s5pv210-cpufreq.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550
  1. /*
  2. * Copyright (c) 2010 Samsung Electronics Co., Ltd.
  3. * http://www.samsung.com
  4. *
  5. * CPU frequency scaling for S5PC110/S5PV210
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/types.h>
  12. #include <linux/kernel.h>
  13. #include <linux/init.h>
  14. #include <linux/err.h>
  15. #include <linux/clk.h>
  16. #include <linux/io.h>
  17. #include <linux/cpufreq.h>
  18. #include <linux/reboot.h>
  19. #include <linux/regulator/consumer.h>
  20. #include <mach/map.h>
  21. #include <mach/regs-clock.h>
  22. static struct clk *dmc0_clk;
  23. static struct clk *dmc1_clk;
  24. static DEFINE_MUTEX(set_freq_lock);
  25. /* APLL M,P,S values for 1G/800Mhz */
  26. #define APLL_VAL_1000 ((1 << 31) | (125 << 16) | (3 << 8) | 1)
  27. #define APLL_VAL_800 ((1 << 31) | (100 << 16) | (3 << 8) | 1)
  28. /* Use 800MHz when entering sleep mode */
  29. #define SLEEP_FREQ (800 * 1000)
  30. /* Tracks if cpu freqency can be updated anymore */
  31. static bool no_cpufreq_access;
  32. /*
  33. * DRAM configurations to calculate refresh counter for changing
  34. * frequency of memory.
  35. */
  36. struct dram_conf {
  37. unsigned long freq; /* HZ */
  38. unsigned long refresh; /* DRAM refresh counter * 1000 */
  39. };
  40. /* DRAM configuration (DMC0 and DMC1) */
  41. static struct dram_conf s5pv210_dram_conf[2];
  42. enum perf_level {
  43. L0, L1, L2, L3, L4,
  44. };
  45. enum s5pv210_mem_type {
  46. LPDDR = 0x1,
  47. LPDDR2 = 0x2,
  48. DDR2 = 0x4,
  49. };
  50. enum s5pv210_dmc_port {
  51. DMC0 = 0,
  52. DMC1,
  53. };
  54. static struct cpufreq_frequency_table s5pv210_freq_table[] = {
  55. {0, L0, 1000*1000},
  56. {0, L1, 800*1000},
  57. {0, L2, 400*1000},
  58. {0, L3, 200*1000},
  59. {0, L4, 100*1000},
  60. {0, 0, CPUFREQ_TABLE_END},
  61. };
  62. static struct regulator *arm_regulator;
  63. static struct regulator *int_regulator;
  64. struct s5pv210_dvs_conf {
  65. int arm_volt; /* uV */
  66. int int_volt; /* uV */
  67. };
  68. static const int arm_volt_max = 1350000;
  69. static const int int_volt_max = 1250000;
  70. static struct s5pv210_dvs_conf dvs_conf[] = {
  71. [L0] = {
  72. .arm_volt = 1250000,
  73. .int_volt = 1100000,
  74. },
  75. [L1] = {
  76. .arm_volt = 1200000,
  77. .int_volt = 1100000,
  78. },
  79. [L2] = {
  80. .arm_volt = 1050000,
  81. .int_volt = 1100000,
  82. },
  83. [L3] = {
  84. .arm_volt = 950000,
  85. .int_volt = 1100000,
  86. },
  87. [L4] = {
  88. .arm_volt = 950000,
  89. .int_volt = 1000000,
  90. },
  91. };
  92. static u32 clkdiv_val[5][11] = {
  93. /*
  94. * Clock divider value for following
  95. * { APLL, A2M, HCLK_MSYS, PCLK_MSYS,
  96. * HCLK_DSYS, PCLK_DSYS, HCLK_PSYS, PCLK_PSYS,
  97. * ONEDRAM, MFC, G3D }
  98. */
  99. /* L0 : [1000/200/100][166/83][133/66][200/200] */
  100. {0, 4, 4, 1, 3, 1, 4, 1, 3, 0, 0},
  101. /* L1 : [800/200/100][166/83][133/66][200/200] */
  102. {0, 3, 3, 1, 3, 1, 4, 1, 3, 0, 0},
  103. /* L2 : [400/200/100][166/83][133/66][200/200] */
  104. {1, 3, 1, 1, 3, 1, 4, 1, 3, 0, 0},
  105. /* L3 : [200/200/100][166/83][133/66][200/200] */
  106. {3, 3, 1, 1, 3, 1, 4, 1, 3, 0, 0},
  107. /* L4 : [100/100/100][83/83][66/66][100/100] */
  108. {7, 7, 0, 0, 7, 0, 9, 0, 7, 0, 0},
  109. };
  110. /*
  111. * This function set DRAM refresh counter
  112. * accoriding to operating frequency of DRAM
  113. * ch: DMC port number 0 or 1
  114. * freq: Operating frequency of DRAM(KHz)
  115. */
  116. static void s5pv210_set_refresh(enum s5pv210_dmc_port ch, unsigned long freq)
  117. {
  118. unsigned long tmp, tmp1;
  119. void __iomem *reg = NULL;
  120. if (ch == DMC0) {
  121. reg = (S5P_VA_DMC0 + 0x30);
  122. } else if (ch == DMC1) {
  123. reg = (S5P_VA_DMC1 + 0x30);
  124. } else {
  125. printk(KERN_ERR "Cannot find DMC port\n");
  126. return;
  127. }
  128. /* Find current DRAM frequency */
  129. tmp = s5pv210_dram_conf[ch].freq;
  130. do_div(tmp, freq);
  131. tmp1 = s5pv210_dram_conf[ch].refresh;
  132. do_div(tmp1, tmp);
  133. __raw_writel(tmp1, reg);
  134. }
  135. static int s5pv210_target(struct cpufreq_policy *policy, unsigned int index)
  136. {
  137. unsigned long reg;
  138. unsigned int priv_index;
  139. unsigned int pll_changing = 0;
  140. unsigned int bus_speed_changing = 0;
  141. unsigned int old_freq, new_freq;
  142. int arm_volt, int_volt;
  143. int ret = 0;
  144. mutex_lock(&set_freq_lock);
  145. if (no_cpufreq_access) {
  146. pr_err("Denied access to %s as it is disabled temporarily\n",
  147. __func__);
  148. ret = -EINVAL;
  149. goto exit;
  150. }
  151. old_freq = policy->cur;
  152. new_freq = s5pv210_freq_table[index].frequency;
  153. /* Finding current running level index */
  154. if (cpufreq_frequency_table_target(policy, s5pv210_freq_table,
  155. old_freq, CPUFREQ_RELATION_H,
  156. &priv_index)) {
  157. ret = -EINVAL;
  158. goto exit;
  159. }
  160. arm_volt = dvs_conf[index].arm_volt;
  161. int_volt = dvs_conf[index].int_volt;
  162. if (new_freq > old_freq) {
  163. ret = regulator_set_voltage(arm_regulator,
  164. arm_volt, arm_volt_max);
  165. if (ret)
  166. goto exit;
  167. ret = regulator_set_voltage(int_regulator,
  168. int_volt, int_volt_max);
  169. if (ret)
  170. goto exit;
  171. }
  172. /* Check if there need to change PLL */
  173. if ((index == L0) || (priv_index == L0))
  174. pll_changing = 1;
  175. /* Check if there need to change System bus clock */
  176. if ((index == L4) || (priv_index == L4))
  177. bus_speed_changing = 1;
  178. if (bus_speed_changing) {
  179. /*
  180. * Reconfigure DRAM refresh counter value for minimum
  181. * temporary clock while changing divider.
  182. * expected clock is 83Mhz : 7.8usec/(1/83Mhz) = 0x287
  183. */
  184. if (pll_changing)
  185. s5pv210_set_refresh(DMC1, 83000);
  186. else
  187. s5pv210_set_refresh(DMC1, 100000);
  188. s5pv210_set_refresh(DMC0, 83000);
  189. }
  190. /*
  191. * APLL should be changed in this level
  192. * APLL -> MPLL(for stable transition) -> APLL
  193. * Some clock source's clock API are not prepared.
  194. * Do not use clock API in below code.
  195. */
  196. if (pll_changing) {
  197. /*
  198. * 1. Temporary Change divider for MFC and G3D
  199. * SCLKA2M(200/1=200)->(200/4=50)Mhz
  200. */
  201. reg = __raw_readl(S5P_CLK_DIV2);
  202. reg &= ~(S5P_CLKDIV2_G3D_MASK | S5P_CLKDIV2_MFC_MASK);
  203. reg |= (3 << S5P_CLKDIV2_G3D_SHIFT) |
  204. (3 << S5P_CLKDIV2_MFC_SHIFT);
  205. __raw_writel(reg, S5P_CLK_DIV2);
  206. /* For MFC, G3D dividing */
  207. do {
  208. reg = __raw_readl(S5P_CLKDIV_STAT0);
  209. } while (reg & ((1 << 16) | (1 << 17)));
  210. /*
  211. * 2. Change SCLKA2M(200Mhz)to SCLKMPLL in MFC_MUX, G3D MUX
  212. * (200/4=50)->(667/4=166)Mhz
  213. */
  214. reg = __raw_readl(S5P_CLK_SRC2);
  215. reg &= ~(S5P_CLKSRC2_G3D_MASK | S5P_CLKSRC2_MFC_MASK);
  216. reg |= (1 << S5P_CLKSRC2_G3D_SHIFT) |
  217. (1 << S5P_CLKSRC2_MFC_SHIFT);
  218. __raw_writel(reg, S5P_CLK_SRC2);
  219. do {
  220. reg = __raw_readl(S5P_CLKMUX_STAT1);
  221. } while (reg & ((1 << 7) | (1 << 3)));
  222. /*
  223. * 3. DMC1 refresh count for 133Mhz if (index == L4) is
  224. * true refresh counter is already programed in upper
  225. * code. 0x287@83Mhz
  226. */
  227. if (!bus_speed_changing)
  228. s5pv210_set_refresh(DMC1, 133000);
  229. /* 4. SCLKAPLL -> SCLKMPLL */
  230. reg = __raw_readl(S5P_CLK_SRC0);
  231. reg &= ~(S5P_CLKSRC0_MUX200_MASK);
  232. reg |= (0x1 << S5P_CLKSRC0_MUX200_SHIFT);
  233. __raw_writel(reg, S5P_CLK_SRC0);
  234. do {
  235. reg = __raw_readl(S5P_CLKMUX_STAT0);
  236. } while (reg & (0x1 << 18));
  237. }
  238. /* Change divider */
  239. reg = __raw_readl(S5P_CLK_DIV0);
  240. reg &= ~(S5P_CLKDIV0_APLL_MASK | S5P_CLKDIV0_A2M_MASK |
  241. S5P_CLKDIV0_HCLK200_MASK | S5P_CLKDIV0_PCLK100_MASK |
  242. S5P_CLKDIV0_HCLK166_MASK | S5P_CLKDIV0_PCLK83_MASK |
  243. S5P_CLKDIV0_HCLK133_MASK | S5P_CLKDIV0_PCLK66_MASK);
  244. reg |= ((clkdiv_val[index][0] << S5P_CLKDIV0_APLL_SHIFT) |
  245. (clkdiv_val[index][1] << S5P_CLKDIV0_A2M_SHIFT) |
  246. (clkdiv_val[index][2] << S5P_CLKDIV0_HCLK200_SHIFT) |
  247. (clkdiv_val[index][3] << S5P_CLKDIV0_PCLK100_SHIFT) |
  248. (clkdiv_val[index][4] << S5P_CLKDIV0_HCLK166_SHIFT) |
  249. (clkdiv_val[index][5] << S5P_CLKDIV0_PCLK83_SHIFT) |
  250. (clkdiv_val[index][6] << S5P_CLKDIV0_HCLK133_SHIFT) |
  251. (clkdiv_val[index][7] << S5P_CLKDIV0_PCLK66_SHIFT));
  252. __raw_writel(reg, S5P_CLK_DIV0);
  253. do {
  254. reg = __raw_readl(S5P_CLKDIV_STAT0);
  255. } while (reg & 0xff);
  256. /* ARM MCS value changed */
  257. reg = __raw_readl(S5P_ARM_MCS_CON);
  258. reg &= ~0x3;
  259. if (index >= L3)
  260. reg |= 0x3;
  261. else
  262. reg |= 0x1;
  263. __raw_writel(reg, S5P_ARM_MCS_CON);
  264. if (pll_changing) {
  265. /* 5. Set Lock time = 30us*24Mhz = 0x2cf */
  266. __raw_writel(0x2cf, S5P_APLL_LOCK);
  267. /*
  268. * 6. Turn on APLL
  269. * 6-1. Set PMS values
  270. * 6-2. Wait untile the PLL is locked
  271. */
  272. if (index == L0)
  273. __raw_writel(APLL_VAL_1000, S5P_APLL_CON);
  274. else
  275. __raw_writel(APLL_VAL_800, S5P_APLL_CON);
  276. do {
  277. reg = __raw_readl(S5P_APLL_CON);
  278. } while (!(reg & (0x1 << 29)));
  279. /*
  280. * 7. Change souce clock from SCLKMPLL(667Mhz)
  281. * to SCLKA2M(200Mhz) in MFC_MUX and G3D MUX
  282. * (667/4=166)->(200/4=50)Mhz
  283. */
  284. reg = __raw_readl(S5P_CLK_SRC2);
  285. reg &= ~(S5P_CLKSRC2_G3D_MASK | S5P_CLKSRC2_MFC_MASK);
  286. reg |= (0 << S5P_CLKSRC2_G3D_SHIFT) |
  287. (0 << S5P_CLKSRC2_MFC_SHIFT);
  288. __raw_writel(reg, S5P_CLK_SRC2);
  289. do {
  290. reg = __raw_readl(S5P_CLKMUX_STAT1);
  291. } while (reg & ((1 << 7) | (1 << 3)));
  292. /*
  293. * 8. Change divider for MFC and G3D
  294. * (200/4=50)->(200/1=200)Mhz
  295. */
  296. reg = __raw_readl(S5P_CLK_DIV2);
  297. reg &= ~(S5P_CLKDIV2_G3D_MASK | S5P_CLKDIV2_MFC_MASK);
  298. reg |= (clkdiv_val[index][10] << S5P_CLKDIV2_G3D_SHIFT) |
  299. (clkdiv_val[index][9] << S5P_CLKDIV2_MFC_SHIFT);
  300. __raw_writel(reg, S5P_CLK_DIV2);
  301. /* For MFC, G3D dividing */
  302. do {
  303. reg = __raw_readl(S5P_CLKDIV_STAT0);
  304. } while (reg & ((1 << 16) | (1 << 17)));
  305. /* 9. Change MPLL to APLL in MSYS_MUX */
  306. reg = __raw_readl(S5P_CLK_SRC0);
  307. reg &= ~(S5P_CLKSRC0_MUX200_MASK);
  308. reg |= (0x0 << S5P_CLKSRC0_MUX200_SHIFT);
  309. __raw_writel(reg, S5P_CLK_SRC0);
  310. do {
  311. reg = __raw_readl(S5P_CLKMUX_STAT0);
  312. } while (reg & (0x1 << 18));
  313. /*
  314. * 10. DMC1 refresh counter
  315. * L4 : DMC1 = 100Mhz 7.8us/(1/100) = 0x30c
  316. * Others : DMC1 = 200Mhz 7.8us/(1/200) = 0x618
  317. */
  318. if (!bus_speed_changing)
  319. s5pv210_set_refresh(DMC1, 200000);
  320. }
  321. /*
  322. * L4 level need to change memory bus speed, hence onedram clock divier
  323. * and memory refresh parameter should be changed
  324. */
  325. if (bus_speed_changing) {
  326. reg = __raw_readl(S5P_CLK_DIV6);
  327. reg &= ~S5P_CLKDIV6_ONEDRAM_MASK;
  328. reg |= (clkdiv_val[index][8] << S5P_CLKDIV6_ONEDRAM_SHIFT);
  329. __raw_writel(reg, S5P_CLK_DIV6);
  330. do {
  331. reg = __raw_readl(S5P_CLKDIV_STAT1);
  332. } while (reg & (1 << 15));
  333. /* Reconfigure DRAM refresh counter value */
  334. if (index != L4) {
  335. /*
  336. * DMC0 : 166Mhz
  337. * DMC1 : 200Mhz
  338. */
  339. s5pv210_set_refresh(DMC0, 166000);
  340. s5pv210_set_refresh(DMC1, 200000);
  341. } else {
  342. /*
  343. * DMC0 : 83Mhz
  344. * DMC1 : 100Mhz
  345. */
  346. s5pv210_set_refresh(DMC0, 83000);
  347. s5pv210_set_refresh(DMC1, 100000);
  348. }
  349. }
  350. if (new_freq < old_freq) {
  351. regulator_set_voltage(int_regulator,
  352. int_volt, int_volt_max);
  353. regulator_set_voltage(arm_regulator,
  354. arm_volt, arm_volt_max);
  355. }
  356. printk(KERN_DEBUG "Perf changed[L%d]\n", index);
  357. exit:
  358. mutex_unlock(&set_freq_lock);
  359. return ret;
  360. }
  361. static int check_mem_type(void __iomem *dmc_reg)
  362. {
  363. unsigned long val;
  364. val = __raw_readl(dmc_reg + 0x4);
  365. val = (val & (0xf << 8));
  366. return val >> 8;
  367. }
  368. static int __init s5pv210_cpu_init(struct cpufreq_policy *policy)
  369. {
  370. unsigned long mem_type;
  371. int ret;
  372. policy->clk = clk_get(NULL, "armclk");
  373. if (IS_ERR(policy->clk))
  374. return PTR_ERR(policy->clk);
  375. dmc0_clk = clk_get(NULL, "sclk_dmc0");
  376. if (IS_ERR(dmc0_clk)) {
  377. ret = PTR_ERR(dmc0_clk);
  378. goto out_dmc0;
  379. }
  380. dmc1_clk = clk_get(NULL, "hclk_msys");
  381. if (IS_ERR(dmc1_clk)) {
  382. ret = PTR_ERR(dmc1_clk);
  383. goto out_dmc1;
  384. }
  385. if (policy->cpu != 0) {
  386. ret = -EINVAL;
  387. goto out_dmc1;
  388. }
  389. /*
  390. * check_mem_type : This driver only support LPDDR & LPDDR2.
  391. * other memory type is not supported.
  392. */
  393. mem_type = check_mem_type(S5P_VA_DMC0);
  394. if ((mem_type != LPDDR) && (mem_type != LPDDR2)) {
  395. printk(KERN_ERR "CPUFreq doesn't support this memory type\n");
  396. ret = -EINVAL;
  397. goto out_dmc1;
  398. }
  399. /* Find current refresh counter and frequency each DMC */
  400. s5pv210_dram_conf[0].refresh = (__raw_readl(S5P_VA_DMC0 + 0x30) * 1000);
  401. s5pv210_dram_conf[0].freq = clk_get_rate(dmc0_clk);
  402. s5pv210_dram_conf[1].refresh = (__raw_readl(S5P_VA_DMC1 + 0x30) * 1000);
  403. s5pv210_dram_conf[1].freq = clk_get_rate(dmc1_clk);
  404. policy->suspend_freq = SLEEP_FREQ;
  405. return cpufreq_generic_init(policy, s5pv210_freq_table, 40000);
  406. out_dmc1:
  407. clk_put(dmc0_clk);
  408. out_dmc0:
  409. clk_put(policy->clk);
  410. return ret;
  411. }
  412. static int s5pv210_cpufreq_reboot_notifier_event(struct notifier_block *this,
  413. unsigned long event, void *ptr)
  414. {
  415. int ret;
  416. ret = cpufreq_driver_target(cpufreq_cpu_get(0), SLEEP_FREQ, 0);
  417. if (ret < 0)
  418. return NOTIFY_BAD;
  419. no_cpufreq_access = true;
  420. return NOTIFY_DONE;
  421. }
  422. static struct cpufreq_driver s5pv210_driver = {
  423. .flags = CPUFREQ_STICKY | CPUFREQ_NEED_INITIAL_FREQ_CHECK,
  424. .verify = cpufreq_generic_frequency_table_verify,
  425. .target_index = s5pv210_target,
  426. .get = cpufreq_generic_get,
  427. .init = s5pv210_cpu_init,
  428. .name = "s5pv210",
  429. #ifdef CONFIG_PM
  430. .suspend = cpufreq_generic_suspend,
  431. .resume = cpufreq_generic_suspend, /* We need to set SLEEP FREQ again */
  432. #endif
  433. };
  434. static struct notifier_block s5pv210_cpufreq_reboot_notifier = {
  435. .notifier_call = s5pv210_cpufreq_reboot_notifier_event,
  436. };
  437. static int __init s5pv210_cpufreq_init(void)
  438. {
  439. arm_regulator = regulator_get(NULL, "vddarm");
  440. if (IS_ERR(arm_regulator)) {
  441. pr_err("failed to get regulator vddarm");
  442. return PTR_ERR(arm_regulator);
  443. }
  444. int_regulator = regulator_get(NULL, "vddint");
  445. if (IS_ERR(int_regulator)) {
  446. pr_err("failed to get regulator vddint");
  447. regulator_put(arm_regulator);
  448. return PTR_ERR(int_regulator);
  449. }
  450. register_reboot_notifier(&s5pv210_cpufreq_reboot_notifier);
  451. return cpufreq_register_driver(&s5pv210_driver);
  452. }
  453. late_initcall(s5pv210_cpufreq_init);