941. int ret;
  942. ppgtt->base.pte_encode = dev_priv->gtt.base.pte_encode;
  943. if (IS_GEN6(dev)) {
  944. ppgtt->enable = gen6_ppgtt_enable;
  945. ppgtt->switch_mm = gen6_mm_switch;
  946. } else if (IS_HASWELL(dev)) {
  947. ppgtt->enable = gen7_ppgtt_enable;
  948. ppgtt->switch_mm = hsw_mm_switch;
  949. } else if (IS_GEN7(dev)) {
  950. ppgtt->enable = gen7_ppgtt_enable;
  951. ppgtt->switch_mm = gen7_mm_switch;
  952. } else
  953. BUG();
  954. ret = gen6_ppgtt_alloc(ppgtt);
  955. if (ret)
  956. return ret;
  957. ret = gen6_ppgtt_setup_page_tables(ppgtt);
  958. if (ret) {
  959. gen6_ppgtt_free(ppgtt);
  960. return ret;
  961. }
  962. ppgtt->base.clear_range = gen6_ppgtt_clear_range;
  963. ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
  964. ppgtt->base.cleanup = gen6_ppgtt_cleanup;
  965. ppgtt->base.start = 0;
  966. ppgtt->base.total = ppgtt->num_pd_entries * I915_PPGTT_PT_ENTRIES * PAGE_SIZE;
  967. ppgtt->debug_dump = gen6_dump_ppgtt;
  968. ppgtt->pd_offset =
  969. ppgtt->node.start / PAGE_SIZE * sizeof(gen6_gtt_pte_t);
  970. ppgtt->base.clear_range(&ppgtt->base, 0, ppgtt->base.total, true);
  971. DRM_DEBUG_DRIVER("Allocated pde space (%ldM) at GTT entry: %lx\n",
  972. ppgtt->node.size >> 20,
  973. ppgtt->node.start / PAGE_SIZE);
  974. return 0;
  975. }
  976. int i915_gem_init_ppgtt(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
  977. {
  978. struct drm_i915_private *dev_priv = dev->dev_private;
  979. int ret = 0;
  980. ppgtt->base.dev = dev;
  981. ppgtt->base.scratch = dev_priv->gtt.base.scratch;
  982. if (INTEL_INFO(dev)->gen < 8)
  983. ret = gen6_ppgtt_init(ppgtt);
  984. else if (IS_GEN8(dev))
  985. ret = gen8_ppgtt_init(ppgtt, dev_priv->gtt.base.total);
  986. else
  987. BUG();
  988. if (!ret) {
  989. struct drm_i915_private *dev_priv = dev->dev_private;
  990. kref_init(&ppgtt->ref);
  991. drm_mm_init(&ppgtt->base.mm, ppgtt->base.start,
  992. ppgtt->base.total);
  993. i915_init_vm(dev_priv, &ppgtt->base);
  994. if (INTEL_INFO(dev)->gen < 8) {
  995. gen6_write_pdes(ppgtt);
  996. DRM_DEBUG("Adding PPGTT at offset %x\n",
  997. ppgtt->pd_offset << 10);
  998. }
  999. }
  1000. return ret;
  1001. }
  1002. static void
  1003. ppgtt_bind_vma(struct i915_vma *vma,
  1004. enum i915_cache_level cache_level,
  1005. u32 flags)
  1006. {
  1007. vma->vm->insert_entries(vma->vm, vma->obj->pages, vma->node.start,
  1008. cache_level);
  1009. }
  1010. static void ppgtt_unbind_vma(struct i915_vma *vma)
  1011. {
  1012. vma->vm->clear_range(vma->vm,
  1013. vma->node.start,
  1014. vma->obj->base.size,
  1015. true);
  1016. }
  1017. extern int intel_iommu_gfx_mapped;
  1018. /* Certain Gen5 chipsets require require idling the GPU before
  1019. * unmapping anything from the GTT when VT-d is enabled.
  1020. */
  1021. static inline bool needs_idle_maps(struct drm_device *dev)
  1022. {
  1023. #ifdef CONFIG_INTEL_IOMMU
  1024. /* Query intel_iommu to see if we need the workaround. Presumably that
  1025. * was loaded first.
  1026. */
  1027. if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped)
  1028. return true;
  1029. #endif
  1030. return false;
  1031. }
  1032. static bool do_idling(struct drm_i915_private *dev_priv)
  1033. {
  1034. bool ret = dev_priv->mm.interruptible;
  1035. if (unlikely(dev_priv->gtt.do_idle_maps)) {
  1036. dev_priv->mm.interruptible = false;
  1037. if (i915_gpu_idle(dev_priv->dev)) {
  1038. DRM_ERROR("Couldn't idle GPU\n");
  1039. /* Wait a bit, in hopes it avoids the hang */
  1040. udelay(10);
  1041. }
  1042. }
  1043. return ret;
  1044. }
  1045. static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible)
  1046. {
  1047. if (unlikely(dev_priv->gtt.do_idle_maps))
  1048. dev_priv->mm.interruptible = interruptible;
  1049. }
  1050. void i915_check_and_clear_faults(struct drm_device *dev)
  1051. {
  1052. struct drm_i915_private *dev_priv = dev->dev_private;
  1053. struct intel_engine_cs *ring;
  1054. int i;
  1055. if (INTEL_INFO(dev)->gen < 6)
  1056. return;
  1057. for_each_ring(ring, dev_priv, i) {
  1058. u32 fault_reg;
  1059. fault_reg = I915_READ(RING_FAULT_REG(ring));
  1060. if (fault_reg & RING_FAULT_VALID) {
  1061. DRM_DEBUG_DRIVER("Unexpected fault\n"
  1062. "\tAddr: 0x%08lx\\n"
  1063. "\tAddress space: %s\n"
  1064. "\tSource ID: %d\n"
  1065. "\tType: %d\n",
  1066. fault_reg & PAGE_MASK,
  1067. fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
  1068. RING_FAULT_SRCID(fault_reg),
  1069. RING_FAULT_FAULT_TYPE(fault_reg));
  1070. I915_WRITE(RING_FAULT_REG(ring),
  1071. fault_reg & ~RING_FAULT_VALID);
  1072. }
  1073. }
  1074. POSTING_READ(RING_FAULT_REG(&dev_priv->ring[RCS]));
  1075. }
  1076. void i915_gem_suspend_gtt_mappings(struct drm_device *dev)
  1077. {
  1078. struct drm_i915_private *dev_priv = dev->dev_private;
  1079. /* Don't bother messing with faults pre GEN6 as we have little
  1080. * documentation supporting that it's a good idea.
  1081. */
  1082. if (INTEL_INFO(dev)->gen < 6)
  1083. return;
  1084. i915_check_and_clear_faults(dev);
  1085. dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
  1086. dev_priv->gtt.base.start,
  1087. dev_priv->gtt.base.total,
  1088. true);
  1089. }
  1090. void i915_gem_restore_gtt_mappings(struct drm_device *dev)
  1091. {
  1092. struct drm_i915_private *dev_priv = dev->dev_private;
  1093. struct drm_i915_gem_object *obj;
  1094. struct i915_address_space *vm;
  1095. i915_check_and_clear_faults(dev);
  1096. /* First fill our portion of the GTT with scratch pages */
  1097. dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
  1098. dev_priv->gtt.base.start,
  1099. dev_priv->gtt.base.total,
  1100. true);
  1101. list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
  1102. struct i915_vma *vma = i915_gem_obj_to_vma(obj,
  1103. &dev_priv->gtt.base);
  1104. if (!vma)
  1105. continue;
  1106. i915_gem_clflush_object(obj, obj->pin_display);
  1107. /* The bind_vma code tries to be smart about tracking mappings.
  1108. * Unfortunately above, we've just wiped out the mappings
  1109. * without telling our object about it. So we need to fake it.
  1110. */
  1111. obj->has_global_gtt_mapping = 0;
  1112. vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
  1113. }
  1114. if (INTEL_INFO(dev)->gen >= 8) {
  1115. if (IS_CHERRYVIEW(dev))
  1116. chv_setup_private_ppat(dev_priv);
  1117. else
  1118. bdw_setup_private_ppat(dev_priv);
  1119. return;
  1120. }
  1121. list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
  1122. /* TODO: Perhaps it shouldn't be gen6 specific */
  1123. if (i915_is_ggtt(vm)) {
  1124. if (dev_priv->mm.aliasing_ppgtt)
  1125. gen6_write_pdes(dev_priv->mm.aliasing_ppgtt);
  1126. continue;
  1127. }
  1128. gen6_write_pdes(container_of(vm, struct i915_hw_ppgtt, base));
  1129. }
  1130. i915_gem_chipset_flush(dev);
  1131. }
  1132. int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
  1133. {
  1134. if (obj->has_dma_mapping)
  1135. return 0;
  1136. if (!dma_map_sg(&obj->base.dev->pdev->dev,
  1137. obj->pages->sgl, obj->pages->nents,
  1138. PCI_DMA_BIDIRECTIONAL))
  1139. return -ENOSPC;
  1140. return 0;
  1141. }
  1142. static inline void gen8_set_pte(void __iomem *addr, gen8_gtt_pte_t pte)
  1143. {
  1144. #ifdef writeq
  1145. writeq(pte, addr);
  1146. #else
  1147. iowrite32((u32)pte, addr);
  1148. iowrite32(pte >> 32, addr + 4);
  1149. #endif
  1150. }
  1151. static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
  1152. struct sg_table *st,
  1153. uint64_t start,
  1154. enum i915_cache_level level)
  1155. {
  1156. struct drm_i915_private *dev_priv = vm->dev->dev_private;
  1157. unsigned first_entry = start >> PAGE_SHIFT;
  1158. gen8_gtt_pte_t __iomem *gtt_entries =
  1159. (gen8_gtt_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
  1160. int i = 0;
  1161. struct sg_page_iter sg_iter;
  1162. dma_addr_t addr = 0;
  1163. for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
  1164. addr = sg_dma_address(sg_iter.sg) +
  1165. (sg_iter.sg_pgoffset << PAGE_SHIFT);
  1166. gen8_set_pte(&gtt_entries[i],
  1167. gen8_pte_encode(addr, level, true));
  1168. i++;
  1169. }
  1170. /*
  1171. * XXX: This serves as a posting read to make sure that the PTE has
  1172. * actually been updated. There is some concern that even though
  1173. * registers and PTEs are within the same BAR that they are potentially
  1174. * of NUMA access patterns. Therefore, even with the way we assume
  1175. * hardware should work, we must keep this posting read for paranoia.
  1176. */
  1177. if (i != 0)
  1178. WARN_ON(readq(&gtt_entries[i-1])
  1179. != gen8_pte_encode(addr, level, true));
  1180. /* This next bit makes the above posting read even more important. We
  1181. * want to flush the TLBs only after we're certain all the PTE updates
  1182. * have finished.
  1183. */
  1184. I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
  1185. POSTING_READ(GFX_FLSH_CNTL_GEN6);
  1186. }
  1187. /*
  1188. * Binds an object into the global gtt with the specified cache level. The object
  1189. * will be accessible to the GPU via commands whose operands reference offsets
  1190. * within the global GTT as well as accessible by the GPU through the GMADR
  1191. * mapped BAR (dev_priv->mm.gtt->gtt).
  1192. */
  1193. static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
  1194. struct sg_table *st,
  1195. uint64_t start,
  1196. enum i915_cache_level level)
  1197. {
  1198. struct drm_i915_private *dev_priv = vm->dev->dev_private;
  1199. unsigned first_entry = start >> PAGE_SHIFT;
  1200. gen6_gtt_pte_t __iomem *gtt_entries =
  1201. (gen6_gtt_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
  1202. int i = 0;
  1203. struct sg_page_iter sg_iter;
  1204. dma_addr_t addr;
  1205. for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
  1206. addr = sg_page_iter_dma_address(&sg_iter);
  1207. iowrite32(vm->pte_encode(addr, level, true), &gtt_entries[i]);
  1208. i++;
  1209. }
  1210. /* XXX: This serves as a posting read to make sure that the PTE has
  1211. * actually been updated. There is some concern that even though
  1212. * registers and PTEs are within the same BAR that they are potentially
  1213. * of NUMA access patterns. Therefore, even with the way we assume
  1214. * hardware should work, we must keep this posting read for paranoia.
  1215. */
  1216. if (i != 0)
  1217. WARN_ON(readl(&gtt_entries[i-1]) !=
  1218. vm->pte_encode(addr, level, true));
  1219. /* This next bit makes the above posting read even more important. We
  1220. * want to flush the TLBs only after we're certain all the PTE updates
  1221. * have finished.
  1222. */
  1223. I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
  1224. POSTING_READ(GFX_FLSH_CNTL_GEN6);
  1225. }
  1226. static void gen8_ggtt_clear_range(struct i915_address_space *vm,
  1227. uint64_t start,
  1228. uint64_t length,
  1229. bool use_scratch)
  1230. {
  1231. struct drm_i915_private *dev_priv = vm->dev->dev_private;
  1232. unsigned first_entry = start >> PAGE_SHIFT;
  1233. unsigned num_entries = length >> PAGE_SHIFT;
  1234. gen8_gtt_pte_t scratch_pte, __iomem *gtt_base =
  1235. (gen8_gtt_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
  1236. const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
  1237. int i;
  1238. if (WARN(num_entries > max_entries,
  1239. "First entry = %d; Num entries = %d (max=%d)\n",
  1240. first_entry, num_entries, max_entries))
  1241. num_entries = max_entries;
  1242. scratch_pte = gen8_pte_encode(vm->scratch.addr,
  1243. I915_CACHE_LLC,
  1244. use_scratch);
  1245. for (i = 0; i < num_entries; i++)
  1246. gen8_set_pte(&gtt_base[i], scratch_pte);
  1247. readl(gtt_base);
  1248. }
  1249. static void gen6_ggtt_clear_range(struct i915_address_space *vm,
  1250. uint64_t start,
  1251. uint64_t length,
  1252. bool use_scratch)
  1253. {
  1254. struct drm_i915_private *dev_priv = vm->dev->dev_private;
  1255. unsigned first_entry = start >> PAGE_SHIFT;
  1256. unsigned num_entries = length >> PAGE_SHIFT;
  1257. gen6_gtt_pte_t scratch_pte, __iomem *gtt_base =
  1258. (gen6_gtt_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
  1259. const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
  1260. int i;
  1261. if (WARN(num_entries > max_entries,
  1262. "First entry = %d; Num entries = %d (max=%d)\n",
  1263. first_entry, num_entries, max_entries))
  1264. num_entries = max_entries;
  1265. scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, use_scratch);
  1266. for (i = 0; i < num_entries; i++)
  1267. iowrite32(scratch_pte, &gtt_base[i]);
  1268. readl(gtt_base);
  1269. }
  1270. static void i915_ggtt_bind_vma(struct i915_vma *vma,
  1271. enum i915_cache_level cache_level,
  1272. u32 unused)
  1273. {
  1274. const unsigned long entry = vma->node.start >> PAGE_SHIFT;
  1275. unsigned int flags = (cache_level == I915_CACHE_NONE) ?
  1276. AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
  1277. BUG_ON(!i915_is_ggtt(vma->vm));
  1278. intel_gtt_insert_sg_entries(vma->obj->pages, entry, flags);
  1279. vma->obj->has_global_gtt_mapping = 1;
  1280. }
  1281. static void i915_ggtt_clear_range(struct i915_address_space *vm,
  1282. uint64_t start,
  1283. uint64_t length,
  1284. bool unused)
  1285. {
  1286. unsigned first_entry = start >> PAGE_SHIFT;
  1287. unsigned num_entries = length >> PAGE_SHIFT;
  1288. intel_gtt_clear_range(first_entry, num_entries);
  1289. }
  1290. static void i915_ggtt_unbind_vma(struct i915_vma *vma)
  1291. {
  1292. const unsigned int first = vma->node.start >> PAGE_SHIFT;
  1293. const unsigned int size = vma->obj->base.size >> PAGE_SHIFT;
  1294. BUG_ON(!i915_is_ggtt(vma->vm));
  1295. vma->obj->has_global_gtt_mapping = 0;
  1296. intel_gtt_clear_range(first, size);
  1297. }
  1298. static void ggtt_bind_vma(struct i915_vma *vma,
  1299. enum i915_cache_level cache_level,
  1300. u32 flags)
  1301. {
  1302. struct drm_device *dev = vma->vm->dev;
  1303. struct drm_i915_private *dev_priv = dev->dev_private;
  1304. struct drm_i915_gem_object *obj = vma->obj;
  1305. /* If there is no aliasing PPGTT, or the caller needs a global mapping,
  1306. * or we have a global mapping already but the cacheability flags have
  1307. * changed, set the global PTEs.
  1308. *
  1309. * If there is an aliasing PPGTT it is anecdotally faster, so use that
  1310. * instead if none of the above hold true.
  1311. *
  1312. * NB: A global mapping should only be needed for special regions like
  1313. * "gtt mappable", SNB errata, or if specified via special execbuf
  1314. * flags. At all other times, the GPU will use the aliasing PPGTT.
  1315. */
  1316. if (!dev_priv->mm.aliasing_ppgtt || flags & GLOBAL_BIND) {
  1317. if (!obj->has_global_gtt_mapping ||
  1318. (cache_level != obj->cache_level)) {
  1319. vma->vm->insert_entries(vma->vm, obj->pages,
  1320. vma->node.start,
  1321. cache_level);
  1322. obj->has_global_gtt_mapping = 1;
  1323. }
  1324. }
  1325. if (dev_priv->mm.aliasing_ppgtt &&
  1326. (!obj->has_aliasing_ppgtt_mapping ||
  1327. (cache_level != obj->cache_level))) {
  1328. struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
  1329. appgtt->base.insert_entries(&appgtt->base,
  1330. vma->obj->pages,
  1331. vma->node.start,
  1332. cache_level);
  1333. vma->obj->has_aliasing_ppgtt_mapping = 1;
  1334. }
  1335. }
  1336. static void ggtt_unbind_vma(struct i915_vma *vma)
  1337. {
  1338. struct drm_device *dev = vma->vm->dev;
  1339. struct drm_i915_private *dev_priv = dev->dev_private;
  1340. struct drm_i915_gem_object *obj = vma->obj;
  1341. if (obj->has_global_gtt_mapping) {
  1342. vma->vm->clear_range(vma->vm,
  1343. vma->node.start,
  1344. obj->base.size,
  1345. true);
  1346. obj->has_global_gtt_mapping = 0;
  1347. }
  1348. if (obj->has_aliasing_ppgtt_mapping) {
  1349. struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
  1350. appgtt->base.clear_range(&appgtt->base,
  1351. vma->node.start,
  1352. obj->base.size,
  1353. true);
  1354. obj->has_aliasing_ppgtt_mapping = 0;
  1355. }
  1356. }
  1357. void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
  1358. {
  1359. struct drm_device *dev = obj->base.dev;
  1360. struct drm_i915_private *dev_priv = dev->dev_private;
  1361. bool interruptible;
  1362. interruptible = do_idling(dev_priv);
  1363. if (!obj->has_dma_mapping)
  1364. dma_unmap_sg(&dev->pdev->dev,
  1365. obj->pages->sgl, obj->pages->nents,
  1366. PCI_DMA_BIDIRECTIONAL);
  1367. undo_idling(dev_priv, interruptible);
  1368. }
  1369. static void i915_gtt_color_adjust(struct drm_mm_node *node,
  1370. unsigned long color,
  1371. unsigned long *start,
  1372. unsigned long *end)
  1373. {
  1374. if (node->color != color)
  1375. *start += 4096;
  1376. if (!list_empty(&node->node_list)) {
  1377. node = list_entry(node->node_list.next,
  1378. struct drm_mm_node,
  1379. node_list);
  1380. if (node->allocated && node->color != color)
  1381. *end -= 4096;
  1382. }
  1383. }
  1384. void i915_gem_setup_global_gtt(struct drm_device *dev,
  1385. unsigned long start,
  1386. unsigned long mappable_end,
  1387. unsigned long end)
  1388. {
  1389. /* Let GEM Manage all of the aperture.
  1390. *
  1391. * However, leave one page at the end still bound to the scratch page.
  1392. * There are a number of places where the hardware apparently prefetches
  1393. * past the end of the object, and we've seen multiple hangs with the
  1394. * GPU head pointer stuck in a batchbuffer bound at the last page of the
  1395. * aperture. One page should be enough to keep any prefetching inside
  1396. * of the aperture.
  1397. */
  1398. struct drm_i915_private *dev_priv = dev->dev_private;
  1399. struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
  1400. struct drm_mm_node *entry;
  1401. struct drm_i915_gem_object *obj;
  1402. unsigned long hole_start, hole_end;
  1403. BUG_ON(mappable_end > end);
  1404. /* Subtract the guard page ... */
  1405. drm_mm_init(&ggtt_vm->mm, start, end - start - PAGE_SIZE);
  1406. if (!HAS_LLC(dev))
  1407. dev_priv->gtt.base.mm.color_adjust = i915_gtt_color_adjust;
  1408. /* Mark any preallocated objects as occupied */
  1409. list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
  1410. struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
  1411. int ret;
  1412. DRM_DEBUG_KMS("reserving preallocated space: %lx + %zx\n",
  1413. i915_gem_obj_ggtt_offset(obj), obj->base.size);
  1414. WARN_ON(i915_gem_obj_ggtt_bound(obj));
  1415. ret = drm_mm_reserve_node(&ggtt_vm->mm, &vma->node);
  1416. if (ret)
  1417. DRM_DEBUG_KMS("Reservation failed\n");
  1418. obj->has_global_gtt_mapping = 1;
  1419. }
  1420. dev_priv->gtt.base.start = start;
  1421. dev_priv->gtt.base.total = end - start;
  1422. /* Clear any non-preallocated blocks */
  1423. drm_mm_for_each_hole(entry, &ggtt_vm->mm, hole_start, hole_end) {
  1424. DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
  1425. hole_start, hole_end);
  1426. ggtt_vm->clear_range(ggtt_vm, hole_start,
  1427. hole_end - hole_start, true);
  1428. }
  1429. /* And finally clear the reserved guard page */
  1430. ggtt_vm->clear_range(ggtt_vm, end - PAGE_SIZE, PAGE_SIZE, true);
  1431. }
  1432. void i915_gem_init_global_gtt(struct drm_device *dev)
  1433. {
  1434. struct drm_i915_private *dev_priv = dev->dev_private;
  1435. unsigned long gtt_size, mappable_size;
  1436. gtt_size = dev_priv->gtt.base.total;
  1437. mappable_size = dev_priv->gtt.mappable_end;
  1438. i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
  1439. }
  1440. static int setup_scratch_page(struct drm_device *dev)
  1441. {
  1442. struct drm_i915_private *dev_priv = dev->dev_private;
  1443. struct page *page;
  1444. dma_addr_t dma_addr;
  1445. page = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
  1446. if (page == NULL)
  1447. return -ENOMEM;
  1448. get_page(page);
  1449. set_pages_uc(page, 1);
  1450. #ifdef CONFIG_INTEL_IOMMU
  1451. dma_addr = pci_map_page(dev->pdev, page, 0, PAGE_SIZE,
  1452. PCI_DMA_BIDIRECTIONAL);
  1453. if (pci_dma_mapping_error(dev->pdev, dma_addr))
  1454. return -EINVAL;
  1455. #else
  1456. dma_addr = page_to_phys(page);
  1457. #endif
  1458. dev_priv->gtt.base.scratch.page = page;
  1459. dev_priv->gtt.base.scratch.addr = dma_addr;
  1460. return 0;
  1461. }
  1462. static void teardown_scratch_page(struct drm_device *dev)
  1463. {
  1464. struct drm_i915_private *dev_priv = dev->dev_private;
  1465. struct page *page = dev_priv->gtt.base.scratch.page;
  1466. set_pages_wb(page, 1);
  1467. pci_unmap_page(dev->pdev, dev_priv->gtt.base.scratch.addr,
  1468. PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
  1469. put_page(page);
  1470. __free_page(page);
  1471. }
  1472. static inline unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
  1473. {
  1474. snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
  1475. snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
  1476. return snb_gmch_ctl << 20;
  1477. }
  1478. static inline unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
  1479. {
  1480. bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
  1481. bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
  1482. if (bdw_gmch_ctl)
  1483. bdw_gmch_ctl = 1 << bdw_gmch_ctl;
  1484. #ifdef CONFIG_X86_32
  1485. /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
  1486. if (bdw_gmch_ctl > 4)
  1487. bdw_gmch_ctl = 4;
  1488. #endif
  1489. return bdw_gmch_ctl << 20;
  1490. }
  1491. static inline unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
  1492. {
  1493. gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
  1494. gmch_ctrl &= SNB_GMCH_GGMS_MASK;
  1495. if (gmch_ctrl)
  1496. return 1 << (20 + gmch_ctrl);
  1497. return 0;
  1498. }
  1499. static inline size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
  1500. {
  1501. snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
  1502. snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
  1503. return snb_gmch_ctl << 25; /* 32 MB units */
  1504. }
  1505. static inline size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
  1506. {
  1507. bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
  1508. bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
  1509. return bdw_gmch_ctl << 25; /* 32 MB units */
  1510. }
  1511. static size_t chv_get_stolen_size(u16 gmch_ctrl)
  1512. {
  1513. gmch_ctrl >>= SNB_GMCH_GMS_SHIFT;
  1514. gmch_ctrl &= SNB_GMCH_GMS_MASK;
  1515. /*
  1516. * 0x0 to 0x10: 32MB increments starting at 0MB
  1517. * 0x11 to 0x16: 4MB increments starting at 8MB
  1518. * 0x17 to 0x1d: 4MB increments start at 36MB
  1519. */
  1520. if (gmch_ctrl < 0x11)
  1521. return gmch_ctrl << 25;
  1522. else if (gmch_ctrl < 0x17)
  1523. return (gmch_ctrl - 0x11 + 2) << 22;
  1524. else
  1525. return (gmch_ctrl - 0x17 + 9) << 22;
  1526. }
  1527. static int ggtt_probe_common(struct drm_device *dev,
  1528. size_t gtt_size)
  1529. {
  1530. struct drm_i915_private *dev_priv = dev->dev_private;
  1531. phys_addr_t gtt_phys_addr;
  1532. int ret;
  1533. /* For Modern GENs the PTEs and register space are split in the BAR */
  1534. gtt_phys_addr = pci_resource_start(dev->pdev, 0) +
  1535. (pci_resource_len(dev->pdev, 0) / 2);
  1536. dev_priv->gtt.gsm = ioremap_wc(gtt_phys_addr, gtt_size);
  1537. if (!dev_priv->gtt.gsm) {
  1538. DRM_ERROR("Failed to map the gtt page table\n");
  1539. return -ENOMEM;
  1540. }
  1541. ret = setup_scratch_page(dev);
  1542. if (ret) {
  1543. DRM_ERROR("Scratch setup failed\n");
  1544. /* iounmap will also get called at remove, but meh */
  1545. iounmap(dev_priv->gtt.gsm);
  1546. }
  1547. return ret;
  1548. }
  1549. /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
  1550. * bits. When using advanced contexts each context stores its own PAT, but
  1551. * writing this data shouldn't be harmful even in those cases. */
  1552. static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv)
  1553. {
  1554. uint64_t pat;
  1555. pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC) | /* for normal objects, no eLLC */
  1556. GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
  1557. GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
  1558. GEN8_PPAT(3, GEN8_PPAT_UC) | /* Uncached objects, mostly for scanout */
  1559. GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
  1560. GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
  1561. GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
  1562. GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
  1563. /* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
  1564. * write would work. */
  1565. I915_WRITE(GEN8_PRIVATE_PAT, pat);
  1566. I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32);
  1567. }
  1568. static void chv_setup_private_ppat(struct drm_i915_private *dev_priv)
  1569. {
  1570. uint64_t pat;
  1571. /*
  1572. * Map WB on BDW to snooped on CHV.
  1573. *
  1574. * Only the snoop bit has meaning for CHV, the rest is
  1575. * ignored.
  1576. *
  1577. * Note that the harware enforces snooping for all page
  1578. * table accesses. The snoop bit is actually ignored for
  1579. * PDEs.
  1580. */
  1581. pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
  1582. GEN8_PPAT(1, 0) |
  1583. GEN8_PPAT(2, 0) |
  1584. GEN8_PPAT(3, 0) |
  1585. GEN8_PPAT(4, CHV_PPAT_SNOOP) |
  1586. GEN8_PPAT(5, CHV_PPAT_SNOOP) |
  1587. GEN8_PPAT(6, CHV_PPAT_SNOOP) |
  1588. GEN8_PPAT(7, CHV_PPAT_SNOOP);
  1589. I915_WRITE(GEN8_PRIVATE_PAT, pat);
  1590. I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32);
  1591. }
  1592. static int gen8_gmch_probe(struct drm_device *dev,
  1593. size_t *gtt_total,
  1594. size_t *stolen,
  1595. phys_addr_t *mappable_base,
  1596. unsigned long *mappable_end)
  1597. {
  1598. struct drm_i915_private *dev_priv = dev->dev_private;
  1599. unsigned int gtt_size;
  1600. u16 snb_gmch_ctl;
  1601. int ret;
  1602. /* TODO: We're not aware of mappable constraints on gen8 yet */
  1603. *mappable_base = pci_resource_start(dev->pdev, 2);
  1604. *mappable_end = pci_resource_len(dev->pdev, 2);
  1605. if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(39)))
  1606. pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(39));
  1607. pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
  1608. if (IS_CHERRYVIEW(dev)) {
  1609. *stolen = chv_get_stolen_size(snb_gmch_ctl);
  1610. gtt_size = chv_get_total_gtt_size(snb_gmch_ctl);
  1611. } else {
  1612. *stolen = gen8_get_stolen_size(snb_gmch_ctl);
  1613. gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
  1614. }
  1615. *gtt_total = (gtt_size / sizeof(gen8_gtt_pte_t)) << PAGE_SHIFT;
  1616. if (IS_CHERRYVIEW(dev))
  1617. chv_setup_private_ppat(dev_priv);
  1618. else
  1619. bdw_setup_private_ppat(dev_priv);
  1620. ret = ggtt_probe_common(dev, gtt_size);
  1621. dev_priv->gtt.base.clear_range = gen8_ggtt_clear_range;
  1622. dev_priv->gtt.base.insert_entries = gen8_ggtt_insert_entries;
  1623. return ret;
  1624. }
  1625. static int gen6_gmch_probe(struct drm_device *dev,
  1626. size_t *gtt_total,
  1627. size_t *stolen,
  1628. phys_addr_t *mappable_base,
  1629. unsigned long *mappable_end)
  1630. {
  1631. struct drm_i915_private *dev_priv = dev->dev_private;
  1632. unsigned int gtt_size;
  1633. u16 snb_gmch_ctl;
  1634. int ret;
  1635. *mappable_base = pci_resource_start(dev->pdev, 2);
  1636. *mappable_end = pci_resource_len(dev->pdev, 2);
  1637. /* 64/512MB is the current min/max we actually know of, but this is just
  1638. * a coarse sanity check.
  1639. */
  1640. if ((*mappable_end < (64<<20) || (*mappable_end > (512<<20)))) {
  1641. DRM_ERROR("Unknown GMADR size (%lx)\n",
  1642. dev_priv->gtt.mappable_end);
  1643. return -ENXIO;
  1644. }
  1645. if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40)))
  1646. pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40));
  1647. pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
  1648. *stolen = gen6_get_stolen_size(snb_gmch_ctl);
  1649. gtt_size = gen6_get_total_gtt_size(snb_gmch_ctl);
  1650. *gtt_total = (gtt_size / sizeof(gen6_gtt_pte_t)) << PAGE_SHIFT;
  1651. ret = ggtt_probe_common(dev, gtt_size);
  1652. dev_priv->gtt.base.clear_range = gen6_ggtt_clear_range;
  1653. dev_priv->gtt.base.insert_entries = gen6_ggtt_insert_entries;
  1654. return ret;
  1655. }
  1656. static void gen6_gmch_remove(struct i915_address_space *vm)
  1657. {
  1658. struct i915_gtt *gtt = container_of(vm, struct i915_gtt, base);
  1659. if (drm_mm_initialized(&vm->mm)) {
  1660. drm_mm_takedown(&vm->mm);
  1661. list_del(&vm->global_link);
  1662. }
  1663. iounmap(gtt->gsm);
  1664. teardown_scratch_page(vm->dev);
  1665. }
  1666. static int i915_gmch_probe(struct drm_device *dev,
  1667. size_t *gtt_total,
  1668. size_t *stolen,
  1669. phys_addr_t *mappable_base,
  1670. unsigned long *mappable_end)
  1671. {
  1672. struct drm_i915_private *dev_priv = dev->dev_private;
  1673. int ret;
  1674. ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->dev->pdev, NULL);
  1675. if (!ret) {
  1676. DRM_ERROR("failed to set up gmch\n");
  1677. return -EIO;
  1678. }
  1679. intel_gtt_get(gtt_total, stolen, mappable_base, mappable_end);
  1680. dev_priv->gtt.do_idle_maps = needs_idle_maps(dev_priv->dev);
  1681. dev_priv->gtt.base.clear_range = i915_ggtt_clear_range;
  1682. if (unlikely(dev_priv->gtt.do_idle_maps))
  1683. DRM_INFO("applying Ironlake quirks for intel_iommu\n");
  1684. return 0;
  1685. }
  1686. static void i915_gmch_remove(struct i915_address_space *vm)
  1687. {
  1688. if (drm_mm_initialized(&vm->mm)) {
  1689. drm_mm_takedown(&vm->mm);
  1690. list_del(&vm->global_link);
  1691. }
  1692. intel_gmch_remove();
  1693. }
  1694. int i915_gem_gtt_init(struct drm_device *dev)
  1695. {
  1696. struct drm_i915_private *dev_priv = dev->dev_private;
  1697. struct i915_gtt *gtt = &dev_priv->gtt;
  1698. int ret;
  1699. if (INTEL_INFO(dev)->gen <= 5) {
  1700. gtt->gtt_probe = i915_gmch_probe;
  1701. gtt->base.cleanup = i915_gmch_remove;
  1702. } else if (INTEL_INFO(dev)->gen < 8) {
  1703. gtt->gtt_probe = gen6_gmch_probe;
  1704. gtt->base.cleanup = gen6_gmch_remove;
  1705. if (IS_HASWELL(dev) && dev_priv->ellc_size)
  1706. gtt->base.pte_encode = iris_pte_encode;
  1707. else if (IS_HASWELL(dev))
  1708. gtt->base.pte_encode = hsw_pte_encode;
  1709. else if (IS_VALLEYVIEW(dev))
  1710. gtt->base.pte_encode = byt_pte_encode;
  1711. else if (INTEL_INFO(dev)->gen >= 7)
  1712. gtt->base.pte_encode = ivb_pte_encode;
  1713. else
  1714. gtt->base.pte_encode = snb_pte_encode;
  1715. } else {
  1716. dev_priv->gtt.gtt_probe = gen8_gmch_probe;
  1717. dev_priv->gtt.base.cleanup = gen6_gmch_remove;
  1718. }
  1719. ret = gtt->gtt_probe(dev, &gtt->base.total, &gtt->stolen_size,
  1720. &gtt->mappable_base, &gtt->mappable_end);
  1721. if (ret)
  1722. return ret;
  1723. gtt->base.dev = dev;
  1724. /* GMADR is the PCI mmio aperture into the global GTT. */
  1725. DRM_INFO("Memory usable by graphics device = %zdM\n",
  1726. gtt->base.total >> 20);
  1727. DRM_DEBUG_DRIVER("GMADR size = %ldM\n", gtt->mappable_end >> 20);
  1728. DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", gtt->stolen_size >> 20);
  1729. #ifdef CONFIG_INTEL_IOMMU
  1730. if (intel_iommu_gfx_mapped)
  1731. DRM_INFO("VT-d active for gfx access\n");
  1732. #endif
  1733. /*
  1734. * i915.enable_ppgtt is read-only, so do an early pass to validate the
  1735. * user's requested state against the hardware/driver capabilities. We
  1736. * do this now so that we can print out any log messages once rather
  1737. * than every time we check intel_enable_ppgtt().
  1738. */
  1739. i915.enable_ppgtt = sanitize_enable_ppgtt(dev, i915.enable_ppgtt);
  1740. DRM_DEBUG_DRIVER("ppgtt mode: %i\n", i915.enable_ppgtt);
  1741. return 0;
  1742. }
  1743. static struct i915_vma *__i915_gem_vma_create(struct drm_i915_gem_object *obj,
  1744. struct i915_address_space *vm)
  1745. {
  1746. struct i915_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL);
  1747. if (vma == NULL)
  1748. return ERR_PTR(-ENOMEM);
  1749. INIT_LIST_HEAD(&vma->vma_link);
  1750. INIT_LIST_HEAD(&vma->mm_list);
  1751. INIT_LIST_HEAD(&vma->exec_list);
  1752. vma->vm = vm;
  1753. vma->obj = obj;
  1754. switch (INTEL_INFO(vm->dev)->gen) {
  1755. case 8:
  1756. case 7:
  1757. case 6:
  1758. if (i915_is_ggtt(vm)) {
  1759. vma->unbind_vma = ggtt_unbind_vma;
  1760. vma->bind_vma = ggtt_bind_vma;
  1761. } else {
  1762. vma->unbind_vma = ppgtt_unbind_vma;
  1763. vma->bind_vma = ppgtt_bind_vma;
  1764. }
  1765. break;
  1766. case 5:
  1767. case 4:
  1768. case 3:
  1769. case 2:
  1770. BUG_ON(!i915_is_ggtt(vm));
  1771. vma->unbind_vma = i915_ggtt_unbind_vma;
  1772. vma->bind_vma = i915_ggtt_bind_vma;
  1773. break;
  1774. default:
  1775. BUG();
  1776. }
  1777. /* Keep GGTT vmas first to make debug easier */
  1778. if (i915_is_ggtt(vm))
  1779. list_add(&vma->vma_link, &obj->vma_list);
  1780. else
  1781. list_add_tail(&vma->vma_link, &obj->vma_list);
  1782. return vma;
  1783. }
  1784. struct i915_vma *
  1785. i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
  1786. struct i915_address_space *vm)
  1787. {
  1788. struct i915_vma *vma;
  1789. vma = i915_gem_obj_to_vma(obj, vm);
  1790. if (!vma)
  1791. vma = __i915_gem_vma_create(obj, vm);
  1792. return vma;
  1793. }