rcar-hpbdma.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666
  1. /*
  2. * Copyright (C) 2011-2013 Renesas Electronics Corporation
  3. * Copyright (C) 2013 Cogent Embedded, Inc.
  4. *
  5. * This file is based on the drivers/dma/sh/shdma.c
  6. *
  7. * Renesas SuperH DMA Engine support
  8. *
  9. * This is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License as published by
  11. * the Free Software Foundation; either version 2 of the License, or
  12. * (at your option) any later version.
  13. *
  14. * - DMA of SuperH does not have Hardware DMA chain mode.
  15. * - max DMA size is 16MB.
  16. *
  17. */
  18. #include <linux/dmaengine.h>
  19. #include <linux/delay.h>
  20. #include <linux/err.h>
  21. #include <linux/init.h>
  22. #include <linux/interrupt.h>
  23. #include <linux/module.h>
  24. #include <linux/platform_data/dma-rcar-hpbdma.h>
  25. #include <linux/platform_device.h>
  26. #include <linux/pm_runtime.h>
  27. #include <linux/shdma-base.h>
  28. #include <linux/slab.h>
  29. /* DMA channel registers */
  30. #define HPB_DMAE_DSAR0 0x00
  31. #define HPB_DMAE_DDAR0 0x04
  32. #define HPB_DMAE_DTCR0 0x08
  33. #define HPB_DMAE_DSAR1 0x0C
  34. #define HPB_DMAE_DDAR1 0x10
  35. #define HPB_DMAE_DTCR1 0x14
  36. #define HPB_DMAE_DSASR 0x18
  37. #define HPB_DMAE_DDASR 0x1C
  38. #define HPB_DMAE_DTCSR 0x20
  39. #define HPB_DMAE_DPTR 0x24
  40. #define HPB_DMAE_DCR 0x28
  41. #define HPB_DMAE_DCMDR 0x2C
  42. #define HPB_DMAE_DSTPR 0x30
  43. #define HPB_DMAE_DSTSR 0x34
  44. #define HPB_DMAE_DDBGR 0x38
  45. #define HPB_DMAE_DDBGR2 0x3C
  46. #define HPB_DMAE_CHAN(n) (0x40 * (n))
  47. /* DMA command register (DCMDR) bits */
  48. #define HPB_DMAE_DCMDR_BDOUT BIT(7)
  49. #define HPB_DMAE_DCMDR_DQSPD BIT(6)
  50. #define HPB_DMAE_DCMDR_DQSPC BIT(5)
  51. #define HPB_DMAE_DCMDR_DMSPD BIT(4)
  52. #define HPB_DMAE_DCMDR_DMSPC BIT(3)
  53. #define HPB_DMAE_DCMDR_DQEND BIT(2)
  54. #define HPB_DMAE_DCMDR_DNXT BIT(1)
  55. #define HPB_DMAE_DCMDR_DMEN BIT(0)
  56. /* DMA forced stop register (DSTPR) bits */
  57. #define HPB_DMAE_DSTPR_DMSTP BIT(0)
  58. /* DMA status register (DSTSR) bits */
  59. #define HPB_DMAE_DSTSR_DQSTS BIT(2)
  60. #define HPB_DMAE_DSTSR_DMSTS BIT(0)
  61. /* DMA common registers */
  62. #define HPB_DMAE_DTIMR 0x00
  63. #define HPB_DMAE_DINTSR0 0x0C
  64. #define HPB_DMAE_DINTSR1 0x10
  65. #define HPB_DMAE_DINTCR0 0x14
  66. #define HPB_DMAE_DINTCR1 0x18
  67. #define HPB_DMAE_DINTMR0 0x1C
  68. #define HPB_DMAE_DINTMR1 0x20
  69. #define HPB_DMAE_DACTSR0 0x24
  70. #define HPB_DMAE_DACTSR1 0x28
  71. #define HPB_DMAE_HSRSTR(n) (0x40 + (n) * 4)
  72. #define HPB_DMAE_HPB_DMASPR(n) (0x140 + (n) * 4)
  73. #define HPB_DMAE_HPB_DMLVLR0 0x160
  74. #define HPB_DMAE_HPB_DMLVLR1 0x164
  75. #define HPB_DMAE_HPB_DMSHPT0 0x168
  76. #define HPB_DMAE_HPB_DMSHPT1 0x16C
  77. #define HPB_DMA_SLAVE_NUMBER 256
  78. #define HPB_DMA_TCR_MAX 0x01000000 /* 16 MiB */
  79. struct hpb_dmae_chan {
  80. struct shdma_chan shdma_chan;
  81. int xfer_mode; /* DMA transfer mode */
  82. #define XFER_SINGLE 1
  83. #define XFER_DOUBLE 2
  84. unsigned plane_idx; /* current DMA information set */
  85. bool first_desc; /* first/next transfer */
  86. int xmit_shift; /* log_2(bytes_per_xfer) */
  87. void __iomem *base;
  88. const struct hpb_dmae_slave_config *cfg;
  89. char dev_id[16]; /* unique name per DMAC of channel */
  90. dma_addr_t slave_addr;
  91. };
  92. struct hpb_dmae_device {
  93. struct shdma_dev shdma_dev;
  94. spinlock_t reg_lock; /* comm_reg operation lock */
  95. struct hpb_dmae_pdata *pdata;
  96. void __iomem *chan_reg;
  97. void __iomem *comm_reg;
  98. void __iomem *reset_reg;
  99. void __iomem *mode_reg;
  100. };
  101. struct hpb_dmae_regs {
  102. u32 sar; /* SAR / source address */
  103. u32 dar; /* DAR / destination address */
  104. u32 tcr; /* TCR / transfer count */
  105. };
  106. struct hpb_desc {
  107. struct shdma_desc shdma_desc;
  108. struct hpb_dmae_regs hw;
  109. unsigned plane_idx;
  110. };
  111. #define to_chan(schan) container_of(schan, struct hpb_dmae_chan, shdma_chan)
  112. #define to_desc(sdesc) container_of(sdesc, struct hpb_desc, shdma_desc)
  113. #define to_dev(sc) container_of(sc->shdma_chan.dma_chan.device, \
  114. struct hpb_dmae_device, shdma_dev.dma_dev)
  115. static void ch_reg_write(struct hpb_dmae_chan *hpb_dc, u32 data, u32 reg)
  116. {
  117. iowrite32(data, hpb_dc->base + reg);
  118. }
  119. static u32 ch_reg_read(struct hpb_dmae_chan *hpb_dc, u32 reg)
  120. {
  121. return ioread32(hpb_dc->base + reg);
  122. }
  123. static void dcmdr_write(struct hpb_dmae_device *hpbdev, u32 data)
  124. {
  125. iowrite32(data, hpbdev->chan_reg + HPB_DMAE_DCMDR);
  126. }
  127. static void hsrstr_write(struct hpb_dmae_device *hpbdev, u32 ch)
  128. {
  129. iowrite32(0x1, hpbdev->comm_reg + HPB_DMAE_HSRSTR(ch));
  130. }
  131. static u32 dintsr_read(struct hpb_dmae_device *hpbdev, u32 ch)
  132. {
  133. u32 v;
  134. if (ch < 32)
  135. v = ioread32(hpbdev->comm_reg + HPB_DMAE_DINTSR0) >> ch;
  136. else
  137. v = ioread32(hpbdev->comm_reg + HPB_DMAE_DINTSR1) >> (ch - 32);
  138. return v & 0x1;
  139. }
  140. static void dintcr_write(struct hpb_dmae_device *hpbdev, u32 ch)
  141. {
  142. if (ch < 32)
  143. iowrite32((0x1 << ch), hpbdev->comm_reg + HPB_DMAE_DINTCR0);
  144. else
  145. iowrite32((0x1 << (ch - 32)),
  146. hpbdev->comm_reg + HPB_DMAE_DINTCR1);
  147. }
  148. static void asyncmdr_write(struct hpb_dmae_device *hpbdev, u32 data)
  149. {
  150. iowrite32(data, hpbdev->mode_reg);
  151. }
  152. static u32 asyncmdr_read(struct hpb_dmae_device *hpbdev)
  153. {
  154. return ioread32(hpbdev->mode_reg);
  155. }
  156. static void hpb_dmae_enable_int(struct hpb_dmae_device *hpbdev, u32 ch)
  157. {
  158. u32 intreg;
  159. spin_lock_irq(&hpbdev->reg_lock);
  160. if (ch < 32) {
  161. intreg = ioread32(hpbdev->comm_reg + HPB_DMAE_DINTMR0);
  162. iowrite32(BIT(ch) | intreg,
  163. hpbdev->comm_reg + HPB_DMAE_DINTMR0);
  164. } else {
  165. intreg = ioread32(hpbdev->comm_reg + HPB_DMAE_DINTMR1);
  166. iowrite32(BIT(ch - 32) | intreg,
  167. hpbdev->comm_reg + HPB_DMAE_DINTMR1);
  168. }
  169. spin_unlock_irq(&hpbdev->reg_lock);
  170. }
  171. static void hpb_dmae_async_reset(struct hpb_dmae_device *hpbdev, u32 data)
  172. {
  173. u32 rstr;
  174. int timeout = 10000; /* 100 ms */
  175. spin_lock(&hpbdev->reg_lock);
  176. rstr = ioread32(hpbdev->reset_reg);
  177. rstr |= data;
  178. iowrite32(rstr, hpbdev->reset_reg);
  179. do {
  180. rstr = ioread32(hpbdev->reset_reg);
  181. if ((rstr & data) == data)
  182. break;
  183. udelay(10);
  184. } while (timeout--);
  185. if (timeout < 0)
  186. dev_err(hpbdev->shdma_dev.dma_dev.dev,
  187. "%s timeout\n", __func__);
  188. rstr &= ~data;
  189. iowrite32(rstr, hpbdev->reset_reg);
  190. spin_unlock(&hpbdev->reg_lock);
  191. }
  192. static void hpb_dmae_set_async_mode(struct hpb_dmae_device *hpbdev,
  193. u32 mask, u32 data)
  194. {
  195. u32 mode;
  196. spin_lock_irq(&hpbdev->reg_lock);
  197. mode = asyncmdr_read(hpbdev);
  198. mode &= ~mask;
  199. mode |= data;
  200. asyncmdr_write(hpbdev, mode);
  201. spin_unlock_irq(&hpbdev->reg_lock);
  202. }
  203. static void hpb_dmae_ctl_stop(struct hpb_dmae_device *hpbdev)
  204. {
  205. dcmdr_write(hpbdev, HPB_DMAE_DCMDR_DQSPD);
  206. }
  207. static void hpb_dmae_reset(struct hpb_dmae_device *hpbdev)
  208. {
  209. u32 ch;
  210. for (ch = 0; ch < hpbdev->pdata->num_hw_channels; ch++)
  211. hsrstr_write(hpbdev, ch);
  212. }
  213. static unsigned int calc_xmit_shift(struct hpb_dmae_chan *hpb_chan)
  214. {
  215. struct hpb_dmae_device *hpbdev = to_dev(hpb_chan);
  216. struct hpb_dmae_pdata *pdata = hpbdev->pdata;
  217. int width = ch_reg_read(hpb_chan, HPB_DMAE_DCR);
  218. int i;
  219. switch (width & (HPB_DMAE_DCR_SPDS_MASK | HPB_DMAE_DCR_DPDS_MASK)) {
  220. case HPB_DMAE_DCR_SPDS_8BIT | HPB_DMAE_DCR_DPDS_8BIT:
  221. default:
  222. i = XMIT_SZ_8BIT;
  223. break;
  224. case HPB_DMAE_DCR_SPDS_16BIT | HPB_DMAE_DCR_DPDS_16BIT:
  225. i = XMIT_SZ_16BIT;
  226. break;
  227. case HPB_DMAE_DCR_SPDS_32BIT | HPB_DMAE_DCR_DPDS_32BIT:
  228. i = XMIT_SZ_32BIT;
  229. break;
  230. }
  231. return pdata->ts_shift[i];
  232. }
  233. static void hpb_dmae_set_reg(struct hpb_dmae_chan *hpb_chan,
  234. struct hpb_dmae_regs *hw, unsigned plane)
  235. {
  236. ch_reg_write(hpb_chan, hw->sar,
  237. plane ? HPB_DMAE_DSAR1 : HPB_DMAE_DSAR0);
  238. ch_reg_write(hpb_chan, hw->dar,
  239. plane ? HPB_DMAE_DDAR1 : HPB_DMAE_DDAR0);
  240. ch_reg_write(hpb_chan, hw->tcr >> hpb_chan->xmit_shift,
  241. plane ? HPB_DMAE_DTCR1 : HPB_DMAE_DTCR0);
  242. }
  243. static void hpb_dmae_start(struct hpb_dmae_chan *hpb_chan, bool next)
  244. {
  245. ch_reg_write(hpb_chan, (next ? HPB_DMAE_DCMDR_DNXT : 0) |
  246. HPB_DMAE_DCMDR_DMEN, HPB_DMAE_DCMDR);
  247. }
  248. static void hpb_dmae_halt(struct shdma_chan *schan)
  249. {
  250. struct hpb_dmae_chan *chan = to_chan(schan);
  251. ch_reg_write(chan, HPB_DMAE_DCMDR_DQEND, HPB_DMAE_DCMDR);
  252. ch_reg_write(chan, HPB_DMAE_DSTPR_DMSTP, HPB_DMAE_DSTPR);
  253. chan->plane_idx = 0;
  254. chan->first_desc = true;
  255. }
  256. static const struct hpb_dmae_slave_config *
  257. hpb_dmae_find_slave(struct hpb_dmae_chan *hpb_chan, int slave_id)
  258. {
  259. struct hpb_dmae_device *hpbdev = to_dev(hpb_chan);
  260. struct hpb_dmae_pdata *pdata = hpbdev->pdata;
  261. int i;
  262. if (slave_id >= HPB_DMA_SLAVE_NUMBER)
  263. return NULL;
  264. for (i = 0; i < pdata->num_slaves; i++)
  265. if (pdata->slaves[i].id == slave_id)
  266. return pdata->slaves + i;
  267. return NULL;
  268. }
  269. static void hpb_dmae_start_xfer(struct shdma_chan *schan,
  270. struct shdma_desc *sdesc)
  271. {
  272. struct hpb_dmae_chan *chan = to_chan(schan);
  273. struct hpb_dmae_device *hpbdev = to_dev(chan);
  274. struct hpb_desc *desc = to_desc(sdesc);
  275. if (chan->cfg->flags & HPB_DMAE_SET_ASYNC_RESET)
  276. hpb_dmae_async_reset(hpbdev, chan->cfg->rstr);
  277. desc->plane_idx = chan->plane_idx;
  278. hpb_dmae_set_reg(chan, &desc->hw, chan->plane_idx);
  279. hpb_dmae_start(chan, !chan->first_desc);
  280. if (chan->xfer_mode == XFER_DOUBLE) {
  281. chan->plane_idx ^= 1;
  282. chan->first_desc = false;
  283. }
  284. }
  285. static bool hpb_dmae_desc_completed(struct shdma_chan *schan,
  286. struct shdma_desc *sdesc)
  287. {
  288. /*
  289. * This is correct since we always have at most single
  290. * outstanding DMA transfer per channel, and by the time
  291. * we get completion interrupt the transfer is completed.
  292. * This will change if we ever use alternating DMA
  293. * information sets and submit two descriptors at once.
  294. */
  295. return true;
  296. }
  297. static bool hpb_dmae_chan_irq(struct shdma_chan *schan, int irq)
  298. {
  299. struct hpb_dmae_chan *chan = to_chan(schan);
  300. struct hpb_dmae_device *hpbdev = to_dev(chan);
  301. int ch = chan->cfg->dma_ch;
  302. /* Check Complete DMA Transfer */
  303. if (dintsr_read(hpbdev, ch)) {
  304. /* Clear Interrupt status */
  305. dintcr_write(hpbdev, ch);
  306. return true;
  307. }
  308. return false;
  309. }
  310. static int hpb_dmae_desc_setup(struct shdma_chan *schan,
  311. struct shdma_desc *sdesc,
  312. dma_addr_t src, dma_addr_t dst, size_t *len)
  313. {
  314. struct hpb_desc *desc = to_desc(sdesc);
  315. if (*len > (size_t)HPB_DMA_TCR_MAX)
  316. *len = (size_t)HPB_DMA_TCR_MAX;
  317. desc->hw.sar = src;
  318. desc->hw.dar = dst;
  319. desc->hw.tcr = *len;
  320. return 0;
  321. }
  322. static size_t hpb_dmae_get_partial(struct shdma_chan *schan,
  323. struct shdma_desc *sdesc)
  324. {
  325. struct hpb_desc *desc = to_desc(sdesc);
  326. struct hpb_dmae_chan *chan = to_chan(schan);
  327. u32 tcr = ch_reg_read(chan, desc->plane_idx ?
  328. HPB_DMAE_DTCR1 : HPB_DMAE_DTCR0);
  329. return (desc->hw.tcr - tcr) << chan->xmit_shift;
  330. }
  331. static bool hpb_dmae_channel_busy(struct shdma_chan *schan)
  332. {
  333. struct hpb_dmae_chan *chan = to_chan(schan);
  334. u32 dstsr = ch_reg_read(chan, HPB_DMAE_DSTSR);
  335. if (chan->xfer_mode == XFER_DOUBLE)
  336. return dstsr & HPB_DMAE_DSTSR_DQSTS;
  337. else
  338. return dstsr & HPB_DMAE_DSTSR_DMSTS;
  339. }
  340. static int
  341. hpb_dmae_alloc_chan_resources(struct hpb_dmae_chan *hpb_chan,
  342. const struct hpb_dmae_slave_config *cfg)
  343. {
  344. struct hpb_dmae_device *hpbdev = to_dev(hpb_chan);
  345. struct hpb_dmae_pdata *pdata = hpbdev->pdata;
  346. const struct hpb_dmae_channel *channel = pdata->channels;
  347. int slave_id = cfg->id;
  348. int i, err;
  349. for (i = 0; i < pdata->num_channels; i++, channel++) {
  350. if (channel->s_id == slave_id) {
  351. struct device *dev = hpb_chan->shdma_chan.dev;
  352. hpb_chan->base = hpbdev->chan_reg +
  353. HPB_DMAE_CHAN(cfg->dma_ch);
  354. dev_dbg(dev, "Detected Slave device\n");
  355. dev_dbg(dev, " -- slave_id : 0x%x\n", slave_id);
  356. dev_dbg(dev, " -- cfg->dma_ch : %d\n", cfg->dma_ch);
  357. dev_dbg(dev, " -- channel->ch_irq: %d\n",
  358. channel->ch_irq);
  359. break;
  360. }
  361. }
  362. err = shdma_request_irq(&hpb_chan->shdma_chan, channel->ch_irq,
  363. IRQF_SHARED, hpb_chan->dev_id);
  364. if (err) {
  365. dev_err(hpb_chan->shdma_chan.dev,
  366. "DMA channel request_irq %d failed with error %d\n",
  367. channel->ch_irq, err);
  368. return err;
  369. }
  370. hpb_chan->plane_idx = 0;
  371. hpb_chan->first_desc = true;
  372. if ((cfg->dcr & (HPB_DMAE_DCR_CT | HPB_DMAE_DCR_DIP)) == 0) {
  373. hpb_chan->xfer_mode = XFER_SINGLE;
  374. } else if ((cfg->dcr & (HPB_DMAE_DCR_CT | HPB_DMAE_DCR_DIP)) ==
  375. (HPB_DMAE_DCR_CT | HPB_DMAE_DCR_DIP)) {
  376. hpb_chan->xfer_mode = XFER_DOUBLE;
  377. } else {
  378. dev_err(hpb_chan->shdma_chan.dev, "DCR setting error");
  379. return -EINVAL;
  380. }
  381. if (cfg->flags & HPB_DMAE_SET_ASYNC_MODE)
  382. hpb_dmae_set_async_mode(hpbdev, cfg->mdm, cfg->mdr);
  383. ch_reg_write(hpb_chan, cfg->dcr, HPB_DMAE_DCR);
  384. ch_reg_write(hpb_chan, cfg->port, HPB_DMAE_DPTR);
  385. hpb_chan->xmit_shift = calc_xmit_shift(hpb_chan);
  386. hpb_dmae_enable_int(hpbdev, cfg->dma_ch);
  387. return 0;
  388. }
  389. static int hpb_dmae_set_slave(struct shdma_chan *schan, int slave_id,
  390. dma_addr_t slave_addr, bool try)
  391. {
  392. struct hpb_dmae_chan *chan = to_chan(schan);
  393. const struct hpb_dmae_slave_config *sc =
  394. hpb_dmae_find_slave(chan, slave_id);
  395. if (!sc)
  396. return -ENODEV;
  397. if (try)
  398. return 0;
  399. chan->cfg = sc;
  400. chan->slave_addr = slave_addr ? : sc->addr;
  401. return hpb_dmae_alloc_chan_resources(chan, sc);
  402. }
  403. static void hpb_dmae_setup_xfer(struct shdma_chan *schan, int slave_id)
  404. {
  405. }
  406. static dma_addr_t hpb_dmae_slave_addr(struct shdma_chan *schan)
  407. {
  408. struct hpb_dmae_chan *chan = to_chan(schan);
  409. return chan->slave_addr;
  410. }
  411. static struct shdma_desc *hpb_dmae_embedded_desc(void *buf, int i)
  412. {
  413. return &((struct hpb_desc *)buf)[i].shdma_desc;
  414. }
  415. static const struct shdma_ops hpb_dmae_ops = {
  416. .desc_completed = hpb_dmae_desc_completed,
  417. .halt_channel = hpb_dmae_halt,
  418. .channel_busy = hpb_dmae_channel_busy,
  419. .slave_addr = hpb_dmae_slave_addr,
  420. .desc_setup = hpb_dmae_desc_setup,
  421. .set_slave = hpb_dmae_set_slave,
  422. .setup_xfer = hpb_dmae_setup_xfer,
  423. .start_xfer = hpb_dmae_start_xfer,
  424. .embedded_desc = hpb_dmae_embedded_desc,
  425. .chan_irq = hpb_dmae_chan_irq,
  426. .get_partial = hpb_dmae_get_partial,
  427. };
  428. static int hpb_dmae_chan_probe(struct hpb_dmae_device *hpbdev, int id)
  429. {
  430. struct shdma_dev *sdev = &hpbdev->shdma_dev;
  431. struct platform_device *pdev =
  432. to_platform_device(hpbdev->shdma_dev.dma_dev.dev);
  433. struct hpb_dmae_chan *new_hpb_chan;
  434. struct shdma_chan *schan;
  435. /* Alloc channel */
  436. new_hpb_chan = devm_kzalloc(&pdev->dev,
  437. sizeof(struct hpb_dmae_chan), GFP_KERNEL);
  438. if (!new_hpb_chan) {
  439. dev_err(hpbdev->shdma_dev.dma_dev.dev,
  440. "No free memory for allocating DMA channels!\n");
  441. return -ENOMEM;
  442. }
  443. schan = &new_hpb_chan->shdma_chan;
  444. schan->max_xfer_len = HPB_DMA_TCR_MAX;
  445. shdma_chan_probe(sdev, schan, id);
  446. if (pdev->id >= 0)
  447. snprintf(new_hpb_chan->dev_id, sizeof(new_hpb_chan->dev_id),
  448. "hpb-dmae%d.%d", pdev->id, id);
  449. else
  450. snprintf(new_hpb_chan->dev_id, sizeof(new_hpb_chan->dev_id),
  451. "hpb-dma.%d", id);
  452. return 0;
  453. }
  454. static int hpb_dmae_probe(struct platform_device *pdev)
  455. {
  456. struct hpb_dmae_pdata *pdata = pdev->dev.platform_data;
  457. struct hpb_dmae_device *hpbdev;
  458. struct dma_device *dma_dev;
  459. struct resource *chan, *comm, *rest, *mode, *irq_res;
  460. int err, i;
  461. /* Get platform data */
  462. if (!pdata || !pdata->num_channels)
  463. return -ENODEV;
  464. chan = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  465. comm = platform_get_resource(pdev, IORESOURCE_MEM, 1);
  466. rest = platform_get_resource(pdev, IORESOURCE_MEM, 2);
  467. mode = platform_get_resource(pdev, IORESOURCE_MEM, 3);
  468. irq_res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
  469. if (!irq_res)
  470. return -ENODEV;
  471. hpbdev = devm_kzalloc(&pdev->dev, sizeof(struct hpb_dmae_device),
  472. GFP_KERNEL);
  473. if (!hpbdev) {
  474. dev_err(&pdev->dev, "Not enough memory\n");
  475. return -ENOMEM;
  476. }
  477. hpbdev->chan_reg = devm_ioremap_resource(&pdev->dev, chan);
  478. if (IS_ERR(hpbdev->chan_reg))
  479. return PTR_ERR(hpbdev->chan_reg);
  480. hpbdev->comm_reg = devm_ioremap_resource(&pdev->dev, comm);
  481. if (IS_ERR(hpbdev->comm_reg))
  482. return PTR_ERR(hpbdev->comm_reg);
  483. hpbdev->reset_reg = devm_ioremap_resource(&pdev->dev, rest);
  484. if (IS_ERR(hpbdev->reset_reg))
  485. return PTR_ERR(hpbdev->reset_reg);
  486. hpbdev->mode_reg = devm_ioremap_resource(&pdev->dev, mode);
  487. if (IS_ERR(hpbdev->mode_reg))
  488. return PTR_ERR(hpbdev->mode_reg);
  489. dma_dev = &hpbdev->shdma_dev.dma_dev;
  490. spin_lock_init(&hpbdev->reg_lock);
  491. /* Platform data */
  492. hpbdev->pdata = pdata;
  493. pm_runtime_enable(&pdev->dev);
  494. err = pm_runtime_get_sync(&pdev->dev);
  495. if (err < 0)
  496. dev_err(&pdev->dev, "%s(): GET = %d\n", __func__, err);
  497. /* Reset DMA controller */
  498. hpb_dmae_reset(hpbdev);
  499. pm_runtime_put(&pdev->dev);
  500. dma_cap_set(DMA_MEMCPY, dma_dev->cap_mask);
  501. dma_cap_set(DMA_SLAVE, dma_dev->cap_mask);
  502. hpbdev->shdma_dev.ops = &hpb_dmae_ops;
  503. hpbdev->shdma_dev.desc_size = sizeof(struct hpb_desc);
  504. err = shdma_init(&pdev->dev, &hpbdev->shdma_dev, pdata->num_channels);
  505. if (err < 0)
  506. goto error;
  507. /* Create DMA channels */
  508. for (i = 0; i < pdata->num_channels; i++)
  509. hpb_dmae_chan_probe(hpbdev, i);
  510. platform_set_drvdata(pdev, hpbdev);
  511. err = dma_async_device_register(dma_dev);
  512. if (!err)
  513. return 0;
  514. shdma_cleanup(&hpbdev->shdma_dev);
  515. error:
  516. pm_runtime_disable(&pdev->dev);
  517. return err;
  518. }
  519. static void hpb_dmae_chan_remove(struct hpb_dmae_device *hpbdev)
  520. {
  521. struct dma_device *dma_dev = &hpbdev->shdma_dev.dma_dev;
  522. struct shdma_chan *schan;
  523. int i;
  524. shdma_for_each_chan(schan, &hpbdev->shdma_dev, i) {
  525. BUG_ON(!schan);
  526. shdma_chan_remove(schan);
  527. }
  528. dma_dev->chancnt = 0;
  529. }
  530. static int hpb_dmae_remove(struct platform_device *pdev)
  531. {
  532. struct hpb_dmae_device *hpbdev = platform_get_drvdata(pdev);
  533. dma_async_device_unregister(&hpbdev->shdma_dev.dma_dev);
  534. pm_runtime_disable(&pdev->dev);
  535. hpb_dmae_chan_remove(hpbdev);
  536. return 0;
  537. }
  538. static void hpb_dmae_shutdown(struct platform_device *pdev)
  539. {
  540. struct hpb_dmae_device *hpbdev = platform_get_drvdata(pdev);
  541. hpb_dmae_ctl_stop(hpbdev);
  542. }
  543. static struct platform_driver hpb_dmae_driver = {
  544. .probe = hpb_dmae_probe,
  545. .remove = hpb_dmae_remove,
  546. .shutdown = hpb_dmae_shutdown,
  547. .driver = {
  548. .owner = THIS_MODULE,
  549. .name = "hpb-dma-engine",
  550. },
  551. };
  552. module_platform_driver(hpb_dmae_driver);
  553. MODULE_AUTHOR("Max Filippov <max.filippov@cogentembedded.com>");
  554. MODULE_DESCRIPTION("Renesas HPB DMA Engine driver");
  555. MODULE_LICENSE("GPL");