exynos_mct.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592
  1. /* linux/arch/arm/mach-exynos4/mct.c
  2. *
  3. * Copyright (c) 2011 Samsung Electronics Co., Ltd.
  4. * http://www.samsung.com
  5. *
  6. * EXYNOS4 MCT(Multi-Core Timer) support
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License version 2 as
  10. * published by the Free Software Foundation.
  11. */
  12. #include <linux/sched.h>
  13. #include <linux/interrupt.h>
  14. #include <linux/irq.h>
  15. #include <linux/err.h>
  16. #include <linux/clk.h>
  17. #include <linux/clockchips.h>
  18. #include <linux/cpu.h>
  19. #include <linux/platform_device.h>
  20. #include <linux/delay.h>
  21. #include <linux/percpu.h>
  22. #include <linux/of.h>
  23. #include <linux/of_irq.h>
  24. #include <linux/of_address.h>
  25. #include <linux/clocksource.h>
  26. #include <linux/sched_clock.h>
  27. #define EXYNOS4_MCTREG(x) (x)
  28. #define EXYNOS4_MCT_G_CNT_L EXYNOS4_MCTREG(0x100)
  29. #define EXYNOS4_MCT_G_CNT_U EXYNOS4_MCTREG(0x104)
  30. #define EXYNOS4_MCT_G_CNT_WSTAT EXYNOS4_MCTREG(0x110)
  31. #define EXYNOS4_MCT_G_COMP0_L EXYNOS4_MCTREG(0x200)
  32. #define EXYNOS4_MCT_G_COMP0_U EXYNOS4_MCTREG(0x204)
  33. #define EXYNOS4_MCT_G_COMP0_ADD_INCR EXYNOS4_MCTREG(0x208)
  34. #define EXYNOS4_MCT_G_TCON EXYNOS4_MCTREG(0x240)
  35. #define EXYNOS4_MCT_G_INT_CSTAT EXYNOS4_MCTREG(0x244)
  36. #define EXYNOS4_MCT_G_INT_ENB EXYNOS4_MCTREG(0x248)
  37. #define EXYNOS4_MCT_G_WSTAT EXYNOS4_MCTREG(0x24C)
  38. #define _EXYNOS4_MCT_L_BASE EXYNOS4_MCTREG(0x300)
  39. #define EXYNOS4_MCT_L_BASE(x) (_EXYNOS4_MCT_L_BASE + (0x100 * x))
  40. #define EXYNOS4_MCT_L_MASK (0xffffff00)
  41. #define MCT_L_TCNTB_OFFSET (0x00)
  42. #define MCT_L_ICNTB_OFFSET (0x08)
  43. #define MCT_L_TCON_OFFSET (0x20)
  44. #define MCT_L_INT_CSTAT_OFFSET (0x30)
  45. #define MCT_L_INT_ENB_OFFSET (0x34)
  46. #define MCT_L_WSTAT_OFFSET (0x40)
  47. #define MCT_G_TCON_START (1 << 8)
  48. #define MCT_G_TCON_COMP0_AUTO_INC (1 << 1)
  49. #define MCT_G_TCON_COMP0_ENABLE (1 << 0)
  50. #define MCT_L_TCON_INTERVAL_MODE (1 << 2)
  51. #define MCT_L_TCON_INT_START (1 << 1)
  52. #define MCT_L_TCON_TIMER_START (1 << 0)
  53. #define TICK_BASE_CNT 1
  54. enum {
  55. MCT_INT_SPI,
  56. MCT_INT_PPI
  57. };
  58. enum {
  59. MCT_G0_IRQ,
  60. MCT_G1_IRQ,
  61. MCT_G2_IRQ,
  62. MCT_G3_IRQ,
  63. MCT_L0_IRQ,
  64. MCT_L1_IRQ,
  65. MCT_L2_IRQ,
  66. MCT_L3_IRQ,
  67. MCT_L4_IRQ,
  68. MCT_L5_IRQ,
  69. MCT_L6_IRQ,
  70. MCT_L7_IRQ,
  71. MCT_NR_IRQS,
  72. };
  73. static void __iomem *reg_base;
  74. static unsigned long clk_rate;
  75. static unsigned int mct_int_type;
  76. static int mct_irqs[MCT_NR_IRQS];
  77. struct mct_clock_event_device {
  78. struct clock_event_device evt;
  79. unsigned long base;
  80. char name[10];
  81. };
  82. static void exynos4_mct_write(unsigned int value, unsigned long offset)
  83. {
  84. unsigned long stat_addr;
  85. u32 mask;
  86. u32 i;
  87. __raw_writel(value, reg_base + offset);
  88. if (likely(offset >= EXYNOS4_MCT_L_BASE(0))) {
  89. stat_addr = (offset & ~EXYNOS4_MCT_L_MASK) + MCT_L_WSTAT_OFFSET;
  90. switch (offset & EXYNOS4_MCT_L_MASK) {
  91. case MCT_L_TCON_OFFSET:
  92. mask = 1 << 3; /* L_TCON write status */
  93. break;
  94. case MCT_L_ICNTB_OFFSET:
  95. mask = 1 << 1; /* L_ICNTB write status */
  96. break;
  97. case MCT_L_TCNTB_OFFSET:
  98. mask = 1 << 0; /* L_TCNTB write status */
  99. break;
  100. default:
  101. return;
  102. }
  103. } else {
  104. switch (offset) {
  105. case EXYNOS4_MCT_G_TCON:
  106. stat_addr = EXYNOS4_MCT_G_WSTAT;
  107. mask = 1 << 16; /* G_TCON write status */
  108. break;
  109. case EXYNOS4_MCT_G_COMP0_L:
  110. stat_addr = EXYNOS4_MCT_G_WSTAT;
  111. mask = 1 << 0; /* G_COMP0_L write status */
  112. break;
  113. case EXYNOS4_MCT_G_COMP0_U:
  114. stat_addr = EXYNOS4_MCT_G_WSTAT;
  115. mask = 1 << 1; /* G_COMP0_U write status */
  116. break;
  117. case EXYNOS4_MCT_G_COMP0_ADD_INCR:
  118. stat_addr = EXYNOS4_MCT_G_WSTAT;
  119. mask = 1 << 2; /* G_COMP0_ADD_INCR w status */
  120. break;
  121. case EXYNOS4_MCT_G_CNT_L:
  122. stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
  123. mask = 1 << 0; /* G_CNT_L write status */
  124. break;
  125. case EXYNOS4_MCT_G_CNT_U:
  126. stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
  127. mask = 1 << 1; /* G_CNT_U write status */
  128. break;
  129. default:
  130. return;
  131. }
  132. }
  133. /* Wait maximum 1 ms until written values are applied */
  134. for (i = 0; i < loops_per_jiffy / 1000 * HZ; i++)
  135. if (__raw_readl(reg_base + stat_addr) & mask) {
  136. __raw_writel(mask, reg_base + stat_addr);
  137. return;
  138. }
  139. panic("MCT hangs after writing %d (offset:0x%lx)\n", value, offset);
  140. }
  141. /* Clocksource handling */
  142. static void exynos4_mct_frc_start(void)
  143. {
  144. u32 reg;
  145. reg = __raw_readl(reg_base + EXYNOS4_MCT_G_TCON);
  146. reg |= MCT_G_TCON_START;
  147. exynos4_mct_write(reg, EXYNOS4_MCT_G_TCON);
  148. }
  149. static cycle_t notrace _exynos4_frc_read(void)
  150. {
  151. unsigned int lo, hi;
  152. u32 hi2 = __raw_readl(reg_base + EXYNOS4_MCT_G_CNT_U);
  153. do {
  154. hi = hi2;
  155. lo = __raw_readl(reg_base + EXYNOS4_MCT_G_CNT_L);
  156. hi2 = __raw_readl(reg_base + EXYNOS4_MCT_G_CNT_U);
  157. } while (hi != hi2);
  158. return ((cycle_t)hi << 32) | lo;
  159. }
  160. static cycle_t exynos4_frc_read(struct clocksource *cs)
  161. {
  162. return _exynos4_frc_read();
  163. }
  164. static void exynos4_frc_resume(struct clocksource *cs)
  165. {
  166. exynos4_mct_frc_start();
  167. }
  168. struct clocksource mct_frc = {
  169. .name = "mct-frc",
  170. .rating = 400,
  171. .read = exynos4_frc_read,
  172. .mask = CLOCKSOURCE_MASK(64),
  173. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  174. .resume = exynos4_frc_resume,
  175. };
  176. static u64 notrace exynos4_read_sched_clock(void)
  177. {
  178. return _exynos4_frc_read();
  179. }
  180. static struct delay_timer exynos4_delay_timer;
  181. static cycles_t exynos4_read_current_timer(void)
  182. {
  183. return _exynos4_frc_read();
  184. }
  185. static void __init exynos4_clocksource_init(void)
  186. {
  187. exynos4_mct_frc_start();
  188. exynos4_delay_timer.read_current_timer = &exynos4_read_current_timer;
  189. exynos4_delay_timer.freq = clk_rate;
  190. register_current_timer_delay(&exynos4_delay_timer);
  191. if (clocksource_register_hz(&mct_frc, clk_rate))
  192. panic("%s: can't register clocksource\n", mct_frc.name);
  193. sched_clock_register(exynos4_read_sched_clock, 64, clk_rate);
  194. }
  195. static void exynos4_mct_comp0_stop(void)
  196. {
  197. unsigned int tcon;
  198. tcon = __raw_readl(reg_base + EXYNOS4_MCT_G_TCON);
  199. tcon &= ~(MCT_G_TCON_COMP0_ENABLE | MCT_G_TCON_COMP0_AUTO_INC);
  200. exynos4_mct_write(tcon, EXYNOS4_MCT_G_TCON);
  201. exynos4_mct_write(0, EXYNOS4_MCT_G_INT_ENB);
  202. }
  203. static void exynos4_mct_comp0_start(enum clock_event_mode mode,
  204. unsigned long cycles)
  205. {
  206. unsigned int tcon;
  207. cycle_t comp_cycle;
  208. tcon = __raw_readl(reg_base + EXYNOS4_MCT_G_TCON);
  209. if (mode == CLOCK_EVT_MODE_PERIODIC) {
  210. tcon |= MCT_G_TCON_COMP0_AUTO_INC;
  211. exynos4_mct_write(cycles, EXYNOS4_MCT_G_COMP0_ADD_INCR);
  212. }
  213. comp_cycle = exynos4_frc_read(&mct_frc) + cycles;
  214. exynos4_mct_write((u32)comp_cycle, EXYNOS4_MCT_G_COMP0_L);
  215. exynos4_mct_write((u32)(comp_cycle >> 32), EXYNOS4_MCT_G_COMP0_U);
  216. exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_ENB);
  217. tcon |= MCT_G_TCON_COMP0_ENABLE;
  218. exynos4_mct_write(tcon , EXYNOS4_MCT_G_TCON);
  219. }
  220. static int exynos4_comp_set_next_event(unsigned long cycles,
  221. struct clock_event_device *evt)
  222. {
  223. exynos4_mct_comp0_start(evt->mode, cycles);
  224. return 0;
  225. }
  226. static void exynos4_comp_set_mode(enum clock_event_mode mode,
  227. struct clock_event_device *evt)
  228. {
  229. unsigned long cycles_per_jiffy;
  230. exynos4_mct_comp0_stop();
  231. switch (mode) {
  232. case CLOCK_EVT_MODE_PERIODIC:
  233. cycles_per_jiffy =
  234. (((unsigned long long) NSEC_PER_SEC / HZ * evt->mult) >> evt->shift);
  235. exynos4_mct_comp0_start(mode, cycles_per_jiffy);
  236. break;
  237. case CLOCK_EVT_MODE_ONESHOT:
  238. case CLOCK_EVT_MODE_UNUSED:
  239. case CLOCK_EVT_MODE_SHUTDOWN:
  240. case CLOCK_EVT_MODE_RESUME:
  241. break;
  242. }
  243. }
  244. static struct clock_event_device mct_comp_device = {
  245. .name = "mct-comp",
  246. .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
  247. .rating = 250,
  248. .set_next_event = exynos4_comp_set_next_event,
  249. .set_mode = exynos4_comp_set_mode,
  250. };
  251. static irqreturn_t exynos4_mct_comp_isr(int irq, void *dev_id)
  252. {
  253. struct clock_event_device *evt = dev_id;
  254. exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_CSTAT);
  255. evt->event_handler(evt);
  256. return IRQ_HANDLED;
  257. }
  258. static struct irqaction mct_comp_event_irq = {
  259. .name = "mct_comp_irq",
  260. .flags = IRQF_TIMER | IRQF_IRQPOLL,
  261. .handler = exynos4_mct_comp_isr,
  262. .dev_id = &mct_comp_device,
  263. };
  264. static void exynos4_clockevent_init(void)
  265. {
  266. mct_comp_device.cpumask = cpumask_of(0);
  267. clockevents_config_and_register(&mct_comp_device, clk_rate,
  268. 0xf, 0xffffffff);
  269. setup_irq(mct_irqs[MCT_G0_IRQ], &mct_comp_event_irq);
  270. }
  271. static DEFINE_PER_CPU(struct mct_clock_event_device, percpu_mct_tick);
  272. /* Clock event handling */
  273. static void exynos4_mct_tick_stop(struct mct_clock_event_device *mevt)
  274. {
  275. unsigned long tmp;
  276. unsigned long mask = MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START;
  277. unsigned long offset = mevt->base + MCT_L_TCON_OFFSET;
  278. tmp = __raw_readl(reg_base + offset);
  279. if (tmp & mask) {
  280. tmp &= ~mask;
  281. exynos4_mct_write(tmp, offset);
  282. }
  283. }
  284. static void exynos4_mct_tick_start(unsigned long cycles,
  285. struct mct_clock_event_device *mevt)
  286. {
  287. unsigned long tmp;
  288. exynos4_mct_tick_stop(mevt);
  289. tmp = (1 << 31) | cycles; /* MCT_L_UPDATE_ICNTB */
  290. /* update interrupt count buffer */
  291. exynos4_mct_write(tmp, mevt->base + MCT_L_ICNTB_OFFSET);
  292. /* enable MCT tick interrupt */
  293. exynos4_mct_write(0x1, mevt->base + MCT_L_INT_ENB_OFFSET);
  294. tmp = __raw_readl(reg_base + mevt->base + MCT_L_TCON_OFFSET);
  295. tmp |= MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START |
  296. MCT_L_TCON_INTERVAL_MODE;
  297. exynos4_mct_write(tmp, mevt->base + MCT_L_TCON_OFFSET);
  298. }
  299. static int exynos4_tick_set_next_event(unsigned long cycles,
  300. struct clock_event_device *evt)
  301. {
  302. struct mct_clock_event_device *mevt = this_cpu_ptr(&percpu_mct_tick);
  303. exynos4_mct_tick_start(cycles, mevt);
  304. return 0;
  305. }
  306. static inline void exynos4_tick_set_mode(enum clock_event_mode mode,
  307. struct clock_event_device *evt)
  308. {
  309. struct mct_clock_event_device *mevt = this_cpu_ptr(&percpu_mct_tick);
  310. unsigned long cycles_per_jiffy;
  311. exynos4_mct_tick_stop(mevt);
  312. switch (mode) {
  313. case CLOCK_EVT_MODE_PERIODIC:
  314. cycles_per_jiffy =
  315. (((unsigned long long) NSEC_PER_SEC / HZ * evt->mult) >> evt->shift);
  316. exynos4_mct_tick_start(cycles_per_jiffy, mevt);
  317. break;
  318. case CLOCK_EVT_MODE_ONESHOT:
  319. case CLOCK_EVT_MODE_UNUSED:
  320. case CLOCK_EVT_MODE_SHUTDOWN:
  321. case CLOCK_EVT_MODE_RESUME:
  322. break;
  323. }
  324. }
  325. static int exynos4_mct_tick_clear(struct mct_clock_event_device *mevt)
  326. {
  327. struct clock_event_device *evt = &mevt->evt;
  328. /*
  329. * This is for supporting oneshot mode.
  330. * Mct would generate interrupt periodically
  331. * without explicit stopping.
  332. */
  333. if (evt->mode != CLOCK_EVT_MODE_PERIODIC)
  334. exynos4_mct_tick_stop(mevt);
  335. /* Clear the MCT tick interrupt */
  336. if (__raw_readl(reg_base + mevt->base + MCT_L_INT_CSTAT_OFFSET) & 1) {
  337. exynos4_mct_write(0x1, mevt->base + MCT_L_INT_CSTAT_OFFSET);
  338. return 1;
  339. } else {
  340. return 0;
  341. }
  342. }
  343. static irqreturn_t exynos4_mct_tick_isr(int irq, void *dev_id)
  344. {
  345. struct mct_clock_event_device *mevt = dev_id;
  346. struct clock_event_device *evt = &mevt->evt;
  347. exynos4_mct_tick_clear(mevt);
  348. evt->event_handler(evt);
  349. return IRQ_HANDLED;
  350. }
  351. static int exynos4_local_timer_setup(struct clock_event_device *evt)
  352. {
  353. struct mct_clock_event_device *mevt;
  354. unsigned int cpu = smp_processor_id();
  355. mevt = container_of(evt, struct mct_clock_event_device, evt);
  356. mevt->base = EXYNOS4_MCT_L_BASE(cpu);
  357. snprintf(mevt->name, sizeof(mevt->name), "mct_tick%d", cpu);
  358. evt->name = mevt->name;
  359. evt->cpumask = cpumask_of(cpu);
  360. evt->set_next_event = exynos4_tick_set_next_event;
  361. evt->set_mode = exynos4_tick_set_mode;
  362. evt->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
  363. evt->rating = 450;
  364. exynos4_mct_write(TICK_BASE_CNT, mevt->base + MCT_L_TCNTB_OFFSET);
  365. if (mct_int_type == MCT_INT_SPI) {
  366. evt->irq = mct_irqs[MCT_L0_IRQ + cpu];
  367. if (request_irq(evt->irq, exynos4_mct_tick_isr,
  368. IRQF_TIMER | IRQF_NOBALANCING,
  369. evt->name, mevt)) {
  370. pr_err("exynos-mct: cannot register IRQ %d\n",
  371. evt->irq);
  372. return -EIO;
  373. }
  374. irq_force_affinity(mct_irqs[MCT_L0_IRQ + cpu], cpumask_of(cpu));
  375. } else {
  376. enable_percpu_irq(mct_irqs[MCT_L0_IRQ], 0);
  377. }
  378. clockevents_config_and_register(evt, clk_rate / (TICK_BASE_CNT + 1),
  379. 0xf, 0x7fffffff);
  380. return 0;
  381. }
  382. static void exynos4_local_timer_stop(struct clock_event_device *evt)
  383. {
  384. evt->set_mode(CLOCK_EVT_MODE_UNUSED, evt);
  385. if (mct_int_type == MCT_INT_SPI)
  386. free_irq(evt->irq, this_cpu_ptr(&percpu_mct_tick));
  387. else
  388. disable_percpu_irq(mct_irqs[MCT_L0_IRQ]);
  389. }
  390. static int exynos4_mct_cpu_notify(struct notifier_block *self,
  391. unsigned long action, void *hcpu)
  392. {
  393. struct mct_clock_event_device *mevt;
  394. /*
  395. * Grab cpu pointer in each case to avoid spurious
  396. * preemptible warnings
  397. */
  398. switch (action & ~CPU_TASKS_FROZEN) {
  399. case CPU_STARTING:
  400. mevt = this_cpu_ptr(&percpu_mct_tick);
  401. exynos4_local_timer_setup(&mevt->evt);
  402. break;
  403. case CPU_DYING:
  404. mevt = this_cpu_ptr(&percpu_mct_tick);
  405. exynos4_local_timer_stop(&mevt->evt);
  406. break;
  407. }
  408. return NOTIFY_OK;
  409. }
  410. static struct notifier_block exynos4_mct_cpu_nb = {
  411. .notifier_call = exynos4_mct_cpu_notify,
  412. };
  413. static void __init exynos4_timer_resources(struct device_node *np, void __iomem *base)
  414. {
  415. int err;
  416. struct mct_clock_event_device *mevt = this_cpu_ptr(&percpu_mct_tick);
  417. struct clk *mct_clk, *tick_clk;
  418. tick_clk = np ? of_clk_get_by_name(np, "fin_pll") :
  419. clk_get(NULL, "fin_pll");
  420. if (IS_ERR(tick_clk))
  421. panic("%s: unable to determine tick clock rate\n", __func__);
  422. clk_rate = clk_get_rate(tick_clk);
  423. mct_clk = np ? of_clk_get_by_name(np, "mct") : clk_get(NULL, "mct");
  424. if (IS_ERR(mct_clk))
  425. panic("%s: unable to retrieve mct clock instance\n", __func__);
  426. clk_prepare_enable(mct_clk);
  427. reg_base = base;
  428. if (!reg_base)
  429. panic("%s: unable to ioremap mct address space\n", __func__);
  430. if (mct_int_type == MCT_INT_PPI) {
  431. err = request_percpu_irq(mct_irqs[MCT_L0_IRQ],
  432. exynos4_mct_tick_isr, "MCT",
  433. &percpu_mct_tick);
  434. WARN(err, "MCT: can't request IRQ %d (%d)\n",
  435. mct_irqs[MCT_L0_IRQ], err);
  436. } else {
  437. irq_set_affinity(mct_irqs[MCT_L0_IRQ], cpumask_of(0));
  438. }
  439. err = register_cpu_notifier(&exynos4_mct_cpu_nb);
  440. if (err)
  441. goto out_irq;
  442. /* Immediately configure the timer on the boot CPU */
  443. exynos4_local_timer_setup(&mevt->evt);
  444. return;
  445. out_irq:
  446. free_percpu_irq(mct_irqs[MCT_L0_IRQ], &percpu_mct_tick);
  447. }
  448. void __init mct_init(void __iomem *base, int irq_g0, int irq_l0, int irq_l1)
  449. {
  450. mct_irqs[MCT_G0_IRQ] = irq_g0;
  451. mct_irqs[MCT_L0_IRQ] = irq_l0;
  452. mct_irqs[MCT_L1_IRQ] = irq_l1;
  453. mct_int_type = MCT_INT_SPI;
  454. exynos4_timer_resources(NULL, base);
  455. exynos4_clocksource_init();
  456. exynos4_clockevent_init();
  457. }
  458. static void __init mct_init_dt(struct device_node *np, unsigned int int_type)
  459. {
  460. u32 nr_irqs, i;
  461. mct_int_type = int_type;
  462. /* This driver uses only one global timer interrupt */
  463. mct_irqs[MCT_G0_IRQ] = irq_of_parse_and_map(np, MCT_G0_IRQ);
  464. /*
  465. * Find out the number of local irqs specified. The local
  466. * timer irqs are specified after the four global timer
  467. * irqs are specified.
  468. */
  469. #ifdef CONFIG_OF
  470. nr_irqs = of_irq_count(np);
  471. #else
  472. nr_irqs = 0;
  473. #endif
  474. for (i = MCT_L0_IRQ; i < nr_irqs; i++)
  475. mct_irqs[i] = irq_of_parse_and_map(np, i);
  476. exynos4_timer_resources(np, of_iomap(np, 0));
  477. exynos4_clocksource_init();
  478. exynos4_clockevent_init();
  479. }
  480. static void __init mct_init_spi(struct device_node *np)
  481. {
  482. return mct_init_dt(np, MCT_INT_SPI);
  483. }
  484. static void __init mct_init_ppi(struct device_node *np)
  485. {
  486. return mct_init_dt(np, MCT_INT_PPI);
  487. }
  488. CLOCKSOURCE_OF_DECLARE(exynos4210, "samsung,exynos4210-mct", mct_init_spi);
  489. CLOCKSOURCE_OF_DECLARE(exynos4412, "samsung,exynos4412-mct", mct_init_ppi);