moxart-dma.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699
  1. /*
  2. * MOXA ART SoCs DMA Engine support.
  3. *
  4. * Copyright (C) 2013 Jonas Jensen
  5. *
  6. * Jonas Jensen <jonas.jensen@gmail.com>
  7. *
  8. * This file is licensed under the terms of the GNU General Public
  9. * License version 2. This program is licensed "as is" without any
  10. * warranty of any kind, whether express or implied.
  11. */
  12. #include <linux/dmaengine.h>
  13. #include <linux/dma-mapping.h>
  14. #include <linux/err.h>
  15. #include <linux/init.h>
  16. #include <linux/interrupt.h>
  17. #include <linux/list.h>
  18. #include <linux/module.h>
  19. #include <linux/platform_device.h>
  20. #include <linux/slab.h>
  21. #include <linux/spinlock.h>
  22. #include <linux/of_address.h>
  23. #include <linux/of_irq.h>
  24. #include <linux/of_dma.h>
  25. #include <linux/bitops.h>
  26. #include <asm/cacheflush.h>
  27. #include "dmaengine.h"
  28. #include "virt-dma.h"
  29. #define APB_DMA_MAX_CHANNEL 4
  30. #define REG_OFF_ADDRESS_SOURCE 0
  31. #define REG_OFF_ADDRESS_DEST 4
  32. #define REG_OFF_CYCLES 8
  33. #define REG_OFF_CTRL 12
  34. #define REG_OFF_CHAN_SIZE 16
  35. #define APB_DMA_ENABLE BIT(0)
  36. #define APB_DMA_FIN_INT_STS BIT(1)
  37. #define APB_DMA_FIN_INT_EN BIT(2)
  38. #define APB_DMA_BURST_MODE BIT(3)
  39. #define APB_DMA_ERR_INT_STS BIT(4)
  40. #define APB_DMA_ERR_INT_EN BIT(5)
  41. /*
  42. * Unset: APB
  43. * Set: AHB
  44. */
  45. #define APB_DMA_SOURCE_SELECT 0x40
  46. #define APB_DMA_DEST_SELECT 0x80
  47. #define APB_DMA_SOURCE 0x100
  48. #define APB_DMA_DEST 0x1000
  49. #define APB_DMA_SOURCE_MASK 0x700
  50. #define APB_DMA_DEST_MASK 0x7000
  51. /*
  52. * 000: No increment
  53. * 001: +1 (Burst=0), +4 (Burst=1)
  54. * 010: +2 (Burst=0), +8 (Burst=1)
  55. * 011: +4 (Burst=0), +16 (Burst=1)
  56. * 101: -1 (Burst=0), -4 (Burst=1)
  57. * 110: -2 (Burst=0), -8 (Burst=1)
  58. * 111: -4 (Burst=0), -16 (Burst=1)
  59. */
  60. #define APB_DMA_SOURCE_INC_0 0
  61. #define APB_DMA_SOURCE_INC_1_4 0x100
  62. #define APB_DMA_SOURCE_INC_2_8 0x200
  63. #define APB_DMA_SOURCE_INC_4_16 0x300
  64. #define APB_DMA_SOURCE_DEC_1_4 0x500
  65. #define APB_DMA_SOURCE_DEC_2_8 0x600
  66. #define APB_DMA_SOURCE_DEC_4_16 0x700
  67. #define APB_DMA_DEST_INC_0 0
  68. #define APB_DMA_DEST_INC_1_4 0x1000
  69. #define APB_DMA_DEST_INC_2_8 0x2000
  70. #define APB_DMA_DEST_INC_4_16 0x3000
  71. #define APB_DMA_DEST_DEC_1_4 0x5000
  72. #define APB_DMA_DEST_DEC_2_8 0x6000
  73. #define APB_DMA_DEST_DEC_4_16 0x7000
  74. /*
  75. * Request signal select source/destination address for DMA hardware handshake.
  76. *
  77. * The request line number is a property of the DMA controller itself,
  78. * e.g. MMC must always request channels where dma_slave_config->slave_id is 5.
  79. *
  80. * 0: No request / Grant signal
  81. * 1-15: Request / Grant signal
  82. */
  83. #define APB_DMA_SOURCE_REQ_NO 0x1000000
  84. #define APB_DMA_SOURCE_REQ_NO_MASK 0xf000000
  85. #define APB_DMA_DEST_REQ_NO 0x10000
  86. #define APB_DMA_DEST_REQ_NO_MASK 0xf0000
  87. #define APB_DMA_DATA_WIDTH 0x100000
  88. #define APB_DMA_DATA_WIDTH_MASK 0x300000
  89. /*
  90. * Data width of transfer:
  91. *
  92. * 00: Word
  93. * 01: Half
  94. * 10: Byte
  95. */
  96. #define APB_DMA_DATA_WIDTH_4 0
  97. #define APB_DMA_DATA_WIDTH_2 0x100000
  98. #define APB_DMA_DATA_WIDTH_1 0x200000
  99. #define APB_DMA_CYCLES_MASK 0x00ffffff
  100. #define MOXART_DMA_DATA_TYPE_S8 0x00
  101. #define MOXART_DMA_DATA_TYPE_S16 0x01
  102. #define MOXART_DMA_DATA_TYPE_S32 0x02
  103. struct moxart_sg {
  104. dma_addr_t addr;
  105. uint32_t len;
  106. };
  107. struct moxart_desc {
  108. enum dma_transfer_direction dma_dir;
  109. dma_addr_t dev_addr;
  110. unsigned int sglen;
  111. unsigned int dma_cycles;
  112. struct virt_dma_desc vd;
  113. uint8_t es;
  114. struct moxart_sg sg[0];
  115. };
  116. struct moxart_chan {
  117. struct virt_dma_chan vc;
  118. void __iomem *base;
  119. struct moxart_desc *desc;
  120. struct dma_slave_config cfg;
  121. bool allocated;
  122. bool error;
  123. int ch_num;
  124. unsigned int line_reqno;
  125. unsigned int sgidx;
  126. };
  127. struct moxart_dmadev {
  128. struct dma_device dma_slave;
  129. struct moxart_chan slave_chans[APB_DMA_MAX_CHANNEL];
  130. };
  131. struct moxart_filter_data {
  132. struct moxart_dmadev *mdc;
  133. struct of_phandle_args *dma_spec;
  134. };
  135. static const unsigned int es_bytes[] = {
  136. [MOXART_DMA_DATA_TYPE_S8] = 1,
  137. [MOXART_DMA_DATA_TYPE_S16] = 2,
  138. [MOXART_DMA_DATA_TYPE_S32] = 4,
  139. };
  140. static struct device *chan2dev(struct dma_chan *chan)
  141. {
  142. return &chan->dev->device;
  143. }
  144. static inline struct moxart_chan *to_moxart_dma_chan(struct dma_chan *c)
  145. {
  146. return container_of(c, struct moxart_chan, vc.chan);
  147. }
  148. static inline struct moxart_desc *to_moxart_dma_desc(
  149. struct dma_async_tx_descriptor *t)
  150. {
  151. return container_of(t, struct moxart_desc, vd.tx);
  152. }
  153. static void moxart_dma_desc_free(struct virt_dma_desc *vd)
  154. {
  155. kfree(container_of(vd, struct moxart_desc, vd));
  156. }
  157. static int moxart_terminate_all(struct dma_chan *chan)
  158. {
  159. struct moxart_chan *ch = to_moxart_dma_chan(chan);
  160. unsigned long flags;
  161. LIST_HEAD(head);
  162. u32 ctrl;
  163. dev_dbg(chan2dev(chan), "%s: ch=%p\n", __func__, ch);
  164. spin_lock_irqsave(&ch->vc.lock, flags);
  165. if (ch->desc)
  166. ch->desc = NULL;
  167. ctrl = readl(ch->base + REG_OFF_CTRL);
  168. ctrl &= ~(APB_DMA_ENABLE | APB_DMA_FIN_INT_EN | APB_DMA_ERR_INT_EN);
  169. writel(ctrl, ch->base + REG_OFF_CTRL);
  170. vchan_get_all_descriptors(&ch->vc, &head);
  171. spin_unlock_irqrestore(&ch->vc.lock, flags);
  172. vchan_dma_desc_free_list(&ch->vc, &head);
  173. return 0;
  174. }
  175. static int moxart_slave_config(struct dma_chan *chan,
  176. struct dma_slave_config *cfg)
  177. {
  178. struct moxart_chan *ch = to_moxart_dma_chan(chan);
  179. u32 ctrl;
  180. ch->cfg = *cfg;
  181. ctrl = readl(ch->base + REG_OFF_CTRL);
  182. ctrl |= APB_DMA_BURST_MODE;
  183. ctrl &= ~(APB_DMA_DEST_MASK | APB_DMA_SOURCE_MASK);
  184. ctrl &= ~(APB_DMA_DEST_REQ_NO_MASK | APB_DMA_SOURCE_REQ_NO_MASK);
  185. switch (ch->cfg.src_addr_width) {
  186. case DMA_SLAVE_BUSWIDTH_1_BYTE:
  187. ctrl |= APB_DMA_DATA_WIDTH_1;
  188. if (ch->cfg.direction != DMA_MEM_TO_DEV)
  189. ctrl |= APB_DMA_DEST_INC_1_4;
  190. else
  191. ctrl |= APB_DMA_SOURCE_INC_1_4;
  192. break;
  193. case DMA_SLAVE_BUSWIDTH_2_BYTES:
  194. ctrl |= APB_DMA_DATA_WIDTH_2;
  195. if (ch->cfg.direction != DMA_MEM_TO_DEV)
  196. ctrl |= APB_DMA_DEST_INC_2_8;
  197. else
  198. ctrl |= APB_DMA_SOURCE_INC_2_8;
  199. break;
  200. case DMA_SLAVE_BUSWIDTH_4_BYTES:
  201. ctrl &= ~APB_DMA_DATA_WIDTH;
  202. if (ch->cfg.direction != DMA_MEM_TO_DEV)
  203. ctrl |= APB_DMA_DEST_INC_4_16;
  204. else
  205. ctrl |= APB_DMA_SOURCE_INC_4_16;
  206. break;
  207. default:
  208. return -EINVAL;
  209. }
  210. if (ch->cfg.direction == DMA_MEM_TO_DEV) {
  211. ctrl &= ~APB_DMA_DEST_SELECT;
  212. ctrl |= APB_DMA_SOURCE_SELECT;
  213. ctrl |= (ch->line_reqno << 16 &
  214. APB_DMA_DEST_REQ_NO_MASK);
  215. } else {
  216. ctrl |= APB_DMA_DEST_SELECT;
  217. ctrl &= ~APB_DMA_SOURCE_SELECT;
  218. ctrl |= (ch->line_reqno << 24 &
  219. APB_DMA_SOURCE_REQ_NO_MASK);
  220. }
  221. writel(ctrl, ch->base + REG_OFF_CTRL);
  222. return 0;
  223. }
  224. static int moxart_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
  225. unsigned long arg)
  226. {
  227. int ret = 0;
  228. switch (cmd) {
  229. case DMA_PAUSE:
  230. case DMA_RESUME:
  231. return -EINVAL;
  232. case DMA_TERMINATE_ALL:
  233. moxart_terminate_all(chan);
  234. break;
  235. case DMA_SLAVE_CONFIG:
  236. ret = moxart_slave_config(chan, (struct dma_slave_config *)arg);
  237. break;
  238. default:
  239. ret = -ENOSYS;
  240. }
  241. return ret;
  242. }
  243. static struct dma_async_tx_descriptor *moxart_prep_slave_sg(
  244. struct dma_chan *chan, struct scatterlist *sgl,
  245. unsigned int sg_len, enum dma_transfer_direction dir,
  246. unsigned long tx_flags, void *context)
  247. {
  248. struct moxart_chan *ch = to_moxart_dma_chan(chan);
  249. struct moxart_desc *d;
  250. enum dma_slave_buswidth dev_width;
  251. dma_addr_t dev_addr;
  252. struct scatterlist *sgent;
  253. unsigned int es;
  254. unsigned int i;
  255. if (!is_slave_direction(dir)) {
  256. dev_err(chan2dev(chan), "%s: invalid DMA direction\n",
  257. __func__);
  258. return NULL;
  259. }
  260. if (dir == DMA_DEV_TO_MEM) {
  261. dev_addr = ch->cfg.src_addr;
  262. dev_width = ch->cfg.src_addr_width;
  263. } else {
  264. dev_addr = ch->cfg.dst_addr;
  265. dev_width = ch->cfg.dst_addr_width;
  266. }
  267. switch (dev_width) {
  268. case DMA_SLAVE_BUSWIDTH_1_BYTE:
  269. es = MOXART_DMA_DATA_TYPE_S8;
  270. break;
  271. case DMA_SLAVE_BUSWIDTH_2_BYTES:
  272. es = MOXART_DMA_DATA_TYPE_S16;
  273. break;
  274. case DMA_SLAVE_BUSWIDTH_4_BYTES:
  275. es = MOXART_DMA_DATA_TYPE_S32;
  276. break;
  277. default:
  278. dev_err(chan2dev(chan), "%s: unsupported data width (%u)\n",
  279. __func__, dev_width);
  280. return NULL;
  281. }
  282. d = kzalloc(sizeof(*d) + sg_len * sizeof(d->sg[0]), GFP_ATOMIC);
  283. if (!d)
  284. return NULL;
  285. d->dma_dir = dir;
  286. d->dev_addr = dev_addr;
  287. d->es = es;
  288. for_each_sg(sgl, sgent, sg_len, i) {
  289. d->sg[i].addr = sg_dma_address(sgent);
  290. d->sg[i].len = sg_dma_len(sgent);
  291. }
  292. d->sglen = sg_len;
  293. ch->error = 0;
  294. return vchan_tx_prep(&ch->vc, &d->vd, tx_flags);
  295. }
  296. static struct dma_chan *moxart_of_xlate(struct of_phandle_args *dma_spec,
  297. struct of_dma *ofdma)
  298. {
  299. struct moxart_dmadev *mdc = ofdma->of_dma_data;
  300. struct dma_chan *chan;
  301. struct moxart_chan *ch;
  302. chan = dma_get_any_slave_channel(&mdc->dma_slave);
  303. if (!chan)
  304. return NULL;
  305. ch = to_moxart_dma_chan(chan);
  306. ch->line_reqno = dma_spec->args[0];
  307. return chan;
  308. }
  309. static int moxart_alloc_chan_resources(struct dma_chan *chan)
  310. {
  311. struct moxart_chan *ch = to_moxart_dma_chan(chan);
  312. dev_dbg(chan2dev(chan), "%s: allocating channel #%u\n",
  313. __func__, ch->ch_num);
  314. ch->allocated = 1;
  315. return 0;
  316. }
  317. static void moxart_free_chan_resources(struct dma_chan *chan)
  318. {
  319. struct moxart_chan *ch = to_moxart_dma_chan(chan);
  320. vchan_free_chan_resources(&ch->vc);
  321. dev_dbg(chan2dev(chan), "%s: freeing channel #%u\n",
  322. __func__, ch->ch_num);
  323. ch->allocated = 0;
  324. }
  325. static void moxart_dma_set_params(struct moxart_chan *ch, dma_addr_t src_addr,
  326. dma_addr_t dst_addr)
  327. {
  328. writel(src_addr, ch->base + REG_OFF_ADDRESS_SOURCE);
  329. writel(dst_addr, ch->base + REG_OFF_ADDRESS_DEST);
  330. }
  331. static void moxart_set_transfer_params(struct moxart_chan *ch, unsigned int len)
  332. {
  333. struct moxart_desc *d = ch->desc;
  334. unsigned int sglen_div = es_bytes[d->es];
  335. d->dma_cycles = len >> sglen_div;
  336. /*
  337. * There are 4 cycles on 64 bytes copied, i.e. one cycle copies 16
  338. * bytes ( when width is APB_DMAB_DATA_WIDTH_4 ).
  339. */
  340. writel(d->dma_cycles, ch->base + REG_OFF_CYCLES);
  341. dev_dbg(chan2dev(&ch->vc.chan), "%s: set %u DMA cycles (len=%u)\n",
  342. __func__, d->dma_cycles, len);
  343. }
  344. static void moxart_start_dma(struct moxart_chan *ch)
  345. {
  346. u32 ctrl;
  347. ctrl = readl(ch->base + REG_OFF_CTRL);
  348. ctrl |= (APB_DMA_ENABLE | APB_DMA_FIN_INT_EN | APB_DMA_ERR_INT_EN);
  349. writel(ctrl, ch->base + REG_OFF_CTRL);
  350. }
  351. static void moxart_dma_start_sg(struct moxart_chan *ch, unsigned int idx)
  352. {
  353. struct moxart_desc *d = ch->desc;
  354. struct moxart_sg *sg = ch->desc->sg + idx;
  355. if (ch->desc->dma_dir == DMA_MEM_TO_DEV)
  356. moxart_dma_set_params(ch, sg->addr, d->dev_addr);
  357. else if (ch->desc->dma_dir == DMA_DEV_TO_MEM)
  358. moxart_dma_set_params(ch, d->dev_addr, sg->addr);
  359. moxart_set_transfer_params(ch, sg->len);
  360. moxart_start_dma(ch);
  361. }
  362. static void moxart_dma_start_desc(struct dma_chan *chan)
  363. {
  364. struct moxart_chan *ch = to_moxart_dma_chan(chan);
  365. struct virt_dma_desc *vd;
  366. vd = vchan_next_desc(&ch->vc);
  367. if (!vd) {
  368. ch->desc = NULL;
  369. return;
  370. }
  371. list_del(&vd->node);
  372. ch->desc = to_moxart_dma_desc(&vd->tx);
  373. ch->sgidx = 0;
  374. moxart_dma_start_sg(ch, 0);
  375. }
  376. static void moxart_issue_pending(struct dma_chan *chan)
  377. {
  378. struct moxart_chan *ch = to_moxart_dma_chan(chan);
  379. unsigned long flags;
  380. spin_lock_irqsave(&ch->vc.lock, flags);
  381. if (vchan_issue_pending(&ch->vc) && !ch->desc)
  382. moxart_dma_start_desc(chan);
  383. spin_unlock_irqrestore(&ch->vc.lock, flags);
  384. }
  385. static size_t moxart_dma_desc_size(struct moxart_desc *d,
  386. unsigned int completed_sgs)
  387. {
  388. unsigned int i;
  389. size_t size;
  390. for (size = i = completed_sgs; i < d->sglen; i++)
  391. size += d->sg[i].len;
  392. return size;
  393. }
  394. static size_t moxart_dma_desc_size_in_flight(struct moxart_chan *ch)
  395. {
  396. size_t size;
  397. unsigned int completed_cycles, cycles;
  398. size = moxart_dma_desc_size(ch->desc, ch->sgidx);
  399. cycles = readl(ch->base + REG_OFF_CYCLES);
  400. completed_cycles = (ch->desc->dma_cycles - cycles);
  401. size -= completed_cycles << es_bytes[ch->desc->es];
  402. dev_dbg(chan2dev(&ch->vc.chan), "%s: size=%zu\n", __func__, size);
  403. return size;
  404. }
  405. static enum dma_status moxart_tx_status(struct dma_chan *chan,
  406. dma_cookie_t cookie,
  407. struct dma_tx_state *txstate)
  408. {
  409. struct moxart_chan *ch = to_moxart_dma_chan(chan);
  410. struct virt_dma_desc *vd;
  411. struct moxart_desc *d;
  412. enum dma_status ret;
  413. unsigned long flags;
  414. /*
  415. * dma_cookie_status() assigns initial residue value.
  416. */
  417. ret = dma_cookie_status(chan, cookie, txstate);
  418. spin_lock_irqsave(&ch->vc.lock, flags);
  419. vd = vchan_find_desc(&ch->vc, cookie);
  420. if (vd) {
  421. d = to_moxart_dma_desc(&vd->tx);
  422. txstate->residue = moxart_dma_desc_size(d, 0);
  423. } else if (ch->desc && ch->desc->vd.tx.cookie == cookie) {
  424. txstate->residue = moxart_dma_desc_size_in_flight(ch);
  425. }
  426. spin_unlock_irqrestore(&ch->vc.lock, flags);
  427. if (ch->error)
  428. return DMA_ERROR;
  429. return ret;
  430. }
  431. static void moxart_dma_init(struct dma_device *dma, struct device *dev)
  432. {
  433. dma->device_prep_slave_sg = moxart_prep_slave_sg;
  434. dma->device_alloc_chan_resources = moxart_alloc_chan_resources;
  435. dma->device_free_chan_resources = moxart_free_chan_resources;
  436. dma->device_issue_pending = moxart_issue_pending;
  437. dma->device_tx_status = moxart_tx_status;
  438. dma->device_control = moxart_control;
  439. dma->dev = dev;
  440. INIT_LIST_HEAD(&dma->channels);
  441. }
  442. static irqreturn_t moxart_dma_interrupt(int irq, void *devid)
  443. {
  444. struct moxart_dmadev *mc = devid;
  445. struct moxart_chan *ch = &mc->slave_chans[0];
  446. unsigned int i;
  447. unsigned long flags;
  448. u32 ctrl;
  449. dev_dbg(chan2dev(&ch->vc.chan), "%s\n", __func__);
  450. for (i = 0; i < APB_DMA_MAX_CHANNEL; i++, ch++) {
  451. if (!ch->allocated)
  452. continue;
  453. ctrl = readl(ch->base + REG_OFF_CTRL);
  454. dev_dbg(chan2dev(&ch->vc.chan), "%s: ch=%p ch->base=%p ctrl=%x\n",
  455. __func__, ch, ch->base, ctrl);
  456. if (ctrl & APB_DMA_FIN_INT_STS) {
  457. ctrl &= ~APB_DMA_FIN_INT_STS;
  458. if (ch->desc) {
  459. spin_lock_irqsave(&ch->vc.lock, flags);
  460. if (++ch->sgidx < ch->desc->sglen) {
  461. moxart_dma_start_sg(ch, ch->sgidx);
  462. } else {
  463. vchan_cookie_complete(&ch->desc->vd);
  464. moxart_dma_start_desc(&ch->vc.chan);
  465. }
  466. spin_unlock_irqrestore(&ch->vc.lock, flags);
  467. }
  468. }
  469. if (ctrl & APB_DMA_ERR_INT_STS) {
  470. ctrl &= ~APB_DMA_ERR_INT_STS;
  471. ch->error = 1;
  472. }
  473. writel(ctrl, ch->base + REG_OFF_CTRL);
  474. }
  475. return IRQ_HANDLED;
  476. }
  477. static int moxart_probe(struct platform_device *pdev)
  478. {
  479. struct device *dev = &pdev->dev;
  480. struct device_node *node = dev->of_node;
  481. struct resource *res;
  482. static void __iomem *dma_base_addr;
  483. int ret, i;
  484. unsigned int irq;
  485. struct moxart_chan *ch;
  486. struct moxart_dmadev *mdc;
  487. mdc = devm_kzalloc(dev, sizeof(*mdc), GFP_KERNEL);
  488. if (!mdc) {
  489. dev_err(dev, "can't allocate DMA container\n");
  490. return -ENOMEM;
  491. }
  492. irq = irq_of_parse_and_map(node, 0);
  493. if (irq == NO_IRQ) {
  494. dev_err(dev, "no IRQ resource\n");
  495. return -EINVAL;
  496. }
  497. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  498. dma_base_addr = devm_ioremap_resource(dev, res);
  499. if (IS_ERR(dma_base_addr))
  500. return PTR_ERR(dma_base_addr);
  501. dma_cap_zero(mdc->dma_slave.cap_mask);
  502. dma_cap_set(DMA_SLAVE, mdc->dma_slave.cap_mask);
  503. dma_cap_set(DMA_PRIVATE, mdc->dma_slave.cap_mask);
  504. moxart_dma_init(&mdc->dma_slave, dev);
  505. ch = &mdc->slave_chans[0];
  506. for (i = 0; i < APB_DMA_MAX_CHANNEL; i++, ch++) {
  507. ch->ch_num = i;
  508. ch->base = dma_base_addr + i * REG_OFF_CHAN_SIZE;
  509. ch->allocated = 0;
  510. ch->vc.desc_free = moxart_dma_desc_free;
  511. vchan_init(&ch->vc, &mdc->dma_slave);
  512. dev_dbg(dev, "%s: chs[%d]: ch->ch_num=%u ch->base=%p\n",
  513. __func__, i, ch->ch_num, ch->base);
  514. }
  515. platform_set_drvdata(pdev, mdc);
  516. ret = devm_request_irq(dev, irq, moxart_dma_interrupt, 0,
  517. "moxart-dma-engine", mdc);
  518. if (ret) {
  519. dev_err(dev, "devm_request_irq failed\n");
  520. return ret;
  521. }
  522. ret = dma_async_device_register(&mdc->dma_slave);
  523. if (ret) {
  524. dev_err(dev, "dma_async_device_register failed\n");
  525. return ret;
  526. }
  527. ret = of_dma_controller_register(node, moxart_of_xlate, mdc);
  528. if (ret) {
  529. dev_err(dev, "of_dma_controller_register failed\n");
  530. dma_async_device_unregister(&mdc->dma_slave);
  531. return ret;
  532. }
  533. dev_dbg(dev, "%s: IRQ=%u\n", __func__, irq);
  534. return 0;
  535. }
  536. static int moxart_remove(struct platform_device *pdev)
  537. {
  538. struct moxart_dmadev *m = platform_get_drvdata(pdev);
  539. dma_async_device_unregister(&m->dma_slave);
  540. if (pdev->dev.of_node)
  541. of_dma_controller_free(pdev->dev.of_node);
  542. return 0;
  543. }
  544. static const struct of_device_id moxart_dma_match[] = {
  545. { .compatible = "moxa,moxart-dma" },
  546. { }
  547. };
  548. static struct platform_driver moxart_driver = {
  549. .probe = moxart_probe,
  550. .remove = moxart_remove,
  551. .driver = {
  552. .name = "moxart-dma-engine",
  553. .owner = THIS_MODULE,
  554. .of_match_table = moxart_dma_match,
  555. },
  556. };
  557. static int moxart_init(void)
  558. {
  559. return platform_driver_register(&moxart_driver);
  560. }
  561. subsys_initcall(moxart_init);
  562. static void __exit moxart_exit(void)
  563. {
  564. platform_driver_unregister(&moxart_driver);
  565. }
  566. module_exit(moxart_exit);
  567. MODULE_AUTHOR("Jonas Jensen <jonas.jensen@gmail.com>");
  568. MODULE_DESCRIPTION("MOXART DMA engine driver");
  569. MODULE_LICENSE("GPL v2");