sa11x0-dma.c 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101
  1. /*
  2. * SA11x0 DMAengine support
  3. *
  4. * Copyright (C) 2012 Russell King
  5. * Derived in part from arch/arm/mach-sa1100/dma.c,
  6. * Copyright (C) 2000, 2001 by Nicolas Pitre
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License version 2 as
  10. * published by the Free Software Foundation.
  11. */
  12. #include <linux/sched.h>
  13. #include <linux/device.h>
  14. #include <linux/dmaengine.h>
  15. #include <linux/init.h>
  16. #include <linux/interrupt.h>
  17. #include <linux/kernel.h>
  18. #include <linux/module.h>
  19. #include <linux/platform_device.h>
  20. #include <linux/sa11x0-dma.h>
  21. #include <linux/slab.h>
  22. #include <linux/spinlock.h>
  23. #include "virt-dma.h"
  24. #define NR_PHY_CHAN 6
  25. #define DMA_ALIGN 3
  26. #define DMA_MAX_SIZE 0x1fff
  27. #define DMA_CHUNK_SIZE 0x1000
  28. #define DMA_DDAR 0x00
  29. #define DMA_DCSR_S 0x04
  30. #define DMA_DCSR_C 0x08
  31. #define DMA_DCSR_R 0x0c
  32. #define DMA_DBSA 0x10
  33. #define DMA_DBTA 0x14
  34. #define DMA_DBSB 0x18
  35. #define DMA_DBTB 0x1c
  36. #define DMA_SIZE 0x20
  37. #define DCSR_RUN (1 << 0)
  38. #define DCSR_IE (1 << 1)
  39. #define DCSR_ERROR (1 << 2)
  40. #define DCSR_DONEA (1 << 3)
  41. #define DCSR_STRTA (1 << 4)
  42. #define DCSR_DONEB (1 << 5)
  43. #define DCSR_STRTB (1 << 6)
  44. #define DCSR_BIU (1 << 7)
  45. #define DDAR_RW (1 << 0) /* 0 = W, 1 = R */
  46. #define DDAR_E (1 << 1) /* 0 = LE, 1 = BE */
  47. #define DDAR_BS (1 << 2) /* 0 = BS4, 1 = BS8 */
  48. #define DDAR_DW (1 << 3) /* 0 = 8b, 1 = 16b */
  49. #define DDAR_Ser0UDCTr (0x0 << 4)
  50. #define DDAR_Ser0UDCRc (0x1 << 4)
  51. #define DDAR_Ser1SDLCTr (0x2 << 4)
  52. #define DDAR_Ser1SDLCRc (0x3 << 4)
  53. #define DDAR_Ser1UARTTr (0x4 << 4)
  54. #define DDAR_Ser1UARTRc (0x5 << 4)
  55. #define DDAR_Ser2ICPTr (0x6 << 4)
  56. #define DDAR_Ser2ICPRc (0x7 << 4)
  57. #define DDAR_Ser3UARTTr (0x8 << 4)
  58. #define DDAR_Ser3UARTRc (0x9 << 4)
  59. #define DDAR_Ser4MCP0Tr (0xa << 4)
  60. #define DDAR_Ser4MCP0Rc (0xb << 4)
  61. #define DDAR_Ser4MCP1Tr (0xc << 4)
  62. #define DDAR_Ser4MCP1Rc (0xd << 4)
  63. #define DDAR_Ser4SSPTr (0xe << 4)
  64. #define DDAR_Ser4SSPRc (0xf << 4)
  65. struct sa11x0_dma_sg {
  66. u32 addr;
  67. u32 len;
  68. };
  69. struct sa11x0_dma_desc {
  70. struct virt_dma_desc vd;
  71. u32 ddar;
  72. size_t size;
  73. unsigned period;
  74. bool cyclic;
  75. unsigned sglen;
  76. struct sa11x0_dma_sg sg[0];
  77. };
  78. struct sa11x0_dma_phy;
  79. struct sa11x0_dma_chan {
  80. struct virt_dma_chan vc;
  81. /* protected by c->vc.lock */
  82. struct sa11x0_dma_phy *phy;
  83. enum dma_status status;
  84. /* protected by d->lock */
  85. struct list_head node;
  86. u32 ddar;
  87. const char *name;
  88. };
  89. struct sa11x0_dma_phy {
  90. void __iomem *base;
  91. struct sa11x0_dma_dev *dev;
  92. unsigned num;
  93. struct sa11x0_dma_chan *vchan;
  94. /* Protected by c->vc.lock */
  95. unsigned sg_load;
  96. struct sa11x0_dma_desc *txd_load;
  97. unsigned sg_done;
  98. struct sa11x0_dma_desc *txd_done;
  99. u32 dbs[2];
  100. u32 dbt[2];
  101. u32 dcsr;
  102. };
  103. struct sa11x0_dma_dev {
  104. struct dma_device slave;
  105. void __iomem *base;
  106. spinlock_t lock;
  107. struct tasklet_struct task;
  108. struct list_head chan_pending;
  109. struct sa11x0_dma_phy phy[NR_PHY_CHAN];
  110. };
  111. static struct sa11x0_dma_chan *to_sa11x0_dma_chan(struct dma_chan *chan)
  112. {
  113. return container_of(chan, struct sa11x0_dma_chan, vc.chan);
  114. }
  115. static struct sa11x0_dma_dev *to_sa11x0_dma(struct dma_device *dmadev)
  116. {
  117. return container_of(dmadev, struct sa11x0_dma_dev, slave);
  118. }
  119. static struct sa11x0_dma_desc *sa11x0_dma_next_desc(struct sa11x0_dma_chan *c)
  120. {
  121. struct virt_dma_desc *vd = vchan_next_desc(&c->vc);
  122. return vd ? container_of(vd, struct sa11x0_dma_desc, vd) : NULL;
  123. }
  124. static void sa11x0_dma_free_desc(struct virt_dma_desc *vd)
  125. {
  126. kfree(container_of(vd, struct sa11x0_dma_desc, vd));
  127. }
  128. static void sa11x0_dma_start_desc(struct sa11x0_dma_phy *p, struct sa11x0_dma_desc *txd)
  129. {
  130. list_del(&txd->vd.node);
  131. p->txd_load = txd;
  132. p->sg_load = 0;
  133. dev_vdbg(p->dev->slave.dev, "pchan %u: txd %p[%x]: starting: DDAR:%x\n",
  134. p->num, &txd->vd, txd->vd.tx.cookie, txd->ddar);
  135. }
  136. static void noinline sa11x0_dma_start_sg(struct sa11x0_dma_phy *p,
  137. struct sa11x0_dma_chan *c)
  138. {
  139. struct sa11x0_dma_desc *txd = p->txd_load;
  140. struct sa11x0_dma_sg *sg;
  141. void __iomem *base = p->base;
  142. unsigned dbsx, dbtx;
  143. u32 dcsr;
  144. if (!txd)
  145. return;
  146. dcsr = readl_relaxed(base + DMA_DCSR_R);
  147. /* Don't try to load the next transfer if both buffers are started */
  148. if ((dcsr & (DCSR_STRTA | DCSR_STRTB)) == (DCSR_STRTA | DCSR_STRTB))
  149. return;
  150. if (p->sg_load == txd->sglen) {
  151. if (!txd->cyclic) {
  152. struct sa11x0_dma_desc *txn = sa11x0_dma_next_desc(c);
  153. /*
  154. * We have reached the end of the current descriptor.
  155. * Peek at the next descriptor, and if compatible with
  156. * the current, start processing it.
  157. */
  158. if (txn && txn->ddar == txd->ddar) {
  159. txd = txn;
  160. sa11x0_dma_start_desc(p, txn);
  161. } else {
  162. p->txd_load = NULL;
  163. return;
  164. }
  165. } else {
  166. /* Cyclic: reset back to beginning */
  167. p->sg_load = 0;
  168. }
  169. }
  170. sg = &txd->sg[p->sg_load++];
  171. /* Select buffer to load according to channel status */
  172. if (((dcsr & (DCSR_BIU | DCSR_STRTB)) == (DCSR_BIU | DCSR_STRTB)) ||
  173. ((dcsr & (DCSR_BIU | DCSR_STRTA)) == 0)) {
  174. dbsx = DMA_DBSA;
  175. dbtx = DMA_DBTA;
  176. dcsr = DCSR_STRTA | DCSR_IE | DCSR_RUN;
  177. } else {
  178. dbsx = DMA_DBSB;
  179. dbtx = DMA_DBTB;
  180. dcsr = DCSR_STRTB | DCSR_IE | DCSR_RUN;
  181. }
  182. writel_relaxed(sg->addr, base + dbsx);
  183. writel_relaxed(sg->len, base + dbtx);
  184. writel(dcsr, base + DMA_DCSR_S);
  185. dev_dbg(p->dev->slave.dev, "pchan %u: load: DCSR:%02x DBS%c:%08x DBT%c:%08x\n",
  186. p->num, dcsr,
  187. 'A' + (dbsx == DMA_DBSB), sg->addr,
  188. 'A' + (dbtx == DMA_DBTB), sg->len);
  189. }
  190. static void noinline sa11x0_dma_complete(struct sa11x0_dma_phy *p,
  191. struct sa11x0_dma_chan *c)
  192. {
  193. struct sa11x0_dma_desc *txd = p->txd_done;
  194. if (++p->sg_done == txd->sglen) {
  195. if (!txd->cyclic) {
  196. vchan_cookie_complete(&txd->vd);
  197. p->sg_done = 0;
  198. p->txd_done = p->txd_load;
  199. if (!p->txd_done)
  200. tasklet_schedule(&p->dev->task);
  201. } else {
  202. if ((p->sg_done % txd->period) == 0)
  203. vchan_cyclic_callback(&txd->vd);
  204. /* Cyclic: reset back to beginning */
  205. p->sg_done = 0;
  206. }
  207. }
  208. sa11x0_dma_start_sg(p, c);
  209. }
  210. static irqreturn_t sa11x0_dma_irq(int irq, void *dev_id)
  211. {
  212. struct sa11x0_dma_phy *p = dev_id;
  213. struct sa11x0_dma_dev *d = p->dev;
  214. struct sa11x0_dma_chan *c;
  215. u32 dcsr;
  216. dcsr = readl_relaxed(p->base + DMA_DCSR_R);
  217. if (!(dcsr & (DCSR_ERROR | DCSR_DONEA | DCSR_DONEB)))
  218. return IRQ_NONE;
  219. /* Clear reported status bits */
  220. writel_relaxed(dcsr & (DCSR_ERROR | DCSR_DONEA | DCSR_DONEB),
  221. p->base + DMA_DCSR_C);
  222. dev_dbg(d->slave.dev, "pchan %u: irq: DCSR:%02x\n", p->num, dcsr);
  223. if (dcsr & DCSR_ERROR) {
  224. dev_err(d->slave.dev, "pchan %u: error. DCSR:%02x DDAR:%08x DBSA:%08x DBTA:%08x DBSB:%08x DBTB:%08x\n",
  225. p->num, dcsr,
  226. readl_relaxed(p->base + DMA_DDAR),
  227. readl_relaxed(p->base + DMA_DBSA),
  228. readl_relaxed(p->base + DMA_DBTA),
  229. readl_relaxed(p->base + DMA_DBSB),
  230. readl_relaxed(p->base + DMA_DBTB));
  231. }
  232. c = p->vchan;
  233. if (c) {
  234. unsigned long flags;
  235. spin_lock_irqsave(&c->vc.lock, flags);
  236. /*
  237. * Now that we're holding the lock, check that the vchan
  238. * really is associated with this pchan before touching the
  239. * hardware. This should always succeed, because we won't
  240. * change p->vchan or c->phy while the channel is actively
  241. * transferring.
  242. */
  243. if (c->phy == p) {
  244. if (dcsr & DCSR_DONEA)
  245. sa11x0_dma_complete(p, c);
  246. if (dcsr & DCSR_DONEB)
  247. sa11x0_dma_complete(p, c);
  248. }
  249. spin_unlock_irqrestore(&c->vc.lock, flags);
  250. }
  251. return IRQ_HANDLED;
  252. }
  253. static void sa11x0_dma_start_txd(struct sa11x0_dma_chan *c)
  254. {
  255. struct sa11x0_dma_desc *txd = sa11x0_dma_next_desc(c);
  256. /* If the issued list is empty, we have no further txds to process */
  257. if (txd) {
  258. struct sa11x0_dma_phy *p = c->phy;
  259. sa11x0_dma_start_desc(p, txd);
  260. p->txd_done = txd;
  261. p->sg_done = 0;
  262. /* The channel should not have any transfers started */
  263. WARN_ON(readl_relaxed(p->base + DMA_DCSR_R) &
  264. (DCSR_STRTA | DCSR_STRTB));
  265. /* Clear the run and start bits before changing DDAR */
  266. writel_relaxed(DCSR_RUN | DCSR_STRTA | DCSR_STRTB,
  267. p->base + DMA_DCSR_C);
  268. writel_relaxed(txd->ddar, p->base + DMA_DDAR);
  269. /* Try to start both buffers */
  270. sa11x0_dma_start_sg(p, c);
  271. sa11x0_dma_start_sg(p, c);
  272. }
  273. }
  274. static void sa11x0_dma_tasklet(unsigned long arg)
  275. {
  276. struct sa11x0_dma_dev *d = (struct sa11x0_dma_dev *)arg;
  277. struct sa11x0_dma_phy *p;
  278. struct sa11x0_dma_chan *c;
  279. unsigned pch, pch_alloc = 0;
  280. dev_dbg(d->slave.dev, "tasklet enter\n");
  281. list_for_each_entry(c, &d->slave.channels, vc.chan.device_node) {
  282. spin_lock_irq(&c->vc.lock);
  283. p = c->phy;
  284. if (p && !p->txd_done) {
  285. sa11x0_dma_start_txd(c);
  286. if (!p->txd_done) {
  287. /* No current txd associated with this channel */
  288. dev_dbg(d->slave.dev, "pchan %u: free\n", p->num);
  289. /* Mark this channel free */
  290. c->phy = NULL;
  291. p->vchan = NULL;
  292. }
  293. }
  294. spin_unlock_irq(&c->vc.lock);
  295. }
  296. spin_lock_irq(&d->lock);
  297. for (pch = 0; pch < NR_PHY_CHAN; pch++) {
  298. p = &d->phy[pch];
  299. if (p->vchan == NULL && !list_empty(&d->chan_pending)) {
  300. c = list_first_entry(&d->chan_pending,
  301. struct sa11x0_dma_chan, node);
  302. list_del_init(&c->node);
  303. pch_alloc |= 1 << pch;
  304. /* Mark this channel allocated */
  305. p->vchan = c;
  306. dev_dbg(d->slave.dev, "pchan %u: alloc vchan %p\n", pch, &c->vc);
  307. }
  308. }
  309. spin_unlock_irq(&d->lock);
  310. for (pch = 0; pch < NR_PHY_CHAN; pch++) {
  311. if (pch_alloc & (1 << pch)) {
  312. p = &d->phy[pch];
  313. c = p->vchan;
  314. spin_lock_irq(&c->vc.lock);
  315. c->phy = p;
  316. sa11x0_dma_start_txd(c);
  317. spin_unlock_irq(&c->vc.lock);
  318. }
  319. }
  320. dev_dbg(d->slave.dev, "tasklet exit\n");
  321. }
  322. static int sa11x0_dma_alloc_chan_resources(struct dma_chan *chan)
  323. {
  324. return 0;
  325. }
  326. static void sa11x0_dma_free_chan_resources(struct dma_chan *chan)
  327. {
  328. struct sa11x0_dma_chan *c = to_sa11x0_dma_chan(chan);
  329. struct sa11x0_dma_dev *d = to_sa11x0_dma(chan->device);
  330. unsigned long flags;
  331. spin_lock_irqsave(&d->lock, flags);
  332. list_del_init(&c->node);
  333. spin_unlock_irqrestore(&d->lock, flags);
  334. vchan_free_chan_resources(&c->vc);
  335. }
  336. static dma_addr_t sa11x0_dma_pos(struct sa11x0_dma_phy *p)
  337. {
  338. unsigned reg;
  339. u32 dcsr;
  340. dcsr = readl_relaxed(p->base + DMA_DCSR_R);
  341. if ((dcsr & (DCSR_BIU | DCSR_STRTA)) == DCSR_STRTA ||
  342. (dcsr & (DCSR_BIU | DCSR_STRTB)) == DCSR_BIU)
  343. reg = DMA_DBSA;
  344. else
  345. reg = DMA_DBSB;
  346. return readl_relaxed(p->base + reg);
  347. }
  348. static enum dma_status sa11x0_dma_tx_status(struct dma_chan *chan,
  349. dma_cookie_t cookie, struct dma_tx_state *state)
  350. {
  351. struct sa11x0_dma_chan *c = to_sa11x0_dma_chan(chan);
  352. struct sa11x0_dma_dev *d = to_sa11x0_dma(chan->device);
  353. struct sa11x0_dma_phy *p;
  354. struct virt_dma_desc *vd;
  355. unsigned long flags;
  356. enum dma_status ret;
  357. ret = dma_cookie_status(&c->vc.chan, cookie, state);
  358. if (ret == DMA_COMPLETE)
  359. return ret;
  360. if (!state)
  361. return c->status;
  362. spin_lock_irqsave(&c->vc.lock, flags);
  363. p = c->phy;
  364. /*
  365. * If the cookie is on our issue queue, then the residue is
  366. * its total size.
  367. */
  368. vd = vchan_find_desc(&c->vc, cookie);
  369. if (vd) {
  370. state->residue = container_of(vd, struct sa11x0_dma_desc, vd)->size;
  371. } else if (!p) {
  372. state->residue = 0;
  373. } else {
  374. struct sa11x0_dma_desc *txd;
  375. size_t bytes = 0;
  376. if (p->txd_done && p->txd_done->vd.tx.cookie == cookie)
  377. txd = p->txd_done;
  378. else if (p->txd_load && p->txd_load->vd.tx.cookie == cookie)
  379. txd = p->txd_load;
  380. else
  381. txd = NULL;
  382. ret = c->status;
  383. if (txd) {
  384. dma_addr_t addr = sa11x0_dma_pos(p);
  385. unsigned i;
  386. dev_vdbg(d->slave.dev, "tx_status: addr:%x\n", addr);
  387. for (i = 0; i < txd->sglen; i++) {
  388. dev_vdbg(d->slave.dev, "tx_status: [%u] %x+%x\n",
  389. i, txd->sg[i].addr, txd->sg[i].len);
  390. if (addr >= txd->sg[i].addr &&
  391. addr < txd->sg[i].addr + txd->sg[i].len) {
  392. unsigned len;
  393. len = txd->sg[i].len -
  394. (addr - txd->sg[i].addr);
  395. dev_vdbg(d->slave.dev, "tx_status: [%u] +%x\n",
  396. i, len);
  397. bytes += len;
  398. i++;
  399. break;
  400. }
  401. }
  402. for (; i < txd->sglen; i++) {
  403. dev_vdbg(d->slave.dev, "tx_status: [%u] %x+%x ++\n",
  404. i, txd->sg[i].addr, txd->sg[i].len);
  405. bytes += txd->sg[i].len;
  406. }
  407. }
  408. state->residue = bytes;
  409. }
  410. spin_unlock_irqrestore(&c->vc.lock, flags);
  411. dev_vdbg(d->slave.dev, "tx_status: bytes 0x%zx\n", state->residue);
  412. return ret;
  413. }
  414. /*
  415. * Move pending txds to the issued list, and re-init pending list.
  416. * If not already pending, add this channel to the list of pending
  417. * channels and trigger the tasklet to run.
  418. */
  419. static void sa11x0_dma_issue_pending(struct dma_chan *chan)
  420. {
  421. struct sa11x0_dma_chan *c = to_sa11x0_dma_chan(chan);
  422. struct sa11x0_dma_dev *d = to_sa11x0_dma(chan->device);
  423. unsigned long flags;
  424. spin_lock_irqsave(&c->vc.lock, flags);
  425. if (vchan_issue_pending(&c->vc)) {
  426. if (!c->phy) {
  427. spin_lock(&d->lock);
  428. if (list_empty(&c->node)) {
  429. list_add_tail(&c->node, &d->chan_pending);
  430. tasklet_schedule(&d->task);
  431. dev_dbg(d->slave.dev, "vchan %p: issued\n", &c->vc);
  432. }
  433. spin_unlock(&d->lock);
  434. }
  435. } else
  436. dev_dbg(d->slave.dev, "vchan %p: nothing to issue\n", &c->vc);
  437. spin_unlock_irqrestore(&c->vc.lock, flags);
  438. }
  439. static struct dma_async_tx_descriptor *sa11x0_dma_prep_slave_sg(
  440. struct dma_chan *chan, struct scatterlist *sg, unsigned int sglen,
  441. enum dma_transfer_direction dir, unsigned long flags, void *context)
  442. {
  443. struct sa11x0_dma_chan *c = to_sa11x0_dma_chan(chan);
  444. struct sa11x0_dma_desc *txd;
  445. struct scatterlist *sgent;
  446. unsigned i, j = sglen;
  447. size_t size = 0;
  448. /* SA11x0 channels can only operate in their native direction */
  449. if (dir != (c->ddar & DDAR_RW ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV)) {
  450. dev_err(chan->device->dev, "vchan %p: bad DMA direction: DDAR:%08x dir:%u\n",
  451. &c->vc, c->ddar, dir);
  452. return NULL;
  453. }
  454. /* Do not allow zero-sized txds */
  455. if (sglen == 0)
  456. return NULL;
  457. for_each_sg(sg, sgent, sglen, i) {
  458. dma_addr_t addr = sg_dma_address(sgent);
  459. unsigned int len = sg_dma_len(sgent);
  460. if (len > DMA_MAX_SIZE)
  461. j += DIV_ROUND_UP(len, DMA_MAX_SIZE & ~DMA_ALIGN) - 1;
  462. if (addr & DMA_ALIGN) {
  463. dev_dbg(chan->device->dev, "vchan %p: bad buffer alignment: %08x\n",
  464. &c->vc, addr);
  465. return NULL;
  466. }
  467. }
  468. txd = kzalloc(sizeof(*txd) + j * sizeof(txd->sg[0]), GFP_ATOMIC);
  469. if (!txd) {
  470. dev_dbg(chan->device->dev, "vchan %p: kzalloc failed\n", &c->vc);
  471. return NULL;
  472. }
  473. j = 0;
  474. for_each_sg(sg, sgent, sglen, i) {
  475. dma_addr_t addr = sg_dma_address(sgent);
  476. unsigned len = sg_dma_len(sgent);
  477. size += len;
  478. do {
  479. unsigned tlen = len;
  480. /*
  481. * Check whether the transfer will fit. If not, try
  482. * to split the transfer up such that we end up with
  483. * equal chunks - but make sure that we preserve the
  484. * alignment. This avoids small segments.
  485. */
  486. if (tlen > DMA_MAX_SIZE) {
  487. unsigned mult = DIV_ROUND_UP(tlen,
  488. DMA_MAX_SIZE & ~DMA_ALIGN);
  489. tlen = (tlen / mult) & ~DMA_ALIGN;
  490. }
  491. txd->sg[j].addr = addr;
  492. txd->sg[j].len = tlen;
  493. addr += tlen;
  494. len -= tlen;
  495. j++;
  496. } while (len);
  497. }
  498. txd->ddar = c->ddar;
  499. txd->size = size;
  500. txd->sglen = j;
  501. dev_dbg(chan->device->dev, "vchan %p: txd %p: size %u nr %u\n",
  502. &c->vc, &txd->vd, txd->size, txd->sglen);
  503. return vchan_tx_prep(&c->vc, &txd->vd, flags);
  504. }
  505. static struct dma_async_tx_descriptor *sa11x0_dma_prep_dma_cyclic(
  506. struct dma_chan *chan, dma_addr_t addr, size_t size, size_t period,
  507. enum dma_transfer_direction dir, unsigned long flags, void *context)
  508. {
  509. struct sa11x0_dma_chan *c = to_sa11x0_dma_chan(chan);
  510. struct sa11x0_dma_desc *txd;
  511. unsigned i, j, k, sglen, sgperiod;
  512. /* SA11x0 channels can only operate in their native direction */
  513. if (dir != (c->ddar & DDAR_RW ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV)) {
  514. dev_err(chan->device->dev, "vchan %p: bad DMA direction: DDAR:%08x dir:%u\n",
  515. &c->vc, c->ddar, dir);
  516. return NULL;
  517. }
  518. sgperiod = DIV_ROUND_UP(period, DMA_MAX_SIZE & ~DMA_ALIGN);
  519. sglen = size * sgperiod / period;
  520. /* Do not allow zero-sized txds */
  521. if (sglen == 0)
  522. return NULL;
  523. txd = kzalloc(sizeof(*txd) + sglen * sizeof(txd->sg[0]), GFP_ATOMIC);
  524. if (!txd) {
  525. dev_dbg(chan->device->dev, "vchan %p: kzalloc failed\n", &c->vc);
  526. return NULL;
  527. }
  528. for (i = k = 0; i < size / period; i++) {
  529. size_t tlen, len = period;
  530. for (j = 0; j < sgperiod; j++, k++) {
  531. tlen = len;
  532. if (tlen > DMA_MAX_SIZE) {
  533. unsigned mult = DIV_ROUND_UP(tlen, DMA_MAX_SIZE & ~DMA_ALIGN);
  534. tlen = (tlen / mult) & ~DMA_ALIGN;
  535. }
  536. txd->sg[k].addr = addr;
  537. txd->sg[k].len = tlen;
  538. addr += tlen;
  539. len -= tlen;
  540. }
  541. WARN_ON(len != 0);
  542. }
  543. WARN_ON(k != sglen);
  544. txd->ddar = c->ddar;
  545. txd->size = size;
  546. txd->sglen = sglen;
  547. txd->cyclic = 1;
  548. txd->period = sgperiod;
  549. return vchan_tx_prep(&c->vc, &txd->vd, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  550. }
  551. static int sa11x0_dma_slave_config(struct sa11x0_dma_chan *c, struct dma_slave_config *cfg)
  552. {
  553. u32 ddar = c->ddar & ((0xf << 4) | DDAR_RW);
  554. dma_addr_t addr;
  555. enum dma_slave_buswidth width;
  556. u32 maxburst;
  557. if (ddar & DDAR_RW) {
  558. addr = cfg->src_addr;
  559. width = cfg->src_addr_width;
  560. maxburst = cfg->src_maxburst;
  561. } else {
  562. addr = cfg->dst_addr;
  563. width = cfg->dst_addr_width;
  564. maxburst = cfg->dst_maxburst;
  565. }
  566. if ((width != DMA_SLAVE_BUSWIDTH_1_BYTE &&
  567. width != DMA_SLAVE_BUSWIDTH_2_BYTES) ||
  568. (maxburst != 4 && maxburst != 8))
  569. return -EINVAL;
  570. if (width == DMA_SLAVE_BUSWIDTH_2_BYTES)
  571. ddar |= DDAR_DW;
  572. if (maxburst == 8)
  573. ddar |= DDAR_BS;
  574. dev_dbg(c->vc.chan.device->dev, "vchan %p: dma_slave_config addr %x width %u burst %u\n",
  575. &c->vc, addr, width, maxburst);
  576. c->ddar = ddar | (addr & 0xf0000000) | (addr & 0x003ffffc) << 6;
  577. return 0;
  578. }
  579. static int sa11x0_dma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
  580. unsigned long arg)
  581. {
  582. struct sa11x0_dma_chan *c = to_sa11x0_dma_chan(chan);
  583. struct sa11x0_dma_dev *d = to_sa11x0_dma(chan->device);
  584. struct sa11x0_dma_phy *p;
  585. LIST_HEAD(head);
  586. unsigned long flags;
  587. int ret;
  588. switch (cmd) {
  589. case DMA_SLAVE_CONFIG:
  590. return sa11x0_dma_slave_config(c, (struct dma_slave_config *)arg);
  591. case DMA_TERMINATE_ALL:
  592. dev_dbg(d->slave.dev, "vchan %p: terminate all\n", &c->vc);
  593. /* Clear the tx descriptor lists */
  594. spin_lock_irqsave(&c->vc.lock, flags);
  595. vchan_get_all_descriptors(&c->vc, &head);
  596. p = c->phy;
  597. if (p) {
  598. dev_dbg(d->slave.dev, "pchan %u: terminating\n", p->num);
  599. /* vchan is assigned to a pchan - stop the channel */
  600. writel(DCSR_RUN | DCSR_IE |
  601. DCSR_STRTA | DCSR_DONEA |
  602. DCSR_STRTB | DCSR_DONEB,
  603. p->base + DMA_DCSR_C);
  604. if (p->txd_load) {
  605. if (p->txd_load != p->txd_done)
  606. list_add_tail(&p->txd_load->vd.node, &head);
  607. p->txd_load = NULL;
  608. }
  609. if (p->txd_done) {
  610. list_add_tail(&p->txd_done->vd.node, &head);
  611. p->txd_done = NULL;
  612. }
  613. c->phy = NULL;
  614. spin_lock(&d->lock);
  615. p->vchan = NULL;
  616. spin_unlock(&d->lock);
  617. tasklet_schedule(&d->task);
  618. }
  619. spin_unlock_irqrestore(&c->vc.lock, flags);
  620. vchan_dma_desc_free_list(&c->vc, &head);
  621. ret = 0;
  622. break;
  623. case DMA_PAUSE:
  624. dev_dbg(d->slave.dev, "vchan %p: pause\n", &c->vc);
  625. spin_lock_irqsave(&c->vc.lock, flags);
  626. if (c->status == DMA_IN_PROGRESS) {
  627. c->status = DMA_PAUSED;
  628. p = c->phy;
  629. if (p) {
  630. writel(DCSR_RUN | DCSR_IE, p->base + DMA_DCSR_C);
  631. } else {
  632. spin_lock(&d->lock);
  633. list_del_init(&c->node);
  634. spin_unlock(&d->lock);
  635. }
  636. }
  637. spin_unlock_irqrestore(&c->vc.lock, flags);
  638. ret = 0;
  639. break;
  640. case DMA_RESUME:
  641. dev_dbg(d->slave.dev, "vchan %p: resume\n", &c->vc);
  642. spin_lock_irqsave(&c->vc.lock, flags);
  643. if (c->status == DMA_PAUSED) {
  644. c->status = DMA_IN_PROGRESS;
  645. p = c->phy;
  646. if (p) {
  647. writel(DCSR_RUN | DCSR_IE, p->base + DMA_DCSR_S);
  648. } else if (!list_empty(&c->vc.desc_issued)) {
  649. spin_lock(&d->lock);
  650. list_add_tail(&c->node, &d->chan_pending);
  651. spin_unlock(&d->lock);
  652. }
  653. }
  654. spin_unlock_irqrestore(&c->vc.lock, flags);
  655. ret = 0;
  656. break;
  657. default:
  658. ret = -ENXIO;
  659. break;
  660. }
  661. return ret;
  662. }
  663. struct sa11x0_dma_channel_desc {
  664. u32 ddar;
  665. const char *name;
  666. };
  667. #define CD(d1, d2) { .ddar = DDAR_##d1 | d2, .name = #d1 }
  668. static const struct sa11x0_dma_channel_desc chan_desc[] = {
  669. CD(Ser0UDCTr, 0),
  670. CD(Ser0UDCRc, DDAR_RW),
  671. CD(Ser1SDLCTr, 0),
  672. CD(Ser1SDLCRc, DDAR_RW),
  673. CD(Ser1UARTTr, 0),
  674. CD(Ser1UARTRc, DDAR_RW),
  675. CD(Ser2ICPTr, 0),
  676. CD(Ser2ICPRc, DDAR_RW),
  677. CD(Ser3UARTTr, 0),
  678. CD(Ser3UARTRc, DDAR_RW),
  679. CD(Ser4MCP0Tr, 0),
  680. CD(Ser4MCP0Rc, DDAR_RW),
  681. CD(Ser4MCP1Tr, 0),
  682. CD(Ser4MCP1Rc, DDAR_RW),
  683. CD(Ser4SSPTr, 0),
  684. CD(Ser4SSPRc, DDAR_RW),
  685. };
  686. static int sa11x0_dma_init_dmadev(struct dma_device *dmadev,
  687. struct device *dev)
  688. {
  689. unsigned i;
  690. dmadev->chancnt = ARRAY_SIZE(chan_desc);
  691. INIT_LIST_HEAD(&dmadev->channels);
  692. dmadev->dev = dev;
  693. dmadev->device_alloc_chan_resources = sa11x0_dma_alloc_chan_resources;
  694. dmadev->device_free_chan_resources = sa11x0_dma_free_chan_resources;
  695. dmadev->device_control = sa11x0_dma_control;
  696. dmadev->device_tx_status = sa11x0_dma_tx_status;
  697. dmadev->device_issue_pending = sa11x0_dma_issue_pending;
  698. for (i = 0; i < dmadev->chancnt; i++) {
  699. struct sa11x0_dma_chan *c;
  700. c = kzalloc(sizeof(*c), GFP_KERNEL);
  701. if (!c) {
  702. dev_err(dev, "no memory for channel %u\n", i);
  703. return -ENOMEM;
  704. }
  705. c->status = DMA_IN_PROGRESS;
  706. c->ddar = chan_desc[i].ddar;
  707. c->name = chan_desc[i].name;
  708. INIT_LIST_HEAD(&c->node);
  709. c->vc.desc_free = sa11x0_dma_free_desc;
  710. vchan_init(&c->vc, dmadev);
  711. }
  712. return dma_async_device_register(dmadev);
  713. }
  714. static int sa11x0_dma_request_irq(struct platform_device *pdev, int nr,
  715. void *data)
  716. {
  717. int irq = platform_get_irq(pdev, nr);
  718. if (irq <= 0)
  719. return -ENXIO;
  720. return request_irq(irq, sa11x0_dma_irq, 0, dev_name(&pdev->dev), data);
  721. }
  722. static void sa11x0_dma_free_irq(struct platform_device *pdev, int nr,
  723. void *data)
  724. {
  725. int irq = platform_get_irq(pdev, nr);
  726. if (irq > 0)
  727. free_irq(irq, data);
  728. }
  729. static void sa11x0_dma_free_channels(struct dma_device *dmadev)
  730. {
  731. struct sa11x0_dma_chan *c, *cn;
  732. list_for_each_entry_safe(c, cn, &dmadev->channels, vc.chan.device_node) {
  733. list_del(&c->vc.chan.device_node);
  734. tasklet_kill(&c->vc.task);
  735. kfree(c);
  736. }
  737. }
  738. static int sa11x0_dma_probe(struct platform_device *pdev)
  739. {
  740. struct sa11x0_dma_dev *d;
  741. struct resource *res;
  742. unsigned i;
  743. int ret;
  744. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  745. if (!res)
  746. return -ENXIO;
  747. d = kzalloc(sizeof(*d), GFP_KERNEL);
  748. if (!d) {
  749. ret = -ENOMEM;
  750. goto err_alloc;
  751. }
  752. spin_lock_init(&d->lock);
  753. INIT_LIST_HEAD(&d->chan_pending);
  754. d->base = ioremap(res->start, resource_size(res));
  755. if (!d->base) {
  756. ret = -ENOMEM;
  757. goto err_ioremap;
  758. }
  759. tasklet_init(&d->task, sa11x0_dma_tasklet, (unsigned long)d);
  760. for (i = 0; i < NR_PHY_CHAN; i++) {
  761. struct sa11x0_dma_phy *p = &d->phy[i];
  762. p->dev = d;
  763. p->num = i;
  764. p->base = d->base + i * DMA_SIZE;
  765. writel_relaxed(DCSR_RUN | DCSR_IE | DCSR_ERROR |
  766. DCSR_DONEA | DCSR_STRTA | DCSR_DONEB | DCSR_STRTB,
  767. p->base + DMA_DCSR_C);
  768. writel_relaxed(0, p->base + DMA_DDAR);
  769. ret = sa11x0_dma_request_irq(pdev, i, p);
  770. if (ret) {
  771. while (i) {
  772. i--;
  773. sa11x0_dma_free_irq(pdev, i, &d->phy[i]);
  774. }
  775. goto err_irq;
  776. }
  777. }
  778. dma_cap_set(DMA_SLAVE, d->slave.cap_mask);
  779. dma_cap_set(DMA_CYCLIC, d->slave.cap_mask);
  780. d->slave.device_prep_slave_sg = sa11x0_dma_prep_slave_sg;
  781. d->slave.device_prep_dma_cyclic = sa11x0_dma_prep_dma_cyclic;
  782. ret = sa11x0_dma_init_dmadev(&d->slave, &pdev->dev);
  783. if (ret) {
  784. dev_warn(d->slave.dev, "failed to register slave async device: %d\n",
  785. ret);
  786. goto err_slave_reg;
  787. }
  788. platform_set_drvdata(pdev, d);
  789. return 0;
  790. err_slave_reg:
  791. sa11x0_dma_free_channels(&d->slave);
  792. for (i = 0; i < NR_PHY_CHAN; i++)
  793. sa11x0_dma_free_irq(pdev, i, &d->phy[i]);
  794. err_irq:
  795. tasklet_kill(&d->task);
  796. iounmap(d->base);
  797. err_ioremap:
  798. kfree(d);
  799. err_alloc:
  800. return ret;
  801. }
  802. static int sa11x0_dma_remove(struct platform_device *pdev)
  803. {
  804. struct sa11x0_dma_dev *d = platform_get_drvdata(pdev);
  805. unsigned pch;
  806. dma_async_device_unregister(&d->slave);
  807. sa11x0_dma_free_channels(&d->slave);
  808. for (pch = 0; pch < NR_PHY_CHAN; pch++)
  809. sa11x0_dma_free_irq(pdev, pch, &d->phy[pch]);
  810. tasklet_kill(&d->task);
  811. iounmap(d->base);
  812. kfree(d);
  813. return 0;
  814. }
  815. static int sa11x0_dma_suspend(struct device *dev)
  816. {
  817. struct sa11x0_dma_dev *d = dev_get_drvdata(dev);
  818. unsigned pch;
  819. for (pch = 0; pch < NR_PHY_CHAN; pch++) {
  820. struct sa11x0_dma_phy *p = &d->phy[pch];
  821. u32 dcsr, saved_dcsr;
  822. dcsr = saved_dcsr = readl_relaxed(p->base + DMA_DCSR_R);
  823. if (dcsr & DCSR_RUN) {
  824. writel(DCSR_RUN | DCSR_IE, p->base + DMA_DCSR_C);
  825. dcsr = readl_relaxed(p->base + DMA_DCSR_R);
  826. }
  827. saved_dcsr &= DCSR_RUN | DCSR_IE;
  828. if (dcsr & DCSR_BIU) {
  829. p->dbs[0] = readl_relaxed(p->base + DMA_DBSB);
  830. p->dbt[0] = readl_relaxed(p->base + DMA_DBTB);
  831. p->dbs[1] = readl_relaxed(p->base + DMA_DBSA);
  832. p->dbt[1] = readl_relaxed(p->base + DMA_DBTA);
  833. saved_dcsr |= (dcsr & DCSR_STRTA ? DCSR_STRTB : 0) |
  834. (dcsr & DCSR_STRTB ? DCSR_STRTA : 0);
  835. } else {
  836. p->dbs[0] = readl_relaxed(p->base + DMA_DBSA);
  837. p->dbt[0] = readl_relaxed(p->base + DMA_DBTA);
  838. p->dbs[1] = readl_relaxed(p->base + DMA_DBSB);
  839. p->dbt[1] = readl_relaxed(p->base + DMA_DBTB);
  840. saved_dcsr |= dcsr & (DCSR_STRTA | DCSR_STRTB);
  841. }
  842. p->dcsr = saved_dcsr;
  843. writel(DCSR_STRTA | DCSR_STRTB, p->base + DMA_DCSR_C);
  844. }
  845. return 0;
  846. }
  847. static int sa11x0_dma_resume(struct device *dev)
  848. {
  849. struct sa11x0_dma_dev *d = dev_get_drvdata(dev);
  850. unsigned pch;
  851. for (pch = 0; pch < NR_PHY_CHAN; pch++) {
  852. struct sa11x0_dma_phy *p = &d->phy[pch];
  853. struct sa11x0_dma_desc *txd = NULL;
  854. u32 dcsr = readl_relaxed(p->base + DMA_DCSR_R);
  855. WARN_ON(dcsr & (DCSR_BIU | DCSR_STRTA | DCSR_STRTB | DCSR_RUN));
  856. if (p->txd_done)
  857. txd = p->txd_done;
  858. else if (p->txd_load)
  859. txd = p->txd_load;
  860. if (!txd)
  861. continue;
  862. writel_relaxed(txd->ddar, p->base + DMA_DDAR);
  863. writel_relaxed(p->dbs[0], p->base + DMA_DBSA);
  864. writel_relaxed(p->dbt[0], p->base + DMA_DBTA);
  865. writel_relaxed(p->dbs[1], p->base + DMA_DBSB);
  866. writel_relaxed(p->dbt[1], p->base + DMA_DBTB);
  867. writel_relaxed(p->dcsr, p->base + DMA_DCSR_S);
  868. }
  869. return 0;
  870. }
  871. static const struct dev_pm_ops sa11x0_dma_pm_ops = {
  872. .suspend_noirq = sa11x0_dma_suspend,
  873. .resume_noirq = sa11x0_dma_resume,
  874. .freeze_noirq = sa11x0_dma_suspend,
  875. .thaw_noirq = sa11x0_dma_resume,
  876. .poweroff_noirq = sa11x0_dma_suspend,
  877. .restore_noirq = sa11x0_dma_resume,
  878. };
  879. static struct platform_driver sa11x0_dma_driver = {
  880. .driver = {
  881. .name = "sa11x0-dma",
  882. .owner = THIS_MODULE,
  883. .pm = &sa11x0_dma_pm_ops,
  884. },
  885. .probe = sa11x0_dma_probe,
  886. .remove = sa11x0_dma_remove,
  887. };
  888. bool sa11x0_dma_filter_fn(struct dma_chan *chan, void *param)
  889. {
  890. if (chan->device->dev->driver == &sa11x0_dma_driver.driver) {
  891. struct sa11x0_dma_chan *c = to_sa11x0_dma_chan(chan);
  892. const char *p = param;
  893. return !strcmp(c->name, p);
  894. }
  895. return false;
  896. }
  897. EXPORT_SYMBOL(sa11x0_dma_filter_fn);
  898. static int __init sa11x0_dma_init(void)
  899. {
  900. return platform_driver_register(&sa11x0_dma_driver);
  901. }
  902. subsys_initcall(sa11x0_dma_init);
  903. static void __exit sa11x0_dma_exit(void)
  904. {
  905. platform_driver_unregister(&sa11x0_dma_driver);
  906. }
  907. module_exit(sa11x0_dma_exit);
  908. MODULE_AUTHOR("Russell King");
  909. MODULE_DESCRIPTION("SA-11x0 DMA driver");
  910. MODULE_LICENSE("GPL v2");
  911. MODULE_ALIAS("platform:sa11x0-dma");