cn_proc.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411
  1. /*
  2. * cn_proc.c - process events connector
  3. *
  4. * Copyright (C) Matt Helsley, IBM Corp. 2005
  5. * Based on cn_fork.c by Guillaume Thouvenin <guillaume.thouvenin@bull.net>
  6. * Original copyright notice follows:
  7. * Copyright (C) 2005 BULL SA.
  8. *
  9. *
  10. * This program is free software; you can redistribute it and/or modify
  11. * it under the terms of the GNU General Public License as published by
  12. * the Free Software Foundation; either version 2 of the License, or
  13. * (at your option) any later version.
  14. *
  15. * This program is distributed in the hope that it will be useful,
  16. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  18. * GNU General Public License for more details.
  19. *
  20. * You should have received a copy of the GNU General Public License
  21. * along with this program; if not, write to the Free Software
  22. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  23. */
  24. #include <linux/module.h>
  25. #include <linux/kernel.h>
  26. #include <linux/ktime.h>
  27. #include <linux/init.h>
  28. #include <linux/connector.h>
  29. #include <linux/gfp.h>
  30. #include <linux/ptrace.h>
  31. #include <linux/atomic.h>
  32. #include <linux/pid_namespace.h>
  33. #include <linux/cn_proc.h>
  34. /*
  35. * Size of a cn_msg followed by a proc_event structure. Since the
  36. * sizeof struct cn_msg is a multiple of 4 bytes, but not 8 bytes, we
  37. * add one 4-byte word to the size here, and then start the actual
  38. * cn_msg structure 4 bytes into the stack buffer. The result is that
  39. * the immediately following proc_event structure is aligned to 8 bytes.
  40. */
  41. #define CN_PROC_MSG_SIZE (sizeof(struct cn_msg) + sizeof(struct proc_event) + 4)
  42. /* See comment above; we test our assumption about sizeof struct cn_msg here. */
  43. static inline struct cn_msg *buffer_to_cn_msg(__u8 *buffer)
  44. {
  45. BUILD_BUG_ON(sizeof(struct cn_msg) != 20);
  46. return (struct cn_msg *)(buffer + 4);
  47. }
  48. static atomic_t proc_event_num_listeners = ATOMIC_INIT(0);
  49. static struct cb_id cn_proc_event_id = { CN_IDX_PROC, CN_VAL_PROC };
  50. /* proc_event_counts is used as the sequence number of the netlink message */
  51. static DEFINE_PER_CPU(__u32, proc_event_counts) = { 0 };
  52. static inline void get_seq(__u32 *ts, int *cpu)
  53. {
  54. preempt_disable();
  55. *ts = __this_cpu_inc_return(proc_event_counts) - 1;
  56. *cpu = smp_processor_id();
  57. preempt_enable();
  58. }
  59. void proc_fork_connector(struct task_struct *task)
  60. {
  61. struct cn_msg *msg;
  62. struct proc_event *ev;
  63. __u8 buffer[CN_PROC_MSG_SIZE] __aligned(8);
  64. struct timespec ts;
  65. struct task_struct *parent;
  66. if (atomic_read(&proc_event_num_listeners) < 1)
  67. return;
  68. msg = buffer_to_cn_msg(buffer);
  69. ev = (struct proc_event *)msg->data;
  70. memset(&ev->event_data, 0, sizeof(ev->event_data));
  71. get_seq(&msg->seq, &ev->cpu);
  72. ktime_get_ts(&ts); /* get high res monotonic timestamp */
  73. ev->timestamp_ns = timespec_to_ns(&ts);
  74. ev->what = PROC_EVENT_FORK;
  75. rcu_read_lock();
  76. parent = rcu_dereference(task->real_parent);
  77. ev->event_data.fork.parent_pid = parent->pid;
  78. ev->event_data.fork.parent_tgid = parent->tgid;
  79. rcu_read_unlock();
  80. ev->event_data.fork.child_pid = task->pid;
  81. ev->event_data.fork.child_tgid = task->tgid;
  82. memcpy(&msg->id, &cn_proc_event_id, sizeof(msg->id));
  83. msg->ack = 0; /* not used */
  84. msg->len = sizeof(*ev);
  85. msg->flags = 0; /* not used */
  86. /* If cn_netlink_send() failed, the data is not sent */
  87. cn_netlink_send(msg, 0, CN_IDX_PROC, GFP_KERNEL);
  88. }
  89. void proc_exec_connector(struct task_struct *task)
  90. {
  91. struct cn_msg *msg;
  92. struct proc_event *ev;
  93. struct timespec ts;
  94. __u8 buffer[CN_PROC_MSG_SIZE] __aligned(8);
  95. if (atomic_read(&proc_event_num_listeners) < 1)
  96. return;
  97. msg = buffer_to_cn_msg(buffer);
  98. ev = (struct proc_event *)msg->data;
  99. memset(&ev->event_data, 0, sizeof(ev->event_data));
  100. get_seq(&msg->seq, &ev->cpu);
  101. ktime_get_ts(&ts); /* get high res monotonic timestamp */
  102. ev->timestamp_ns = timespec_to_ns(&ts);
  103. ev->what = PROC_EVENT_EXEC;
  104. ev->event_data.exec.process_pid = task->pid;
  105. ev->event_data.exec.process_tgid = task->tgid;
  106. memcpy(&msg->id, &cn_proc_event_id, sizeof(msg->id));
  107. msg->ack = 0; /* not used */
  108. msg->len = sizeof(*ev);
  109. msg->flags = 0; /* not used */
  110. cn_netlink_send(msg, 0, CN_IDX_PROC, GFP_KERNEL);
  111. }
  112. void proc_id_connector(struct task_struct *task, int which_id)
  113. {
  114. struct cn_msg *msg;
  115. struct proc_event *ev;
  116. __u8 buffer[CN_PROC_MSG_SIZE] __aligned(8);
  117. struct timespec ts;
  118. const struct cred *cred;
  119. if (atomic_read(&proc_event_num_listeners) < 1)
  120. return;
  121. msg = buffer_to_cn_msg(buffer);
  122. ev = (struct proc_event *)msg->data;
  123. memset(&ev->event_data, 0, sizeof(ev->event_data));
  124. ev->what = which_id;
  125. ev->event_data.id.process_pid = task->pid;
  126. ev->event_data.id.process_tgid = task->tgid;
  127. rcu_read_lock();
  128. cred = __task_cred(task);
  129. if (which_id == PROC_EVENT_UID) {
  130. ev->event_data.id.r.ruid = from_kuid_munged(&init_user_ns, cred->uid);
  131. ev->event_data.id.e.euid = from_kuid_munged(&init_user_ns, cred->euid);
  132. } else if (which_id == PROC_EVENT_GID) {
  133. ev->event_data.id.r.rgid = from_kgid_munged(&init_user_ns, cred->gid);
  134. ev->event_data.id.e.egid = from_kgid_munged(&init_user_ns, cred->egid);
  135. } else {
  136. rcu_read_unlock();
  137. return;
  138. }
  139. rcu_read_unlock();
  140. get_seq(&msg->seq, &ev->cpu);
  141. ktime_get_ts(&ts); /* get high res monotonic timestamp */
  142. ev->timestamp_ns = timespec_to_ns(&ts);
  143. memcpy(&msg->id, &cn_proc_event_id, sizeof(msg->id));
  144. msg->ack = 0; /* not used */
  145. msg->len = sizeof(*ev);
  146. msg->flags = 0; /* not used */
  147. cn_netlink_send(msg, 0, CN_IDX_PROC, GFP_KERNEL);
  148. }
  149. void proc_sid_connector(struct task_struct *task)
  150. {
  151. struct cn_msg *msg;
  152. struct proc_event *ev;
  153. struct timespec ts;
  154. __u8 buffer[CN_PROC_MSG_SIZE] __aligned(8);
  155. if (atomic_read(&proc_event_num_listeners) < 1)
  156. return;
  157. msg = buffer_to_cn_msg(buffer);
  158. ev = (struct proc_event *)msg->data;
  159. memset(&ev->event_data, 0, sizeof(ev->event_data));
  160. get_seq(&msg->seq, &ev->cpu);
  161. ktime_get_ts(&ts); /* get high res monotonic timestamp */
  162. ev->timestamp_ns = timespec_to_ns(&ts);
  163. ev->what = PROC_EVENT_SID;
  164. ev->event_data.sid.process_pid = task->pid;
  165. ev->event_data.sid.process_tgid = task->tgid;
  166. memcpy(&msg->id, &cn_proc_event_id, sizeof(msg->id));
  167. msg->ack = 0; /* not used */
  168. msg->len = sizeof(*ev);
  169. msg->flags = 0; /* not used */
  170. cn_netlink_send(msg, 0, CN_IDX_PROC, GFP_KERNEL);
  171. }
  172. void proc_ptrace_connector(struct task_struct *task, int ptrace_id)
  173. {
  174. struct cn_msg *msg;
  175. struct proc_event *ev;
  176. struct timespec ts;
  177. __u8 buffer[CN_PROC_MSG_SIZE] __aligned(8);
  178. if (atomic_read(&proc_event_num_listeners) < 1)
  179. return;
  180. msg = buffer_to_cn_msg(buffer);
  181. ev = (struct proc_event *)msg->data;
  182. memset(&ev->event_data, 0, sizeof(ev->event_data));
  183. get_seq(&msg->seq, &ev->cpu);
  184. ktime_get_ts(&ts); /* get high res monotonic timestamp */
  185. ev->timestamp_ns = timespec_to_ns(&ts);
  186. ev->what = PROC_EVENT_PTRACE;
  187. ev->event_data.ptrace.process_pid = task->pid;
  188. ev->event_data.ptrace.process_tgid = task->tgid;
  189. if (ptrace_id == PTRACE_ATTACH) {
  190. ev->event_data.ptrace.tracer_pid = current->pid;
  191. ev->event_data.ptrace.tracer_tgid = current->tgid;
  192. } else if (ptrace_id == PTRACE_DETACH) {
  193. ev->event_data.ptrace.tracer_pid = 0;
  194. ev->event_data.ptrace.tracer_tgid = 0;
  195. } else
  196. return;
  197. memcpy(&msg->id, &cn_proc_event_id, sizeof(msg->id));
  198. msg->ack = 0; /* not used */
  199. msg->len = sizeof(*ev);
  200. msg->flags = 0; /* not used */
  201. cn_netlink_send(msg, 0, CN_IDX_PROC, GFP_KERNEL);
  202. }
  203. void proc_comm_connector(struct task_struct *task)
  204. {
  205. struct cn_msg *msg;
  206. struct proc_event *ev;
  207. struct timespec ts;
  208. __u8 buffer[CN_PROC_MSG_SIZE] __aligned(8);
  209. if (atomic_read(&proc_event_num_listeners) < 1)
  210. return;
  211. msg = buffer_to_cn_msg(buffer);
  212. ev = (struct proc_event *)msg->data;
  213. memset(&ev->event_data, 0, sizeof(ev->event_data));
  214. get_seq(&msg->seq, &ev->cpu);
  215. ktime_get_ts(&ts); /* get high res monotonic timestamp */
  216. ev->timestamp_ns = timespec_to_ns(&ts);
  217. ev->what = PROC_EVENT_COMM;
  218. ev->event_data.comm.process_pid = task->pid;
  219. ev->event_data.comm.process_tgid = task->tgid;
  220. get_task_comm(ev->event_data.comm.comm, task);
  221. memcpy(&msg->id, &cn_proc_event_id, sizeof(msg->id));
  222. msg->ack = 0; /* not used */
  223. msg->len = sizeof(*ev);
  224. msg->flags = 0; /* not used */
  225. cn_netlink_send(msg, 0, CN_IDX_PROC, GFP_KERNEL);
  226. }
  227. void proc_coredump_connector(struct task_struct *task)
  228. {
  229. struct cn_msg *msg;
  230. struct proc_event *ev;
  231. __u8 buffer[CN_PROC_MSG_SIZE] __aligned(8);
  232. struct timespec ts;
  233. if (atomic_read(&proc_event_num_listeners) < 1)
  234. return;
  235. msg = buffer_to_cn_msg(buffer);
  236. ev = (struct proc_event *)msg->data;
  237. memset(&ev->event_data, 0, sizeof(ev->event_data));
  238. get_seq(&msg->seq, &ev->cpu);
  239. ktime_get_ts(&ts); /* get high res monotonic timestamp */
  240. ev->timestamp_ns = timespec_to_ns(&ts);
  241. ev->what = PROC_EVENT_COREDUMP;
  242. ev->event_data.coredump.process_pid = task->pid;
  243. ev->event_data.coredump.process_tgid = task->tgid;
  244. memcpy(&msg->id, &cn_proc_event_id, sizeof(msg->id));
  245. msg->ack = 0; /* not used */
  246. msg->len = sizeof(*ev);
  247. msg->flags = 0; /* not used */
  248. cn_netlink_send(msg, 0, CN_IDX_PROC, GFP_KERNEL);
  249. }
  250. void proc_exit_connector(struct task_struct *task)
  251. {
  252. struct cn_msg *msg;
  253. struct proc_event *ev;
  254. __u8 buffer[CN_PROC_MSG_SIZE] __aligned(8);
  255. struct timespec ts;
  256. if (atomic_read(&proc_event_num_listeners) < 1)
  257. return;
  258. msg = buffer_to_cn_msg(buffer);
  259. ev = (struct proc_event *)msg->data;
  260. memset(&ev->event_data, 0, sizeof(ev->event_data));
  261. get_seq(&msg->seq, &ev->cpu);
  262. ktime_get_ts(&ts); /* get high res monotonic timestamp */
  263. ev->timestamp_ns = timespec_to_ns(&ts);
  264. ev->what = PROC_EVENT_EXIT;
  265. ev->event_data.exit.process_pid = task->pid;
  266. ev->event_data.exit.process_tgid = task->tgid;
  267. ev->event_data.exit.exit_code = task->exit_code;
  268. ev->event_data.exit.exit_signal = task->exit_signal;
  269. memcpy(&msg->id, &cn_proc_event_id, sizeof(msg->id));
  270. msg->ack = 0; /* not used */
  271. msg->len = sizeof(*ev);
  272. msg->flags = 0; /* not used */
  273. cn_netlink_send(msg, 0, CN_IDX_PROC, GFP_KERNEL);
  274. }
  275. /*
  276. * Send an acknowledgement message to userspace
  277. *
  278. * Use 0 for success, EFOO otherwise.
  279. * Note: this is the negative of conventional kernel error
  280. * values because it's not being returned via syscall return
  281. * mechanisms.
  282. */
  283. static void cn_proc_ack(int err, int rcvd_seq, int rcvd_ack)
  284. {
  285. struct cn_msg *msg;
  286. struct proc_event *ev;
  287. __u8 buffer[CN_PROC_MSG_SIZE] __aligned(8);
  288. struct timespec ts;
  289. if (atomic_read(&proc_event_num_listeners) < 1)
  290. return;
  291. msg = buffer_to_cn_msg(buffer);
  292. ev = (struct proc_event *)msg->data;
  293. memset(&ev->event_data, 0, sizeof(ev->event_data));
  294. msg->seq = rcvd_seq;
  295. ktime_get_ts(&ts); /* get high res monotonic timestamp */
  296. ev->timestamp_ns = timespec_to_ns(&ts);
  297. ev->cpu = -1;
  298. ev->what = PROC_EVENT_NONE;
  299. ev->event_data.ack.err = err;
  300. memcpy(&msg->id, &cn_proc_event_id, sizeof(msg->id));
  301. msg->ack = rcvd_ack + 1;
  302. msg->len = sizeof(*ev);
  303. msg->flags = 0; /* not used */
  304. cn_netlink_send(msg, 0, CN_IDX_PROC, GFP_KERNEL);
  305. }
  306. /**
  307. * cn_proc_mcast_ctl
  308. * @data: message sent from userspace via the connector
  309. */
  310. static void cn_proc_mcast_ctl(struct cn_msg *msg,
  311. struct netlink_skb_parms *nsp)
  312. {
  313. enum proc_cn_mcast_op *mc_op = NULL;
  314. int err = 0;
  315. if (msg->len != sizeof(*mc_op))
  316. return;
  317. /*
  318. * Events are reported with respect to the initial pid
  319. * and user namespaces so ignore requestors from
  320. * other namespaces.
  321. */
  322. if ((current_user_ns() != &init_user_ns) ||
  323. (task_active_pid_ns(current) != &init_pid_ns))
  324. return;
  325. /* Can only change if privileged. */
  326. if (!__netlink_ns_capable(nsp, &init_user_ns, CAP_NET_ADMIN)) {
  327. err = EPERM;
  328. goto out;
  329. }
  330. mc_op = (enum proc_cn_mcast_op *)msg->data;
  331. switch (*mc_op) {
  332. case PROC_CN_MCAST_LISTEN:
  333. atomic_inc(&proc_event_num_listeners);
  334. break;
  335. case PROC_CN_MCAST_IGNORE:
  336. atomic_dec(&proc_event_num_listeners);
  337. break;
  338. default:
  339. err = EINVAL;
  340. break;
  341. }
  342. out:
  343. cn_proc_ack(err, msg->seq, msg->ack);
  344. }
  345. /*
  346. * cn_proc_init - initialization entry point
  347. *
  348. * Adds the connector callback to the connector driver.
  349. */
  350. static int __init cn_proc_init(void)
  351. {
  352. int err = cn_add_callback(&cn_proc_event_id,
  353. "cn_proc",
  354. &cn_proc_mcast_ctl);
  355. if (err) {
  356. pr_warn("cn_proc failed to register\n");
  357. return err;
  358. }
  359. return 0;
  360. }
  361. module_init(cn_proc_init);