fsl-edma.c 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985
  1. /*
  2. * drivers/dma/fsl-edma.c
  3. *
  4. * Copyright 2013-2014 Freescale Semiconductor, Inc.
  5. *
  6. * Driver for the Freescale eDMA engine with flexible channel multiplexing
  7. * capability for DMA request sources. The eDMA block can be found on some
  8. * Vybrid and Layerscape SoCs.
  9. *
  10. * This program is free software; you can redistribute it and/or modify it
  11. * under the terms of the GNU General Public License as published by the
  12. * Free Software Foundation; either version 2 of the License, or (at your
  13. * option) any later version.
  14. */
  15. #include <linux/init.h>
  16. #include <linux/module.h>
  17. #include <linux/interrupt.h>
  18. #include <linux/clk.h>
  19. #include <linux/dma-mapping.h>
  20. #include <linux/dmapool.h>
  21. #include <linux/slab.h>
  22. #include <linux/spinlock.h>
  23. #include <linux/of.h>
  24. #include <linux/of_device.h>
  25. #include <linux/of_address.h>
  26. #include <linux/of_irq.h>
  27. #include <linux/of_dma.h>
  28. #include "virt-dma.h"
  29. #define EDMA_CR 0x00
  30. #define EDMA_ES 0x04
  31. #define EDMA_ERQ 0x0C
  32. #define EDMA_EEI 0x14
  33. #define EDMA_SERQ 0x1B
  34. #define EDMA_CERQ 0x1A
  35. #define EDMA_SEEI 0x19
  36. #define EDMA_CEEI 0x18
  37. #define EDMA_CINT 0x1F
  38. #define EDMA_CERR 0x1E
  39. #define EDMA_SSRT 0x1D
  40. #define EDMA_CDNE 0x1C
  41. #define EDMA_INTR 0x24
  42. #define EDMA_ERR 0x2C
  43. #define EDMA_TCD_SADDR(x) (0x1000 + 32 * (x))
  44. #define EDMA_TCD_SOFF(x) (0x1004 + 32 * (x))
  45. #define EDMA_TCD_ATTR(x) (0x1006 + 32 * (x))
  46. #define EDMA_TCD_NBYTES(x) (0x1008 + 32 * (x))
  47. #define EDMA_TCD_SLAST(x) (0x100C + 32 * (x))
  48. #define EDMA_TCD_DADDR(x) (0x1010 + 32 * (x))
  49. #define EDMA_TCD_DOFF(x) (0x1014 + 32 * (x))
  50. #define EDMA_TCD_CITER_ELINK(x) (0x1016 + 32 * (x))
  51. #define EDMA_TCD_CITER(x) (0x1016 + 32 * (x))
  52. #define EDMA_TCD_DLAST_SGA(x) (0x1018 + 32 * (x))
  53. #define EDMA_TCD_CSR(x) (0x101C + 32 * (x))
  54. #define EDMA_TCD_BITER_ELINK(x) (0x101E + 32 * (x))
  55. #define EDMA_TCD_BITER(x) (0x101E + 32 * (x))
  56. #define EDMA_CR_EDBG BIT(1)
  57. #define EDMA_CR_ERCA BIT(2)
  58. #define EDMA_CR_ERGA BIT(3)
  59. #define EDMA_CR_HOE BIT(4)
  60. #define EDMA_CR_HALT BIT(5)
  61. #define EDMA_CR_CLM BIT(6)
  62. #define EDMA_CR_EMLM BIT(7)
  63. #define EDMA_CR_ECX BIT(16)
  64. #define EDMA_CR_CX BIT(17)
  65. #define EDMA_SEEI_SEEI(x) ((x) & 0x1F)
  66. #define EDMA_CEEI_CEEI(x) ((x) & 0x1F)
  67. #define EDMA_CINT_CINT(x) ((x) & 0x1F)
  68. #define EDMA_CERR_CERR(x) ((x) & 0x1F)
  69. #define EDMA_TCD_ATTR_DSIZE(x) (((x) & 0x0007))
  70. #define EDMA_TCD_ATTR_DMOD(x) (((x) & 0x001F) << 3)
  71. #define EDMA_TCD_ATTR_SSIZE(x) (((x) & 0x0007) << 8)
  72. #define EDMA_TCD_ATTR_SMOD(x) (((x) & 0x001F) << 11)
  73. #define EDMA_TCD_ATTR_SSIZE_8BIT (0x0000)
  74. #define EDMA_TCD_ATTR_SSIZE_16BIT (0x0100)
  75. #define EDMA_TCD_ATTR_SSIZE_32BIT (0x0200)
  76. #define EDMA_TCD_ATTR_SSIZE_64BIT (0x0300)
  77. #define EDMA_TCD_ATTR_SSIZE_32BYTE (0x0500)
  78. #define EDMA_TCD_ATTR_DSIZE_8BIT (0x0000)
  79. #define EDMA_TCD_ATTR_DSIZE_16BIT (0x0001)
  80. #define EDMA_TCD_ATTR_DSIZE_32BIT (0x0002)
  81. #define EDMA_TCD_ATTR_DSIZE_64BIT (0x0003)
  82. #define EDMA_TCD_ATTR_DSIZE_32BYTE (0x0005)
  83. #define EDMA_TCD_SOFF_SOFF(x) (x)
  84. #define EDMA_TCD_NBYTES_NBYTES(x) (x)
  85. #define EDMA_TCD_SLAST_SLAST(x) (x)
  86. #define EDMA_TCD_DADDR_DADDR(x) (x)
  87. #define EDMA_TCD_CITER_CITER(x) ((x) & 0x7FFF)
  88. #define EDMA_TCD_DOFF_DOFF(x) (x)
  89. #define EDMA_TCD_DLAST_SGA_DLAST_SGA(x) (x)
  90. #define EDMA_TCD_BITER_BITER(x) ((x) & 0x7FFF)
  91. #define EDMA_TCD_CSR_START BIT(0)
  92. #define EDMA_TCD_CSR_INT_MAJOR BIT(1)
  93. #define EDMA_TCD_CSR_INT_HALF BIT(2)
  94. #define EDMA_TCD_CSR_D_REQ BIT(3)
  95. #define EDMA_TCD_CSR_E_SG BIT(4)
  96. #define EDMA_TCD_CSR_E_LINK BIT(5)
  97. #define EDMA_TCD_CSR_ACTIVE BIT(6)
  98. #define EDMA_TCD_CSR_DONE BIT(7)
  99. #define EDMAMUX_CHCFG_DIS 0x0
  100. #define EDMAMUX_CHCFG_ENBL 0x80
  101. #define EDMAMUX_CHCFG_SOURCE(n) ((n) & 0x3F)
  102. #define DMAMUX_NR 2
  103. #define FSL_EDMA_BUSWIDTHS BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
  104. BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
  105. BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \
  106. BIT(DMA_SLAVE_BUSWIDTH_8_BYTES)
  107. struct fsl_edma_hw_tcd {
  108. u32 saddr;
  109. u16 soff;
  110. u16 attr;
  111. u32 nbytes;
  112. u32 slast;
  113. u32 daddr;
  114. u16 doff;
  115. u16 citer;
  116. u32 dlast_sga;
  117. u16 csr;
  118. u16 biter;
  119. };
  120. struct fsl_edma_sw_tcd {
  121. dma_addr_t ptcd;
  122. struct fsl_edma_hw_tcd *vtcd;
  123. };
  124. struct fsl_edma_slave_config {
  125. enum dma_transfer_direction dir;
  126. enum dma_slave_buswidth addr_width;
  127. u32 dev_addr;
  128. u32 burst;
  129. u32 attr;
  130. };
  131. struct fsl_edma_chan {
  132. struct virt_dma_chan vchan;
  133. enum dma_status status;
  134. struct fsl_edma_engine *edma;
  135. struct fsl_edma_desc *edesc;
  136. struct fsl_edma_slave_config fsc;
  137. struct dma_pool *tcd_pool;
  138. };
  139. struct fsl_edma_desc {
  140. struct virt_dma_desc vdesc;
  141. struct fsl_edma_chan *echan;
  142. bool iscyclic;
  143. unsigned int n_tcds;
  144. struct fsl_edma_sw_tcd tcd[];
  145. };
  146. struct fsl_edma_engine {
  147. struct dma_device dma_dev;
  148. void __iomem *membase;
  149. void __iomem *muxbase[DMAMUX_NR];
  150. struct clk *muxclk[DMAMUX_NR];
  151. struct mutex fsl_edma_mutex;
  152. u32 n_chans;
  153. int txirq;
  154. int errirq;
  155. bool big_endian;
  156. struct fsl_edma_chan chans[];
  157. };
  158. /*
  159. * R/W functions for big- or little-endian registers
  160. * the eDMA controller's endian is independent of the CPU core's endian.
  161. */
  162. static u16 edma_readw(struct fsl_edma_engine *edma, void __iomem *addr)
  163. {
  164. if (edma->big_endian)
  165. return ioread16be(addr);
  166. else
  167. return ioread16(addr);
  168. }
  169. static u32 edma_readl(struct fsl_edma_engine *edma, void __iomem *addr)
  170. {
  171. if (edma->big_endian)
  172. return ioread32be(addr);
  173. else
  174. return ioread32(addr);
  175. }
  176. static void edma_writeb(struct fsl_edma_engine *edma, u8 val, void __iomem *addr)
  177. {
  178. iowrite8(val, addr);
  179. }
  180. static void edma_writew(struct fsl_edma_engine *edma, u16 val, void __iomem *addr)
  181. {
  182. if (edma->big_endian)
  183. iowrite16be(val, addr);
  184. else
  185. iowrite16(val, addr);
  186. }
  187. static void edma_writel(struct fsl_edma_engine *edma, u32 val, void __iomem *addr)
  188. {
  189. if (edma->big_endian)
  190. iowrite32be(val, addr);
  191. else
  192. iowrite32(val, addr);
  193. }
  194. static struct fsl_edma_chan *to_fsl_edma_chan(struct dma_chan *chan)
  195. {
  196. return container_of(chan, struct fsl_edma_chan, vchan.chan);
  197. }
  198. static struct fsl_edma_desc *to_fsl_edma_desc(struct virt_dma_desc *vd)
  199. {
  200. return container_of(vd, struct fsl_edma_desc, vdesc);
  201. }
  202. static void fsl_edma_enable_request(struct fsl_edma_chan *fsl_chan)
  203. {
  204. void __iomem *addr = fsl_chan->edma->membase;
  205. u32 ch = fsl_chan->vchan.chan.chan_id;
  206. edma_writeb(fsl_chan->edma, EDMA_SEEI_SEEI(ch), addr + EDMA_SEEI);
  207. edma_writeb(fsl_chan->edma, ch, addr + EDMA_SERQ);
  208. }
  209. static void fsl_edma_disable_request(struct fsl_edma_chan *fsl_chan)
  210. {
  211. void __iomem *addr = fsl_chan->edma->membase;
  212. u32 ch = fsl_chan->vchan.chan.chan_id;
  213. edma_writeb(fsl_chan->edma, ch, addr + EDMA_CERQ);
  214. edma_writeb(fsl_chan->edma, EDMA_CEEI_CEEI(ch), addr + EDMA_CEEI);
  215. }
  216. static void fsl_edma_chan_mux(struct fsl_edma_chan *fsl_chan,
  217. unsigned int slot, bool enable)
  218. {
  219. u32 ch = fsl_chan->vchan.chan.chan_id;
  220. void __iomem *muxaddr = fsl_chan->edma->muxbase[ch / DMAMUX_NR];
  221. unsigned chans_per_mux, ch_off;
  222. chans_per_mux = fsl_chan->edma->n_chans / DMAMUX_NR;
  223. ch_off = fsl_chan->vchan.chan.chan_id % chans_per_mux;
  224. if (enable)
  225. edma_writeb(fsl_chan->edma,
  226. EDMAMUX_CHCFG_ENBL | EDMAMUX_CHCFG_SOURCE(slot),
  227. muxaddr + ch_off);
  228. else
  229. edma_writeb(fsl_chan->edma, EDMAMUX_CHCFG_DIS, muxaddr + ch_off);
  230. }
  231. static unsigned int fsl_edma_get_tcd_attr(enum dma_slave_buswidth addr_width)
  232. {
  233. switch (addr_width) {
  234. case 1:
  235. return EDMA_TCD_ATTR_SSIZE_8BIT | EDMA_TCD_ATTR_DSIZE_8BIT;
  236. case 2:
  237. return EDMA_TCD_ATTR_SSIZE_16BIT | EDMA_TCD_ATTR_DSIZE_16BIT;
  238. case 4:
  239. return EDMA_TCD_ATTR_SSIZE_32BIT | EDMA_TCD_ATTR_DSIZE_32BIT;
  240. case 8:
  241. return EDMA_TCD_ATTR_SSIZE_64BIT | EDMA_TCD_ATTR_DSIZE_64BIT;
  242. default:
  243. return EDMA_TCD_ATTR_SSIZE_32BIT | EDMA_TCD_ATTR_DSIZE_32BIT;
  244. }
  245. }
  246. static void fsl_edma_free_desc(struct virt_dma_desc *vdesc)
  247. {
  248. struct fsl_edma_desc *fsl_desc;
  249. int i;
  250. fsl_desc = to_fsl_edma_desc(vdesc);
  251. for (i = 0; i < fsl_desc->n_tcds; i++)
  252. dma_pool_free(fsl_desc->echan->tcd_pool,
  253. fsl_desc->tcd[i].vtcd,
  254. fsl_desc->tcd[i].ptcd);
  255. kfree(fsl_desc);
  256. }
  257. static int fsl_edma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
  258. unsigned long arg)
  259. {
  260. struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan);
  261. struct dma_slave_config *cfg = (void *)arg;
  262. unsigned long flags;
  263. LIST_HEAD(head);
  264. switch (cmd) {
  265. case DMA_TERMINATE_ALL:
  266. spin_lock_irqsave(&fsl_chan->vchan.lock, flags);
  267. fsl_edma_disable_request(fsl_chan);
  268. fsl_chan->edesc = NULL;
  269. vchan_get_all_descriptors(&fsl_chan->vchan, &head);
  270. spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags);
  271. vchan_dma_desc_free_list(&fsl_chan->vchan, &head);
  272. return 0;
  273. case DMA_SLAVE_CONFIG:
  274. fsl_chan->fsc.dir = cfg->direction;
  275. if (cfg->direction == DMA_DEV_TO_MEM) {
  276. fsl_chan->fsc.dev_addr = cfg->src_addr;
  277. fsl_chan->fsc.addr_width = cfg->src_addr_width;
  278. fsl_chan->fsc.burst = cfg->src_maxburst;
  279. fsl_chan->fsc.attr = fsl_edma_get_tcd_attr(cfg->src_addr_width);
  280. } else if (cfg->direction == DMA_MEM_TO_DEV) {
  281. fsl_chan->fsc.dev_addr = cfg->dst_addr;
  282. fsl_chan->fsc.addr_width = cfg->dst_addr_width;
  283. fsl_chan->fsc.burst = cfg->dst_maxburst;
  284. fsl_chan->fsc.attr = fsl_edma_get_tcd_attr(cfg->dst_addr_width);
  285. } else {
  286. return -EINVAL;
  287. }
  288. return 0;
  289. case DMA_PAUSE:
  290. spin_lock_irqsave(&fsl_chan->vchan.lock, flags);
  291. if (fsl_chan->edesc) {
  292. fsl_edma_disable_request(fsl_chan);
  293. fsl_chan->status = DMA_PAUSED;
  294. }
  295. spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags);
  296. return 0;
  297. case DMA_RESUME:
  298. spin_lock_irqsave(&fsl_chan->vchan.lock, flags);
  299. if (fsl_chan->edesc) {
  300. fsl_edma_enable_request(fsl_chan);
  301. fsl_chan->status = DMA_IN_PROGRESS;
  302. }
  303. spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags);
  304. return 0;
  305. default:
  306. return -ENXIO;
  307. }
  308. }
  309. static size_t fsl_edma_desc_residue(struct fsl_edma_chan *fsl_chan,
  310. struct virt_dma_desc *vdesc, bool in_progress)
  311. {
  312. struct fsl_edma_desc *edesc = fsl_chan->edesc;
  313. void __iomem *addr = fsl_chan->edma->membase;
  314. u32 ch = fsl_chan->vchan.chan.chan_id;
  315. enum dma_transfer_direction dir = fsl_chan->fsc.dir;
  316. dma_addr_t cur_addr, dma_addr;
  317. size_t len, size;
  318. int i;
  319. /* calculate the total size in this desc */
  320. for (len = i = 0; i < fsl_chan->edesc->n_tcds; i++)
  321. len += edma_readl(fsl_chan->edma, &(edesc->tcd[i].vtcd->nbytes))
  322. * edma_readw(fsl_chan->edma, &(edesc->tcd[i].vtcd->biter));
  323. if (!in_progress)
  324. return len;
  325. if (dir == DMA_MEM_TO_DEV)
  326. cur_addr = edma_readl(fsl_chan->edma, addr + EDMA_TCD_SADDR(ch));
  327. else
  328. cur_addr = edma_readl(fsl_chan->edma, addr + EDMA_TCD_DADDR(ch));
  329. /* figure out the finished and calculate the residue */
  330. for (i = 0; i < fsl_chan->edesc->n_tcds; i++) {
  331. size = edma_readl(fsl_chan->edma, &(edesc->tcd[i].vtcd->nbytes))
  332. * edma_readw(fsl_chan->edma, &(edesc->tcd[i].vtcd->biter));
  333. if (dir == DMA_MEM_TO_DEV)
  334. dma_addr = edma_readl(fsl_chan->edma,
  335. &(edesc->tcd[i].vtcd->saddr));
  336. else
  337. dma_addr = edma_readl(fsl_chan->edma,
  338. &(edesc->tcd[i].vtcd->daddr));
  339. len -= size;
  340. if (cur_addr > dma_addr && cur_addr < dma_addr + size) {
  341. len += dma_addr + size - cur_addr;
  342. break;
  343. }
  344. }
  345. return len;
  346. }
  347. static enum dma_status fsl_edma_tx_status(struct dma_chan *chan,
  348. dma_cookie_t cookie, struct dma_tx_state *txstate)
  349. {
  350. struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan);
  351. struct virt_dma_desc *vdesc;
  352. enum dma_status status;
  353. unsigned long flags;
  354. status = dma_cookie_status(chan, cookie, txstate);
  355. if (status == DMA_COMPLETE)
  356. return status;
  357. if (!txstate)
  358. return fsl_chan->status;
  359. spin_lock_irqsave(&fsl_chan->vchan.lock, flags);
  360. vdesc = vchan_find_desc(&fsl_chan->vchan, cookie);
  361. if (fsl_chan->edesc && cookie == fsl_chan->edesc->vdesc.tx.cookie)
  362. txstate->residue = fsl_edma_desc_residue(fsl_chan, vdesc, true);
  363. else if (vdesc)
  364. txstate->residue = fsl_edma_desc_residue(fsl_chan, vdesc, false);
  365. else
  366. txstate->residue = 0;
  367. spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags);
  368. return fsl_chan->status;
  369. }
  370. static void fsl_edma_set_tcd_params(struct fsl_edma_chan *fsl_chan,
  371. u32 src, u32 dst, u16 attr, u16 soff, u32 nbytes,
  372. u32 slast, u16 citer, u16 biter, u32 doff, u32 dlast_sga,
  373. u16 csr)
  374. {
  375. void __iomem *addr = fsl_chan->edma->membase;
  376. u32 ch = fsl_chan->vchan.chan.chan_id;
  377. /*
  378. * TCD parameters have been swapped in fill_tcd_params(),
  379. * so just write them to registers in the cpu endian here
  380. */
  381. writew(0, addr + EDMA_TCD_CSR(ch));
  382. writel(src, addr + EDMA_TCD_SADDR(ch));
  383. writel(dst, addr + EDMA_TCD_DADDR(ch));
  384. writew(attr, addr + EDMA_TCD_ATTR(ch));
  385. writew(soff, addr + EDMA_TCD_SOFF(ch));
  386. writel(nbytes, addr + EDMA_TCD_NBYTES(ch));
  387. writel(slast, addr + EDMA_TCD_SLAST(ch));
  388. writew(citer, addr + EDMA_TCD_CITER(ch));
  389. writew(biter, addr + EDMA_TCD_BITER(ch));
  390. writew(doff, addr + EDMA_TCD_DOFF(ch));
  391. writel(dlast_sga, addr + EDMA_TCD_DLAST_SGA(ch));
  392. writew(csr, addr + EDMA_TCD_CSR(ch));
  393. }
  394. static void fill_tcd_params(struct fsl_edma_engine *edma,
  395. struct fsl_edma_hw_tcd *tcd, u32 src, u32 dst,
  396. u16 attr, u16 soff, u32 nbytes, u32 slast, u16 citer,
  397. u16 biter, u16 doff, u32 dlast_sga, bool major_int,
  398. bool disable_req, bool enable_sg)
  399. {
  400. u16 csr = 0;
  401. /*
  402. * eDMA hardware SGs require the TCD parameters stored in memory
  403. * the same endian as the eDMA module so that they can be loaded
  404. * automatically by the engine
  405. */
  406. edma_writel(edma, src, &(tcd->saddr));
  407. edma_writel(edma, dst, &(tcd->daddr));
  408. edma_writew(edma, attr, &(tcd->attr));
  409. edma_writew(edma, EDMA_TCD_SOFF_SOFF(soff), &(tcd->soff));
  410. edma_writel(edma, EDMA_TCD_NBYTES_NBYTES(nbytes), &(tcd->nbytes));
  411. edma_writel(edma, EDMA_TCD_SLAST_SLAST(slast), &(tcd->slast));
  412. edma_writew(edma, EDMA_TCD_CITER_CITER(citer), &(tcd->citer));
  413. edma_writew(edma, EDMA_TCD_DOFF_DOFF(doff), &(tcd->doff));
  414. edma_writel(edma, EDMA_TCD_DLAST_SGA_DLAST_SGA(dlast_sga), &(tcd->dlast_sga));
  415. edma_writew(edma, EDMA_TCD_BITER_BITER(biter), &(tcd->biter));
  416. if (major_int)
  417. csr |= EDMA_TCD_CSR_INT_MAJOR;
  418. if (disable_req)
  419. csr |= EDMA_TCD_CSR_D_REQ;
  420. if (enable_sg)
  421. csr |= EDMA_TCD_CSR_E_SG;
  422. edma_writew(edma, csr, &(tcd->csr));
  423. }
  424. static struct fsl_edma_desc *fsl_edma_alloc_desc(struct fsl_edma_chan *fsl_chan,
  425. int sg_len)
  426. {
  427. struct fsl_edma_desc *fsl_desc;
  428. int i;
  429. fsl_desc = kzalloc(sizeof(*fsl_desc) + sizeof(struct fsl_edma_sw_tcd) * sg_len,
  430. GFP_NOWAIT);
  431. if (!fsl_desc)
  432. return NULL;
  433. fsl_desc->echan = fsl_chan;
  434. fsl_desc->n_tcds = sg_len;
  435. for (i = 0; i < sg_len; i++) {
  436. fsl_desc->tcd[i].vtcd = dma_pool_alloc(fsl_chan->tcd_pool,
  437. GFP_NOWAIT, &fsl_desc->tcd[i].ptcd);
  438. if (!fsl_desc->tcd[i].vtcd)
  439. goto err;
  440. }
  441. return fsl_desc;
  442. err:
  443. while (--i >= 0)
  444. dma_pool_free(fsl_chan->tcd_pool, fsl_desc->tcd[i].vtcd,
  445. fsl_desc->tcd[i].ptcd);
  446. kfree(fsl_desc);
  447. return NULL;
  448. }
  449. static struct dma_async_tx_descriptor *fsl_edma_prep_dma_cyclic(
  450. struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
  451. size_t period_len, enum dma_transfer_direction direction,
  452. unsigned long flags, void *context)
  453. {
  454. struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan);
  455. struct fsl_edma_desc *fsl_desc;
  456. dma_addr_t dma_buf_next;
  457. int sg_len, i;
  458. u32 src_addr, dst_addr, last_sg, nbytes;
  459. u16 soff, doff, iter;
  460. if (!is_slave_direction(fsl_chan->fsc.dir))
  461. return NULL;
  462. sg_len = buf_len / period_len;
  463. fsl_desc = fsl_edma_alloc_desc(fsl_chan, sg_len);
  464. if (!fsl_desc)
  465. return NULL;
  466. fsl_desc->iscyclic = true;
  467. dma_buf_next = dma_addr;
  468. nbytes = fsl_chan->fsc.addr_width * fsl_chan->fsc.burst;
  469. iter = period_len / nbytes;
  470. for (i = 0; i < sg_len; i++) {
  471. if (dma_buf_next >= dma_addr + buf_len)
  472. dma_buf_next = dma_addr;
  473. /* get next sg's physical address */
  474. last_sg = fsl_desc->tcd[(i + 1) % sg_len].ptcd;
  475. if (fsl_chan->fsc.dir == DMA_MEM_TO_DEV) {
  476. src_addr = dma_buf_next;
  477. dst_addr = fsl_chan->fsc.dev_addr;
  478. soff = fsl_chan->fsc.addr_width;
  479. doff = 0;
  480. } else {
  481. src_addr = fsl_chan->fsc.dev_addr;
  482. dst_addr = dma_buf_next;
  483. soff = 0;
  484. doff = fsl_chan->fsc.addr_width;
  485. }
  486. fill_tcd_params(fsl_chan->edma, fsl_desc->tcd[i].vtcd, src_addr,
  487. dst_addr, fsl_chan->fsc.attr, soff, nbytes, 0,
  488. iter, iter, doff, last_sg, true, false, true);
  489. dma_buf_next += period_len;
  490. }
  491. return vchan_tx_prep(&fsl_chan->vchan, &fsl_desc->vdesc, flags);
  492. }
  493. static struct dma_async_tx_descriptor *fsl_edma_prep_slave_sg(
  494. struct dma_chan *chan, struct scatterlist *sgl,
  495. unsigned int sg_len, enum dma_transfer_direction direction,
  496. unsigned long flags, void *context)
  497. {
  498. struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan);
  499. struct fsl_edma_desc *fsl_desc;
  500. struct scatterlist *sg;
  501. u32 src_addr, dst_addr, last_sg, nbytes;
  502. u16 soff, doff, iter;
  503. int i;
  504. if (!is_slave_direction(fsl_chan->fsc.dir))
  505. return NULL;
  506. fsl_desc = fsl_edma_alloc_desc(fsl_chan, sg_len);
  507. if (!fsl_desc)
  508. return NULL;
  509. fsl_desc->iscyclic = false;
  510. nbytes = fsl_chan->fsc.addr_width * fsl_chan->fsc.burst;
  511. for_each_sg(sgl, sg, sg_len, i) {
  512. /* get next sg's physical address */
  513. last_sg = fsl_desc->tcd[(i + 1) % sg_len].ptcd;
  514. if (fsl_chan->fsc.dir == DMA_MEM_TO_DEV) {
  515. src_addr = sg_dma_address(sg);
  516. dst_addr = fsl_chan->fsc.dev_addr;
  517. soff = fsl_chan->fsc.addr_width;
  518. doff = 0;
  519. } else {
  520. src_addr = fsl_chan->fsc.dev_addr;
  521. dst_addr = sg_dma_address(sg);
  522. soff = 0;
  523. doff = fsl_chan->fsc.addr_width;
  524. }
  525. iter = sg_dma_len(sg) / nbytes;
  526. if (i < sg_len - 1) {
  527. last_sg = fsl_desc->tcd[(i + 1)].ptcd;
  528. fill_tcd_params(fsl_chan->edma, fsl_desc->tcd[i].vtcd,
  529. src_addr, dst_addr, fsl_chan->fsc.attr,
  530. soff, nbytes, 0, iter, iter, doff, last_sg,
  531. false, false, true);
  532. } else {
  533. last_sg = 0;
  534. fill_tcd_params(fsl_chan->edma, fsl_desc->tcd[i].vtcd,
  535. src_addr, dst_addr, fsl_chan->fsc.attr,
  536. soff, nbytes, 0, iter, iter, doff, last_sg,
  537. true, true, false);
  538. }
  539. }
  540. return vchan_tx_prep(&fsl_chan->vchan, &fsl_desc->vdesc, flags);
  541. }
  542. static void fsl_edma_xfer_desc(struct fsl_edma_chan *fsl_chan)
  543. {
  544. struct fsl_edma_hw_tcd *tcd;
  545. struct virt_dma_desc *vdesc;
  546. vdesc = vchan_next_desc(&fsl_chan->vchan);
  547. if (!vdesc)
  548. return;
  549. fsl_chan->edesc = to_fsl_edma_desc(vdesc);
  550. tcd = fsl_chan->edesc->tcd[0].vtcd;
  551. fsl_edma_set_tcd_params(fsl_chan, tcd->saddr, tcd->daddr, tcd->attr,
  552. tcd->soff, tcd->nbytes, tcd->slast, tcd->citer,
  553. tcd->biter, tcd->doff, tcd->dlast_sga, tcd->csr);
  554. fsl_edma_enable_request(fsl_chan);
  555. fsl_chan->status = DMA_IN_PROGRESS;
  556. }
  557. static irqreturn_t fsl_edma_tx_handler(int irq, void *dev_id)
  558. {
  559. struct fsl_edma_engine *fsl_edma = dev_id;
  560. unsigned int intr, ch;
  561. void __iomem *base_addr;
  562. struct fsl_edma_chan *fsl_chan;
  563. base_addr = fsl_edma->membase;
  564. intr = edma_readl(fsl_edma, base_addr + EDMA_INTR);
  565. if (!intr)
  566. return IRQ_NONE;
  567. for (ch = 0; ch < fsl_edma->n_chans; ch++) {
  568. if (intr & (0x1 << ch)) {
  569. edma_writeb(fsl_edma, EDMA_CINT_CINT(ch),
  570. base_addr + EDMA_CINT);
  571. fsl_chan = &fsl_edma->chans[ch];
  572. spin_lock(&fsl_chan->vchan.lock);
  573. if (!fsl_chan->edesc->iscyclic) {
  574. list_del(&fsl_chan->edesc->vdesc.node);
  575. vchan_cookie_complete(&fsl_chan->edesc->vdesc);
  576. fsl_chan->edesc = NULL;
  577. fsl_chan->status = DMA_COMPLETE;
  578. } else {
  579. vchan_cyclic_callback(&fsl_chan->edesc->vdesc);
  580. }
  581. if (!fsl_chan->edesc)
  582. fsl_edma_xfer_desc(fsl_chan);
  583. spin_unlock(&fsl_chan->vchan.lock);
  584. }
  585. }
  586. return IRQ_HANDLED;
  587. }
  588. static irqreturn_t fsl_edma_err_handler(int irq, void *dev_id)
  589. {
  590. struct fsl_edma_engine *fsl_edma = dev_id;
  591. unsigned int err, ch;
  592. err = edma_readl(fsl_edma, fsl_edma->membase + EDMA_ERR);
  593. if (!err)
  594. return IRQ_NONE;
  595. for (ch = 0; ch < fsl_edma->n_chans; ch++) {
  596. if (err & (0x1 << ch)) {
  597. fsl_edma_disable_request(&fsl_edma->chans[ch]);
  598. edma_writeb(fsl_edma, EDMA_CERR_CERR(ch),
  599. fsl_edma->membase + EDMA_CERR);
  600. fsl_edma->chans[ch].status = DMA_ERROR;
  601. }
  602. }
  603. return IRQ_HANDLED;
  604. }
  605. static irqreturn_t fsl_edma_irq_handler(int irq, void *dev_id)
  606. {
  607. if (fsl_edma_tx_handler(irq, dev_id) == IRQ_HANDLED)
  608. return IRQ_HANDLED;
  609. return fsl_edma_err_handler(irq, dev_id);
  610. }
  611. static void fsl_edma_issue_pending(struct dma_chan *chan)
  612. {
  613. struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan);
  614. unsigned long flags;
  615. spin_lock_irqsave(&fsl_chan->vchan.lock, flags);
  616. if (vchan_issue_pending(&fsl_chan->vchan) && !fsl_chan->edesc)
  617. fsl_edma_xfer_desc(fsl_chan);
  618. spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags);
  619. }
  620. static struct dma_chan *fsl_edma_xlate(struct of_phandle_args *dma_spec,
  621. struct of_dma *ofdma)
  622. {
  623. struct fsl_edma_engine *fsl_edma = ofdma->of_dma_data;
  624. struct dma_chan *chan, *_chan;
  625. if (dma_spec->args_count != 2)
  626. return NULL;
  627. mutex_lock(&fsl_edma->fsl_edma_mutex);
  628. list_for_each_entry_safe(chan, _chan, &fsl_edma->dma_dev.channels, device_node) {
  629. if (chan->client_count)
  630. continue;
  631. if ((chan->chan_id / DMAMUX_NR) == dma_spec->args[0]) {
  632. chan = dma_get_slave_channel(chan);
  633. if (chan) {
  634. chan->device->privatecnt++;
  635. fsl_edma_chan_mux(to_fsl_edma_chan(chan),
  636. dma_spec->args[1], true);
  637. mutex_unlock(&fsl_edma->fsl_edma_mutex);
  638. return chan;
  639. }
  640. }
  641. }
  642. mutex_unlock(&fsl_edma->fsl_edma_mutex);
  643. return NULL;
  644. }
  645. static int fsl_edma_alloc_chan_resources(struct dma_chan *chan)
  646. {
  647. struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan);
  648. fsl_chan->tcd_pool = dma_pool_create("tcd_pool", chan->device->dev,
  649. sizeof(struct fsl_edma_hw_tcd),
  650. 32, 0);
  651. return 0;
  652. }
  653. static void fsl_edma_free_chan_resources(struct dma_chan *chan)
  654. {
  655. struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan);
  656. unsigned long flags;
  657. LIST_HEAD(head);
  658. spin_lock_irqsave(&fsl_chan->vchan.lock, flags);
  659. fsl_edma_disable_request(fsl_chan);
  660. fsl_edma_chan_mux(fsl_chan, 0, false);
  661. fsl_chan->edesc = NULL;
  662. vchan_get_all_descriptors(&fsl_chan->vchan, &head);
  663. spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags);
  664. vchan_dma_desc_free_list(&fsl_chan->vchan, &head);
  665. dma_pool_destroy(fsl_chan->tcd_pool);
  666. fsl_chan->tcd_pool = NULL;
  667. }
  668. static int fsl_dma_device_slave_caps(struct dma_chan *dchan,
  669. struct dma_slave_caps *caps)
  670. {
  671. caps->src_addr_widths = FSL_EDMA_BUSWIDTHS;
  672. caps->dstn_addr_widths = FSL_EDMA_BUSWIDTHS;
  673. caps->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
  674. caps->cmd_pause = true;
  675. caps->cmd_terminate = true;
  676. return 0;
  677. }
  678. static int
  679. fsl_edma_irq_init(struct platform_device *pdev, struct fsl_edma_engine *fsl_edma)
  680. {
  681. int ret;
  682. fsl_edma->txirq = platform_get_irq_byname(pdev, "edma-tx");
  683. if (fsl_edma->txirq < 0) {
  684. dev_err(&pdev->dev, "Can't get edma-tx irq.\n");
  685. return fsl_edma->txirq;
  686. }
  687. fsl_edma->errirq = platform_get_irq_byname(pdev, "edma-err");
  688. if (fsl_edma->errirq < 0) {
  689. dev_err(&pdev->dev, "Can't get edma-err irq.\n");
  690. return fsl_edma->errirq;
  691. }
  692. if (fsl_edma->txirq == fsl_edma->errirq) {
  693. ret = devm_request_irq(&pdev->dev, fsl_edma->txirq,
  694. fsl_edma_irq_handler, 0, "eDMA", fsl_edma);
  695. if (ret) {
  696. dev_err(&pdev->dev, "Can't register eDMA IRQ.\n");
  697. return ret;
  698. }
  699. } else {
  700. ret = devm_request_irq(&pdev->dev, fsl_edma->txirq,
  701. fsl_edma_tx_handler, 0, "eDMA tx", fsl_edma);
  702. if (ret) {
  703. dev_err(&pdev->dev, "Can't register eDMA tx IRQ.\n");
  704. return ret;
  705. }
  706. ret = devm_request_irq(&pdev->dev, fsl_edma->errirq,
  707. fsl_edma_err_handler, 0, "eDMA err", fsl_edma);
  708. if (ret) {
  709. dev_err(&pdev->dev, "Can't register eDMA err IRQ.\n");
  710. return ret;
  711. }
  712. }
  713. return 0;
  714. }
  715. static int fsl_edma_probe(struct platform_device *pdev)
  716. {
  717. struct device_node *np = pdev->dev.of_node;
  718. struct fsl_edma_engine *fsl_edma;
  719. struct fsl_edma_chan *fsl_chan;
  720. struct resource *res;
  721. int len, chans;
  722. int ret, i;
  723. ret = of_property_read_u32(np, "dma-channels", &chans);
  724. if (ret) {
  725. dev_err(&pdev->dev, "Can't get dma-channels.\n");
  726. return ret;
  727. }
  728. len = sizeof(*fsl_edma) + sizeof(*fsl_chan) * chans;
  729. fsl_edma = devm_kzalloc(&pdev->dev, len, GFP_KERNEL);
  730. if (!fsl_edma)
  731. return -ENOMEM;
  732. fsl_edma->n_chans = chans;
  733. mutex_init(&fsl_edma->fsl_edma_mutex);
  734. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  735. fsl_edma->membase = devm_ioremap_resource(&pdev->dev, res);
  736. if (IS_ERR(fsl_edma->membase))
  737. return PTR_ERR(fsl_edma->membase);
  738. for (i = 0; i < DMAMUX_NR; i++) {
  739. char clkname[32];
  740. res = platform_get_resource(pdev, IORESOURCE_MEM, 1 + i);
  741. fsl_edma->muxbase[i] = devm_ioremap_resource(&pdev->dev, res);
  742. if (IS_ERR(fsl_edma->muxbase[i]))
  743. return PTR_ERR(fsl_edma->muxbase[i]);
  744. sprintf(clkname, "dmamux%d", i);
  745. fsl_edma->muxclk[i] = devm_clk_get(&pdev->dev, clkname);
  746. if (IS_ERR(fsl_edma->muxclk[i])) {
  747. dev_err(&pdev->dev, "Missing DMAMUX block clock.\n");
  748. return PTR_ERR(fsl_edma->muxclk[i]);
  749. }
  750. ret = clk_prepare_enable(fsl_edma->muxclk[i]);
  751. if (ret) {
  752. dev_err(&pdev->dev, "DMAMUX clk block failed.\n");
  753. return ret;
  754. }
  755. }
  756. ret = fsl_edma_irq_init(pdev, fsl_edma);
  757. if (ret)
  758. return ret;
  759. fsl_edma->big_endian = of_property_read_bool(np, "big-endian");
  760. INIT_LIST_HEAD(&fsl_edma->dma_dev.channels);
  761. for (i = 0; i < fsl_edma->n_chans; i++) {
  762. struct fsl_edma_chan *fsl_chan = &fsl_edma->chans[i];
  763. fsl_chan->edma = fsl_edma;
  764. fsl_chan->vchan.desc_free = fsl_edma_free_desc;
  765. vchan_init(&fsl_chan->vchan, &fsl_edma->dma_dev);
  766. edma_writew(fsl_edma, 0x0, fsl_edma->membase + EDMA_TCD_CSR(i));
  767. fsl_edma_chan_mux(fsl_chan, 0, false);
  768. }
  769. dma_cap_set(DMA_PRIVATE, fsl_edma->dma_dev.cap_mask);
  770. dma_cap_set(DMA_SLAVE, fsl_edma->dma_dev.cap_mask);
  771. dma_cap_set(DMA_CYCLIC, fsl_edma->dma_dev.cap_mask);
  772. fsl_edma->dma_dev.dev = &pdev->dev;
  773. fsl_edma->dma_dev.device_alloc_chan_resources
  774. = fsl_edma_alloc_chan_resources;
  775. fsl_edma->dma_dev.device_free_chan_resources
  776. = fsl_edma_free_chan_resources;
  777. fsl_edma->dma_dev.device_tx_status = fsl_edma_tx_status;
  778. fsl_edma->dma_dev.device_prep_slave_sg = fsl_edma_prep_slave_sg;
  779. fsl_edma->dma_dev.device_prep_dma_cyclic = fsl_edma_prep_dma_cyclic;
  780. fsl_edma->dma_dev.device_control = fsl_edma_control;
  781. fsl_edma->dma_dev.device_issue_pending = fsl_edma_issue_pending;
  782. fsl_edma->dma_dev.device_slave_caps = fsl_dma_device_slave_caps;
  783. platform_set_drvdata(pdev, fsl_edma);
  784. ret = dma_async_device_register(&fsl_edma->dma_dev);
  785. if (ret) {
  786. dev_err(&pdev->dev, "Can't register Freescale eDMA engine.\n");
  787. return ret;
  788. }
  789. ret = of_dma_controller_register(np, fsl_edma_xlate, fsl_edma);
  790. if (ret) {
  791. dev_err(&pdev->dev, "Can't register Freescale eDMA of_dma.\n");
  792. dma_async_device_unregister(&fsl_edma->dma_dev);
  793. return ret;
  794. }
  795. /* enable round robin arbitration */
  796. edma_writel(fsl_edma, EDMA_CR_ERGA | EDMA_CR_ERCA, fsl_edma->membase + EDMA_CR);
  797. return 0;
  798. }
  799. static int fsl_edma_remove(struct platform_device *pdev)
  800. {
  801. struct device_node *np = pdev->dev.of_node;
  802. struct fsl_edma_engine *fsl_edma = platform_get_drvdata(pdev);
  803. int i;
  804. of_dma_controller_free(np);
  805. dma_async_device_unregister(&fsl_edma->dma_dev);
  806. for (i = 0; i < DMAMUX_NR; i++)
  807. clk_disable_unprepare(fsl_edma->muxclk[i]);
  808. return 0;
  809. }
  810. static const struct of_device_id fsl_edma_dt_ids[] = {
  811. { .compatible = "fsl,vf610-edma", },
  812. { /* sentinel */ }
  813. };
  814. MODULE_DEVICE_TABLE(of, fsl_edma_dt_ids);
  815. static struct platform_driver fsl_edma_driver = {
  816. .driver = {
  817. .name = "fsl-edma",
  818. .owner = THIS_MODULE,
  819. .of_match_table = fsl_edma_dt_ids,
  820. },
  821. .probe = fsl_edma_probe,
  822. .remove = fsl_edma_remove,
  823. };
  824. static int __init fsl_edma_init(void)
  825. {
  826. return platform_driver_register(&fsl_edma_driver);
  827. }
  828. subsys_initcall(fsl_edma_init);
  829. static void __exit fsl_edma_exit(void)
  830. {
  831. platform_driver_unregister(&fsl_edma_driver);
  832. }
  833. module_exit(fsl_edma_exit);
  834. MODULE_ALIAS("platform:fsl-edma");
  835. MODULE_DESCRIPTION("Freescale eDMA engine driver");
  836. MODULE_LICENSE("GPL v2");