cppi41.c 25 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105
  1. #include <linux/dmaengine.h>
  2. #include <linux/dma-mapping.h>
  3. #include <linux/platform_device.h>
  4. #include <linux/module.h>
  5. #include <linux/of.h>
  6. #include <linux/slab.h>
  7. #include <linux/of_dma.h>
  8. #include <linux/of_irq.h>
  9. #include <linux/dmapool.h>
  10. #include <linux/interrupt.h>
  11. #include <linux/of_address.h>
  12. #include <linux/pm_runtime.h>
  13. #include "dmaengine.h"
  14. #define DESC_TYPE 27
  15. #define DESC_TYPE_HOST 0x10
  16. #define DESC_TYPE_TEARD 0x13
  17. #define TD_DESC_IS_RX (1 << 16)
  18. #define TD_DESC_DMA_NUM 10
  19. #define DESC_LENGTH_BITS_NUM 21
  20. #define DESC_TYPE_USB (5 << 26)
  21. #define DESC_PD_COMPLETE (1 << 31)
  22. /* DMA engine */
  23. #define DMA_TDFDQ 4
  24. #define DMA_TXGCR(x) (0x800 + (x) * 0x20)
  25. #define DMA_RXGCR(x) (0x808 + (x) * 0x20)
  26. #define RXHPCRA0 4
  27. #define GCR_CHAN_ENABLE (1 << 31)
  28. #define GCR_TEARDOWN (1 << 30)
  29. #define GCR_STARV_RETRY (1 << 24)
  30. #define GCR_DESC_TYPE_HOST (1 << 14)
  31. /* DMA scheduler */
  32. #define DMA_SCHED_CTRL 0
  33. #define DMA_SCHED_CTRL_EN (1 << 31)
  34. #define DMA_SCHED_WORD(x) ((x) * 4 + 0x800)
  35. #define SCHED_ENTRY0_CHAN(x) ((x) << 0)
  36. #define SCHED_ENTRY0_IS_RX (1 << 7)
  37. #define SCHED_ENTRY1_CHAN(x) ((x) << 8)
  38. #define SCHED_ENTRY1_IS_RX (1 << 15)
  39. #define SCHED_ENTRY2_CHAN(x) ((x) << 16)
  40. #define SCHED_ENTRY2_IS_RX (1 << 23)
  41. #define SCHED_ENTRY3_CHAN(x) ((x) << 24)
  42. #define SCHED_ENTRY3_IS_RX (1 << 31)
  43. /* Queue manager */
  44. /* 4 KiB of memory for descriptors, 2 for each endpoint */
  45. #define ALLOC_DECS_NUM 128
  46. #define DESCS_AREAS 1
  47. #define TOTAL_DESCS_NUM (ALLOC_DECS_NUM * DESCS_AREAS)
  48. #define QMGR_SCRATCH_SIZE (TOTAL_DESCS_NUM * 4)
  49. #define QMGR_LRAM0_BASE 0x80
  50. #define QMGR_LRAM_SIZE 0x84
  51. #define QMGR_LRAM1_BASE 0x88
  52. #define QMGR_MEMBASE(x) (0x1000 + (x) * 0x10)
  53. #define QMGR_MEMCTRL(x) (0x1004 + (x) * 0x10)
  54. #define QMGR_MEMCTRL_IDX_SH 16
  55. #define QMGR_MEMCTRL_DESC_SH 8
  56. #define QMGR_NUM_PEND 5
  57. #define QMGR_PEND(x) (0x90 + (x) * 4)
  58. #define QMGR_PENDING_SLOT_Q(x) (x / 32)
  59. #define QMGR_PENDING_BIT_Q(x) (x % 32)
  60. #define QMGR_QUEUE_A(n) (0x2000 + (n) * 0x10)
  61. #define QMGR_QUEUE_B(n) (0x2004 + (n) * 0x10)
  62. #define QMGR_QUEUE_C(n) (0x2008 + (n) * 0x10)
  63. #define QMGR_QUEUE_D(n) (0x200c + (n) * 0x10)
  64. /* Glue layer specific */
  65. /* USBSS / USB AM335x */
  66. #define USBSS_IRQ_STATUS 0x28
  67. #define USBSS_IRQ_ENABLER 0x2c
  68. #define USBSS_IRQ_CLEARR 0x30
  69. #define USBSS_IRQ_PD_COMP (1 << 2)
  70. /* Packet Descriptor */
  71. #define PD2_ZERO_LENGTH (1 << 19)
  72. struct cppi41_channel {
  73. struct dma_chan chan;
  74. struct dma_async_tx_descriptor txd;
  75. struct cppi41_dd *cdd;
  76. struct cppi41_desc *desc;
  77. dma_addr_t desc_phys;
  78. void __iomem *gcr_reg;
  79. int is_tx;
  80. u32 residue;
  81. unsigned int q_num;
  82. unsigned int q_comp_num;
  83. unsigned int port_num;
  84. unsigned td_retry;
  85. unsigned td_queued:1;
  86. unsigned td_seen:1;
  87. unsigned td_desc_seen:1;
  88. };
  89. struct cppi41_desc {
  90. u32 pd0;
  91. u32 pd1;
  92. u32 pd2;
  93. u32 pd3;
  94. u32 pd4;
  95. u32 pd5;
  96. u32 pd6;
  97. u32 pd7;
  98. } __aligned(32);
  99. struct chan_queues {
  100. u16 submit;
  101. u16 complete;
  102. };
  103. struct cppi41_dd {
  104. struct dma_device ddev;
  105. void *qmgr_scratch;
  106. dma_addr_t scratch_phys;
  107. struct cppi41_desc *cd;
  108. dma_addr_t descs_phys;
  109. u32 first_td_desc;
  110. struct cppi41_channel *chan_busy[ALLOC_DECS_NUM];
  111. void __iomem *usbss_mem;
  112. void __iomem *ctrl_mem;
  113. void __iomem *sched_mem;
  114. void __iomem *qmgr_mem;
  115. unsigned int irq;
  116. const struct chan_queues *queues_rx;
  117. const struct chan_queues *queues_tx;
  118. struct chan_queues td_queue;
  119. /* context for suspend/resume */
  120. unsigned int dma_tdfdq;
  121. };
  122. #define FIST_COMPLETION_QUEUE 93
  123. static struct chan_queues usb_queues_tx[] = {
  124. /* USB0 ENDP 1 */
  125. [ 0] = { .submit = 32, .complete = 93},
  126. [ 1] = { .submit = 34, .complete = 94},
  127. [ 2] = { .submit = 36, .complete = 95},
  128. [ 3] = { .submit = 38, .complete = 96},
  129. [ 4] = { .submit = 40, .complete = 97},
  130. [ 5] = { .submit = 42, .complete = 98},
  131. [ 6] = { .submit = 44, .complete = 99},
  132. [ 7] = { .submit = 46, .complete = 100},
  133. [ 8] = { .submit = 48, .complete = 101},
  134. [ 9] = { .submit = 50, .complete = 102},
  135. [10] = { .submit = 52, .complete = 103},
  136. [11] = { .submit = 54, .complete = 104},
  137. [12] = { .submit = 56, .complete = 105},
  138. [13] = { .submit = 58, .complete = 106},
  139. [14] = { .submit = 60, .complete = 107},
  140. /* USB1 ENDP1 */
  141. [15] = { .submit = 62, .complete = 125},
  142. [16] = { .submit = 64, .complete = 126},
  143. [17] = { .submit = 66, .complete = 127},
  144. [18] = { .submit = 68, .complete = 128},
  145. [19] = { .submit = 70, .complete = 129},
  146. [20] = { .submit = 72, .complete = 130},
  147. [21] = { .submit = 74, .complete = 131},
  148. [22] = { .submit = 76, .complete = 132},
  149. [23] = { .submit = 78, .complete = 133},
  150. [24] = { .submit = 80, .complete = 134},
  151. [25] = { .submit = 82, .complete = 135},
  152. [26] = { .submit = 84, .complete = 136},
  153. [27] = { .submit = 86, .complete = 137},
  154. [28] = { .submit = 88, .complete = 138},
  155. [29] = { .submit = 90, .complete = 139},
  156. };
  157. static const struct chan_queues usb_queues_rx[] = {
  158. /* USB0 ENDP 1 */
  159. [ 0] = { .submit = 1, .complete = 109},
  160. [ 1] = { .submit = 2, .complete = 110},
  161. [ 2] = { .submit = 3, .complete = 111},
  162. [ 3] = { .submit = 4, .complete = 112},
  163. [ 4] = { .submit = 5, .complete = 113},
  164. [ 5] = { .submit = 6, .complete = 114},
  165. [ 6] = { .submit = 7, .complete = 115},
  166. [ 7] = { .submit = 8, .complete = 116},
  167. [ 8] = { .submit = 9, .complete = 117},
  168. [ 9] = { .submit = 10, .complete = 118},
  169. [10] = { .submit = 11, .complete = 119},
  170. [11] = { .submit = 12, .complete = 120},
  171. [12] = { .submit = 13, .complete = 121},
  172. [13] = { .submit = 14, .complete = 122},
  173. [14] = { .submit = 15, .complete = 123},
  174. /* USB1 ENDP 1 */
  175. [15] = { .submit = 16, .complete = 141},
  176. [16] = { .submit = 17, .complete = 142},
  177. [17] = { .submit = 18, .complete = 143},
  178. [18] = { .submit = 19, .complete = 144},
  179. [19] = { .submit = 20, .complete = 145},
  180. [20] = { .submit = 21, .complete = 146},
  181. [21] = { .submit = 22, .complete = 147},
  182. [22] = { .submit = 23, .complete = 148},
  183. [23] = { .submit = 24, .complete = 149},
  184. [24] = { .submit = 25, .complete = 150},
  185. [25] = { .submit = 26, .complete = 151},
  186. [26] = { .submit = 27, .complete = 152},
  187. [27] = { .submit = 28, .complete = 153},
  188. [28] = { .submit = 29, .complete = 154},
  189. [29] = { .submit = 30, .complete = 155},
  190. };
  191. struct cppi_glue_infos {
  192. irqreturn_t (*isr)(int irq, void *data);
  193. const struct chan_queues *queues_rx;
  194. const struct chan_queues *queues_tx;
  195. struct chan_queues td_queue;
  196. };
  197. static struct cppi41_channel *to_cpp41_chan(struct dma_chan *c)
  198. {
  199. return container_of(c, struct cppi41_channel, chan);
  200. }
  201. static struct cppi41_channel *desc_to_chan(struct cppi41_dd *cdd, u32 desc)
  202. {
  203. struct cppi41_channel *c;
  204. u32 descs_size;
  205. u32 desc_num;
  206. descs_size = sizeof(struct cppi41_desc) * ALLOC_DECS_NUM;
  207. if (!((desc >= cdd->descs_phys) &&
  208. (desc < (cdd->descs_phys + descs_size)))) {
  209. return NULL;
  210. }
  211. desc_num = (desc - cdd->descs_phys) / sizeof(struct cppi41_desc);
  212. BUG_ON(desc_num >= ALLOC_DECS_NUM);
  213. c = cdd->chan_busy[desc_num];
  214. cdd->chan_busy[desc_num] = NULL;
  215. return c;
  216. }
  217. static void cppi_writel(u32 val, void *__iomem *mem)
  218. {
  219. __raw_writel(val, mem);
  220. }
  221. static u32 cppi_readl(void *__iomem *mem)
  222. {
  223. return __raw_readl(mem);
  224. }
  225. static u32 pd_trans_len(u32 val)
  226. {
  227. return val & ((1 << (DESC_LENGTH_BITS_NUM + 1)) - 1);
  228. }
  229. static u32 cppi41_pop_desc(struct cppi41_dd *cdd, unsigned queue_num)
  230. {
  231. u32 desc;
  232. desc = cppi_readl(cdd->qmgr_mem + QMGR_QUEUE_D(queue_num));
  233. desc &= ~0x1f;
  234. return desc;
  235. }
  236. static irqreturn_t cppi41_irq(int irq, void *data)
  237. {
  238. struct cppi41_dd *cdd = data;
  239. struct cppi41_channel *c;
  240. u32 status;
  241. int i;
  242. status = cppi_readl(cdd->usbss_mem + USBSS_IRQ_STATUS);
  243. if (!(status & USBSS_IRQ_PD_COMP))
  244. return IRQ_NONE;
  245. cppi_writel(status, cdd->usbss_mem + USBSS_IRQ_STATUS);
  246. for (i = QMGR_PENDING_SLOT_Q(FIST_COMPLETION_QUEUE); i < QMGR_NUM_PEND;
  247. i++) {
  248. u32 val;
  249. u32 q_num;
  250. val = cppi_readl(cdd->qmgr_mem + QMGR_PEND(i));
  251. if (i == QMGR_PENDING_SLOT_Q(FIST_COMPLETION_QUEUE) && val) {
  252. u32 mask;
  253. /* set corresponding bit for completetion Q 93 */
  254. mask = 1 << QMGR_PENDING_BIT_Q(FIST_COMPLETION_QUEUE);
  255. /* not set all bits for queues less than Q 93 */
  256. mask--;
  257. /* now invert and keep only Q 93+ set */
  258. val &= ~mask;
  259. }
  260. if (val)
  261. __iormb();
  262. while (val) {
  263. u32 desc, len;
  264. q_num = __fls(val);
  265. val &= ~(1 << q_num);
  266. q_num += 32 * i;
  267. desc = cppi41_pop_desc(cdd, q_num);
  268. c = desc_to_chan(cdd, desc);
  269. if (WARN_ON(!c)) {
  270. pr_err("%s() q %d desc %08x\n", __func__,
  271. q_num, desc);
  272. continue;
  273. }
  274. if (c->desc->pd2 & PD2_ZERO_LENGTH)
  275. len = 0;
  276. else
  277. len = pd_trans_len(c->desc->pd0);
  278. c->residue = pd_trans_len(c->desc->pd6) - len;
  279. dma_cookie_complete(&c->txd);
  280. c->txd.callback(c->txd.callback_param);
  281. }
  282. }
  283. return IRQ_HANDLED;
  284. }
  285. static dma_cookie_t cppi41_tx_submit(struct dma_async_tx_descriptor *tx)
  286. {
  287. dma_cookie_t cookie;
  288. cookie = dma_cookie_assign(tx);
  289. return cookie;
  290. }
  291. static int cppi41_dma_alloc_chan_resources(struct dma_chan *chan)
  292. {
  293. struct cppi41_channel *c = to_cpp41_chan(chan);
  294. dma_cookie_init(chan);
  295. dma_async_tx_descriptor_init(&c->txd, chan);
  296. c->txd.tx_submit = cppi41_tx_submit;
  297. if (!c->is_tx)
  298. cppi_writel(c->q_num, c->gcr_reg + RXHPCRA0);
  299. return 0;
  300. }
  301. static void cppi41_dma_free_chan_resources(struct dma_chan *chan)
  302. {
  303. }
  304. static enum dma_status cppi41_dma_tx_status(struct dma_chan *chan,
  305. dma_cookie_t cookie, struct dma_tx_state *txstate)
  306. {
  307. struct cppi41_channel *c = to_cpp41_chan(chan);
  308. enum dma_status ret;
  309. /* lock */
  310. ret = dma_cookie_status(chan, cookie, txstate);
  311. if (txstate && ret == DMA_COMPLETE)
  312. txstate->residue = c->residue;
  313. /* unlock */
  314. return ret;
  315. }
  316. static void push_desc_queue(struct cppi41_channel *c)
  317. {
  318. struct cppi41_dd *cdd = c->cdd;
  319. u32 desc_num;
  320. u32 desc_phys;
  321. u32 reg;
  322. desc_phys = lower_32_bits(c->desc_phys);
  323. desc_num = (desc_phys - cdd->descs_phys) / sizeof(struct cppi41_desc);
  324. WARN_ON(cdd->chan_busy[desc_num]);
  325. cdd->chan_busy[desc_num] = c;
  326. reg = (sizeof(struct cppi41_desc) - 24) / 4;
  327. reg |= desc_phys;
  328. cppi_writel(reg, cdd->qmgr_mem + QMGR_QUEUE_D(c->q_num));
  329. }
  330. static void cppi41_dma_issue_pending(struct dma_chan *chan)
  331. {
  332. struct cppi41_channel *c = to_cpp41_chan(chan);
  333. u32 reg;
  334. c->residue = 0;
  335. reg = GCR_CHAN_ENABLE;
  336. if (!c->is_tx) {
  337. reg |= GCR_STARV_RETRY;
  338. reg |= GCR_DESC_TYPE_HOST;
  339. reg |= c->q_comp_num;
  340. }
  341. cppi_writel(reg, c->gcr_reg);
  342. /*
  343. * We don't use writel() but __raw_writel() so we have to make sure
  344. * that the DMA descriptor in coherent memory made to the main memory
  345. * before starting the dma engine.
  346. */
  347. __iowmb();
  348. push_desc_queue(c);
  349. }
  350. static u32 get_host_pd0(u32 length)
  351. {
  352. u32 reg;
  353. reg = DESC_TYPE_HOST << DESC_TYPE;
  354. reg |= length;
  355. return reg;
  356. }
  357. static u32 get_host_pd1(struct cppi41_channel *c)
  358. {
  359. u32 reg;
  360. reg = 0;
  361. return reg;
  362. }
  363. static u32 get_host_pd2(struct cppi41_channel *c)
  364. {
  365. u32 reg;
  366. reg = DESC_TYPE_USB;
  367. reg |= c->q_comp_num;
  368. return reg;
  369. }
  370. static u32 get_host_pd3(u32 length)
  371. {
  372. u32 reg;
  373. /* PD3 = packet size */
  374. reg = length;
  375. return reg;
  376. }
  377. static u32 get_host_pd6(u32 length)
  378. {
  379. u32 reg;
  380. /* PD6 buffer size */
  381. reg = DESC_PD_COMPLETE;
  382. reg |= length;
  383. return reg;
  384. }
  385. static u32 get_host_pd4_or_7(u32 addr)
  386. {
  387. u32 reg;
  388. reg = addr;
  389. return reg;
  390. }
  391. static u32 get_host_pd5(void)
  392. {
  393. u32 reg;
  394. reg = 0;
  395. return reg;
  396. }
  397. static struct dma_async_tx_descriptor *cppi41_dma_prep_slave_sg(
  398. struct dma_chan *chan, struct scatterlist *sgl, unsigned sg_len,
  399. enum dma_transfer_direction dir, unsigned long tx_flags, void *context)
  400. {
  401. struct cppi41_channel *c = to_cpp41_chan(chan);
  402. struct cppi41_desc *d;
  403. struct scatterlist *sg;
  404. unsigned int i;
  405. unsigned int num;
  406. num = 0;
  407. d = c->desc;
  408. for_each_sg(sgl, sg, sg_len, i) {
  409. u32 addr;
  410. u32 len;
  411. /* We need to use more than one desc once musb supports sg */
  412. BUG_ON(num > 0);
  413. addr = lower_32_bits(sg_dma_address(sg));
  414. len = sg_dma_len(sg);
  415. d->pd0 = get_host_pd0(len);
  416. d->pd1 = get_host_pd1(c);
  417. d->pd2 = get_host_pd2(c);
  418. d->pd3 = get_host_pd3(len);
  419. d->pd4 = get_host_pd4_or_7(addr);
  420. d->pd5 = get_host_pd5();
  421. d->pd6 = get_host_pd6(len);
  422. d->pd7 = get_host_pd4_or_7(addr);
  423. d++;
  424. }
  425. return &c->txd;
  426. }
  427. static int cpp41_cfg_chan(struct cppi41_channel *c,
  428. struct dma_slave_config *cfg)
  429. {
  430. return 0;
  431. }
  432. static void cppi41_compute_td_desc(struct cppi41_desc *d)
  433. {
  434. d->pd0 = DESC_TYPE_TEARD << DESC_TYPE;
  435. }
  436. static int cppi41_tear_down_chan(struct cppi41_channel *c)
  437. {
  438. struct cppi41_dd *cdd = c->cdd;
  439. struct cppi41_desc *td;
  440. u32 reg;
  441. u32 desc_phys;
  442. u32 td_desc_phys;
  443. td = cdd->cd;
  444. td += cdd->first_td_desc;
  445. td_desc_phys = cdd->descs_phys;
  446. td_desc_phys += cdd->first_td_desc * sizeof(struct cppi41_desc);
  447. if (!c->td_queued) {
  448. cppi41_compute_td_desc(td);
  449. __iowmb();
  450. reg = (sizeof(struct cppi41_desc) - 24) / 4;
  451. reg |= td_desc_phys;
  452. cppi_writel(reg, cdd->qmgr_mem +
  453. QMGR_QUEUE_D(cdd->td_queue.submit));
  454. reg = GCR_CHAN_ENABLE;
  455. if (!c->is_tx) {
  456. reg |= GCR_STARV_RETRY;
  457. reg |= GCR_DESC_TYPE_HOST;
  458. reg |= c->q_comp_num;
  459. }
  460. reg |= GCR_TEARDOWN;
  461. cppi_writel(reg, c->gcr_reg);
  462. c->td_queued = 1;
  463. c->td_retry = 100;
  464. }
  465. if (!c->td_seen || !c->td_desc_seen) {
  466. desc_phys = cppi41_pop_desc(cdd, cdd->td_queue.complete);
  467. if (!desc_phys)
  468. desc_phys = cppi41_pop_desc(cdd, c->q_comp_num);
  469. if (desc_phys == c->desc_phys) {
  470. c->td_desc_seen = 1;
  471. } else if (desc_phys == td_desc_phys) {
  472. u32 pd0;
  473. __iormb();
  474. pd0 = td->pd0;
  475. WARN_ON((pd0 >> DESC_TYPE) != DESC_TYPE_TEARD);
  476. WARN_ON(!c->is_tx && !(pd0 & TD_DESC_IS_RX));
  477. WARN_ON((pd0 & 0x1f) != c->port_num);
  478. c->td_seen = 1;
  479. } else if (desc_phys) {
  480. WARN_ON_ONCE(1);
  481. }
  482. }
  483. c->td_retry--;
  484. /*
  485. * If the TX descriptor / channel is in use, the caller needs to poke
  486. * his TD bit multiple times. After that he hardware releases the
  487. * transfer descriptor followed by TD descriptor. Waiting seems not to
  488. * cause any difference.
  489. * RX seems to be thrown out right away. However once the TearDown
  490. * descriptor gets through we are done. If we have seens the transfer
  491. * descriptor before the TD we fetch it from enqueue, it has to be
  492. * there waiting for us.
  493. */
  494. if (!c->td_seen && c->td_retry)
  495. return -EAGAIN;
  496. WARN_ON(!c->td_retry);
  497. if (!c->td_desc_seen) {
  498. desc_phys = cppi41_pop_desc(cdd, c->q_num);
  499. WARN_ON(!desc_phys);
  500. }
  501. c->td_queued = 0;
  502. c->td_seen = 0;
  503. c->td_desc_seen = 0;
  504. cppi_writel(0, c->gcr_reg);
  505. return 0;
  506. }
  507. static int cppi41_stop_chan(struct dma_chan *chan)
  508. {
  509. struct cppi41_channel *c = to_cpp41_chan(chan);
  510. struct cppi41_dd *cdd = c->cdd;
  511. u32 desc_num;
  512. u32 desc_phys;
  513. int ret;
  514. desc_phys = lower_32_bits(c->desc_phys);
  515. desc_num = (desc_phys - cdd->descs_phys) / sizeof(struct cppi41_desc);
  516. if (!cdd->chan_busy[desc_num])
  517. return 0;
  518. ret = cppi41_tear_down_chan(c);
  519. if (ret)
  520. return ret;
  521. WARN_ON(!cdd->chan_busy[desc_num]);
  522. cdd->chan_busy[desc_num] = NULL;
  523. return 0;
  524. }
  525. static int cppi41_dma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
  526. unsigned long arg)
  527. {
  528. struct cppi41_channel *c = to_cpp41_chan(chan);
  529. int ret;
  530. switch (cmd) {
  531. case DMA_SLAVE_CONFIG:
  532. ret = cpp41_cfg_chan(c, (struct dma_slave_config *) arg);
  533. break;
  534. case DMA_TERMINATE_ALL:
  535. ret = cppi41_stop_chan(chan);
  536. break;
  537. default:
  538. ret = -ENXIO;
  539. break;
  540. }
  541. return ret;
  542. }
  543. static void cleanup_chans(struct cppi41_dd *cdd)
  544. {
  545. while (!list_empty(&cdd->ddev.channels)) {
  546. struct cppi41_channel *cchan;
  547. cchan = list_first_entry(&cdd->ddev.channels,
  548. struct cppi41_channel, chan.device_node);
  549. list_del(&cchan->chan.device_node);
  550. kfree(cchan);
  551. }
  552. }
  553. static int cppi41_add_chans(struct device *dev, struct cppi41_dd *cdd)
  554. {
  555. struct cppi41_channel *cchan;
  556. int i;
  557. int ret;
  558. u32 n_chans;
  559. ret = of_property_read_u32(dev->of_node, "#dma-channels",
  560. &n_chans);
  561. if (ret)
  562. return ret;
  563. /*
  564. * The channels can only be used as TX or as RX. So we add twice
  565. * that much dma channels because USB can only do RX or TX.
  566. */
  567. n_chans *= 2;
  568. for (i = 0; i < n_chans; i++) {
  569. cchan = kzalloc(sizeof(*cchan), GFP_KERNEL);
  570. if (!cchan)
  571. goto err;
  572. cchan->cdd = cdd;
  573. if (i & 1) {
  574. cchan->gcr_reg = cdd->ctrl_mem + DMA_TXGCR(i >> 1);
  575. cchan->is_tx = 1;
  576. } else {
  577. cchan->gcr_reg = cdd->ctrl_mem + DMA_RXGCR(i >> 1);
  578. cchan->is_tx = 0;
  579. }
  580. cchan->port_num = i >> 1;
  581. cchan->desc = &cdd->cd[i];
  582. cchan->desc_phys = cdd->descs_phys;
  583. cchan->desc_phys += i * sizeof(struct cppi41_desc);
  584. cchan->chan.device = &cdd->ddev;
  585. list_add_tail(&cchan->chan.device_node, &cdd->ddev.channels);
  586. }
  587. cdd->first_td_desc = n_chans;
  588. return 0;
  589. err:
  590. cleanup_chans(cdd);
  591. return -ENOMEM;
  592. }
  593. static void purge_descs(struct device *dev, struct cppi41_dd *cdd)
  594. {
  595. unsigned int mem_decs;
  596. int i;
  597. mem_decs = ALLOC_DECS_NUM * sizeof(struct cppi41_desc);
  598. for (i = 0; i < DESCS_AREAS; i++) {
  599. cppi_writel(0, cdd->qmgr_mem + QMGR_MEMBASE(i));
  600. cppi_writel(0, cdd->qmgr_mem + QMGR_MEMCTRL(i));
  601. dma_free_coherent(dev, mem_decs, cdd->cd,
  602. cdd->descs_phys);
  603. }
  604. }
  605. static void disable_sched(struct cppi41_dd *cdd)
  606. {
  607. cppi_writel(0, cdd->sched_mem + DMA_SCHED_CTRL);
  608. }
  609. static void deinit_cppi41(struct device *dev, struct cppi41_dd *cdd)
  610. {
  611. disable_sched(cdd);
  612. purge_descs(dev, cdd);
  613. cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM0_BASE);
  614. cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM0_BASE);
  615. dma_free_coherent(dev, QMGR_SCRATCH_SIZE, cdd->qmgr_scratch,
  616. cdd->scratch_phys);
  617. }
  618. static int init_descs(struct device *dev, struct cppi41_dd *cdd)
  619. {
  620. unsigned int desc_size;
  621. unsigned int mem_decs;
  622. int i;
  623. u32 reg;
  624. u32 idx;
  625. BUILD_BUG_ON(sizeof(struct cppi41_desc) &
  626. (sizeof(struct cppi41_desc) - 1));
  627. BUILD_BUG_ON(sizeof(struct cppi41_desc) < 32);
  628. BUILD_BUG_ON(ALLOC_DECS_NUM < 32);
  629. desc_size = sizeof(struct cppi41_desc);
  630. mem_decs = ALLOC_DECS_NUM * desc_size;
  631. idx = 0;
  632. for (i = 0; i < DESCS_AREAS; i++) {
  633. reg = idx << QMGR_MEMCTRL_IDX_SH;
  634. reg |= (ilog2(desc_size) - 5) << QMGR_MEMCTRL_DESC_SH;
  635. reg |= ilog2(ALLOC_DECS_NUM) - 5;
  636. BUILD_BUG_ON(DESCS_AREAS != 1);
  637. cdd->cd = dma_alloc_coherent(dev, mem_decs,
  638. &cdd->descs_phys, GFP_KERNEL);
  639. if (!cdd->cd)
  640. return -ENOMEM;
  641. cppi_writel(cdd->descs_phys, cdd->qmgr_mem + QMGR_MEMBASE(i));
  642. cppi_writel(reg, cdd->qmgr_mem + QMGR_MEMCTRL(i));
  643. idx += ALLOC_DECS_NUM;
  644. }
  645. return 0;
  646. }
  647. static void init_sched(struct cppi41_dd *cdd)
  648. {
  649. unsigned ch;
  650. unsigned word;
  651. u32 reg;
  652. word = 0;
  653. cppi_writel(0, cdd->sched_mem + DMA_SCHED_CTRL);
  654. for (ch = 0; ch < 15 * 2; ch += 2) {
  655. reg = SCHED_ENTRY0_CHAN(ch);
  656. reg |= SCHED_ENTRY1_CHAN(ch) | SCHED_ENTRY1_IS_RX;
  657. reg |= SCHED_ENTRY2_CHAN(ch + 1);
  658. reg |= SCHED_ENTRY3_CHAN(ch + 1) | SCHED_ENTRY3_IS_RX;
  659. cppi_writel(reg, cdd->sched_mem + DMA_SCHED_WORD(word));
  660. word++;
  661. }
  662. reg = 15 * 2 * 2 - 1;
  663. reg |= DMA_SCHED_CTRL_EN;
  664. cppi_writel(reg, cdd->sched_mem + DMA_SCHED_CTRL);
  665. }
  666. static int init_cppi41(struct device *dev, struct cppi41_dd *cdd)
  667. {
  668. int ret;
  669. BUILD_BUG_ON(QMGR_SCRATCH_SIZE > ((1 << 14) - 1));
  670. cdd->qmgr_scratch = dma_alloc_coherent(dev, QMGR_SCRATCH_SIZE,
  671. &cdd->scratch_phys, GFP_KERNEL);
  672. if (!cdd->qmgr_scratch)
  673. return -ENOMEM;
  674. cppi_writel(cdd->scratch_phys, cdd->qmgr_mem + QMGR_LRAM0_BASE);
  675. cppi_writel(QMGR_SCRATCH_SIZE, cdd->qmgr_mem + QMGR_LRAM_SIZE);
  676. cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM1_BASE);
  677. ret = init_descs(dev, cdd);
  678. if (ret)
  679. goto err_td;
  680. cppi_writel(cdd->td_queue.submit, cdd->ctrl_mem + DMA_TDFDQ);
  681. init_sched(cdd);
  682. return 0;
  683. err_td:
  684. deinit_cppi41(dev, cdd);
  685. return ret;
  686. }
  687. static struct platform_driver cpp41_dma_driver;
  688. /*
  689. * The param format is:
  690. * X Y
  691. * X: Port
  692. * Y: 0 = RX else TX
  693. */
  694. #define INFO_PORT 0
  695. #define INFO_IS_TX 1
  696. static bool cpp41_dma_filter_fn(struct dma_chan *chan, void *param)
  697. {
  698. struct cppi41_channel *cchan;
  699. struct cppi41_dd *cdd;
  700. const struct chan_queues *queues;
  701. u32 *num = param;
  702. if (chan->device->dev->driver != &cpp41_dma_driver.driver)
  703. return false;
  704. cchan = to_cpp41_chan(chan);
  705. if (cchan->port_num != num[INFO_PORT])
  706. return false;
  707. if (cchan->is_tx && !num[INFO_IS_TX])
  708. return false;
  709. cdd = cchan->cdd;
  710. if (cchan->is_tx)
  711. queues = cdd->queues_tx;
  712. else
  713. queues = cdd->queues_rx;
  714. BUILD_BUG_ON(ARRAY_SIZE(usb_queues_rx) != ARRAY_SIZE(usb_queues_tx));
  715. if (WARN_ON(cchan->port_num > ARRAY_SIZE(usb_queues_rx)))
  716. return false;
  717. cchan->q_num = queues[cchan->port_num].submit;
  718. cchan->q_comp_num = queues[cchan->port_num].complete;
  719. return true;
  720. }
  721. static struct of_dma_filter_info cpp41_dma_info = {
  722. .filter_fn = cpp41_dma_filter_fn,
  723. };
  724. static struct dma_chan *cppi41_dma_xlate(struct of_phandle_args *dma_spec,
  725. struct of_dma *ofdma)
  726. {
  727. int count = dma_spec->args_count;
  728. struct of_dma_filter_info *info = ofdma->of_dma_data;
  729. if (!info || !info->filter_fn)
  730. return NULL;
  731. if (count != 2)
  732. return NULL;
  733. return dma_request_channel(info->dma_cap, info->filter_fn,
  734. &dma_spec->args[0]);
  735. }
  736. static const struct cppi_glue_infos usb_infos = {
  737. .isr = cppi41_irq,
  738. .queues_rx = usb_queues_rx,
  739. .queues_tx = usb_queues_tx,
  740. .td_queue = { .submit = 31, .complete = 0 },
  741. };
  742. static const struct of_device_id cppi41_dma_ids[] = {
  743. { .compatible = "ti,am3359-cppi41", .data = &usb_infos},
  744. {},
  745. };
  746. MODULE_DEVICE_TABLE(of, cppi41_dma_ids);
  747. static const struct cppi_glue_infos *get_glue_info(struct device *dev)
  748. {
  749. const struct of_device_id *of_id;
  750. of_id = of_match_node(cppi41_dma_ids, dev->of_node);
  751. if (!of_id)
  752. return NULL;
  753. return of_id->data;
  754. }
  755. static int cppi41_dma_probe(struct platform_device *pdev)
  756. {
  757. struct cppi41_dd *cdd;
  758. struct device *dev = &pdev->dev;
  759. const struct cppi_glue_infos *glue_info;
  760. int irq;
  761. int ret;
  762. glue_info = get_glue_info(dev);
  763. if (!glue_info)
  764. return -EINVAL;
  765. cdd = kzalloc(sizeof(*cdd), GFP_KERNEL);
  766. if (!cdd)
  767. return -ENOMEM;
  768. dma_cap_set(DMA_SLAVE, cdd->ddev.cap_mask);
  769. cdd->ddev.device_alloc_chan_resources = cppi41_dma_alloc_chan_resources;
  770. cdd->ddev.device_free_chan_resources = cppi41_dma_free_chan_resources;
  771. cdd->ddev.device_tx_status = cppi41_dma_tx_status;
  772. cdd->ddev.device_issue_pending = cppi41_dma_issue_pending;
  773. cdd->ddev.device_prep_slave_sg = cppi41_dma_prep_slave_sg;
  774. cdd->ddev.device_control = cppi41_dma_control;
  775. cdd->ddev.dev = dev;
  776. INIT_LIST_HEAD(&cdd->ddev.channels);
  777. cpp41_dma_info.dma_cap = cdd->ddev.cap_mask;
  778. cdd->usbss_mem = of_iomap(dev->of_node, 0);
  779. cdd->ctrl_mem = of_iomap(dev->of_node, 1);
  780. cdd->sched_mem = of_iomap(dev->of_node, 2);
  781. cdd->qmgr_mem = of_iomap(dev->of_node, 3);
  782. if (!cdd->usbss_mem || !cdd->ctrl_mem || !cdd->sched_mem ||
  783. !cdd->qmgr_mem) {
  784. ret = -ENXIO;
  785. goto err_remap;
  786. }
  787. pm_runtime_enable(dev);
  788. ret = pm_runtime_get_sync(dev);
  789. if (ret < 0)
  790. goto err_get_sync;
  791. cdd->queues_rx = glue_info->queues_rx;
  792. cdd->queues_tx = glue_info->queues_tx;
  793. cdd->td_queue = glue_info->td_queue;
  794. ret = init_cppi41(dev, cdd);
  795. if (ret)
  796. goto err_init_cppi;
  797. ret = cppi41_add_chans(dev, cdd);
  798. if (ret)
  799. goto err_chans;
  800. irq = irq_of_parse_and_map(dev->of_node, 0);
  801. if (!irq) {
  802. ret = -EINVAL;
  803. goto err_irq;
  804. }
  805. cppi_writel(USBSS_IRQ_PD_COMP, cdd->usbss_mem + USBSS_IRQ_ENABLER);
  806. ret = request_irq(irq, glue_info->isr, IRQF_SHARED,
  807. dev_name(dev), cdd);
  808. if (ret)
  809. goto err_irq;
  810. cdd->irq = irq;
  811. ret = dma_async_device_register(&cdd->ddev);
  812. if (ret)
  813. goto err_dma_reg;
  814. ret = of_dma_controller_register(dev->of_node,
  815. cppi41_dma_xlate, &cpp41_dma_info);
  816. if (ret)
  817. goto err_of;
  818. platform_set_drvdata(pdev, cdd);
  819. return 0;
  820. err_of:
  821. dma_async_device_unregister(&cdd->ddev);
  822. err_dma_reg:
  823. free_irq(irq, cdd);
  824. err_irq:
  825. cppi_writel(0, cdd->usbss_mem + USBSS_IRQ_CLEARR);
  826. cleanup_chans(cdd);
  827. err_chans:
  828. deinit_cppi41(dev, cdd);
  829. err_init_cppi:
  830. pm_runtime_put(dev);
  831. err_get_sync:
  832. pm_runtime_disable(dev);
  833. iounmap(cdd->usbss_mem);
  834. iounmap(cdd->ctrl_mem);
  835. iounmap(cdd->sched_mem);
  836. iounmap(cdd->qmgr_mem);
  837. err_remap:
  838. kfree(cdd);
  839. return ret;
  840. }
  841. static int cppi41_dma_remove(struct platform_device *pdev)
  842. {
  843. struct cppi41_dd *cdd = platform_get_drvdata(pdev);
  844. of_dma_controller_free(pdev->dev.of_node);
  845. dma_async_device_unregister(&cdd->ddev);
  846. cppi_writel(0, cdd->usbss_mem + USBSS_IRQ_CLEARR);
  847. free_irq(cdd->irq, cdd);
  848. cleanup_chans(cdd);
  849. deinit_cppi41(&pdev->dev, cdd);
  850. iounmap(cdd->usbss_mem);
  851. iounmap(cdd->ctrl_mem);
  852. iounmap(cdd->sched_mem);
  853. iounmap(cdd->qmgr_mem);
  854. pm_runtime_put(&pdev->dev);
  855. pm_runtime_disable(&pdev->dev);
  856. kfree(cdd);
  857. return 0;
  858. }
  859. #ifdef CONFIG_PM_SLEEP
  860. static int cppi41_suspend(struct device *dev)
  861. {
  862. struct cppi41_dd *cdd = dev_get_drvdata(dev);
  863. cdd->dma_tdfdq = cppi_readl(cdd->ctrl_mem + DMA_TDFDQ);
  864. cppi_writel(0, cdd->usbss_mem + USBSS_IRQ_CLEARR);
  865. disable_sched(cdd);
  866. return 0;
  867. }
  868. static int cppi41_resume(struct device *dev)
  869. {
  870. struct cppi41_dd *cdd = dev_get_drvdata(dev);
  871. struct cppi41_channel *c;
  872. int i;
  873. for (i = 0; i < DESCS_AREAS; i++)
  874. cppi_writel(cdd->descs_phys, cdd->qmgr_mem + QMGR_MEMBASE(i));
  875. list_for_each_entry(c, &cdd->ddev.channels, chan.device_node)
  876. if (!c->is_tx)
  877. cppi_writel(c->q_num, c->gcr_reg + RXHPCRA0);
  878. init_sched(cdd);
  879. cppi_writel(cdd->dma_tdfdq, cdd->ctrl_mem + DMA_TDFDQ);
  880. cppi_writel(cdd->scratch_phys, cdd->qmgr_mem + QMGR_LRAM0_BASE);
  881. cppi_writel(QMGR_SCRATCH_SIZE, cdd->qmgr_mem + QMGR_LRAM_SIZE);
  882. cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM1_BASE);
  883. cppi_writel(USBSS_IRQ_PD_COMP, cdd->usbss_mem + USBSS_IRQ_ENABLER);
  884. return 0;
  885. }
  886. #endif
  887. static SIMPLE_DEV_PM_OPS(cppi41_pm_ops, cppi41_suspend, cppi41_resume);
  888. static struct platform_driver cpp41_dma_driver = {
  889. .probe = cppi41_dma_probe,
  890. .remove = cppi41_dma_remove,
  891. .driver = {
  892. .name = "cppi41-dma-engine",
  893. .owner = THIS_MODULE,
  894. .pm = &cppi41_pm_ops,
  895. .of_match_table = of_match_ptr(cppi41_dma_ids),
  896. },
  897. };
  898. module_platform_driver(cpp41_dma_driver);
  899. MODULE_LICENSE("GPL");
  900. MODULE_AUTHOR("Sebastian Andrzej Siewior <bigeasy@linutronix.de>");