i915_debugfs.c 101 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. * Keith Packard <keithp@keithp.com>
  26. *
  27. */
  28. #include <linux/seq_file.h>
  29. #include <linux/circ_buf.h>
  30. #include <linux/ctype.h>
  31. #include <linux/debugfs.h>
  32. #include <linux/slab.h>
  33. #include <linux/export.h>
  34. #include <linux/list_sort.h>
  35. #include <asm/msr-index.h>
  36. #include <drm/drmP.h>
  37. #include "intel_drv.h"
  38. #include "intel_ringbuffer.h"
  39. #include <drm/i915_drm.h>
  40. #include "i915_drv.h"
  41. enum {
  42. ACTIVE_LIST,
  43. INACTIVE_LIST,
  44. PINNED_LIST,
  45. };
  46. static const char *yesno(int v)
  47. {
  48. return v ? "yes" : "no";
  49. }
  50. /* As the drm_debugfs_init() routines are called before dev->dev_private is
  51. * allocated we need to hook into the minor for release. */
  52. static int
  53. drm_add_fake_info_node(struct drm_minor *minor,
  54. struct dentry *ent,
  55. const void *key)
  56. {
  57. struct drm_info_node *node;
  58. node = kmalloc(sizeof(*node), GFP_KERNEL);
  59. if (node == NULL) {
  60. debugfs_remove(ent);
  61. return -ENOMEM;
  62. }
  63. node->minor = minor;
  64. node->dent = ent;
  65. node->info_ent = (void *) key;
  66. mutex_lock(&minor->debugfs_lock);
  67. list_add(&node->list, &minor->debugfs_list);
  68. mutex_unlock(&minor->debugfs_lock);
  69. return 0;
  70. }
  71. static int i915_capabilities(struct seq_file *m, void *data)
  72. {
  73. struct drm_info_node *node = m->private;
  74. struct drm_device *dev = node->minor->dev;
  75. const struct intel_device_info *info = INTEL_INFO(dev);
  76. seq_printf(m, "gen: %d\n", info->gen);
  77. seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev));
  78. #define PRINT_FLAG(x) seq_printf(m, #x ": %s\n", yesno(info->x))
  79. #define SEP_SEMICOLON ;
  80. DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG, SEP_SEMICOLON);
  81. #undef PRINT_FLAG
  82. #undef SEP_SEMICOLON
  83. return 0;
  84. }
  85. static const char *get_pin_flag(struct drm_i915_gem_object *obj)
  86. {
  87. if (obj->user_pin_count > 0)
  88. return "P";
  89. else if (i915_gem_obj_is_pinned(obj))
  90. return "p";
  91. else
  92. return " ";
  93. }
  94. static const char *get_tiling_flag(struct drm_i915_gem_object *obj)
  95. {
  96. switch (obj->tiling_mode) {
  97. default:
  98. case I915_TILING_NONE: return " ";
  99. case I915_TILING_X: return "X";
  100. case I915_TILING_Y: return "Y";
  101. }
  102. }
  103. static inline const char *get_global_flag(struct drm_i915_gem_object *obj)
  104. {
  105. return obj->has_global_gtt_mapping ? "g" : " ";
  106. }
  107. static void
  108. describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
  109. {
  110. struct i915_vma *vma;
  111. int pin_count = 0;
  112. seq_printf(m, "%pK: %s%s%s %8zdKiB %02x %02x %u %u %u%s%s%s",
  113. &obj->base,
  114. get_pin_flag(obj),
  115. get_tiling_flag(obj),
  116. get_global_flag(obj),
  117. obj->base.size / 1024,
  118. obj->base.read_domains,
  119. obj->base.write_domain,
  120. obj->last_read_seqno,
  121. obj->last_write_seqno,
  122. obj->last_fenced_seqno,
  123. i915_cache_level_str(obj->cache_level),
  124. obj->dirty ? " dirty" : "",
  125. obj->madv == I915_MADV_DONTNEED ? " purgeable" : "");
  126. if (obj->base.name)
  127. seq_printf(m, " (name: %d)", obj->base.name);
  128. list_for_each_entry(vma, &obj->vma_list, vma_link)
  129. if (vma->pin_count > 0)
  130. pin_count++;
  131. seq_printf(m, " (pinned x %d)", pin_count);
  132. if (obj->pin_display)
  133. seq_printf(m, " (display)");
  134. if (obj->fence_reg != I915_FENCE_REG_NONE)
  135. seq_printf(m, " (fence: %d)", obj->fence_reg);
  136. list_for_each_entry(vma, &obj->vma_list, vma_link) {
  137. if (!i915_is_ggtt(vma->vm))
  138. seq_puts(m, " (pp");
  139. else
  140. seq_puts(m, " (g");
  141. seq_printf(m, "gtt offset: %08lx, size: %08lx)",
  142. vma->node.start, vma->node.size);
  143. }
  144. if (obj->stolen)
  145. seq_printf(m, " (stolen: %08lx)", obj->stolen->start);
  146. if (obj->pin_mappable || obj->fault_mappable) {
  147. char s[3], *t = s;
  148. if (obj->pin_mappable)
  149. *t++ = 'p';
  150. if (obj->fault_mappable)
  151. *t++ = 'f';
  152. *t = '\0';
  153. seq_printf(m, " (%s mappable)", s);
  154. }
  155. if (obj->ring != NULL)
  156. seq_printf(m, " (%s)", obj->ring->name);
  157. }
  158. static void describe_ctx(struct seq_file *m, struct intel_context *ctx)
  159. {
  160. seq_putc(m, ctx->is_initialized ? 'I' : 'i');
  161. seq_putc(m, ctx->remap_slice ? 'R' : 'r');
  162. seq_putc(m, ' ');
  163. }
  164. static int i915_gem_object_list_info(struct seq_file *m, void *data)
  165. {
  166. struct drm_info_node *node = m->private;
  167. uintptr_t list = (uintptr_t) node->info_ent->data;
  168. struct list_head *head;
  169. struct drm_device *dev = node->minor->dev;
  170. struct drm_i915_private *dev_priv = dev->dev_private;
  171. struct i915_address_space *vm = &dev_priv->gtt.base;
  172. struct i915_vma *vma;
  173. size_t total_obj_size, total_gtt_size;
  174. int count, ret;
  175. ret = mutex_lock_interruptible(&dev->struct_mutex);
  176. if (ret)
  177. return ret;
  178. /* FIXME: the user of this interface might want more than just GGTT */
  179. switch (list) {
  180. case ACTIVE_LIST:
  181. seq_puts(m, "Active:\n");
  182. head = &vm->active_list;
  183. break;
  184. case INACTIVE_LIST:
  185. seq_puts(m, "Inactive:\n");
  186. head = &vm->inactive_list;
  187. break;
  188. default:
  189. mutex_unlock(&dev->struct_mutex);
  190. return -EINVAL;
  191. }
  192. total_obj_size = total_gtt_size = count = 0;
  193. list_for_each_entry(vma, head, mm_list) {
  194. seq_printf(m, " ");
  195. describe_obj(m, vma->obj);
  196. seq_printf(m, "\n");
  197. total_obj_size += vma->obj->base.size;
  198. total_gtt_size += vma->node.size;
  199. count++;
  200. }
  201. mutex_unlock(&dev->struct_mutex);
  202. seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
  203. count, total_obj_size, total_gtt_size);
  204. return 0;
  205. }
  206. static int obj_rank_by_stolen(void *priv,
  207. struct list_head *A, struct list_head *B)
  208. {
  209. struct drm_i915_gem_object *a =
  210. container_of(A, struct drm_i915_gem_object, obj_exec_link);
  211. struct drm_i915_gem_object *b =
  212. container_of(B, struct drm_i915_gem_object, obj_exec_link);
  213. return a->stolen->start - b->stolen->start;
  214. }
  215. static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
  216. {
  217. struct drm_info_node *node = m->private;
  218. struct drm_device *dev = node->minor->dev;
  219. struct drm_i915_private *dev_priv = dev->dev_private;
  220. struct drm_i915_gem_object *obj;
  221. size_t total_obj_size, total_gtt_size;
  222. LIST_HEAD(stolen);
  223. int count, ret;
  224. ret = mutex_lock_interruptible(&dev->struct_mutex);
  225. if (ret)
  226. return ret;
  227. total_obj_size = total_gtt_size = count = 0;
  228. list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
  229. if (obj->stolen == NULL)
  230. continue;
  231. list_add(&obj->obj_exec_link, &stolen);
  232. total_obj_size += obj->base.size;
  233. total_gtt_size += i915_gem_obj_ggtt_size(obj);
  234. count++;
  235. }
  236. list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
  237. if (obj->stolen == NULL)
  238. continue;
  239. list_add(&obj->obj_exec_link, &stolen);
  240. total_obj_size += obj->base.size;
  241. count++;
  242. }
  243. list_sort(NULL, &stolen, obj_rank_by_stolen);
  244. seq_puts(m, "Stolen:\n");
  245. while (!list_empty(&stolen)) {
  246. obj = list_first_entry(&stolen, typeof(*obj), obj_exec_link);
  247. seq_puts(m, " ");
  248. describe_obj(m, obj);
  249. seq_putc(m, '\n');
  250. list_del_init(&obj->obj_exec_link);
  251. }
  252. mutex_unlock(&dev->struct_mutex);
  253. seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
  254. count, total_obj_size, total_gtt_size);
  255. return 0;
  256. }
  257. #define count_objects(list, member) do { \
  258. list_for_each_entry(obj, list, member) { \
  259. size += i915_gem_obj_ggtt_size(obj); \
  260. ++count; \
  261. if (obj->map_and_fenceable) { \
  262. mappable_size += i915_gem_obj_ggtt_size(obj); \
  263. ++mappable_count; \
  264. } \
  265. } \
  266. } while (0)
  267. struct file_stats {
  268. struct drm_i915_file_private *file_priv;
  269. int count;
  270. size_t total, unbound;
  271. size_t global, shared;
  272. size_t active, inactive;
  273. };
  274. static int per_file_stats(int id, void *ptr, void *data)
  275. {
  276. struct drm_i915_gem_object *obj = ptr;
  277. struct file_stats *stats = data;
  278. struct i915_vma *vma;
  279. stats->count++;
  280. stats->total += obj->base.size;
  281. if (obj->base.name || obj->base.dma_buf)
  282. stats->shared += obj->base.size;
  283. if (USES_FULL_PPGTT(obj->base.dev)) {
  284. list_for_each_entry(vma, &obj->vma_list, vma_link) {
  285. struct i915_hw_ppgtt *ppgtt;
  286. if (!drm_mm_node_allocated(&vma->node))
  287. continue;
  288. if (i915_is_ggtt(vma->vm)) {
  289. stats->global += obj->base.size;
  290. continue;
  291. }
  292. ppgtt = container_of(vma->vm, struct i915_hw_ppgtt, base);
  293. if (ppgtt->ctx && ppgtt->ctx->file_priv != stats->file_priv)
  294. continue;
  295. if (obj->ring) /* XXX per-vma statistic */
  296. stats->active += obj->base.size;
  297. else
  298. stats->inactive += obj->base.size;
  299. return 0;
  300. }
  301. } else {
  302. if (i915_gem_obj_ggtt_bound(obj)) {
  303. stats->global += obj->base.size;
  304. if (obj->ring)
  305. stats->active += obj->base.size;
  306. else
  307. stats->inactive += obj->base.size;
  308. return 0;
  309. }
  310. }
  311. if (!list_empty(&obj->global_list))
  312. stats->unbound += obj->base.size;
  313. return 0;
  314. }
  315. #define count_vmas(list, member) do { \
  316. list_for_each_entry(vma, list, member) { \
  317. size += i915_gem_obj_ggtt_size(vma->obj); \
  318. ++count; \
  319. if (vma->obj->map_and_fenceable) { \
  320. mappable_size += i915_gem_obj_ggtt_size(vma->obj); \
  321. ++mappable_count; \
  322. } \
  323. } \
  324. } while (0)
  325. static int i915_gem_object_info(struct seq_file *m, void* data)
  326. {
  327. struct drm_info_node *node = m->private;
  328. struct drm_device *dev = node->minor->dev;
  329. struct drm_i915_private *dev_priv = dev->dev_private;
  330. u32 count, mappable_count, purgeable_count;
  331. size_t size, mappable_size, purgeable_size;
  332. struct drm_i915_gem_object *obj;
  333. struct i915_address_space *vm = &dev_priv->gtt.base;
  334. struct drm_file *file;
  335. struct i915_vma *vma;
  336. int ret;
  337. ret = mutex_lock_interruptible(&dev->struct_mutex);
  338. if (ret)
  339. return ret;
  340. seq_printf(m, "%u objects, %zu bytes\n",
  341. dev_priv->mm.object_count,
  342. dev_priv->mm.object_memory);
  343. size = count = mappable_size = mappable_count = 0;
  344. count_objects(&dev_priv->mm.bound_list, global_list);
  345. seq_printf(m, "%u [%u] objects, %zu [%zu] bytes in gtt\n",
  346. count, mappable_count, size, mappable_size);
  347. size = count = mappable_size = mappable_count = 0;
  348. count_vmas(&vm->active_list, mm_list);
  349. seq_printf(m, " %u [%u] active objects, %zu [%zu] bytes\n",
  350. count, mappable_count, size, mappable_size);
  351. size = count = mappable_size = mappable_count = 0;
  352. count_vmas(&vm->inactive_list, mm_list);
  353. seq_printf(m, " %u [%u] inactive objects, %zu [%zu] bytes\n",
  354. count, mappable_count, size, mappable_size);
  355. size = count = purgeable_size = purgeable_count = 0;
  356. list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
  357. size += obj->base.size, ++count;
  358. if (obj->madv == I915_MADV_DONTNEED)
  359. purgeable_size += obj->base.size, ++purgeable_count;
  360. }
  361. seq_printf(m, "%u unbound objects, %zu bytes\n", count, size);
  362. size = count = mappable_size = mappable_count = 0;
  363. list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
  364. if (obj->fault_mappable) {
  365. size += i915_gem_obj_ggtt_size(obj);
  366. ++count;
  367. }
  368. if (obj->pin_mappable) {
  369. mappable_size += i915_gem_obj_ggtt_size(obj);
  370. ++mappable_count;
  371. }
  372. if (obj->madv == I915_MADV_DONTNEED) {
  373. purgeable_size += obj->base.size;
  374. ++purgeable_count;
  375. }
  376. }
  377. seq_printf(m, "%u purgeable objects, %zu bytes\n",
  378. purgeable_count, purgeable_size);
  379. seq_printf(m, "%u pinned mappable objects, %zu bytes\n",
  380. mappable_count, mappable_size);
  381. seq_printf(m, "%u fault mappable objects, %zu bytes\n",
  382. count, size);
  383. seq_printf(m, "%zu [%lu] gtt total\n",
  384. dev_priv->gtt.base.total,
  385. dev_priv->gtt.mappable_end - dev_priv->gtt.base.start);
  386. seq_putc(m, '\n');
  387. list_for_each_entry_reverse(file, &dev->filelist, lhead) {
  388. struct file_stats stats;
  389. struct task_struct *task;
  390. memset(&stats, 0, sizeof(stats));
  391. stats.file_priv = file->driver_priv;
  392. spin_lock(&file->table_lock);
  393. idr_for_each(&file->object_idr, per_file_stats, &stats);
  394. spin_unlock(&file->table_lock);
  395. /*
  396. * Although we have a valid reference on file->pid, that does
  397. * not guarantee that the task_struct who called get_pid() is
  398. * still alive (e.g. get_pid(current) => fork() => exit()).
  399. * Therefore, we need to protect this ->comm access using RCU.
  400. */
  401. rcu_read_lock();
  402. task = pid_task(file->pid, PIDTYPE_PID);
  403. seq_printf(m, "%s: %u objects, %zu bytes (%zu active, %zu inactive, %zu global, %zu shared, %zu unbound)\n",
  404. task ? task->comm : "<unknown>",
  405. stats.count,
  406. stats.total,
  407. stats.active,
  408. stats.inactive,
  409. stats.global,
  410. stats.shared,
  411. stats.unbound);
  412. rcu_read_unlock();
  413. }
  414. mutex_unlock(&dev->struct_mutex);
  415. return 0;
  416. }
  417. static int i915_gem_gtt_info(struct seq_file *m, void *data)
  418. {
  419. struct drm_info_node *node = m->private;
  420. struct drm_device *dev = node->minor->dev;
  421. uintptr_t list = (uintptr_t) node->info_ent->data;
  422. struct drm_i915_private *dev_priv = dev->dev_private;
  423. struct drm_i915_gem_object *obj;
  424. size_t total_obj_size, total_gtt_size;
  425. int count, ret;
  426. ret = mutex_lock_interruptible(&dev->struct_mutex);
  427. if (ret)
  428. return ret;
  429. total_obj_size = total_gtt_size = count = 0;
  430. list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
  431. if (list == PINNED_LIST && !i915_gem_obj_is_pinned(obj))
  432. continue;
  433. seq_puts(m, " ");
  434. describe_obj(m, obj);
  435. seq_putc(m, '\n');
  436. total_obj_size += obj->base.size;
  437. total_gtt_size += i915_gem_obj_ggtt_size(obj);
  438. count++;
  439. }
  440. mutex_unlock(&dev->struct_mutex);
  441. seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
  442. count, total_obj_size, total_gtt_size);
  443. return 0;
  444. }
  445. static int i915_gem_pageflip_info(struct seq_file *m, void *data)
  446. {
  447. struct drm_info_node *node = m->private;
  448. struct drm_device *dev = node->minor->dev;
  449. unsigned long flags;
  450. struct intel_crtc *crtc;
  451. for_each_intel_crtc(dev, crtc) {
  452. const char pipe = pipe_name(crtc->pipe);
  453. const char plane = plane_name(crtc->plane);
  454. struct intel_unpin_work *work;
  455. spin_lock_irqsave(&dev->event_lock, flags);
  456. work = crtc->unpin_work;
  457. if (work == NULL) {
  458. seq_printf(m, "No flip due on pipe %c (plane %c)\n",
  459. pipe, plane);
  460. } else {
  461. if (atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
  462. seq_printf(m, "Flip queued on pipe %c (plane %c)\n",
  463. pipe, plane);
  464. } else {
  465. seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
  466. pipe, plane);
  467. }
  468. if (work->enable_stall_check)
  469. seq_puts(m, "Stall check enabled, ");
  470. else
  471. seq_puts(m, "Stall check waiting for page flip ioctl, ");
  472. seq_printf(m, "%d prepares\n", atomic_read(&work->pending));
  473. if (work->old_fb_obj) {
  474. struct drm_i915_gem_object *obj = work->old_fb_obj;
  475. if (obj)
  476. seq_printf(m, "Old framebuffer gtt_offset 0x%08lx\n",
  477. i915_gem_obj_ggtt_offset(obj));
  478. }
  479. if (work->pending_flip_obj) {
  480. struct drm_i915_gem_object *obj = work->pending_flip_obj;
  481. if (obj)
  482. seq_printf(m, "New framebuffer gtt_offset 0x%08lx\n",
  483. i915_gem_obj_ggtt_offset(obj));
  484. }
  485. }
  486. spin_unlock_irqrestore(&dev->event_lock, flags);
  487. }
  488. return 0;
  489. }
  490. static int i915_gem_request_info(struct seq_file *m, void *data)
  491. {
  492. struct drm_info_node *node = m->private;
  493. struct drm_device *dev = node->minor->dev;
  494. struct drm_i915_private *dev_priv = dev->dev_private;
  495. struct intel_engine_cs *ring;
  496. struct drm_i915_gem_request *gem_request;
  497. int ret, count, i;
  498. ret = mutex_lock_interruptible(&dev->struct_mutex);
  499. if (ret)
  500. return ret;
  501. count = 0;
  502. for_each_ring(ring, dev_priv, i) {
  503. if (list_empty(&ring->request_list))
  504. continue;
  505. seq_printf(m, "%s requests:\n", ring->name);
  506. list_for_each_entry(gem_request,
  507. &ring->request_list,
  508. list) {
  509. seq_printf(m, " %d @ %d\n",
  510. gem_request->seqno,
  511. (int) (jiffies - gem_request->emitted_jiffies));
  512. }
  513. count++;
  514. }
  515. mutex_unlock(&dev->struct_mutex);
  516. if (count == 0)
  517. seq_puts(m, "No requests\n");
  518. return 0;
  519. }
  520. static void i915_ring_seqno_info(struct seq_file *m,
  521. struct intel_engine_cs *ring)
  522. {
  523. if (ring->get_seqno) {
  524. seq_printf(m, "Current sequence (%s): %u\n",
  525. ring->name, ring->get_seqno(ring, false));
  526. }
  527. }
  528. static int i915_gem_seqno_info(struct seq_file *m, void *data)
  529. {
  530. struct drm_info_node *node = m->private;
  531. struct drm_device *dev = node->minor->dev;
  532. struct drm_i915_private *dev_priv = dev->dev_private;
  533. struct intel_engine_cs *ring;
  534. int ret, i;
  535. ret = mutex_lock_interruptible(&dev->struct_mutex);
  536. if (ret)
  537. return ret;
  538. intel_runtime_pm_get(dev_priv);
  539. for_each_ring(ring, dev_priv, i)
  540. i915_ring_seqno_info(m, ring);
  541. intel_runtime_pm_put(dev_priv);
  542. mutex_unlock(&dev->struct_mutex);
  543. return 0;
  544. }
  545. static int i915_interrupt_info(struct seq_file *m, void *data)
  546. {
  547. struct drm_info_node *node = m->private;
  548. struct drm_device *dev = node->minor->dev;
  549. struct drm_i915_private *dev_priv = dev->dev_private;
  550. struct intel_engine_cs *ring;
  551. int ret, i, pipe;
  552. ret = mutex_lock_interruptible(&dev->struct_mutex);
  553. if (ret)
  554. return ret;
  555. intel_runtime_pm_get(dev_priv);
  556. if (IS_CHERRYVIEW(dev)) {
  557. int i;
  558. seq_printf(m, "Master Interrupt Control:\t%08x\n",
  559. I915_READ(GEN8_MASTER_IRQ));
  560. seq_printf(m, "Display IER:\t%08x\n",
  561. I915_READ(VLV_IER));
  562. seq_printf(m, "Display IIR:\t%08x\n",
  563. I915_READ(VLV_IIR));
  564. seq_printf(m, "Display IIR_RW:\t%08x\n",
  565. I915_READ(VLV_IIR_RW));
  566. seq_printf(m, "Display IMR:\t%08x\n",
  567. I915_READ(VLV_IMR));
  568. for_each_pipe(pipe)
  569. seq_printf(m, "Pipe %c stat:\t%08x\n",
  570. pipe_name(pipe),
  571. I915_READ(PIPESTAT(pipe)));
  572. seq_printf(m, "Port hotplug:\t%08x\n",
  573. I915_READ(PORT_HOTPLUG_EN));
  574. seq_printf(m, "DPFLIPSTAT:\t%08x\n",
  575. I915_READ(VLV_DPFLIPSTAT));
  576. seq_printf(m, "DPINVGTT:\t%08x\n",
  577. I915_READ(DPINVGTT));
  578. for (i = 0; i < 4; i++) {
  579. seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
  580. i, I915_READ(GEN8_GT_IMR(i)));
  581. seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
  582. i, I915_READ(GEN8_GT_IIR(i)));
  583. seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
  584. i, I915_READ(GEN8_GT_IER(i)));
  585. }
  586. seq_printf(m, "PCU interrupt mask:\t%08x\n",
  587. I915_READ(GEN8_PCU_IMR));
  588. seq_printf(m, "PCU interrupt identity:\t%08x\n",
  589. I915_READ(GEN8_PCU_IIR));
  590. seq_printf(m, "PCU interrupt enable:\t%08x\n",
  591. I915_READ(GEN8_PCU_IER));
  592. } else if (INTEL_INFO(dev)->gen >= 8) {
  593. seq_printf(m, "Master Interrupt Control:\t%08x\n",
  594. I915_READ(GEN8_MASTER_IRQ));
  595. for (i = 0; i < 4; i++) {
  596. seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
  597. i, I915_READ(GEN8_GT_IMR(i)));
  598. seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
  599. i, I915_READ(GEN8_GT_IIR(i)));
  600. seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
  601. i, I915_READ(GEN8_GT_IER(i)));
  602. }
  603. for_each_pipe(pipe) {
  604. seq_printf(m, "Pipe %c IMR:\t%08x\n",
  605. pipe_name(pipe),
  606. I915_READ(GEN8_DE_PIPE_IMR(pipe)));
  607. seq_printf(m, "Pipe %c IIR:\t%08x\n",
  608. pipe_name(pipe),
  609. I915_READ(GEN8_DE_PIPE_IIR(pipe)));
  610. seq_printf(m, "Pipe %c IER:\t%08x\n",
  611. pipe_name(pipe),
  612. I915_READ(GEN8_DE_PIPE_IER(pipe)));
  613. }
  614. seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
  615. I915_READ(GEN8_DE_PORT_IMR));
  616. seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
  617. I915_READ(GEN8_DE_PORT_IIR));
  618. seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
  619. I915_READ(GEN8_DE_PORT_IER));
  620. seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
  621. I915_READ(GEN8_DE_MISC_IMR));
  622. seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
  623. I915_READ(GEN8_DE_MISC_IIR));
  624. seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
  625. I915_READ(GEN8_DE_MISC_IER));
  626. seq_printf(m, "PCU interrupt mask:\t%08x\n",
  627. I915_READ(GEN8_PCU_IMR));
  628. seq_printf(m, "PCU interrupt identity:\t%08x\n",
  629. I915_READ(GEN8_PCU_IIR));
  630. seq_printf(m, "PCU interrupt enable:\t%08x\n",
  631. I915_READ(GEN8_PCU_IER));
  632. } else if (IS_VALLEYVIEW(dev)) {
  633. seq_printf(m, "Display IER:\t%08x\n",
  634. I915_READ(VLV_IER));
  635. seq_printf(m, "Display IIR:\t%08x\n",
  636. I915_READ(VLV_IIR));
  637. seq_printf(m, "Display IIR_RW:\t%08x\n",
  638. I915_READ(VLV_IIR_RW));
  639. seq_printf(m, "Display IMR:\t%08x\n",
  640. I915_READ(VLV_IMR));
  641. for_each_pipe(pipe)
  642. seq_printf(m, "Pipe %c stat:\t%08x\n",
  643. pipe_name(pipe),
  644. I915_READ(PIPESTAT(pipe)));
  645. seq_printf(m, "Master IER:\t%08x\n",
  646. I915_READ(VLV_MASTER_IER));
  647. seq_printf(m, "Render IER:\t%08x\n",
  648. I915_READ(GTIER));
  649. seq_printf(m, "Render IIR:\t%08x\n",
  650. I915_READ(GTIIR));
  651. seq_printf(m, "Render IMR:\t%08x\n",
  652. I915_READ(GTIMR));
  653. seq_printf(m, "PM IER:\t\t%08x\n",
  654. I915_READ(GEN6_PMIER));
  655. seq_printf(m, "PM IIR:\t\t%08x\n",
  656. I915_READ(GEN6_PMIIR));
  657. seq_printf(m, "PM IMR:\t\t%08x\n",
  658. I915_READ(GEN6_PMIMR));
  659. seq_printf(m, "Port hotplug:\t%08x\n",
  660. I915_READ(PORT_HOTPLUG_EN));
  661. seq_printf(m, "DPFLIPSTAT:\t%08x\n",
  662. I915_READ(VLV_DPFLIPSTAT));
  663. seq_printf(m, "DPINVGTT:\t%08x\n",
  664. I915_READ(DPINVGTT));
  665. } else if (!HAS_PCH_SPLIT(dev)) {
  666. seq_printf(m, "Interrupt enable: %08x\n",
  667. I915_READ(IER));
  668. seq_printf(m, "Interrupt identity: %08x\n",
  669. I915_READ(IIR));
  670. seq_printf(m, "Interrupt mask: %08x\n",
  671. I915_READ(IMR));
  672. for_each_pipe(pipe)
  673. seq_printf(m, "Pipe %c stat: %08x\n",
  674. pipe_name(pipe),
  675. I915_READ(PIPESTAT(pipe)));
  676. } else {
  677. seq_printf(m, "North Display Interrupt enable: %08x\n",
  678. I915_READ(DEIER));
  679. seq_printf(m, "North Display Interrupt identity: %08x\n",
  680. I915_READ(DEIIR));
  681. seq_printf(m, "North Display Interrupt mask: %08x\n",
  682. I915_READ(DEIMR));
  683. seq_printf(m, "South Display Interrupt enable: %08x\n",
  684. I915_READ(SDEIER));
  685. seq_printf(m, "South Display Interrupt identity: %08x\n",
  686. I915_READ(SDEIIR));
  687. seq_printf(m, "South Display Interrupt mask: %08x\n",
  688. I915_READ(SDEIMR));
  689. seq_printf(m, "Graphics Interrupt enable: %08x\n",
  690. I915_READ(GTIER));
  691. seq_printf(m, "Graphics Interrupt identity: %08x\n",
  692. I915_READ(GTIIR));
  693. seq_printf(m, "Graphics Interrupt mask: %08x\n",
  694. I915_READ(GTIMR));
  695. }
  696. for_each_ring(ring, dev_priv, i) {
  697. if (INTEL_INFO(dev)->gen >= 6) {
  698. seq_printf(m,
  699. "Graphics Interrupt mask (%s): %08x\n",
  700. ring->name, I915_READ_IMR(ring));
  701. }
  702. i915_ring_seqno_info(m, ring);
  703. }
  704. intel_runtime_pm_put(dev_priv);
  705. mutex_unlock(&dev->struct_mutex);
  706. return 0;
  707. }
  708. static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
  709. {
  710. struct drm_info_node *node = m->private;
  711. struct drm_device *dev = node->minor->dev;
  712. struct drm_i915_private *dev_priv = dev->dev_private;
  713. int i, ret;
  714. ret = mutex_lock_interruptible(&dev->struct_mutex);
  715. if (ret)
  716. return ret;
  717. seq_printf(m, "Reserved fences = %d\n", dev_priv->fence_reg_start);
  718. seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
  719. for (i = 0; i < dev_priv->num_fence_regs; i++) {
  720. struct drm_i915_gem_object *obj = dev_priv->fence_regs[i].obj;
  721. seq_printf(m, "Fence %d, pin count = %d, object = ",
  722. i, dev_priv->fence_regs[i].pin_count);
  723. if (obj == NULL)
  724. seq_puts(m, "unused");
  725. else
  726. describe_obj(m, obj);
  727. seq_putc(m, '\n');
  728. }
  729. mutex_unlock(&dev->struct_mutex);
  730. return 0;
  731. }
  732. static int i915_hws_info(struct seq_file *m, void *data)
  733. {
  734. struct drm_info_node *node = m->private;
  735. struct drm_device *dev = node->minor->dev;
  736. struct drm_i915_private *dev_priv = dev->dev_private;
  737. struct intel_engine_cs *ring;
  738. const u32 *hws;
  739. int i;
  740. ring = &dev_priv->ring[(uintptr_t)node->info_ent->data];
  741. hws = ring->status_page.page_addr;
  742. if (hws == NULL)
  743. return 0;
  744. for (i = 0; i < 4096 / sizeof(u32) / 4; i += 4) {
  745. seq_printf(m, "0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
  746. i * 4,
  747. hws[i], hws[i + 1], hws[i + 2], hws[i + 3]);
  748. }
  749. return 0;
  750. }
  751. static ssize_t
  752. i915_error_state_write(struct file *filp,
  753. const char __user *ubuf,
  754. size_t cnt,
  755. loff_t *ppos)
  756. {
  757. struct i915_error_state_file_priv *error_priv = filp->private_data;
  758. struct drm_device *dev = error_priv->dev;
  759. int ret;
  760. DRM_DEBUG_DRIVER("Resetting error state\n");
  761. ret = mutex_lock_interruptible(&dev->struct_mutex);
  762. if (ret)
  763. return ret;
  764. i915_destroy_error_state(dev);
  765. mutex_unlock(&dev->struct_mutex);
  766. return cnt;
  767. }
  768. static int i915_error_state_open(struct inode *inode, struct file *file)
  769. {
  770. struct drm_device *dev = inode->i_private;
  771. struct i915_error_state_file_priv *error_priv;
  772. error_priv = kzalloc(sizeof(*error_priv), GFP_KERNEL);
  773. if (!error_priv)
  774. return -ENOMEM;
  775. error_priv->dev = dev;
  776. i915_error_state_get(dev, error_priv);
  777. file->private_data = error_priv;
  778. return 0;
  779. }
  780. static int i915_error_state_release(struct inode *inode, struct file *file)
  781. {
  782. struct i915_error_state_file_priv *error_priv = file->private_data;
  783. i915_error_state_put(error_priv);
  784. kfree(error_priv);
  785. return 0;
  786. }
  787. static ssize_t i915_error_state_read(struct file *file, char __user *userbuf,
  788. size_t count, loff_t *pos)
  789. {
  790. struct i915_error_state_file_priv *error_priv = file->private_data;
  791. struct drm_i915_error_state_buf error_str;
  792. loff_t tmp_pos = 0;
  793. ssize_t ret_count = 0;
  794. int ret;
  795. ret = i915_error_state_buf_init(&error_str, count, *pos);
  796. if (ret)
  797. return ret;
  798. ret = i915_error_state_to_str(&error_str, error_priv);
  799. if (ret)
  800. goto out;
  801. ret_count = simple_read_from_buffer(userbuf, count, &tmp_pos,
  802. error_str.buf,
  803. error_str.bytes);
  804. if (ret_count < 0)
  805. ret = ret_count;
  806. else
  807. *pos = error_str.start + ret_count;
  808. out:
  809. i915_error_state_buf_release(&error_str);
  810. return ret ?: ret_count;
  811. }
  812. static const struct file_operations i915_error_state_fops = {
  813. .owner = THIS_MODULE,
  814. .open = i915_error_state_open,
  815. .read = i915_error_state_read,
  816. .write = i915_error_state_write,
  817. .llseek = default_llseek,
  818. .release = i915_error_state_release,
  819. };
  820. static int
  821. i915_next_seqno_get(void *data, u64 *val)
  822. {
  823. struct drm_device *dev = data;
  824. struct drm_i915_private *dev_priv = dev->dev_private;
  825. int ret;
  826. ret = mutex_lock_interruptible(&dev->struct_mutex);
  827. if (ret)
  828. return ret;
  829. *val = dev_priv->next_seqno;
  830. mutex_unlock(&dev->struct_mutex);
  831. return 0;
  832. }
  833. static int
  834. i915_next_seqno_set(void *data, u64 val)
  835. {
  836. struct drm_device *dev = data;
  837. int ret;
  838. ret = mutex_lock_interruptible(&dev->struct_mutex);
  839. if (ret)
  840. return ret;
  841. ret = i915_gem_set_seqno(dev, val);
  842. mutex_unlock(&dev->struct_mutex);
  843. return ret;
  844. }
  845. DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
  846. i915_next_seqno_get, i915_next_seqno_set,
  847. "0x%llx\n");
  848. static int i915_rstdby_delays(struct seq_file *m, void *unused)
  849. {
  850. struct drm_info_node *node = m->private;
  851. struct drm_device *dev = node->minor->dev;
  852. struct drm_i915_private *dev_priv = dev->dev_private;
  853. u16 crstanddelay;
  854. int ret;
  855. ret = mutex_lock_interruptible(&dev->struct_mutex);
  856. if (ret)
  857. return ret;
  858. intel_runtime_pm_get(dev_priv);
  859. crstanddelay = I915_READ16(CRSTANDVID);
  860. intel_runtime_pm_put(dev_priv);
  861. mutex_unlock(&dev->struct_mutex);
  862. seq_printf(m, "w/ctx: %d, w/o ctx: %d\n", (crstanddelay >> 8) & 0x3f, (crstanddelay & 0x3f));
  863. return 0;
  864. }
  865. static int i915_frequency_info(struct seq_file *m, void *unused)
  866. {
  867. struct drm_info_node *node = m->private;
  868. struct drm_device *dev = node->minor->dev;
  869. struct drm_i915_private *dev_priv = dev->dev_private;
  870. int ret = 0;
  871. intel_runtime_pm_get(dev_priv);
  872. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  873. if (IS_GEN5(dev)) {
  874. u16 rgvswctl = I915_READ16(MEMSWCTL);
  875. u16 rgvstat = I915_READ16(MEMSTAT_ILK);
  876. seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
  877. seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
  878. seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
  879. MEMSTAT_VID_SHIFT);
  880. seq_printf(m, "Current P-state: %d\n",
  881. (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
  882. } else if ((IS_GEN6(dev) || IS_GEN7(dev)) && !IS_VALLEYVIEW(dev)) {
  883. u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
  884. u32 rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
  885. u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
  886. u32 rpmodectl, rpinclimit, rpdeclimit;
  887. u32 rpstat, cagf, reqf;
  888. u32 rpupei, rpcurup, rpprevup;
  889. u32 rpdownei, rpcurdown, rpprevdown;
  890. int max_freq;
  891. /* RPSTAT1 is in the GT power well */
  892. ret = mutex_lock_interruptible(&dev->struct_mutex);
  893. if (ret)
  894. goto out;
  895. gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
  896. reqf = I915_READ(GEN6_RPNSWREQ);
  897. reqf &= ~GEN6_TURBO_DISABLE;
  898. if (IS_HASWELL(dev))
  899. reqf >>= 24;
  900. else
  901. reqf >>= 25;
  902. reqf *= GT_FREQUENCY_MULTIPLIER;
  903. rpmodectl = I915_READ(GEN6_RP_CONTROL);
  904. rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
  905. rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
  906. rpstat = I915_READ(GEN6_RPSTAT1);
  907. rpupei = I915_READ(GEN6_RP_CUR_UP_EI);
  908. rpcurup = I915_READ(GEN6_RP_CUR_UP);
  909. rpprevup = I915_READ(GEN6_RP_PREV_UP);
  910. rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI);
  911. rpcurdown = I915_READ(GEN6_RP_CUR_DOWN);
  912. rpprevdown = I915_READ(GEN6_RP_PREV_DOWN);
  913. if (IS_HASWELL(dev))
  914. cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
  915. else
  916. cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
  917. cagf *= GT_FREQUENCY_MULTIPLIER;
  918. gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
  919. mutex_unlock(&dev->struct_mutex);
  920. seq_printf(m, "PM IER=0x%08x IMR=0x%08x ISR=0x%08x IIR=0x%08x, MASK=0x%08x\n",
  921. I915_READ(GEN6_PMIER),
  922. I915_READ(GEN6_PMIMR),
  923. I915_READ(GEN6_PMISR),
  924. I915_READ(GEN6_PMIIR),
  925. I915_READ(GEN6_PMINTRMSK));
  926. seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
  927. seq_printf(m, "Render p-state ratio: %d\n",
  928. (gt_perf_status & 0xff00) >> 8);
  929. seq_printf(m, "Render p-state VID: %d\n",
  930. gt_perf_status & 0xff);
  931. seq_printf(m, "Render p-state limit: %d\n",
  932. rp_state_limits & 0xff);
  933. seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
  934. seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
  935. seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
  936. seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
  937. seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
  938. seq_printf(m, "CAGF: %dMHz\n", cagf);
  939. seq_printf(m, "RP CUR UP EI: %dus\n", rpupei &
  940. GEN6_CURICONT_MASK);
  941. seq_printf(m, "RP CUR UP: %dus\n", rpcurup &
  942. GEN6_CURBSYTAVG_MASK);
  943. seq_printf(m, "RP PREV UP: %dus\n", rpprevup &
  944. GEN6_CURBSYTAVG_MASK);
  945. seq_printf(m, "RP CUR DOWN EI: %dus\n", rpdownei &
  946. GEN6_CURIAVG_MASK);
  947. seq_printf(m, "RP CUR DOWN: %dus\n", rpcurdown &
  948. GEN6_CURBSYTAVG_MASK);
  949. seq_printf(m, "RP PREV DOWN: %dus\n", rpprevdown &
  950. GEN6_CURBSYTAVG_MASK);
  951. max_freq = (rp_state_cap & 0xff0000) >> 16;
  952. seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
  953. max_freq * GT_FREQUENCY_MULTIPLIER);
  954. max_freq = (rp_state_cap & 0xff00) >> 8;
  955. seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
  956. max_freq * GT_FREQUENCY_MULTIPLIER);
  957. max_freq = rp_state_cap & 0xff;
  958. seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
  959. max_freq * GT_FREQUENCY_MULTIPLIER);
  960. seq_printf(m, "Max overclocked frequency: %dMHz\n",
  961. dev_priv->rps.max_freq * GT_FREQUENCY_MULTIPLIER);
  962. } else if (IS_VALLEYVIEW(dev)) {
  963. u32 freq_sts, val;
  964. mutex_lock(&dev_priv->rps.hw_lock);
  965. freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  966. seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
  967. seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
  968. val = valleyview_rps_max_freq(dev_priv);
  969. seq_printf(m, "max GPU freq: %d MHz\n",
  970. vlv_gpu_freq(dev_priv, val));
  971. val = valleyview_rps_min_freq(dev_priv);
  972. seq_printf(m, "min GPU freq: %d MHz\n",
  973. vlv_gpu_freq(dev_priv, val));
  974. seq_printf(m, "current GPU freq: %d MHz\n",
  975. vlv_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
  976. mutex_unlock(&dev_priv->rps.hw_lock);
  977. } else {
  978. seq_puts(m, "no P-state info available\n");
  979. }
  980. out:
  981. intel_runtime_pm_put(dev_priv);
  982. return ret;
  983. }
  984. static int i915_delayfreq_table(struct seq_file *m, void *unused)
  985. {
  986. struct drm_info_node *node = m->private;
  987. struct drm_device *dev = node->minor->dev;
  988. struct drm_i915_private *dev_priv = dev->dev_private;
  989. u32 delayfreq;
  990. int ret, i;
  991. ret = mutex_lock_interruptible(&dev->struct_mutex);
  992. if (ret)
  993. return ret;
  994. intel_runtime_pm_get(dev_priv);
  995. for (i = 0; i < 16; i++) {
  996. delayfreq = I915_READ(PXVFREQ_BASE + i * 4);
  997. seq_printf(m, "P%02dVIDFREQ: 0x%08x (VID: %d)\n", i, delayfreq,
  998. (delayfreq & PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT);
  999. }
  1000. intel_runtime_pm_put(dev_priv);
  1001. mutex_unlock(&dev->struct_mutex);
  1002. return 0;
  1003. }
  1004. static inline int MAP_TO_MV(int map)
  1005. {
  1006. return 1250 - (map * 25);
  1007. }
  1008. static int i915_inttoext_table(struct seq_file *m, void *unused)
  1009. {
  1010. struct drm_info_node *node = m->private;
  1011. struct drm_device *dev = node->minor->dev;
  1012. struct drm_i915_private *dev_priv = dev->dev_private;
  1013. u32 inttoext;
  1014. int ret, i;
  1015. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1016. if (ret)
  1017. return ret;
  1018. intel_runtime_pm_get(dev_priv);
  1019. for (i = 1; i <= 32; i++) {
  1020. inttoext = I915_READ(INTTOEXT_BASE_ILK + i * 4);
  1021. seq_printf(m, "INTTOEXT%02d: 0x%08x\n", i, inttoext);
  1022. }
  1023. intel_runtime_pm_put(dev_priv);
  1024. mutex_unlock(&dev->struct_mutex);
  1025. return 0;
  1026. }
  1027. static int ironlake_drpc_info(struct seq_file *m)
  1028. {
  1029. struct drm_info_node *node = m->private;
  1030. struct drm_device *dev = node->minor->dev;
  1031. struct drm_i915_private *dev_priv = dev->dev_private;
  1032. u32 rgvmodectl, rstdbyctl;
  1033. u16 crstandvid;
  1034. int ret;
  1035. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1036. if (ret)
  1037. return ret;
  1038. intel_runtime_pm_get(dev_priv);
  1039. rgvmodectl = I915_READ(MEMMODECTL);
  1040. rstdbyctl = I915_READ(RSTDBYCTL);
  1041. crstandvid = I915_READ16(CRSTANDVID);
  1042. intel_runtime_pm_put(dev_priv);
  1043. mutex_unlock(&dev->struct_mutex);
  1044. seq_printf(m, "HD boost: %s\n", (rgvmodectl & MEMMODE_BOOST_EN) ?
  1045. "yes" : "no");
  1046. seq_printf(m, "Boost freq: %d\n",
  1047. (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
  1048. MEMMODE_BOOST_FREQ_SHIFT);
  1049. seq_printf(m, "HW control enabled: %s\n",
  1050. rgvmodectl & MEMMODE_HWIDLE_EN ? "yes" : "no");
  1051. seq_printf(m, "SW control enabled: %s\n",
  1052. rgvmodectl & MEMMODE_SWMODE_EN ? "yes" : "no");
  1053. seq_printf(m, "Gated voltage change: %s\n",
  1054. rgvmodectl & MEMMODE_RCLK_GATE ? "yes" : "no");
  1055. seq_printf(m, "Starting frequency: P%d\n",
  1056. (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
  1057. seq_printf(m, "Max P-state: P%d\n",
  1058. (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
  1059. seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
  1060. seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
  1061. seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
  1062. seq_printf(m, "Render standby enabled: %s\n",
  1063. (rstdbyctl & RCX_SW_EXIT) ? "no" : "yes");
  1064. seq_puts(m, "Current RS state: ");
  1065. switch (rstdbyctl & RSX_STATUS_MASK) {
  1066. case RSX_STATUS_ON:
  1067. seq_puts(m, "on\n");
  1068. break;
  1069. case RSX_STATUS_RC1:
  1070. seq_puts(m, "RC1\n");
  1071. break;
  1072. case RSX_STATUS_RC1E:
  1073. seq_puts(m, "RC1E\n");
  1074. break;
  1075. case RSX_STATUS_RS1:
  1076. seq_puts(m, "RS1\n");
  1077. break;
  1078. case RSX_STATUS_RS2:
  1079. seq_puts(m, "RS2 (RC6)\n");
  1080. break;
  1081. case RSX_STATUS_RS3:
  1082. seq_puts(m, "RC3 (RC6+)\n");
  1083. break;
  1084. default:
  1085. seq_puts(m, "unknown\n");
  1086. break;
  1087. }
  1088. return 0;
  1089. }
  1090. static int vlv_drpc_info(struct seq_file *m)
  1091. {
  1092. struct drm_info_node *node = m->private;
  1093. struct drm_device *dev = node->minor->dev;
  1094. struct drm_i915_private *dev_priv = dev->dev_private;
  1095. u32 rpmodectl1, rcctl1;
  1096. unsigned fw_rendercount = 0, fw_mediacount = 0;
  1097. intel_runtime_pm_get(dev_priv);
  1098. rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
  1099. rcctl1 = I915_READ(GEN6_RC_CONTROL);
  1100. intel_runtime_pm_put(dev_priv);
  1101. seq_printf(m, "Video Turbo Mode: %s\n",
  1102. yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
  1103. seq_printf(m, "Turbo enabled: %s\n",
  1104. yesno(rpmodectl1 & GEN6_RP_ENABLE));
  1105. seq_printf(m, "HW control enabled: %s\n",
  1106. yesno(rpmodectl1 & GEN6_RP_ENABLE));
  1107. seq_printf(m, "SW control enabled: %s\n",
  1108. yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
  1109. GEN6_RP_MEDIA_SW_MODE));
  1110. seq_printf(m, "RC6 Enabled: %s\n",
  1111. yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
  1112. GEN6_RC_CTL_EI_MODE(1))));
  1113. seq_printf(m, "Render Power Well: %s\n",
  1114. (I915_READ(VLV_GTLC_PW_STATUS) &
  1115. VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
  1116. seq_printf(m, "Media Power Well: %s\n",
  1117. (I915_READ(VLV_GTLC_PW_STATUS) &
  1118. VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
  1119. seq_printf(m, "Render RC6 residency since boot: %u\n",
  1120. I915_READ(VLV_GT_RENDER_RC6));
  1121. seq_printf(m, "Media RC6 residency since boot: %u\n",
  1122. I915_READ(VLV_GT_MEDIA_RC6));
  1123. spin_lock_irq(&dev_priv->uncore.lock);
  1124. fw_rendercount = dev_priv->uncore.fw_rendercount;
  1125. fw_mediacount = dev_priv->uncore.fw_mediacount;
  1126. spin_unlock_irq(&dev_priv->uncore.lock);
  1127. seq_printf(m, "Forcewake Render Count = %u\n", fw_rendercount);
  1128. seq_printf(m, "Forcewake Media Count = %u\n", fw_mediacount);
  1129. return 0;
  1130. }
  1131. static int gen6_drpc_info(struct seq_file *m)
  1132. {
  1133. struct drm_info_node *node = m->private;
  1134. struct drm_device *dev = node->minor->dev;
  1135. struct drm_i915_private *dev_priv = dev->dev_private;
  1136. u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0;
  1137. unsigned forcewake_count;
  1138. int count = 0, ret;
  1139. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1140. if (ret)
  1141. return ret;
  1142. intel_runtime_pm_get(dev_priv);
  1143. spin_lock_irq(&dev_priv->uncore.lock);
  1144. forcewake_count = dev_priv->uncore.forcewake_count;
  1145. spin_unlock_irq(&dev_priv->uncore.lock);
  1146. if (forcewake_count) {
  1147. seq_puts(m, "RC information inaccurate because somebody "
  1148. "holds a forcewake reference \n");
  1149. } else {
  1150. /* NB: we cannot use forcewake, else we read the wrong values */
  1151. while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
  1152. udelay(10);
  1153. seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
  1154. }
  1155. gt_core_status = readl(dev_priv->regs + GEN6_GT_CORE_STATUS);
  1156. trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
  1157. rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
  1158. rcctl1 = I915_READ(GEN6_RC_CONTROL);
  1159. mutex_unlock(&dev->struct_mutex);
  1160. mutex_lock(&dev_priv->rps.hw_lock);
  1161. sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
  1162. mutex_unlock(&dev_priv->rps.hw_lock);
  1163. intel_runtime_pm_put(dev_priv);
  1164. seq_printf(m, "Video Turbo Mode: %s\n",
  1165. yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
  1166. seq_printf(m, "HW control enabled: %s\n",
  1167. yesno(rpmodectl1 & GEN6_RP_ENABLE));
  1168. seq_printf(m, "SW control enabled: %s\n",
  1169. yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
  1170. GEN6_RP_MEDIA_SW_MODE));
  1171. seq_printf(m, "RC1e Enabled: %s\n",
  1172. yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
  1173. seq_printf(m, "RC6 Enabled: %s\n",
  1174. yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
  1175. seq_printf(m, "Deep RC6 Enabled: %s\n",
  1176. yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
  1177. seq_printf(m, "Deepest RC6 Enabled: %s\n",
  1178. yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
  1179. seq_puts(m, "Current RC state: ");
  1180. switch (gt_core_status & GEN6_RCn_MASK) {
  1181. case GEN6_RC0:
  1182. if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
  1183. seq_puts(m, "Core Power Down\n");
  1184. else
  1185. seq_puts(m, "on\n");
  1186. break;
  1187. case GEN6_RC3:
  1188. seq_puts(m, "RC3\n");
  1189. break;
  1190. case GEN6_RC6:
  1191. seq_puts(m, "RC6\n");
  1192. break;
  1193. case GEN6_RC7:
  1194. seq_puts(m, "RC7\n");
  1195. break;
  1196. default:
  1197. seq_puts(m, "Unknown\n");
  1198. break;
  1199. }
  1200. seq_printf(m, "Core Power Down: %s\n",
  1201. yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
  1202. /* Not exactly sure what this is */
  1203. seq_printf(m, "RC6 \"Locked to RPn\" residency since boot: %u\n",
  1204. I915_READ(GEN6_GT_GFX_RC6_LOCKED));
  1205. seq_printf(m, "RC6 residency since boot: %u\n",
  1206. I915_READ(GEN6_GT_GFX_RC6));
  1207. seq_printf(m, "RC6+ residency since boot: %u\n",
  1208. I915_READ(GEN6_GT_GFX_RC6p));
  1209. seq_printf(m, "RC6++ residency since boot: %u\n",
  1210. I915_READ(GEN6_GT_GFX_RC6pp));
  1211. seq_printf(m, "RC6 voltage: %dmV\n",
  1212. GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
  1213. seq_printf(m, "RC6+ voltage: %dmV\n",
  1214. GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
  1215. seq_printf(m, "RC6++ voltage: %dmV\n",
  1216. GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
  1217. return 0;
  1218. }
  1219. static int i915_drpc_info(struct seq_file *m, void *unused)
  1220. {
  1221. struct drm_info_node *node = m->private;
  1222. struct drm_device *dev = node->minor->dev;
  1223. if (IS_VALLEYVIEW(dev))
  1224. return vlv_drpc_info(m);
  1225. else if (IS_GEN6(dev) || IS_GEN7(dev))
  1226. return gen6_drpc_info(m);
  1227. else
  1228. return ironlake_drpc_info(m);
  1229. }
  1230. static int i915_fbc_status(struct seq_file *m, void *unused)
  1231. {
  1232. struct drm_info_node *node = m->private;
  1233. struct drm_device *dev = node->minor->dev;
  1234. struct drm_i915_private *dev_priv = dev->dev_private;
  1235. if (!HAS_FBC(dev)) {
  1236. seq_puts(m, "FBC unsupported on this chipset\n");
  1237. return 0;
  1238. }
  1239. intel_runtime_pm_get(dev_priv);
  1240. if (intel_fbc_enabled(dev)) {
  1241. seq_puts(m, "FBC enabled\n");
  1242. } else {
  1243. seq_puts(m, "FBC disabled: ");
  1244. switch (dev_priv->fbc.no_fbc_reason) {
  1245. case FBC_OK:
  1246. seq_puts(m, "FBC actived, but currently disabled in hardware");
  1247. break;
  1248. case FBC_UNSUPPORTED:
  1249. seq_puts(m, "unsupported by this chipset");
  1250. break;
  1251. case FBC_NO_OUTPUT:
  1252. seq_puts(m, "no outputs");
  1253. break;
  1254. case FBC_STOLEN_TOO_SMALL:
  1255. seq_puts(m, "not enough stolen memory");
  1256. break;
  1257. case FBC_UNSUPPORTED_MODE:
  1258. seq_puts(m, "mode not supported");
  1259. break;
  1260. case FBC_MODE_TOO_LARGE:
  1261. seq_puts(m, "mode too large");
  1262. break;
  1263. case FBC_BAD_PLANE:
  1264. seq_puts(m, "FBC unsupported on plane");
  1265. break;
  1266. case FBC_NOT_TILED:
  1267. seq_puts(m, "scanout buffer not tiled");
  1268. break;
  1269. case FBC_MULTIPLE_PIPES:
  1270. seq_puts(m, "multiple pipes are enabled");
  1271. break;
  1272. case FBC_MODULE_PARAM:
  1273. seq_puts(m, "disabled per module param (default off)");
  1274. break;
  1275. case FBC_CHIP_DEFAULT:
  1276. seq_puts(m, "disabled per chip default");
  1277. break;
  1278. default:
  1279. seq_puts(m, "unknown reason");
  1280. }
  1281. seq_putc(m, '\n');
  1282. }
  1283. intel_runtime_pm_put(dev_priv);
  1284. return 0;
  1285. }
  1286. static int i915_ips_status(struct seq_file *m, void *unused)
  1287. {
  1288. struct drm_info_node *node = m->private;
  1289. struct drm_device *dev = node->minor->dev;
  1290. struct drm_i915_private *dev_priv = dev->dev_private;
  1291. if (!HAS_IPS(dev)) {
  1292. seq_puts(m, "not supported\n");
  1293. return 0;
  1294. }
  1295. intel_runtime_pm_get(dev_priv);
  1296. if (IS_BROADWELL(dev) || I915_READ(IPS_CTL) & IPS_ENABLE)
  1297. seq_puts(m, "enabled\n");
  1298. else
  1299. seq_puts(m, "disabled\n");
  1300. intel_runtime_pm_put(dev_priv);
  1301. return 0;
  1302. }
  1303. static int i915_sr_status(struct seq_file *m, void *unused)
  1304. {
  1305. struct drm_info_node *node = m->private;
  1306. struct drm_device *dev = node->minor->dev;
  1307. struct drm_i915_private *dev_priv = dev->dev_private;
  1308. bool sr_enabled = false;
  1309. intel_runtime_pm_get(dev_priv);
  1310. if (HAS_PCH_SPLIT(dev))
  1311. sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
  1312. else if (IS_CRESTLINE(dev) || IS_I945G(dev) || IS_I945GM(dev))
  1313. sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
  1314. else if (IS_I915GM(dev))
  1315. sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
  1316. else if (IS_PINEVIEW(dev))
  1317. sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
  1318. intel_runtime_pm_put(dev_priv);
  1319. seq_printf(m, "self-refresh: %s\n",
  1320. sr_enabled ? "enabled" : "disabled");
  1321. return 0;
  1322. }
  1323. static int i915_emon_status(struct seq_file *m, void *unused)
  1324. {
  1325. struct drm_info_node *node = m->private;
  1326. struct drm_device *dev = node->minor->dev;
  1327. struct drm_i915_private *dev_priv = dev->dev_private;
  1328. unsigned long temp, chipset, gfx;
  1329. int ret;
  1330. if (!IS_GEN5(dev))
  1331. return -ENODEV;
  1332. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1333. if (ret)
  1334. return ret;
  1335. temp = i915_mch_val(dev_priv);
  1336. chipset = i915_chipset_val(dev_priv);
  1337. gfx = i915_gfx_val(dev_priv);
  1338. mutex_unlock(&dev->struct_mutex);
  1339. seq_printf(m, "GMCH temp: %ld\n", temp);
  1340. seq_printf(m, "Chipset power: %ld\n", chipset);
  1341. seq_printf(m, "GFX power: %ld\n", gfx);
  1342. seq_printf(m, "Total power: %ld\n", chipset + gfx);
  1343. return 0;
  1344. }
  1345. static int i915_ring_freq_table(struct seq_file *m, void *unused)
  1346. {
  1347. struct drm_info_node *node = m->private;
  1348. struct drm_device *dev = node->minor->dev;
  1349. struct drm_i915_private *dev_priv = dev->dev_private;
  1350. int ret = 0;
  1351. int gpu_freq, ia_freq;
  1352. if (!(IS_GEN6(dev) || IS_GEN7(dev))) {
  1353. seq_puts(m, "unsupported on this chipset\n");
  1354. return 0;
  1355. }
  1356. intel_runtime_pm_get(dev_priv);
  1357. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  1358. ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
  1359. if (ret)
  1360. goto out;
  1361. seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
  1362. for (gpu_freq = dev_priv->rps.min_freq_softlimit;
  1363. gpu_freq <= dev_priv->rps.max_freq_softlimit;
  1364. gpu_freq++) {
  1365. ia_freq = gpu_freq;
  1366. sandybridge_pcode_read(dev_priv,
  1367. GEN6_PCODE_READ_MIN_FREQ_TABLE,
  1368. &ia_freq);
  1369. seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
  1370. gpu_freq * GT_FREQUENCY_MULTIPLIER,
  1371. ((ia_freq >> 0) & 0xff) * 100,
  1372. ((ia_freq >> 8) & 0xff) * 100);
  1373. }
  1374. mutex_unlock(&dev_priv->rps.hw_lock);
  1375. out:
  1376. intel_runtime_pm_put(dev_priv);
  1377. return ret;
  1378. }
  1379. static int i915_gfxec(struct seq_file *m, void *unused)
  1380. {
  1381. struct drm_info_node *node = m->private;
  1382. struct drm_device *dev = node->minor->dev;
  1383. struct drm_i915_private *dev_priv = dev->dev_private;
  1384. int ret;
  1385. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1386. if (ret)
  1387. return ret;
  1388. intel_runtime_pm_get(dev_priv);
  1389. seq_printf(m, "GFXEC: %ld\n", (unsigned long)I915_READ(0x112f4));
  1390. intel_runtime_pm_put(dev_priv);
  1391. mutex_unlock(&dev->struct_mutex);
  1392. return 0;
  1393. }
  1394. static int i915_opregion(struct seq_file *m, void *unused)
  1395. {
  1396. struct drm_info_node *node = m->private;
  1397. struct drm_device *dev = node->minor->dev;
  1398. struct drm_i915_private *dev_priv = dev->dev_private;
  1399. struct intel_opregion *opregion = &dev_priv->opregion;
  1400. void *data = kmalloc(OPREGION_SIZE, GFP_KERNEL);
  1401. int ret;
  1402. if (data == NULL)
  1403. return -ENOMEM;
  1404. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1405. if (ret)
  1406. goto out;
  1407. if (opregion->header) {
  1408. memcpy_fromio(data, opregion->header, OPREGION_SIZE);
  1409. seq_write(m, data, OPREGION_SIZE);
  1410. }
  1411. mutex_unlock(&dev->struct_mutex);
  1412. out:
  1413. kfree(data);
  1414. return 0;
  1415. }
  1416. static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
  1417. {
  1418. struct drm_info_node *node = m->private;
  1419. struct drm_device *dev = node->minor->dev;
  1420. struct intel_fbdev *ifbdev = NULL;
  1421. struct intel_framebuffer *fb;
  1422. #ifdef CONFIG_DRM_I915_FBDEV
  1423. struct drm_i915_private *dev_priv = dev->dev_private;
  1424. int ret = mutex_lock_interruptible(&dev->mode_config.mutex);
  1425. if (ret)
  1426. return ret;
  1427. ifbdev = dev_priv->fbdev;
  1428. fb = to_intel_framebuffer(ifbdev->helper.fb);
  1429. seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, refcount %d, obj ",
  1430. fb->base.width,
  1431. fb->base.height,
  1432. fb->base.depth,
  1433. fb->base.bits_per_pixel,
  1434. atomic_read(&fb->base.refcount.refcount));
  1435. describe_obj(m, fb->obj);
  1436. seq_putc(m, '\n');
  1437. mutex_unlock(&dev->mode_config.mutex);
  1438. #endif
  1439. mutex_lock(&dev->mode_config.fb_lock);
  1440. list_for_each_entry(fb, &dev->mode_config.fb_list, base.head) {
  1441. if (ifbdev && &fb->base == ifbdev->helper.fb)
  1442. continue;
  1443. seq_printf(m, "user size: %d x %d, depth %d, %d bpp, refcount %d, obj ",
  1444. fb->base.width,
  1445. fb->base.height,
  1446. fb->base.depth,
  1447. fb->base.bits_per_pixel,
  1448. atomic_read(&fb->base.refcount.refcount));
  1449. describe_obj(m, fb->obj);
  1450. seq_putc(m, '\n');
  1451. }
  1452. mutex_unlock(&dev->mode_config.fb_lock);
  1453. return 0;
  1454. }
  1455. static int i915_context_status(struct seq_file *m, void *unused)
  1456. {
  1457. struct drm_info_node *node = m->private;
  1458. struct drm_device *dev = node->minor->dev;
  1459. struct drm_i915_private *dev_priv = dev->dev_private;
  1460. struct intel_engine_cs *ring;
  1461. struct intel_context *ctx;
  1462. int ret, i;
  1463. ret = mutex_lock_interruptible(&dev->mode_config.mutex);
  1464. if (ret)
  1465. return ret;
  1466. if (dev_priv->ips.pwrctx) {
  1467. seq_puts(m, "power context ");
  1468. describe_obj(m, dev_priv->ips.pwrctx);
  1469. seq_putc(m, '\n');
  1470. }
  1471. if (dev_priv->ips.renderctx) {
  1472. seq_puts(m, "render context ");
  1473. describe_obj(m, dev_priv->ips.renderctx);
  1474. seq_putc(m, '\n');
  1475. }
  1476. list_for_each_entry(ctx, &dev_priv->context_list, link) {
  1477. if (ctx->obj == NULL)
  1478. continue;
  1479. seq_puts(m, "HW context ");
  1480. describe_ctx(m, ctx);
  1481. for_each_ring(ring, dev_priv, i)
  1482. if (ring->default_context == ctx)
  1483. seq_printf(m, "(default context %s) ", ring->name);
  1484. describe_obj(m, ctx->obj);
  1485. seq_putc(m, '\n');
  1486. }
  1487. mutex_unlock(&dev->mode_config.mutex);
  1488. return 0;
  1489. }
  1490. static int i915_gen6_forcewake_count_info(struct seq_file *m, void *data)
  1491. {
  1492. struct drm_info_node *node = m->private;
  1493. struct drm_device *dev = node->minor->dev;
  1494. struct drm_i915_private *dev_priv = dev->dev_private;
  1495. unsigned forcewake_count = 0, fw_rendercount = 0, fw_mediacount = 0;
  1496. spin_lock_irq(&dev_priv->uncore.lock);
  1497. if (IS_VALLEYVIEW(dev)) {
  1498. fw_rendercount = dev_priv->uncore.fw_rendercount;
  1499. fw_mediacount = dev_priv->uncore.fw_mediacount;
  1500. } else
  1501. forcewake_count = dev_priv->uncore.forcewake_count;
  1502. spin_unlock_irq(&dev_priv->uncore.lock);
  1503. if (IS_VALLEYVIEW(dev)) {
  1504. seq_printf(m, "fw_rendercount = %u\n", fw_rendercount);
  1505. seq_printf(m, "fw_mediacount = %u\n", fw_mediacount);
  1506. } else
  1507. seq_printf(m, "forcewake count = %u\n", forcewake_count);
  1508. return 0;
  1509. }
  1510. static const char *swizzle_string(unsigned swizzle)
  1511. {
  1512. switch (swizzle) {
  1513. case I915_BIT_6_SWIZZLE_NONE:
  1514. return "none";
  1515. case I915_BIT_6_SWIZZLE_9:
  1516. return "bit9";
  1517. case I915_BIT_6_SWIZZLE_9_10:
  1518. return "bit9/bit10";
  1519. case I915_BIT_6_SWIZZLE_9_11:
  1520. return "bit9/bit11";
  1521. case I915_BIT_6_SWIZZLE_9_10_11:
  1522. return "bit9/bit10/bit11";
  1523. case I915_BIT_6_SWIZZLE_9_17:
  1524. return "bit9/bit17";
  1525. case I915_BIT_6_SWIZZLE_9_10_17:
  1526. return "bit9/bit10/bit17";
  1527. case I915_BIT_6_SWIZZLE_UNKNOWN:
  1528. return "unknown";
  1529. }
  1530. return "bug";
  1531. }
  1532. static int i915_swizzle_info(struct seq_file *m, void *data)
  1533. {
  1534. struct drm_info_node *node = m->private;
  1535. struct drm_device *dev = node->minor->dev;
  1536. struct drm_i915_private *dev_priv = dev->dev_private;
  1537. int ret;
  1538. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1539. if (ret)
  1540. return ret;
  1541. intel_runtime_pm_get(dev_priv);
  1542. seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
  1543. swizzle_string(dev_priv->mm.bit_6_swizzle_x));
  1544. seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
  1545. swizzle_string(dev_priv->mm.bit_6_swizzle_y));
  1546. if (IS_GEN3(dev) || IS_GEN4(dev)) {
  1547. seq_printf(m, "DDC = 0x%08x\n",
  1548. I915_READ(DCC));
  1549. seq_printf(m, "C0DRB3 = 0x%04x\n",
  1550. I915_READ16(C0DRB3));
  1551. seq_printf(m, "C1DRB3 = 0x%04x\n",
  1552. I915_READ16(C1DRB3));
  1553. } else if (INTEL_INFO(dev)->gen >= 6) {
  1554. seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
  1555. I915_READ(MAD_DIMM_C0));
  1556. seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
  1557. I915_READ(MAD_DIMM_C1));
  1558. seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
  1559. I915_READ(MAD_DIMM_C2));
  1560. seq_printf(m, "TILECTL = 0x%08x\n",
  1561. I915_READ(TILECTL));
  1562. if (IS_GEN8(dev))
  1563. seq_printf(m, "GAMTARBMODE = 0x%08x\n",
  1564. I915_READ(GAMTARBMODE));
  1565. else
  1566. seq_printf(m, "ARB_MODE = 0x%08x\n",
  1567. I915_READ(ARB_MODE));
  1568. seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
  1569. I915_READ(DISP_ARB_CTL));
  1570. }
  1571. intel_runtime_pm_put(dev_priv);
  1572. mutex_unlock(&dev->struct_mutex);
  1573. return 0;
  1574. }
  1575. static int per_file_ctx(int id, void *ptr, void *data)
  1576. {
  1577. struct intel_context *ctx = ptr;
  1578. struct seq_file *m = data;
  1579. struct i915_hw_ppgtt *ppgtt = ctx_to_ppgtt(ctx);
  1580. if (i915_gem_context_is_default(ctx))
  1581. seq_puts(m, " default context:\n");
  1582. else
  1583. seq_printf(m, " context %d:\n", ctx->id);
  1584. ppgtt->debug_dump(ppgtt, m);
  1585. return 0;
  1586. }
  1587. static void gen8_ppgtt_info(struct seq_file *m, struct drm_device *dev)
  1588. {
  1589. struct drm_i915_private *dev_priv = dev->dev_private;
  1590. struct intel_engine_cs *ring;
  1591. struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
  1592. int unused, i;
  1593. if (!ppgtt)
  1594. return;
  1595. seq_printf(m, "Page directories: %d\n", ppgtt->num_pd_pages);
  1596. seq_printf(m, "Page tables: %d\n", ppgtt->num_pd_entries);
  1597. for_each_ring(ring, dev_priv, unused) {
  1598. seq_printf(m, "%s\n", ring->name);
  1599. for (i = 0; i < 4; i++) {
  1600. u32 offset = 0x270 + i * 8;
  1601. u64 pdp = I915_READ(ring->mmio_base + offset + 4);
  1602. pdp <<= 32;
  1603. pdp |= I915_READ(ring->mmio_base + offset);
  1604. seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
  1605. }
  1606. }
  1607. }
  1608. static void gen6_ppgtt_info(struct seq_file *m, struct drm_device *dev)
  1609. {
  1610. struct drm_i915_private *dev_priv = dev->dev_private;
  1611. struct intel_engine_cs *ring;
  1612. struct drm_file *file;
  1613. int i;
  1614. if (INTEL_INFO(dev)->gen == 6)
  1615. seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
  1616. for_each_ring(ring, dev_priv, i) {
  1617. seq_printf(m, "%s\n", ring->name);
  1618. if (INTEL_INFO(dev)->gen == 7)
  1619. seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(RING_MODE_GEN7(ring)));
  1620. seq_printf(m, "PP_DIR_BASE: 0x%08x\n", I915_READ(RING_PP_DIR_BASE(ring)));
  1621. seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n", I915_READ(RING_PP_DIR_BASE_READ(ring)));
  1622. seq_printf(m, "PP_DIR_DCLV: 0x%08x\n", I915_READ(RING_PP_DIR_DCLV(ring)));
  1623. }
  1624. if (dev_priv->mm.aliasing_ppgtt) {
  1625. struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
  1626. seq_puts(m, "aliasing PPGTT:\n");
  1627. seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd_offset);
  1628. ppgtt->debug_dump(ppgtt, m);
  1629. } else
  1630. return;
  1631. list_for_each_entry_reverse(file, &dev->filelist, lhead) {
  1632. struct drm_i915_file_private *file_priv = file->driver_priv;
  1633. seq_printf(m, "proc: %s\n",
  1634. get_pid_task(file->pid, PIDTYPE_PID)->comm);
  1635. idr_for_each(&file_priv->context_idr, per_file_ctx, m);
  1636. }
  1637. seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
  1638. }
  1639. static int i915_ppgtt_info(struct seq_file *m, void *data)
  1640. {
  1641. struct drm_info_node *node = m->private;
  1642. struct drm_device *dev = node->minor->dev;
  1643. struct drm_i915_private *dev_priv = dev->dev_private;
  1644. int ret = mutex_lock_interruptible(&dev->struct_mutex);
  1645. if (ret)
  1646. return ret;
  1647. intel_runtime_pm_get(dev_priv);
  1648. if (INTEL_INFO(dev)->gen >= 8)
  1649. gen8_ppgtt_info(m, dev);
  1650. else if (INTEL_INFO(dev)->gen >= 6)
  1651. gen6_ppgtt_info(m, dev);
  1652. intel_runtime_pm_put(dev_priv);
  1653. mutex_unlock(&dev->struct_mutex);
  1654. return 0;
  1655. }
  1656. static int i915_llc(struct seq_file *m, void *data)
  1657. {
  1658. struct drm_info_node *node = m->private;
  1659. struct drm_device *dev = node->minor->dev;
  1660. struct drm_i915_private *dev_priv = dev->dev_private;
  1661. /* Size calculation for LLC is a bit of a pain. Ignore for now. */
  1662. seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev)));
  1663. seq_printf(m, "eLLC: %zuMB\n", dev_priv->ellc_size);
  1664. return 0;
  1665. }
  1666. static int i915_edp_psr_status(struct seq_file *m, void *data)
  1667. {
  1668. struct drm_info_node *node = m->private;
  1669. struct drm_device *dev = node->minor->dev;
  1670. struct drm_i915_private *dev_priv = dev->dev_private;
  1671. u32 psrperf = 0;
  1672. bool enabled = false;
  1673. intel_runtime_pm_get(dev_priv);
  1674. seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support));
  1675. seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok));
  1676. enabled = HAS_PSR(dev) &&
  1677. I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
  1678. seq_printf(m, "Enabled: %s\n", yesno(enabled));
  1679. if (HAS_PSR(dev))
  1680. psrperf = I915_READ(EDP_PSR_PERF_CNT(dev)) &
  1681. EDP_PSR_PERF_CNT_MASK;
  1682. seq_printf(m, "Performance_Counter: %u\n", psrperf);
  1683. intel_runtime_pm_put(dev_priv);
  1684. return 0;
  1685. }
  1686. static int i915_sink_crc(struct seq_file *m, void *data)
  1687. {
  1688. struct drm_info_node *node = m->private;
  1689. struct drm_device *dev = node->minor->dev;
  1690. struct intel_encoder *encoder;
  1691. struct intel_connector *connector;
  1692. struct intel_dp *intel_dp = NULL;
  1693. int ret;
  1694. u8 crc[6];
  1695. drm_modeset_lock_all(dev);
  1696. list_for_each_entry(connector, &dev->mode_config.connector_list,
  1697. base.head) {
  1698. if (connector->base.dpms != DRM_MODE_DPMS_ON)
  1699. continue;
  1700. if (!connector->base.encoder)
  1701. continue;
  1702. encoder = to_intel_encoder(connector->base.encoder);
  1703. if (encoder->type != INTEL_OUTPUT_EDP)
  1704. continue;
  1705. intel_dp = enc_to_intel_dp(&encoder->base);
  1706. ret = intel_dp_sink_crc(intel_dp, crc);
  1707. if (ret)
  1708. goto out;
  1709. seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
  1710. crc[0], crc[1], crc[2],
  1711. crc[3], crc[4], crc[5]);
  1712. goto out;
  1713. }
  1714. ret = -ENODEV;
  1715. out:
  1716. drm_modeset_unlock_all(dev);
  1717. return ret;
  1718. }
  1719. static int i915_energy_uJ(struct seq_file *m, void *data)
  1720. {
  1721. struct drm_info_node *node = m->private;
  1722. struct drm_device *dev = node->minor->dev;
  1723. struct drm_i915_private *dev_priv = dev->dev_private;
  1724. u64 power;
  1725. u32 units;
  1726. if (INTEL_INFO(dev)->gen < 6)
  1727. return -ENODEV;
  1728. intel_runtime_pm_get(dev_priv);
  1729. rdmsrl(MSR_RAPL_POWER_UNIT, power);
  1730. power = (power & 0x1f00) >> 8;
  1731. units = 1000000 / (1 << power); /* convert to uJ */
  1732. power = I915_READ(MCH_SECP_NRG_STTS);
  1733. power *= units;
  1734. intel_runtime_pm_put(dev_priv);
  1735. seq_printf(m, "%llu", (long long unsigned)power);
  1736. return 0;
  1737. }
  1738. static int i915_pc8_status(struct seq_file *m, void *unused)
  1739. {
  1740. struct drm_info_node *node = m->private;
  1741. struct drm_device *dev = node->minor->dev;
  1742. struct drm_i915_private *dev_priv = dev->dev_private;
  1743. if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
  1744. seq_puts(m, "not supported\n");
  1745. return 0;
  1746. }
  1747. seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->mm.busy));
  1748. seq_printf(m, "IRQs disabled: %s\n",
  1749. yesno(dev_priv->pm.irqs_disabled));
  1750. return 0;
  1751. }
  1752. static const char *power_domain_str(enum intel_display_power_domain domain)
  1753. {
  1754. switch (domain) {
  1755. case POWER_DOMAIN_PIPE_A:
  1756. return "PIPE_A";
  1757. case POWER_DOMAIN_PIPE_B:
  1758. return "PIPE_B";
  1759. case POWER_DOMAIN_PIPE_C:
  1760. return "PIPE_C";
  1761. case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
  1762. return "PIPE_A_PANEL_FITTER";
  1763. case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
  1764. return "PIPE_B_PANEL_FITTER";
  1765. case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
  1766. return "PIPE_C_PANEL_FITTER";
  1767. case POWER_DOMAIN_TRANSCODER_A:
  1768. return "TRANSCODER_A";
  1769. case POWER_DOMAIN_TRANSCODER_B:
  1770. return "TRANSCODER_B";
  1771. case POWER_DOMAIN_TRANSCODER_C:
  1772. return "TRANSCODER_C";
  1773. case POWER_DOMAIN_TRANSCODER_EDP:
  1774. return "TRANSCODER_EDP";
  1775. case POWER_DOMAIN_PORT_DDI_A_2_LANES:
  1776. return "PORT_DDI_A_2_LANES";
  1777. case POWER_DOMAIN_PORT_DDI_A_4_LANES:
  1778. return "PORT_DDI_A_4_LANES";
  1779. case POWER_DOMAIN_PORT_DDI_B_2_LANES:
  1780. return "PORT_DDI_B_2_LANES";
  1781. case POWER_DOMAIN_PORT_DDI_B_4_LANES:
  1782. return "PORT_DDI_B_4_LANES";
  1783. case POWER_DOMAIN_PORT_DDI_C_2_LANES:
  1784. return "PORT_DDI_C_2_LANES";
  1785. case POWER_DOMAIN_PORT_DDI_C_4_LANES:
  1786. return "PORT_DDI_C_4_LANES";
  1787. case POWER_DOMAIN_PORT_DDI_D_2_LANES:
  1788. return "PORT_DDI_D_2_LANES";
  1789. case POWER_DOMAIN_PORT_DDI_D_4_LANES:
  1790. return "PORT_DDI_D_4_LANES";
  1791. case POWER_DOMAIN_PORT_DSI:
  1792. return "PORT_DSI";
  1793. case POWER_DOMAIN_PORT_CRT:
  1794. return "PORT_CRT";
  1795. case POWER_DOMAIN_PORT_OTHER:
  1796. return "PORT_OTHER";
  1797. case POWER_DOMAIN_VGA:
  1798. return "VGA";
  1799. case POWER_DOMAIN_AUDIO:
  1800. return "AUDIO";
  1801. case POWER_DOMAIN_INIT:
  1802. return "INIT";
  1803. default:
  1804. WARN_ON(1);
  1805. return "?";
  1806. }
  1807. }
  1808. static int i915_power_domain_info(struct seq_file *m, void *unused)
  1809. {
  1810. struct drm_info_node *node = m->private;
  1811. struct drm_device *dev = node->minor->dev;
  1812. struct drm_i915_private *dev_priv = dev->dev_private;
  1813. struct i915_power_domains *power_domains = &dev_priv->power_domains;
  1814. int i;
  1815. mutex_lock(&power_domains->lock);
  1816. seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
  1817. for (i = 0; i < power_domains->power_well_count; i++) {
  1818. struct i915_power_well *power_well;
  1819. enum intel_display_power_domain power_domain;
  1820. power_well = &power_domains->power_wells[i];
  1821. seq_printf(m, "%-25s %d\n", power_well->name,
  1822. power_well->count);
  1823. for (power_domain = 0; power_domain < POWER_DOMAIN_NUM;
  1824. power_domain++) {
  1825. if (!(BIT(power_domain) & power_well->domains))
  1826. continue;
  1827. seq_printf(m, " %-23s %d\n",
  1828. power_domain_str(power_domain),
  1829. power_domains->domain_use_count[power_domain]);
  1830. }
  1831. }
  1832. mutex_unlock(&power_domains->lock);
  1833. return 0;
  1834. }
  1835. static void intel_seq_print_mode(struct seq_file *m, int tabs,
  1836. struct drm_display_mode *mode)
  1837. {
  1838. int i;
  1839. for (i = 0; i < tabs; i++)
  1840. seq_putc(m, '\t');
  1841. seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
  1842. mode->base.id, mode->name,
  1843. mode->vrefresh, mode->clock,
  1844. mode->hdisplay, mode->hsync_start,
  1845. mode->hsync_end, mode->htotal,
  1846. mode->vdisplay, mode->vsync_start,
  1847. mode->vsync_end, mode->vtotal,
  1848. mode->type, mode->flags);
  1849. }
  1850. static void intel_encoder_info(struct seq_file *m,
  1851. struct intel_crtc *intel_crtc,
  1852. struct intel_encoder *intel_encoder)
  1853. {
  1854. struct drm_info_node *node = m->private;
  1855. struct drm_device *dev = node->minor->dev;
  1856. struct drm_crtc *crtc = &intel_crtc->base;
  1857. struct intel_connector *intel_connector;
  1858. struct drm_encoder *encoder;
  1859. encoder = &intel_encoder->base;
  1860. seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
  1861. encoder->base.id, encoder->name);
  1862. for_each_connector_on_encoder(dev, encoder, intel_connector) {
  1863. struct drm_connector *connector = &intel_connector->base;
  1864. seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
  1865. connector->base.id,
  1866. connector->name,
  1867. drm_get_connector_status_name(connector->status));
  1868. if (connector->status == connector_status_connected) {
  1869. struct drm_display_mode *mode = &crtc->mode;
  1870. seq_printf(m, ", mode:\n");
  1871. intel_seq_print_mode(m, 2, mode);
  1872. } else {
  1873. seq_putc(m, '\n');
  1874. }
  1875. }
  1876. }
  1877. static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
  1878. {
  1879. struct drm_info_node *node = m->private;
  1880. struct drm_device *dev = node->minor->dev;
  1881. struct drm_crtc *crtc = &intel_crtc->base;
  1882. struct intel_encoder *intel_encoder;
  1883. seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
  1884. crtc->primary->fb->base.id, crtc->x, crtc->y,
  1885. crtc->primary->fb->width, crtc->primary->fb->height);
  1886. for_each_encoder_on_crtc(dev, crtc, intel_encoder)
  1887. intel_encoder_info(m, intel_crtc, intel_encoder);
  1888. }
  1889. static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
  1890. {
  1891. struct drm_display_mode *mode = panel->fixed_mode;
  1892. seq_printf(m, "\tfixed mode:\n");
  1893. intel_seq_print_mode(m, 2, mode);
  1894. }
  1895. static void intel_dp_info(struct seq_file *m,
  1896. struct intel_connector *intel_connector)
  1897. {
  1898. struct intel_encoder *intel_encoder = intel_connector->encoder;
  1899. struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
  1900. seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
  1901. seq_printf(m, "\taudio support: %s\n", intel_dp->has_audio ? "yes" :
  1902. "no");
  1903. if (intel_encoder->type == INTEL_OUTPUT_EDP)
  1904. intel_panel_info(m, &intel_connector->panel);
  1905. }
  1906. static void intel_hdmi_info(struct seq_file *m,
  1907. struct intel_connector *intel_connector)
  1908. {
  1909. struct intel_encoder *intel_encoder = intel_connector->encoder;
  1910. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
  1911. seq_printf(m, "\taudio support: %s\n", intel_hdmi->has_audio ? "yes" :
  1912. "no");
  1913. }
  1914. static void intel_lvds_info(struct seq_file *m,
  1915. struct intel_connector *intel_connector)
  1916. {
  1917. intel_panel_info(m, &intel_connector->panel);
  1918. }
  1919. static void intel_connector_info(struct seq_file *m,
  1920. struct drm_connector *connector)
  1921. {
  1922. struct intel_connector *intel_connector = to_intel_connector(connector);
  1923. struct intel_encoder *intel_encoder = intel_connector->encoder;
  1924. struct drm_display_mode *mode;
  1925. seq_printf(m, "connector %d: type %s, status: %s\n",
  1926. connector->base.id, connector->name,
  1927. drm_get_connector_status_name(connector->status));
  1928. if (connector->status == connector_status_connected) {
  1929. seq_printf(m, "\tname: %s\n", connector->display_info.name);
  1930. seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
  1931. connector->display_info.width_mm,
  1932. connector->display_info.height_mm);
  1933. seq_printf(m, "\tsubpixel order: %s\n",
  1934. drm_get_subpixel_order_name(connector->display_info.subpixel_order));
  1935. seq_printf(m, "\tCEA rev: %d\n",
  1936. connector->display_info.cea_rev);
  1937. }
  1938. if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
  1939. intel_encoder->type == INTEL_OUTPUT_EDP)
  1940. intel_dp_info(m, intel_connector);
  1941. else if (intel_encoder->type == INTEL_OUTPUT_HDMI)
  1942. intel_hdmi_info(m, intel_connector);
  1943. else if (intel_encoder->type == INTEL_OUTPUT_LVDS)
  1944. intel_lvds_info(m, intel_connector);
  1945. seq_printf(m, "\tmodes:\n");
  1946. list_for_each_entry(mode, &connector->modes, head)
  1947. intel_seq_print_mode(m, 2, mode);
  1948. }
  1949. static bool cursor_active(struct drm_device *dev, int pipe)
  1950. {
  1951. struct drm_i915_private *dev_priv = dev->dev_private;
  1952. u32 state;
  1953. if (IS_845G(dev) || IS_I865G(dev))
  1954. state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
  1955. else
  1956. state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
  1957. return state;
  1958. }
  1959. static bool cursor_position(struct drm_device *dev, int pipe, int *x, int *y)
  1960. {
  1961. struct drm_i915_private *dev_priv = dev->dev_private;
  1962. u32 pos;
  1963. pos = I915_READ(CURPOS(pipe));
  1964. *x = (pos >> CURSOR_X_SHIFT) & CURSOR_POS_MASK;
  1965. if (pos & (CURSOR_POS_SIGN << CURSOR_X_SHIFT))
  1966. *x = -*x;
  1967. *y = (pos >> CURSOR_Y_SHIFT) & CURSOR_POS_MASK;
  1968. if (pos & (CURSOR_POS_SIGN << CURSOR_Y_SHIFT))
  1969. *y = -*y;
  1970. return cursor_active(dev, pipe);
  1971. }
  1972. static int i915_display_info(struct seq_file *m, void *unused)
  1973. {
  1974. struct drm_info_node *node = m->private;
  1975. struct drm_device *dev = node->minor->dev;
  1976. struct drm_i915_private *dev_priv = dev->dev_private;
  1977. struct intel_crtc *crtc;
  1978. struct drm_connector *connector;
  1979. intel_runtime_pm_get(dev_priv);
  1980. drm_modeset_lock_all(dev);
  1981. seq_printf(m, "CRTC info\n");
  1982. seq_printf(m, "---------\n");
  1983. for_each_intel_crtc(dev, crtc) {
  1984. bool active;
  1985. int x, y;
  1986. seq_printf(m, "CRTC %d: pipe: %c, active: %s\n",
  1987. crtc->base.base.id, pipe_name(crtc->pipe),
  1988. yesno(crtc->active));
  1989. if (crtc->active) {
  1990. intel_crtc_info(m, crtc);
  1991. active = cursor_position(dev, crtc->pipe, &x, &y);
  1992. seq_printf(m, "\tcursor visible? %s, position (%d, %d), addr 0x%08x, active? %s\n",
  1993. yesno(crtc->cursor_base),
  1994. x, y, crtc->cursor_addr,
  1995. yesno(active));
  1996. }
  1997. seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n",
  1998. yesno(!crtc->cpu_fifo_underrun_disabled),
  1999. yesno(!crtc->pch_fifo_underrun_disabled));
  2000. }
  2001. seq_printf(m, "\n");
  2002. seq_printf(m, "Connector info\n");
  2003. seq_printf(m, "--------------\n");
  2004. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  2005. intel_connector_info(m, connector);
  2006. }
  2007. drm_modeset_unlock_all(dev);
  2008. intel_runtime_pm_put(dev_priv);
  2009. return 0;
  2010. }
  2011. struct pipe_crc_info {
  2012. const char *name;
  2013. struct drm_device *dev;
  2014. enum pipe pipe;
  2015. };
  2016. static int i915_pipe_crc_open(struct inode *inode, struct file *filep)
  2017. {
  2018. struct pipe_crc_info *info = inode->i_private;
  2019. struct drm_i915_private *dev_priv = info->dev->dev_private;
  2020. struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
  2021. if (info->pipe >= INTEL_INFO(info->dev)->num_pipes)
  2022. return -ENODEV;
  2023. spin_lock_irq(&pipe_crc->lock);
  2024. if (pipe_crc->opened) {
  2025. spin_unlock_irq(&pipe_crc->lock);
  2026. return -EBUSY; /* already open */
  2027. }
  2028. pipe_crc->opened = true;
  2029. filep->private_data = inode->i_private;
  2030. spin_unlock_irq(&pipe_crc->lock);
  2031. return 0;
  2032. }
  2033. static int i915_pipe_crc_release(struct inode *inode, struct file *filep)
  2034. {
  2035. struct pipe_crc_info *info = inode->i_private;
  2036. struct drm_i915_private *dev_priv = info->dev->dev_private;
  2037. struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
  2038. spin_lock_irq(&pipe_crc->lock);
  2039. pipe_crc->opened = false;
  2040. spin_unlock_irq(&pipe_crc->lock);
  2041. return 0;
  2042. }
  2043. /* (6 fields, 8 chars each, space separated (5) + '\n') */
  2044. #define PIPE_CRC_LINE_LEN (6 * 8 + 5 + 1)
  2045. /* account for \'0' */
  2046. #define PIPE_CRC_BUFFER_LEN (PIPE_CRC_LINE_LEN + 1)
  2047. static int pipe_crc_data_count(struct intel_pipe_crc *pipe_crc)
  2048. {
  2049. assert_spin_locked(&pipe_crc->lock);
  2050. return CIRC_CNT(pipe_crc->head, pipe_crc->tail,
  2051. INTEL_PIPE_CRC_ENTRIES_NR);
  2052. }
  2053. static ssize_t
  2054. i915_pipe_crc_read(struct file *filep, char __user *user_buf, size_t count,
  2055. loff_t *pos)
  2056. {
  2057. struct pipe_crc_info *info = filep->private_data;
  2058. struct drm_device *dev = info->dev;
  2059. struct drm_i915_private *dev_priv = dev->dev_private;
  2060. struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
  2061. char buf[PIPE_CRC_BUFFER_LEN];
  2062. int head, tail, n_entries, n;
  2063. ssize_t bytes_read;
  2064. /*
  2065. * Don't allow user space to provide buffers not big enough to hold
  2066. * a line of data.
  2067. */
  2068. if (count < PIPE_CRC_LINE_LEN)
  2069. return -EINVAL;
  2070. if (pipe_crc->source == INTEL_PIPE_CRC_SOURCE_NONE)
  2071. return 0;
  2072. /* nothing to read */
  2073. spin_lock_irq(&pipe_crc->lock);
  2074. while (pipe_crc_data_count(pipe_crc) == 0) {
  2075. int ret;
  2076. if (filep->f_flags & O_NONBLOCK) {
  2077. spin_unlock_irq(&pipe_crc->lock);
  2078. return -EAGAIN;
  2079. }
  2080. ret = wait_event_interruptible_lock_irq(pipe_crc->wq,
  2081. pipe_crc_data_count(pipe_crc), pipe_crc->lock);
  2082. if (ret) {
  2083. spin_unlock_irq(&pipe_crc->lock);
  2084. return ret;
  2085. }
  2086. }
  2087. /* We now have one or more entries to read */
  2088. head = pipe_crc->head;
  2089. tail = pipe_crc->tail;
  2090. n_entries = min((size_t)CIRC_CNT(head, tail, INTEL_PIPE_CRC_ENTRIES_NR),
  2091. count / PIPE_CRC_LINE_LEN);
  2092. spin_unlock_irq(&pipe_crc->lock);
  2093. bytes_read = 0;
  2094. n = 0;
  2095. do {
  2096. struct intel_pipe_crc_entry *entry = &pipe_crc->entries[tail];
  2097. int ret;
  2098. bytes_read += snprintf(buf, PIPE_CRC_BUFFER_LEN,
  2099. "%8u %8x %8x %8x %8x %8x\n",
  2100. entry->frame, entry->crc[0],
  2101. entry->crc[1], entry->crc[2],
  2102. entry->crc[3], entry->crc[4]);
  2103. ret = copy_to_user(user_buf + n * PIPE_CRC_LINE_LEN,
  2104. buf, PIPE_CRC_LINE_LEN);
  2105. if (ret == PIPE_CRC_LINE_LEN)
  2106. return -EFAULT;
  2107. BUILD_BUG_ON_NOT_POWER_OF_2(INTEL_PIPE_CRC_ENTRIES_NR);
  2108. tail = (tail + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
  2109. n++;
  2110. } while (--n_entries);
  2111. spin_lock_irq(&pipe_crc->lock);
  2112. pipe_crc->tail = tail;
  2113. spin_unlock_irq(&pipe_crc->lock);
  2114. return bytes_read;
  2115. }
  2116. static const struct file_operations i915_pipe_crc_fops = {
  2117. .owner = THIS_MODULE,
  2118. .open = i915_pipe_crc_open,
  2119. .read = i915_pipe_crc_read,
  2120. .release = i915_pipe_crc_release,
  2121. };
  2122. static struct pipe_crc_info i915_pipe_crc_data[I915_MAX_PIPES] = {
  2123. {
  2124. .name = "i915_pipe_A_crc",
  2125. .pipe = PIPE_A,
  2126. },
  2127. {
  2128. .name = "i915_pipe_B_crc",
  2129. .pipe = PIPE_B,
  2130. },
  2131. {
  2132. .name = "i915_pipe_C_crc",
  2133. .pipe = PIPE_C,
  2134. },
  2135. };
  2136. static int i915_pipe_crc_create(struct dentry *root, struct drm_minor *minor,
  2137. enum pipe pipe)
  2138. {
  2139. struct drm_device *dev = minor->dev;
  2140. struct dentry *ent;
  2141. struct pipe_crc_info *info = &i915_pipe_crc_data[pipe];
  2142. info->dev = dev;
  2143. ent = debugfs_create_file(info->name, S_IRUGO, root, info,
  2144. &i915_pipe_crc_fops);
  2145. if (!ent)
  2146. return -ENOMEM;
  2147. return drm_add_fake_info_node(minor, ent, info);
  2148. }
  2149. static const char * const pipe_crc_sources[] = {
  2150. "none",
  2151. "plane1",
  2152. "plane2",
  2153. "pf",
  2154. "pipe",
  2155. "TV",
  2156. "DP-B",
  2157. "DP-C",
  2158. "DP-D",
  2159. "auto",
  2160. };
  2161. static const char *pipe_crc_source_name(enum intel_pipe_crc_source source)
  2162. {
  2163. BUILD_BUG_ON(ARRAY_SIZE(pipe_crc_sources) != INTEL_PIPE_CRC_SOURCE_MAX);
  2164. return pipe_crc_sources[source];
  2165. }
  2166. static int display_crc_ctl_show(struct seq_file *m, void *data)
  2167. {
  2168. struct drm_device *dev = m->private;
  2169. struct drm_i915_private *dev_priv = dev->dev_private;
  2170. int i;
  2171. for (i = 0; i < I915_MAX_PIPES; i++)
  2172. seq_printf(m, "%c %s\n", pipe_name(i),
  2173. pipe_crc_source_name(dev_priv->pipe_crc[i].source));
  2174. return 0;
  2175. }
  2176. static int display_crc_ctl_open(struct inode *inode, struct file *file)
  2177. {
  2178. struct drm_device *dev = inode->i_private;
  2179. return single_open(file, display_crc_ctl_show, dev);
  2180. }
  2181. static int i8xx_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
  2182. uint32_t *val)
  2183. {
  2184. if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
  2185. *source = INTEL_PIPE_CRC_SOURCE_PIPE;
  2186. switch (*source) {
  2187. case INTEL_PIPE_CRC_SOURCE_PIPE:
  2188. *val = PIPE_CRC_ENABLE | PIPE_CRC_INCLUDE_BORDER_I8XX;
  2189. break;
  2190. case INTEL_PIPE_CRC_SOURCE_NONE:
  2191. *val = 0;
  2192. break;
  2193. default:
  2194. return -EINVAL;
  2195. }
  2196. return 0;
  2197. }
  2198. static int i9xx_pipe_crc_auto_source(struct drm_device *dev, enum pipe pipe,
  2199. enum intel_pipe_crc_source *source)
  2200. {
  2201. struct intel_encoder *encoder;
  2202. struct intel_crtc *crtc;
  2203. struct intel_digital_port *dig_port;
  2204. int ret = 0;
  2205. *source = INTEL_PIPE_CRC_SOURCE_PIPE;
  2206. drm_modeset_lock_all(dev);
  2207. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  2208. base.head) {
  2209. if (!encoder->base.crtc)
  2210. continue;
  2211. crtc = to_intel_crtc(encoder->base.crtc);
  2212. if (crtc->pipe != pipe)
  2213. continue;
  2214. switch (encoder->type) {
  2215. case INTEL_OUTPUT_TVOUT:
  2216. *source = INTEL_PIPE_CRC_SOURCE_TV;
  2217. break;
  2218. case INTEL_OUTPUT_DISPLAYPORT:
  2219. case INTEL_OUTPUT_EDP:
  2220. dig_port = enc_to_dig_port(&encoder->base);
  2221. switch (dig_port->port) {
  2222. case PORT_B:
  2223. *source = INTEL_PIPE_CRC_SOURCE_DP_B;
  2224. break;
  2225. case PORT_C:
  2226. *source = INTEL_PIPE_CRC_SOURCE_DP_C;
  2227. break;
  2228. case PORT_D:
  2229. *source = INTEL_PIPE_CRC_SOURCE_DP_D;
  2230. break;
  2231. default:
  2232. WARN(1, "nonexisting DP port %c\n",
  2233. port_name(dig_port->port));
  2234. break;
  2235. }
  2236. break;
  2237. }
  2238. }
  2239. drm_modeset_unlock_all(dev);
  2240. return ret;
  2241. }
  2242. static int vlv_pipe_crc_ctl_reg(struct drm_device *dev,
  2243. enum pipe pipe,
  2244. enum intel_pipe_crc_source *source,
  2245. uint32_t *val)
  2246. {
  2247. struct drm_i915_private *dev_priv = dev->dev_private;
  2248. bool need_stable_symbols = false;
  2249. if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
  2250. int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
  2251. if (ret)
  2252. return ret;
  2253. }
  2254. switch (*source) {
  2255. case INTEL_PIPE_CRC_SOURCE_PIPE:
  2256. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_VLV;
  2257. break;
  2258. case INTEL_PIPE_CRC_SOURCE_DP_B:
  2259. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_VLV;
  2260. need_stable_symbols = true;
  2261. break;
  2262. case INTEL_PIPE_CRC_SOURCE_DP_C:
  2263. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_VLV;
  2264. need_stable_symbols = true;
  2265. break;
  2266. case INTEL_PIPE_CRC_SOURCE_NONE:
  2267. *val = 0;
  2268. break;
  2269. default:
  2270. return -EINVAL;
  2271. }
  2272. /*
  2273. * When the pipe CRC tap point is after the transcoders we need
  2274. * to tweak symbol-level features to produce a deterministic series of
  2275. * symbols for a given frame. We need to reset those features only once
  2276. * a frame (instead of every nth symbol):
  2277. * - DC-balance: used to ensure a better clock recovery from the data
  2278. * link (SDVO)
  2279. * - DisplayPort scrambling: used for EMI reduction
  2280. */
  2281. if (need_stable_symbols) {
  2282. uint32_t tmp = I915_READ(PORT_DFT2_G4X);
  2283. tmp |= DC_BALANCE_RESET_VLV;
  2284. if (pipe == PIPE_A)
  2285. tmp |= PIPE_A_SCRAMBLE_RESET;
  2286. else
  2287. tmp |= PIPE_B_SCRAMBLE_RESET;
  2288. I915_WRITE(PORT_DFT2_G4X, tmp);
  2289. }
  2290. return 0;
  2291. }
  2292. static int i9xx_pipe_crc_ctl_reg(struct drm_device *dev,
  2293. enum pipe pipe,
  2294. enum intel_pipe_crc_source *source,
  2295. uint32_t *val)
  2296. {
  2297. struct drm_i915_private *dev_priv = dev->dev_private;
  2298. bool need_stable_symbols = false;
  2299. if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
  2300. int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
  2301. if (ret)
  2302. return ret;
  2303. }
  2304. switch (*source) {
  2305. case INTEL_PIPE_CRC_SOURCE_PIPE:
  2306. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_I9XX;
  2307. break;
  2308. case INTEL_PIPE_CRC_SOURCE_TV:
  2309. if (!SUPPORTS_TV(dev))
  2310. return -EINVAL;
  2311. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_TV_PRE;
  2312. break;
  2313. case INTEL_PIPE_CRC_SOURCE_DP_B:
  2314. if (!IS_G4X(dev))
  2315. return -EINVAL;
  2316. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_G4X;
  2317. need_stable_symbols = true;
  2318. break;
  2319. case INTEL_PIPE_CRC_SOURCE_DP_C:
  2320. if (!IS_G4X(dev))
  2321. return -EINVAL;
  2322. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_G4X;
  2323. need_stable_symbols = true;
  2324. break;
  2325. case INTEL_PIPE_CRC_SOURCE_DP_D:
  2326. if (!IS_G4X(dev))
  2327. return -EINVAL;
  2328. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_G4X;
  2329. need_stable_symbols = true;
  2330. break;
  2331. case INTEL_PIPE_CRC_SOURCE_NONE:
  2332. *val = 0;
  2333. break;
  2334. default:
  2335. return -EINVAL;
  2336. }
  2337. /*
  2338. * When the pipe CRC tap point is after the transcoders we need
  2339. * to tweak symbol-level features to produce a deterministic series of
  2340. * symbols for a given frame. We need to reset those features only once
  2341. * a frame (instead of every nth symbol):
  2342. * - DC-balance: used to ensure a better clock recovery from the data
  2343. * link (SDVO)
  2344. * - DisplayPort scrambling: used for EMI reduction
  2345. */
  2346. if (need_stable_symbols) {
  2347. uint32_t tmp = I915_READ(PORT_DFT2_G4X);
  2348. WARN_ON(!IS_G4X(dev));
  2349. I915_WRITE(PORT_DFT_I9XX,
  2350. I915_READ(PORT_DFT_I9XX) | DC_BALANCE_RESET);
  2351. if (pipe == PIPE_A)
  2352. tmp |= PIPE_A_SCRAMBLE_RESET;
  2353. else
  2354. tmp |= PIPE_B_SCRAMBLE_RESET;
  2355. I915_WRITE(PORT_DFT2_G4X, tmp);
  2356. }
  2357. return 0;
  2358. }
  2359. static void vlv_undo_pipe_scramble_reset(struct drm_device *dev,
  2360. enum pipe pipe)
  2361. {
  2362. struct drm_i915_private *dev_priv = dev->dev_private;
  2363. uint32_t tmp = I915_READ(PORT_DFT2_G4X);
  2364. if (pipe == PIPE_A)
  2365. tmp &= ~PIPE_A_SCRAMBLE_RESET;
  2366. else
  2367. tmp &= ~PIPE_B_SCRAMBLE_RESET;
  2368. if (!(tmp & PIPE_SCRAMBLE_RESET_MASK))
  2369. tmp &= ~DC_BALANCE_RESET_VLV;
  2370. I915_WRITE(PORT_DFT2_G4X, tmp);
  2371. }
  2372. static void g4x_undo_pipe_scramble_reset(struct drm_device *dev,
  2373. enum pipe pipe)
  2374. {
  2375. struct drm_i915_private *dev_priv = dev->dev_private;
  2376. uint32_t tmp = I915_READ(PORT_DFT2_G4X);
  2377. if (pipe == PIPE_A)
  2378. tmp &= ~PIPE_A_SCRAMBLE_RESET;
  2379. else
  2380. tmp &= ~PIPE_B_SCRAMBLE_RESET;
  2381. I915_WRITE(PORT_DFT2_G4X, tmp);
  2382. if (!(tmp & PIPE_SCRAMBLE_RESET_MASK)) {
  2383. I915_WRITE(PORT_DFT_I9XX,
  2384. I915_READ(PORT_DFT_I9XX) & ~DC_BALANCE_RESET);
  2385. }
  2386. }
  2387. static int ilk_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
  2388. uint32_t *val)
  2389. {
  2390. if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
  2391. *source = INTEL_PIPE_CRC_SOURCE_PIPE;
  2392. switch (*source) {
  2393. case INTEL_PIPE_CRC_SOURCE_PLANE1:
  2394. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_ILK;
  2395. break;
  2396. case INTEL_PIPE_CRC_SOURCE_PLANE2:
  2397. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_ILK;
  2398. break;
  2399. case INTEL_PIPE_CRC_SOURCE_PIPE:
  2400. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_ILK;
  2401. break;
  2402. case INTEL_PIPE_CRC_SOURCE_NONE:
  2403. *val = 0;
  2404. break;
  2405. default:
  2406. return -EINVAL;
  2407. }
  2408. return 0;
  2409. }
  2410. static int ivb_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
  2411. uint32_t *val)
  2412. {
  2413. if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
  2414. *source = INTEL_PIPE_CRC_SOURCE_PF;
  2415. switch (*source) {
  2416. case INTEL_PIPE_CRC_SOURCE_PLANE1:
  2417. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_IVB;
  2418. break;
  2419. case INTEL_PIPE_CRC_SOURCE_PLANE2:
  2420. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_IVB;
  2421. break;
  2422. case INTEL_PIPE_CRC_SOURCE_PF:
  2423. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PF_IVB;
  2424. break;
  2425. case INTEL_PIPE_CRC_SOURCE_NONE:
  2426. *val = 0;
  2427. break;
  2428. default:
  2429. return -EINVAL;
  2430. }
  2431. return 0;
  2432. }
  2433. static int pipe_crc_set_source(struct drm_device *dev, enum pipe pipe,
  2434. enum intel_pipe_crc_source source)
  2435. {
  2436. struct drm_i915_private *dev_priv = dev->dev_private;
  2437. struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
  2438. u32 val = 0; /* shut up gcc */
  2439. int ret;
  2440. if (pipe_crc->source == source)
  2441. return 0;
  2442. /* forbid changing the source without going back to 'none' */
  2443. if (pipe_crc->source && source)
  2444. return -EINVAL;
  2445. if (IS_GEN2(dev))
  2446. ret = i8xx_pipe_crc_ctl_reg(&source, &val);
  2447. else if (INTEL_INFO(dev)->gen < 5)
  2448. ret = i9xx_pipe_crc_ctl_reg(dev, pipe, &source, &val);
  2449. else if (IS_VALLEYVIEW(dev))
  2450. ret = vlv_pipe_crc_ctl_reg(dev,pipe, &source, &val);
  2451. else if (IS_GEN5(dev) || IS_GEN6(dev))
  2452. ret = ilk_pipe_crc_ctl_reg(&source, &val);
  2453. else
  2454. ret = ivb_pipe_crc_ctl_reg(&source, &val);
  2455. if (ret != 0)
  2456. return ret;
  2457. /* none -> real source transition */
  2458. if (source) {
  2459. DRM_DEBUG_DRIVER("collecting CRCs for pipe %c, %s\n",
  2460. pipe_name(pipe), pipe_crc_source_name(source));
  2461. pipe_crc->entries = kzalloc(sizeof(*pipe_crc->entries) *
  2462. INTEL_PIPE_CRC_ENTRIES_NR,
  2463. GFP_KERNEL);
  2464. if (!pipe_crc->entries)
  2465. return -ENOMEM;
  2466. spin_lock_irq(&pipe_crc->lock);
  2467. pipe_crc->head = 0;
  2468. pipe_crc->tail = 0;
  2469. spin_unlock_irq(&pipe_crc->lock);
  2470. }
  2471. pipe_crc->source = source;
  2472. I915_WRITE(PIPE_CRC_CTL(pipe), val);
  2473. POSTING_READ(PIPE_CRC_CTL(pipe));
  2474. /* real source -> none transition */
  2475. if (source == INTEL_PIPE_CRC_SOURCE_NONE) {
  2476. struct intel_pipe_crc_entry *entries;
  2477. DRM_DEBUG_DRIVER("stopping CRCs for pipe %c\n",
  2478. pipe_name(pipe));
  2479. intel_wait_for_vblank(dev, pipe);
  2480. spin_lock_irq(&pipe_crc->lock);
  2481. entries = pipe_crc->entries;
  2482. pipe_crc->entries = NULL;
  2483. spin_unlock_irq(&pipe_crc->lock);
  2484. kfree(entries);
  2485. if (IS_G4X(dev))
  2486. g4x_undo_pipe_scramble_reset(dev, pipe);
  2487. else if (IS_VALLEYVIEW(dev))
  2488. vlv_undo_pipe_scramble_reset(dev, pipe);
  2489. }
  2490. return 0;
  2491. }
  2492. /*
  2493. * Parse pipe CRC command strings:
  2494. * command: wsp* object wsp+ name wsp+ source wsp*
  2495. * object: 'pipe'
  2496. * name: (A | B | C)
  2497. * source: (none | plane1 | plane2 | pf)
  2498. * wsp: (#0x20 | #0x9 | #0xA)+
  2499. *
  2500. * eg.:
  2501. * "pipe A plane1" -> Start CRC computations on plane1 of pipe A
  2502. * "pipe A none" -> Stop CRC
  2503. */
  2504. static int display_crc_ctl_tokenize(char *buf, char *words[], int max_words)
  2505. {
  2506. int n_words = 0;
  2507. while (*buf) {
  2508. char *end;
  2509. /* skip leading white space */
  2510. buf = skip_spaces(buf);
  2511. if (!*buf)
  2512. break; /* end of buffer */
  2513. /* find end of word */
  2514. for (end = buf; *end && !isspace(*end); end++)
  2515. ;
  2516. if (n_words == max_words) {
  2517. DRM_DEBUG_DRIVER("too many words, allowed <= %d\n",
  2518. max_words);
  2519. return -EINVAL; /* ran out of words[] before bytes */
  2520. }
  2521. if (*end)
  2522. *end++ = '\0';
  2523. words[n_words++] = buf;
  2524. buf = end;
  2525. }
  2526. return n_words;
  2527. }
  2528. enum intel_pipe_crc_object {
  2529. PIPE_CRC_OBJECT_PIPE,
  2530. };
  2531. static const char * const pipe_crc_objects[] = {
  2532. "pipe",
  2533. };
  2534. static int
  2535. display_crc_ctl_parse_object(const char *buf, enum intel_pipe_crc_object *o)
  2536. {
  2537. int i;
  2538. for (i = 0; i < ARRAY_SIZE(pipe_crc_objects); i++)
  2539. if (!strcmp(buf, pipe_crc_objects[i])) {
  2540. *o = i;
  2541. return 0;
  2542. }
  2543. return -EINVAL;
  2544. }
  2545. static int display_crc_ctl_parse_pipe(const char *buf, enum pipe *pipe)
  2546. {
  2547. const char name = buf[0];
  2548. if (name < 'A' || name >= pipe_name(I915_MAX_PIPES))
  2549. return -EINVAL;
  2550. *pipe = name - 'A';
  2551. return 0;
  2552. }
  2553. static int
  2554. display_crc_ctl_parse_source(const char *buf, enum intel_pipe_crc_source *s)
  2555. {
  2556. int i;
  2557. for (i = 0; i < ARRAY_SIZE(pipe_crc_sources); i++)
  2558. if (!strcmp(buf, pipe_crc_sources[i])) {
  2559. *s = i;
  2560. return 0;
  2561. }
  2562. return -EINVAL;
  2563. }
  2564. static int display_crc_ctl_parse(struct drm_device *dev, char *buf, size_t len)
  2565. {
  2566. #define N_WORDS 3
  2567. int n_words;
  2568. char *words[N_WORDS];
  2569. enum pipe pipe;
  2570. enum intel_pipe_crc_object object;
  2571. enum intel_pipe_crc_source source;
  2572. n_words = display_crc_ctl_tokenize(buf, words, N_WORDS);
  2573. if (n_words != N_WORDS) {
  2574. DRM_DEBUG_DRIVER("tokenize failed, a command is %d words\n",
  2575. N_WORDS);
  2576. return -EINVAL;
  2577. }
  2578. if (display_crc_ctl_parse_object(words[0], &object) < 0) {
  2579. DRM_DEBUG_DRIVER("unknown object %s\n", words[0]);
  2580. return -EINVAL;
  2581. }
  2582. if (display_crc_ctl_parse_pipe(words[1], &pipe) < 0) {
  2583. DRM_DEBUG_DRIVER("unknown pipe %s\n", words[1]);
  2584. return -EINVAL;
  2585. }
  2586. if (display_crc_ctl_parse_source(words[2], &source) < 0) {
  2587. DRM_DEBUG_DRIVER("unknown source %s\n", words[2]);
  2588. return -EINVAL;
  2589. }
  2590. return pipe_crc_set_source(dev, pipe, source);
  2591. }
  2592. static ssize_t display_crc_ctl_write(struct file *file, const char __user *ubuf,
  2593. size_t len, loff_t *offp)
  2594. {
  2595. struct seq_file *m = file->private_data;
  2596. struct drm_device *dev = m->private;
  2597. char *tmpbuf;
  2598. int ret;
  2599. if (len == 0)
  2600. return 0;
  2601. if (len > PAGE_SIZE - 1) {
  2602. DRM_DEBUG_DRIVER("expected <%lu bytes into pipe crc control\n",
  2603. PAGE_SIZE);
  2604. return -E2BIG;
  2605. }
  2606. tmpbuf = kmalloc(len + 1, GFP_KERNEL);
  2607. if (!tmpbuf)
  2608. return -ENOMEM;
  2609. if (copy_from_user(tmpbuf, ubuf, len)) {
  2610. ret = -EFAULT;
  2611. goto out;
  2612. }
  2613. tmpbuf[len] = '\0';
  2614. ret = display_crc_ctl_parse(dev, tmpbuf, len);
  2615. out:
  2616. kfree(tmpbuf);
  2617. if (ret < 0)
  2618. return ret;
  2619. *offp += len;
  2620. return len;
  2621. }
  2622. static const struct file_operations i915_display_crc_ctl_fops = {
  2623. .owner = THIS_MODULE,
  2624. .open = display_crc_ctl_open,
  2625. .read = seq_read,
  2626. .llseek = seq_lseek,
  2627. .release = single_release,
  2628. .write = display_crc_ctl_write
  2629. };
  2630. static void wm_latency_show(struct seq_file *m, const uint16_t wm[5])
  2631. {
  2632. struct drm_device *dev = m->private;
  2633. int num_levels = ilk_wm_max_level(dev) + 1;
  2634. int level;
  2635. drm_modeset_lock_all(dev);
  2636. for (level = 0; level < num_levels; level++) {
  2637. unsigned int latency = wm[level];
  2638. /* WM1+ latency values in 0.5us units */
  2639. if (level > 0)
  2640. latency *= 5;
  2641. seq_printf(m, "WM%d %u (%u.%u usec)\n",
  2642. level, wm[level],
  2643. latency / 10, latency % 10);
  2644. }
  2645. drm_modeset_unlock_all(dev);
  2646. }
  2647. static int pri_wm_latency_show(struct seq_file *m, void *data)
  2648. {
  2649. struct drm_device *dev = m->private;
  2650. wm_latency_show(m, to_i915(dev)->wm.pri_latency);
  2651. return 0;
  2652. }
  2653. static int spr_wm_latency_show(struct seq_file *m, void *data)
  2654. {
  2655. struct drm_device *dev = m->private;
  2656. wm_latency_show(m, to_i915(dev)->wm.spr_latency);
  2657. return 0;
  2658. }
  2659. static int cur_wm_latency_show(struct seq_file *m, void *data)
  2660. {
  2661. struct drm_device *dev = m->private;
  2662. wm_latency_show(m, to_i915(dev)->wm.cur_latency);
  2663. return 0;
  2664. }
  2665. static int pri_wm_latency_open(struct inode *inode, struct file *file)
  2666. {
  2667. struct drm_device *dev = inode->i_private;
  2668. if (!HAS_PCH_SPLIT(dev))
  2669. return -ENODEV;
  2670. return single_open(file, pri_wm_latency_show, dev);
  2671. }
  2672. static int spr_wm_latency_open(struct inode *inode, struct file *file)
  2673. {
  2674. struct drm_device *dev = inode->i_private;
  2675. if (!HAS_PCH_SPLIT(dev))
  2676. return -ENODEV;
  2677. return single_open(file, spr_wm_latency_show, dev);
  2678. }
  2679. static int cur_wm_latency_open(struct inode *inode, struct file *file)
  2680. {
  2681. struct drm_device *dev = inode->i_private;
  2682. if (!HAS_PCH_SPLIT(dev))
  2683. return -ENODEV;
  2684. return single_open(file, cur_wm_latency_show, dev);
  2685. }
  2686. static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
  2687. size_t len, loff_t *offp, uint16_t wm[5])
  2688. {
  2689. struct seq_file *m = file->private_data;
  2690. struct drm_device *dev = m->private;
  2691. uint16_t new[5] = { 0 };
  2692. int num_levels = ilk_wm_max_level(dev) + 1;
  2693. int level;
  2694. int ret;
  2695. char tmp[32];
  2696. if (len >= sizeof(tmp))
  2697. return -EINVAL;
  2698. if (copy_from_user(tmp, ubuf, len))
  2699. return -EFAULT;
  2700. tmp[len] = '\0';
  2701. ret = sscanf(tmp, "%hu %hu %hu %hu %hu", &new[0], &new[1], &new[2], &new[3], &new[4]);
  2702. if (ret != num_levels)
  2703. return -EINVAL;
  2704. drm_modeset_lock_all(dev);
  2705. for (level = 0; level < num_levels; level++)
  2706. wm[level] = new[level];
  2707. drm_modeset_unlock_all(dev);
  2708. return len;
  2709. }
  2710. static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
  2711. size_t len, loff_t *offp)
  2712. {
  2713. struct seq_file *m = file->private_data;
  2714. struct drm_device *dev = m->private;
  2715. return wm_latency_write(file, ubuf, len, offp, to_i915(dev)->wm.pri_latency);
  2716. }
  2717. static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
  2718. size_t len, loff_t *offp)
  2719. {
  2720. struct seq_file *m = file->private_data;
  2721. struct drm_device *dev = m->private;
  2722. return wm_latency_write(file, ubuf, len, offp, to_i915(dev)->wm.spr_latency);
  2723. }
  2724. static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
  2725. size_t len, loff_t *offp)
  2726. {
  2727. struct seq_file *m = file->private_data;
  2728. struct drm_device *dev = m->private;
  2729. return wm_latency_write(file, ubuf, len, offp, to_i915(dev)->wm.cur_latency);
  2730. }
  2731. static const struct file_operations i915_pri_wm_latency_fops = {
  2732. .owner = THIS_MODULE,
  2733. .open = pri_wm_latency_open,
  2734. .read = seq_read,
  2735. .llseek = seq_lseek,
  2736. .release = single_release,
  2737. .write = pri_wm_latency_write
  2738. };
  2739. static const struct file_operations i915_spr_wm_latency_fops = {
  2740. .owner = THIS_MODULE,
  2741. .open = spr_wm_latency_open,
  2742. .read = seq_read,
  2743. .llseek = seq_lseek,
  2744. .release = single_release,
  2745. .write = spr_wm_latency_write
  2746. };
  2747. static const struct file_operations i915_cur_wm_latency_fops = {
  2748. .owner = THIS_MODULE,
  2749. .open = cur_wm_latency_open,
  2750. .read = seq_read,
  2751. .llseek = seq_lseek,
  2752. .release = single_release,
  2753. .write = cur_wm_latency_write
  2754. };
  2755. static int
  2756. i915_wedged_get(void *data, u64 *val)
  2757. {
  2758. struct drm_device *dev = data;
  2759. struct drm_i915_private *dev_priv = dev->dev_private;
  2760. *val = atomic_read(&dev_priv->gpu_error.reset_counter);
  2761. return 0;
  2762. }
  2763. static int
  2764. i915_wedged_set(void *data, u64 val)
  2765. {
  2766. struct drm_device *dev = data;
  2767. struct drm_i915_private *dev_priv = dev->dev_private;
  2768. intel_runtime_pm_get(dev_priv);
  2769. i915_handle_error(dev, val,
  2770. "Manually setting wedged to %llu", val);
  2771. intel_runtime_pm_put(dev_priv);
  2772. return 0;
  2773. }
  2774. DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
  2775. i915_wedged_get, i915_wedged_set,
  2776. "%llu\n");
  2777. static int
  2778. i915_ring_stop_get(void *data, u64 *val)
  2779. {
  2780. struct drm_device *dev = data;
  2781. struct drm_i915_private *dev_priv = dev->dev_private;
  2782. *val = dev_priv->gpu_error.stop_rings;
  2783. return 0;
  2784. }
  2785. static int
  2786. i915_ring_stop_set(void *data, u64 val)
  2787. {
  2788. struct drm_device *dev = data;
  2789. struct drm_i915_private *dev_priv = dev->dev_private;
  2790. int ret;
  2791. DRM_DEBUG_DRIVER("Stopping rings 0x%08llx\n", val);
  2792. ret = mutex_lock_interruptible(&dev->struct_mutex);
  2793. if (ret)
  2794. return ret;
  2795. dev_priv->gpu_error.stop_rings = val;
  2796. mutex_unlock(&dev->struct_mutex);
  2797. return 0;
  2798. }
  2799. DEFINE_SIMPLE_ATTRIBUTE(i915_ring_stop_fops,
  2800. i915_ring_stop_get, i915_ring_stop_set,
  2801. "0x%08llx\n");
  2802. static int
  2803. i915_ring_missed_irq_get(void *data, u64 *val)
  2804. {
  2805. struct drm_device *dev = data;
  2806. struct drm_i915_private *dev_priv = dev->dev_private;
  2807. *val = dev_priv->gpu_error.missed_irq_rings;
  2808. return 0;
  2809. }
  2810. static int
  2811. i915_ring_missed_irq_set(void *data, u64 val)
  2812. {
  2813. struct drm_device *dev = data;
  2814. struct drm_i915_private *dev_priv = dev->dev_private;
  2815. int ret;
  2816. /* Lock against concurrent debugfs callers */
  2817. ret = mutex_lock_interruptible(&dev->struct_mutex);
  2818. if (ret)
  2819. return ret;
  2820. dev_priv->gpu_error.missed_irq_rings = val;
  2821. mutex_unlock(&dev->struct_mutex);
  2822. return 0;
  2823. }
  2824. DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
  2825. i915_ring_missed_irq_get, i915_ring_missed_irq_set,
  2826. "0x%08llx\n");
  2827. static int
  2828. i915_ring_test_irq_get(void *data, u64 *val)
  2829. {
  2830. struct drm_device *dev = data;
  2831. struct drm_i915_private *dev_priv = dev->dev_private;
  2832. *val = dev_priv->gpu_error.test_irq_rings;
  2833. return 0;
  2834. }
  2835. static int
  2836. i915_ring_test_irq_set(void *data, u64 val)
  2837. {
  2838. struct drm_device *dev = data;
  2839. struct drm_i915_private *dev_priv = dev->dev_private;
  2840. int ret;
  2841. DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
  2842. /* Lock against concurrent debugfs callers */
  2843. ret = mutex_lock_interruptible(&dev->struct_mutex);
  2844. if (ret)
  2845. return ret;
  2846. dev_priv->gpu_error.test_irq_rings = val;
  2847. mutex_unlock(&dev->struct_mutex);
  2848. return 0;
  2849. }
  2850. DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
  2851. i915_ring_test_irq_get, i915_ring_test_irq_set,
  2852. "0x%08llx\n");
  2853. #define DROP_UNBOUND 0x1
  2854. #define DROP_BOUND 0x2
  2855. #define DROP_RETIRE 0x4
  2856. #define DROP_ACTIVE 0x8
  2857. #define DROP_ALL (DROP_UNBOUND | \
  2858. DROP_BOUND | \
  2859. DROP_RETIRE | \
  2860. DROP_ACTIVE)
  2861. static int
  2862. i915_drop_caches_get(void *data, u64 *val)
  2863. {
  2864. *val = DROP_ALL;
  2865. return 0;
  2866. }
  2867. static int
  2868. i915_drop_caches_set(void *data, u64 val)
  2869. {
  2870. struct drm_device *dev = data;
  2871. struct drm_i915_private *dev_priv = dev->dev_private;
  2872. struct drm_i915_gem_object *obj, *next;
  2873. struct i915_address_space *vm;
  2874. struct i915_vma *vma, *x;
  2875. int ret;
  2876. DRM_DEBUG("Dropping caches: 0x%08llx\n", val);
  2877. /* No need to check and wait for gpu resets, only libdrm auto-restarts
  2878. * on ioctls on -EAGAIN. */
  2879. ret = mutex_lock_interruptible(&dev->struct_mutex);
  2880. if (ret)
  2881. return ret;
  2882. if (val & DROP_ACTIVE) {
  2883. ret = i915_gpu_idle(dev);
  2884. if (ret)
  2885. goto unlock;
  2886. }
  2887. if (val & (DROP_RETIRE | DROP_ACTIVE))
  2888. i915_gem_retire_requests(dev);
  2889. if (val & DROP_BOUND) {
  2890. list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
  2891. list_for_each_entry_safe(vma, x, &vm->inactive_list,
  2892. mm_list) {
  2893. if (vma->pin_count)
  2894. continue;
  2895. ret = i915_vma_unbind(vma);
  2896. if (ret)
  2897. goto unlock;
  2898. }
  2899. }
  2900. }
  2901. if (val & DROP_UNBOUND) {
  2902. list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
  2903. global_list)
  2904. if (obj->pages_pin_count == 0) {
  2905. ret = i915_gem_object_put_pages(obj);
  2906. if (ret)
  2907. goto unlock;
  2908. }
  2909. }
  2910. unlock:
  2911. mutex_unlock(&dev->struct_mutex);
  2912. return ret;
  2913. }
  2914. DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
  2915. i915_drop_caches_get, i915_drop_caches_set,
  2916. "0x%08llx\n");
  2917. static int
  2918. i915_max_freq_get(void *data, u64 *val)
  2919. {
  2920. struct drm_device *dev = data;
  2921. struct drm_i915_private *dev_priv = dev->dev_private;
  2922. int ret;
  2923. if (!(IS_GEN6(dev) || IS_GEN7(dev)))
  2924. return -ENODEV;
  2925. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  2926. ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
  2927. if (ret)
  2928. return ret;
  2929. if (IS_VALLEYVIEW(dev))
  2930. *val = vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit);
  2931. else
  2932. *val = dev_priv->rps.max_freq_softlimit * GT_FREQUENCY_MULTIPLIER;
  2933. mutex_unlock(&dev_priv->rps.hw_lock);
  2934. return 0;
  2935. }
  2936. static int
  2937. i915_max_freq_set(void *data, u64 val)
  2938. {
  2939. struct drm_device *dev = data;
  2940. struct drm_i915_private *dev_priv = dev->dev_private;
  2941. u32 rp_state_cap, hw_max, hw_min;
  2942. int ret;
  2943. if (!(IS_GEN6(dev) || IS_GEN7(dev)))
  2944. return -ENODEV;
  2945. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  2946. DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
  2947. ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
  2948. if (ret)
  2949. return ret;
  2950. /*
  2951. * Turbo will still be enabled, but won't go above the set value.
  2952. */
  2953. if (IS_VALLEYVIEW(dev)) {
  2954. val = vlv_freq_opcode(dev_priv, val);
  2955. hw_max = valleyview_rps_max_freq(dev_priv);
  2956. hw_min = valleyview_rps_min_freq(dev_priv);
  2957. } else {
  2958. do_div(val, GT_FREQUENCY_MULTIPLIER);
  2959. rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
  2960. hw_max = dev_priv->rps.max_freq;
  2961. hw_min = (rp_state_cap >> 16) & 0xff;
  2962. }
  2963. if (val < hw_min || val > hw_max || val < dev_priv->rps.min_freq_softlimit) {
  2964. mutex_unlock(&dev_priv->rps.hw_lock);
  2965. return -EINVAL;
  2966. }
  2967. dev_priv->rps.max_freq_softlimit = val;
  2968. if (IS_VALLEYVIEW(dev))
  2969. valleyview_set_rps(dev, val);
  2970. else
  2971. gen6_set_rps(dev, val);
  2972. mutex_unlock(&dev_priv->rps.hw_lock);
  2973. return 0;
  2974. }
  2975. DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
  2976. i915_max_freq_get, i915_max_freq_set,
  2977. "%llu\n");
  2978. static int
  2979. i915_min_freq_get(void *data, u64 *val)
  2980. {
  2981. struct drm_device *dev = data;
  2982. struct drm_i915_private *dev_priv = dev->dev_private;
  2983. int ret;
  2984. if (!(IS_GEN6(dev) || IS_GEN7(dev)))
  2985. return -ENODEV;
  2986. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  2987. ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
  2988. if (ret)
  2989. return ret;
  2990. if (IS_VALLEYVIEW(dev))
  2991. *val = vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit);
  2992. else
  2993. *val = dev_priv->rps.min_freq_softlimit * GT_FREQUENCY_MULTIPLIER;
  2994. mutex_unlock(&dev_priv->rps.hw_lock);
  2995. return 0;
  2996. }
  2997. static int
  2998. i915_min_freq_set(void *data, u64 val)
  2999. {
  3000. struct drm_device *dev = data;
  3001. struct drm_i915_private *dev_priv = dev->dev_private;
  3002. u32 rp_state_cap, hw_max, hw_min;
  3003. int ret;
  3004. if (!(IS_GEN6(dev) || IS_GEN7(dev)))
  3005. return -ENODEV;
  3006. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  3007. DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
  3008. ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
  3009. if (ret)
  3010. return ret;
  3011. /*
  3012. * Turbo will still be enabled, but won't go below the set value.
  3013. */
  3014. if (IS_VALLEYVIEW(dev)) {
  3015. val = vlv_freq_opcode(dev_priv, val);
  3016. hw_max = valleyview_rps_max_freq(dev_priv);
  3017. hw_min = valleyview_rps_min_freq(dev_priv);
  3018. } else {
  3019. do_div(val, GT_FREQUENCY_MULTIPLIER);
  3020. rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
  3021. hw_max = dev_priv->rps.max_freq;
  3022. hw_min = (rp_state_cap >> 16) & 0xff;
  3023. }
  3024. if (val < hw_min || val > hw_max || val > dev_priv->rps.max_freq_softlimit) {
  3025. mutex_unlock(&dev_priv->rps.hw_lock);
  3026. return -EINVAL;
  3027. }
  3028. dev_priv->rps.min_freq_softlimit = val;
  3029. if (IS_VALLEYVIEW(dev))
  3030. valleyview_set_rps(dev, val);
  3031. else
  3032. gen6_set_rps(dev, val);
  3033. mutex_unlock(&dev_priv->rps.hw_lock);
  3034. return 0;
  3035. }
  3036. DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
  3037. i915_min_freq_get, i915_min_freq_set,
  3038. "%llu\n");
  3039. static int
  3040. i915_cache_sharing_get(void *data, u64 *val)
  3041. {
  3042. struct drm_device *dev = data;
  3043. struct drm_i915_private *dev_priv = dev->dev_private;
  3044. u32 snpcr;
  3045. int ret;
  3046. if (!(IS_GEN6(dev) || IS_GEN7(dev)))
  3047. return -ENODEV;
  3048. ret = mutex_lock_interruptible(&dev->struct_mutex);
  3049. if (ret)
  3050. return ret;
  3051. intel_runtime_pm_get(dev_priv);
  3052. snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
  3053. intel_runtime_pm_put(dev_priv);
  3054. mutex_unlock(&dev_priv->dev->struct_mutex);
  3055. *val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
  3056. return 0;
  3057. }
  3058. static int
  3059. i915_cache_sharing_set(void *data, u64 val)
  3060. {
  3061. struct drm_device *dev = data;
  3062. struct drm_i915_private *dev_priv = dev->dev_private;
  3063. u32 snpcr;
  3064. if (!(IS_GEN6(dev) || IS_GEN7(dev)))
  3065. return -ENODEV;
  3066. if (val > 3)
  3067. return -EINVAL;
  3068. intel_runtime_pm_get(dev_priv);
  3069. DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
  3070. /* Update the cache sharing policy here as well */
  3071. snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
  3072. snpcr &= ~GEN6_MBC_SNPCR_MASK;
  3073. snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
  3074. I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
  3075. intel_runtime_pm_put(dev_priv);
  3076. return 0;
  3077. }
  3078. DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
  3079. i915_cache_sharing_get, i915_cache_sharing_set,
  3080. "%llu\n");
  3081. static int i915_forcewake_open(struct inode *inode, struct file *file)
  3082. {
  3083. struct drm_device *dev = inode->i_private;
  3084. struct drm_i915_private *dev_priv = dev->dev_private;
  3085. if (INTEL_INFO(dev)->gen < 6)
  3086. return 0;
  3087. gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
  3088. return 0;
  3089. }
  3090. static int i915_forcewake_release(struct inode *inode, struct file *file)
  3091. {
  3092. struct drm_device *dev = inode->i_private;
  3093. struct drm_i915_private *dev_priv = dev->dev_private;
  3094. if (INTEL_INFO(dev)->gen < 6)
  3095. return 0;
  3096. gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
  3097. return 0;
  3098. }
  3099. static const struct file_operations i915_forcewake_fops = {
  3100. .owner = THIS_MODULE,
  3101. .open = i915_forcewake_open,
  3102. .release = i915_forcewake_release,
  3103. };
  3104. static int i915_forcewake_create(struct dentry *root, struct drm_minor *minor)
  3105. {
  3106. struct drm_device *dev = minor->dev;
  3107. struct dentry *ent;
  3108. ent = debugfs_create_file("i915_forcewake_user",
  3109. S_IRUSR,
  3110. root, dev,
  3111. &i915_forcewake_fops);
  3112. if (!ent)
  3113. return -ENOMEM;
  3114. return drm_add_fake_info_node(minor, ent, &i915_forcewake_fops);
  3115. }
  3116. static int i915_debugfs_create(struct dentry *root,
  3117. struct drm_minor *minor,
  3118. const char *name,
  3119. const struct file_operations *fops)
  3120. {
  3121. struct drm_device *dev = minor->dev;
  3122. struct dentry *ent;
  3123. ent = debugfs_create_file(name,
  3124. S_IRUGO | S_IWUSR,
  3125. root, dev,
  3126. fops);
  3127. if (!ent)
  3128. return -ENOMEM;
  3129. return drm_add_fake_info_node(minor, ent, fops);
  3130. }
  3131. static const struct drm_info_list i915_debugfs_list[] = {
  3132. {"i915_capabilities", i915_capabilities, 0},
  3133. {"i915_gem_objects", i915_gem_object_info, 0},
  3134. {"i915_gem_gtt", i915_gem_gtt_info, 0},
  3135. {"i915_gem_pinned", i915_gem_gtt_info, 0, (void *) PINNED_LIST},
  3136. {"i915_gem_active", i915_gem_object_list_info, 0, (void *) ACTIVE_LIST},
  3137. {"i915_gem_inactive", i915_gem_object_list_info, 0, (void *) INACTIVE_LIST},
  3138. {"i915_gem_stolen", i915_gem_stolen_list_info },
  3139. {"i915_gem_pageflip", i915_gem_pageflip_info, 0},
  3140. {"i915_gem_request", i915_gem_request_info, 0},
  3141. {"i915_gem_seqno", i915_gem_seqno_info, 0},
  3142. {"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
  3143. {"i915_gem_interrupt", i915_interrupt_info, 0},
  3144. {"i915_gem_hws", i915_hws_info, 0, (void *)RCS},
  3145. {"i915_gem_hws_blt", i915_hws_info, 0, (void *)BCS},
  3146. {"i915_gem_hws_bsd", i915_hws_info, 0, (void *)VCS},
  3147. {"i915_gem_hws_vebox", i915_hws_info, 0, (void *)VECS},
  3148. {"i915_rstdby_delays", i915_rstdby_delays, 0},
  3149. {"i915_frequency_info", i915_frequency_info, 0},
  3150. {"i915_delayfreq_table", i915_delayfreq_table, 0},
  3151. {"i915_inttoext_table", i915_inttoext_table, 0},
  3152. {"i915_drpc_info", i915_drpc_info, 0},
  3153. {"i915_emon_status", i915_emon_status, 0},
  3154. {"i915_ring_freq_table", i915_ring_freq_table, 0},
  3155. {"i915_gfxec", i915_gfxec, 0},
  3156. {"i915_fbc_status", i915_fbc_status, 0},
  3157. {"i915_ips_status", i915_ips_status, 0},
  3158. {"i915_sr_status", i915_sr_status, 0},
  3159. {"i915_opregion", i915_opregion, 0},
  3160. {"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
  3161. {"i915_context_status", i915_context_status, 0},
  3162. {"i915_gen6_forcewake_count", i915_gen6_forcewake_count_info, 0},
  3163. {"i915_swizzle_info", i915_swizzle_info, 0},
  3164. {"i915_ppgtt_info", i915_ppgtt_info, 0},
  3165. {"i915_llc", i915_llc, 0},
  3166. {"i915_edp_psr_status", i915_edp_psr_status, 0},
  3167. {"i915_sink_crc_eDP1", i915_sink_crc, 0},
  3168. {"i915_energy_uJ", i915_energy_uJ, 0},
  3169. {"i915_pc8_status", i915_pc8_status, 0},
  3170. {"i915_power_domain_info", i915_power_domain_info, 0},
  3171. {"i915_display_info", i915_display_info, 0},
  3172. };
  3173. #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
  3174. static const struct i915_debugfs_files {
  3175. const char *name;
  3176. const struct file_operations *fops;
  3177. } i915_debugfs_files[] = {
  3178. {"i915_wedged", &i915_wedged_fops},
  3179. {"i915_max_freq", &i915_max_freq_fops},
  3180. {"i915_min_freq", &i915_min_freq_fops},
  3181. {"i915_cache_sharing", &i915_cache_sharing_fops},
  3182. {"i915_ring_stop", &i915_ring_stop_fops},
  3183. {"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
  3184. {"i915_ring_test_irq", &i915_ring_test_irq_fops},
  3185. {"i915_gem_drop_caches", &i915_drop_caches_fops},
  3186. {"i915_error_state", &i915_error_state_fops},
  3187. {"i915_next_seqno", &i915_next_seqno_fops},
  3188. {"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
  3189. {"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
  3190. {"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
  3191. {"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
  3192. };
  3193. void intel_display_crc_init(struct drm_device *dev)
  3194. {
  3195. struct drm_i915_private *dev_priv = dev->dev_private;
  3196. enum pipe pipe;
  3197. for_each_pipe(pipe) {
  3198. struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
  3199. pipe_crc->opened = false;
  3200. spin_lock_init(&pipe_crc->lock);
  3201. init_waitqueue_head(&pipe_crc->wq);
  3202. }
  3203. }
  3204. int i915_debugfs_init(struct drm_minor *minor)
  3205. {
  3206. int ret, i;
  3207. ret = i915_forcewake_create(minor->debugfs_root, minor);
  3208. if (ret)
  3209. return ret;
  3210. for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
  3211. ret = i915_pipe_crc_create(minor->debugfs_root, minor, i);
  3212. if (ret)
  3213. return ret;
  3214. }
  3215. for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
  3216. ret = i915_debugfs_create(minor->debugfs_root, minor,
  3217. i915_debugfs_files[i].name,
  3218. i915_debugfs_files[i].fops);
  3219. if (ret)
  3220. return ret;
  3221. }
  3222. return drm_debugfs_create_files(i915_debugfs_list,
  3223. I915_DEBUGFS_ENTRIES,
  3224. minor->debugfs_root, minor);
  3225. }
  3226. void i915_debugfs_cleanup(struct drm_minor *minor)
  3227. {
  3228. int i;
  3229. drm_debugfs_remove_files(i915_debugfs_list,
  3230. I915_DEBUGFS_ENTRIES, minor);
  3231. drm_debugfs_remove_files((struct drm_info_list *) &i915_forcewake_fops,
  3232. 1, minor);
  3233. for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
  3234. struct drm_info_list *info_list =
  3235. (struct drm_info_list *)&i915_pipe_crc_data[i];
  3236. drm_debugfs_remove_files(info_list, 1, minor);
  3237. }
  3238. for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
  3239. struct drm_info_list *info_list =
  3240. (struct drm_info_list *) i915_debugfs_files[i].fops;
  3241. drm_debugfs_remove_files(info_list, 1, minor);
  3242. }
  3243. }