random.c 52 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721
  1. /*
  2. * random.c -- A strong random number generator
  3. *
  4. * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
  5. *
  6. * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
  7. * rights reserved.
  8. *
  9. * Redistribution and use in source and binary forms, with or without
  10. * modification, are permitted provided that the following conditions
  11. * are met:
  12. * 1. Redistributions of source code must retain the above copyright
  13. * notice, and the entire permission notice in its entirety,
  14. * including the disclaimer of warranties.
  15. * 2. Redistributions in binary form must reproduce the above copyright
  16. * notice, this list of conditions and the following disclaimer in the
  17. * documentation and/or other materials provided with the distribution.
  18. * 3. The name of the author may not be used to endorse or promote
  19. * products derived from this software without specific prior
  20. * written permission.
  21. *
  22. * ALTERNATIVELY, this product may be distributed under the terms of
  23. * the GNU General Public License, in which case the provisions of the GPL are
  24. * required INSTEAD OF the above restrictions. (This clause is
  25. * necessary due to a potential bad interaction between the GPL and
  26. * the restrictions contained in a BSD-style copyright.)
  27. *
  28. * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
  29. * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
  30. * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
  31. * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
  32. * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  33. * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
  34. * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
  35. * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
  36. * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  37. * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
  38. * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
  39. * DAMAGE.
  40. */
  41. /*
  42. * (now, with legal B.S. out of the way.....)
  43. *
  44. * This routine gathers environmental noise from device drivers, etc.,
  45. * and returns good random numbers, suitable for cryptographic use.
  46. * Besides the obvious cryptographic uses, these numbers are also good
  47. * for seeding TCP sequence numbers, and other places where it is
  48. * desirable to have numbers which are not only random, but hard to
  49. * predict by an attacker.
  50. *
  51. * Theory of operation
  52. * ===================
  53. *
  54. * Computers are very predictable devices. Hence it is extremely hard
  55. * to produce truly random numbers on a computer --- as opposed to
  56. * pseudo-random numbers, which can easily generated by using a
  57. * algorithm. Unfortunately, it is very easy for attackers to guess
  58. * the sequence of pseudo-random number generators, and for some
  59. * applications this is not acceptable. So instead, we must try to
  60. * gather "environmental noise" from the computer's environment, which
  61. * must be hard for outside attackers to observe, and use that to
  62. * generate random numbers. In a Unix environment, this is best done
  63. * from inside the kernel.
  64. *
  65. * Sources of randomness from the environment include inter-keyboard
  66. * timings, inter-interrupt timings from some interrupts, and other
  67. * events which are both (a) non-deterministic and (b) hard for an
  68. * outside observer to measure. Randomness from these sources are
  69. * added to an "entropy pool", which is mixed using a CRC-like function.
  70. * This is not cryptographically strong, but it is adequate assuming
  71. * the randomness is not chosen maliciously, and it is fast enough that
  72. * the overhead of doing it on every interrupt is very reasonable.
  73. * As random bytes are mixed into the entropy pool, the routines keep
  74. * an *estimate* of how many bits of randomness have been stored into
  75. * the random number generator's internal state.
  76. *
  77. * When random bytes are desired, they are obtained by taking the SHA
  78. * hash of the contents of the "entropy pool". The SHA hash avoids
  79. * exposing the internal state of the entropy pool. It is believed to
  80. * be computationally infeasible to derive any useful information
  81. * about the input of SHA from its output. Even if it is possible to
  82. * analyze SHA in some clever way, as long as the amount of data
  83. * returned from the generator is less than the inherent entropy in
  84. * the pool, the output data is totally unpredictable. For this
  85. * reason, the routine decreases its internal estimate of how many
  86. * bits of "true randomness" are contained in the entropy pool as it
  87. * outputs random numbers.
  88. *
  89. * If this estimate goes to zero, the routine can still generate
  90. * random numbers; however, an attacker may (at least in theory) be
  91. * able to infer the future output of the generator from prior
  92. * outputs. This requires successful cryptanalysis of SHA, which is
  93. * not believed to be feasible, but there is a remote possibility.
  94. * Nonetheless, these numbers should be useful for the vast majority
  95. * of purposes.
  96. *
  97. * Exported interfaces ---- output
  98. * ===============================
  99. *
  100. * There are three exported interfaces; the first is one designed to
  101. * be used from within the kernel:
  102. *
  103. * void get_random_bytes(void *buf, int nbytes);
  104. *
  105. * This interface will return the requested number of random bytes,
  106. * and place it in the requested buffer.
  107. *
  108. * The two other interfaces are two character devices /dev/random and
  109. * /dev/urandom. /dev/random is suitable for use when very high
  110. * quality randomness is desired (for example, for key generation or
  111. * one-time pads), as it will only return a maximum of the number of
  112. * bits of randomness (as estimated by the random number generator)
  113. * contained in the entropy pool.
  114. *
  115. * The /dev/urandom device does not have this limit, and will return
  116. * as many bytes as are requested. As more and more random bytes are
  117. * requested without giving time for the entropy pool to recharge,
  118. * this will result in random numbers that are merely cryptographically
  119. * strong. For many applications, however, this is acceptable.
  120. *
  121. * Exported interfaces ---- input
  122. * ==============================
  123. *
  124. * The current exported interfaces for gathering environmental noise
  125. * from the devices are:
  126. *
  127. * void add_device_randomness(const void *buf, unsigned int size);
  128. * void add_input_randomness(unsigned int type, unsigned int code,
  129. * unsigned int value);
  130. * void add_interrupt_randomness(int irq, int irq_flags);
  131. * void add_disk_randomness(struct gendisk *disk);
  132. *
  133. * add_device_randomness() is for adding data to the random pool that
  134. * is likely to differ between two devices (or possibly even per boot).
  135. * This would be things like MAC addresses or serial numbers, or the
  136. * read-out of the RTC. This does *not* add any actual entropy to the
  137. * pool, but it initializes the pool to different values for devices
  138. * that might otherwise be identical and have very little entropy
  139. * available to them (particularly common in the embedded world).
  140. *
  141. * add_input_randomness() uses the input layer interrupt timing, as well as
  142. * the event type information from the hardware.
  143. *
  144. * add_interrupt_randomness() uses the interrupt timing as random
  145. * inputs to the entropy pool. Using the cycle counters and the irq source
  146. * as inputs, it feeds the randomness roughly once a second.
  147. *
  148. * add_disk_randomness() uses what amounts to the seek time of block
  149. * layer request events, on a per-disk_devt basis, as input to the
  150. * entropy pool. Note that high-speed solid state drives with very low
  151. * seek times do not make for good sources of entropy, as their seek
  152. * times are usually fairly consistent.
  153. *
  154. * All of these routines try to estimate how many bits of randomness a
  155. * particular randomness source. They do this by keeping track of the
  156. * first and second order deltas of the event timings.
  157. *
  158. * Ensuring unpredictability at system startup
  159. * ============================================
  160. *
  161. * When any operating system starts up, it will go through a sequence
  162. * of actions that are fairly predictable by an adversary, especially
  163. * if the start-up does not involve interaction with a human operator.
  164. * This reduces the actual number of bits of unpredictability in the
  165. * entropy pool below the value in entropy_count. In order to
  166. * counteract this effect, it helps to carry information in the
  167. * entropy pool across shut-downs and start-ups. To do this, put the
  168. * following lines an appropriate script which is run during the boot
  169. * sequence:
  170. *
  171. * echo "Initializing random number generator..."
  172. * random_seed=/var/run/random-seed
  173. * # Carry a random seed from start-up to start-up
  174. * # Load and then save the whole entropy pool
  175. * if [ -f $random_seed ]; then
  176. * cat $random_seed >/dev/urandom
  177. * else
  178. * touch $random_seed
  179. * fi
  180. * chmod 600 $random_seed
  181. * dd if=/dev/urandom of=$random_seed count=1 bs=512
  182. *
  183. * and the following lines in an appropriate script which is run as
  184. * the system is shutdown:
  185. *
  186. * # Carry a random seed from shut-down to start-up
  187. * # Save the whole entropy pool
  188. * echo "Saving random seed..."
  189. * random_seed=/var/run/random-seed
  190. * touch $random_seed
  191. * chmod 600 $random_seed
  192. * dd if=/dev/urandom of=$random_seed count=1 bs=512
  193. *
  194. * For example, on most modern systems using the System V init
  195. * scripts, such code fragments would be found in
  196. * /etc/rc.d/init.d/random. On older Linux systems, the correct script
  197. * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
  198. *
  199. * Effectively, these commands cause the contents of the entropy pool
  200. * to be saved at shut-down time and reloaded into the entropy pool at
  201. * start-up. (The 'dd' in the addition to the bootup script is to
  202. * make sure that /etc/random-seed is different for every start-up,
  203. * even if the system crashes without executing rc.0.) Even with
  204. * complete knowledge of the start-up activities, predicting the state
  205. * of the entropy pool requires knowledge of the previous history of
  206. * the system.
  207. *
  208. * Configuring the /dev/random driver under Linux
  209. * ==============================================
  210. *
  211. * The /dev/random driver under Linux uses minor numbers 8 and 9 of
  212. * the /dev/mem major number (#1). So if your system does not have
  213. * /dev/random and /dev/urandom created already, they can be created
  214. * by using the commands:
  215. *
  216. * mknod /dev/random c 1 8
  217. * mknod /dev/urandom c 1 9
  218. *
  219. * Acknowledgements:
  220. * =================
  221. *
  222. * Ideas for constructing this random number generator were derived
  223. * from Pretty Good Privacy's random number generator, and from private
  224. * discussions with Phil Karn. Colin Plumb provided a faster random
  225. * number generator, which speed up the mixing function of the entropy
  226. * pool, taken from PGPfone. Dale Worley has also contributed many
  227. * useful ideas and suggestions to improve this driver.
  228. *
  229. * Any flaws in the design are solely my responsibility, and should
  230. * not be attributed to the Phil, Colin, or any of authors of PGP.
  231. *
  232. * Further background information on this topic may be obtained from
  233. * RFC 1750, "Randomness Recommendations for Security", by Donald
  234. * Eastlake, Steve Crocker, and Jeff Schiller.
  235. */
  236. #include <linux/utsname.h>
  237. #include <linux/module.h>
  238. #include <linux/kernel.h>
  239. #include <linux/major.h>
  240. #include <linux/string.h>
  241. #include <linux/fcntl.h>
  242. #include <linux/slab.h>
  243. #include <linux/random.h>
  244. #include <linux/poll.h>
  245. #include <linux/init.h>
  246. #include <linux/fs.h>
  247. #include <linux/genhd.h>
  248. #include <linux/interrupt.h>
  249. #include <linux/mm.h>
  250. #include <linux/spinlock.h>
  251. #include <linux/percpu.h>
  252. #include <linux/cryptohash.h>
  253. #include <linux/fips.h>
  254. #include <linux/ptrace.h>
  255. #include <linux/kmemcheck.h>
  256. #include <linux/workqueue.h>
  257. #include <linux/irq.h>
  258. #include <asm/processor.h>
  259. #include <asm/uaccess.h>
  260. #include <asm/irq.h>
  261. #include <asm/irq_regs.h>
  262. #include <asm/io.h>
  263. #define CREATE_TRACE_POINTS
  264. #include <trace/events/random.h>
  265. /*
  266. * Configuration information
  267. */
  268. #define INPUT_POOL_SHIFT 12
  269. #define INPUT_POOL_WORDS (1 << (INPUT_POOL_SHIFT-5))
  270. #define OUTPUT_POOL_SHIFT 10
  271. #define OUTPUT_POOL_WORDS (1 << (OUTPUT_POOL_SHIFT-5))
  272. #define SEC_XFER_SIZE 512
  273. #define EXTRACT_SIZE 10
  274. #define DEBUG_RANDOM_BOOT 0
  275. #define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
  276. /*
  277. * To allow fractional bits to be tracked, the entropy_count field is
  278. * denominated in units of 1/8th bits.
  279. *
  280. * 2*(ENTROPY_SHIFT + log2(poolbits)) must <= 31, or the multiply in
  281. * credit_entropy_bits() needs to be 64 bits wide.
  282. */
  283. #define ENTROPY_SHIFT 3
  284. #define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)
  285. /*
  286. * The minimum number of bits of entropy before we wake up a read on
  287. * /dev/random. Should be enough to do a significant reseed.
  288. */
  289. static int random_read_wakeup_bits = 64;
  290. /*
  291. * If the entropy count falls under this number of bits, then we
  292. * should wake up processes which are selecting or polling on write
  293. * access to /dev/random.
  294. */
  295. static int random_write_wakeup_bits = 28 * OUTPUT_POOL_WORDS;
  296. /*
  297. * The minimum number of seconds between urandom pool reseeding. We
  298. * do this to limit the amount of entropy that can be drained from the
  299. * input pool even if there are heavy demands on /dev/urandom.
  300. */
  301. static int random_min_urandom_seed = 60;
  302. /*
  303. * Originally, we used a primitive polynomial of degree .poolwords
  304. * over GF(2). The taps for various sizes are defined below. They
  305. * were chosen to be evenly spaced except for the last tap, which is 1
  306. * to get the twisting happening as fast as possible.
  307. *
  308. * For the purposes of better mixing, we use the CRC-32 polynomial as
  309. * well to make a (modified) twisted Generalized Feedback Shift
  310. * Register. (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR
  311. * generators. ACM Transactions on Modeling and Computer Simulation
  312. * 2(3):179-194. Also see M. Matsumoto & Y. Kurita, 1994. Twisted
  313. * GFSR generators II. ACM Transactions on Modeling and Computer
  314. * Simulation 4:254-266)
  315. *
  316. * Thanks to Colin Plumb for suggesting this.
  317. *
  318. * The mixing operation is much less sensitive than the output hash,
  319. * where we use SHA-1. All that we want of mixing operation is that
  320. * it be a good non-cryptographic hash; i.e. it not produce collisions
  321. * when fed "random" data of the sort we expect to see. As long as
  322. * the pool state differs for different inputs, we have preserved the
  323. * input entropy and done a good job. The fact that an intelligent
  324. * attacker can construct inputs that will produce controlled
  325. * alterations to the pool's state is not important because we don't
  326. * consider such inputs to contribute any randomness. The only
  327. * property we need with respect to them is that the attacker can't
  328. * increase his/her knowledge of the pool's state. Since all
  329. * additions are reversible (knowing the final state and the input,
  330. * you can reconstruct the initial state), if an attacker has any
  331. * uncertainty about the initial state, he/she can only shuffle that
  332. * uncertainty about, but never cause any collisions (which would
  333. * decrease the uncertainty).
  334. *
  335. * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
  336. * Videau in their paper, "The Linux Pseudorandom Number Generator
  337. * Revisited" (see: http://eprint.iacr.org/2012/251.pdf). In their
  338. * paper, they point out that we are not using a true Twisted GFSR,
  339. * since Matsumoto & Kurita used a trinomial feedback polynomial (that
  340. * is, with only three taps, instead of the six that we are using).
  341. * As a result, the resulting polynomial is neither primitive nor
  342. * irreducible, and hence does not have a maximal period over
  343. * GF(2**32). They suggest a slight change to the generator
  344. * polynomial which improves the resulting TGFSR polynomial to be
  345. * irreducible, which we have made here.
  346. */
  347. static struct poolinfo {
  348. int poolbitshift, poolwords, poolbytes, poolbits, poolfracbits;
  349. #define S(x) ilog2(x)+5, (x), (x)*4, (x)*32, (x) << (ENTROPY_SHIFT+5)
  350. int tap1, tap2, tap3, tap4, tap5;
  351. } poolinfo_table[] = {
  352. /* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */
  353. /* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
  354. { S(128), 104, 76, 51, 25, 1 },
  355. /* was: x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 */
  356. /* x^32 + x^26 + x^19 + x^14 + x^7 + x + 1 */
  357. { S(32), 26, 19, 14, 7, 1 },
  358. #if 0
  359. /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */
  360. { S(2048), 1638, 1231, 819, 411, 1 },
  361. /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
  362. { S(1024), 817, 615, 412, 204, 1 },
  363. /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
  364. { S(1024), 819, 616, 410, 207, 2 },
  365. /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
  366. { S(512), 411, 308, 208, 104, 1 },
  367. /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
  368. { S(512), 409, 307, 206, 102, 2 },
  369. /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
  370. { S(512), 409, 309, 205, 103, 2 },
  371. /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
  372. { S(256), 205, 155, 101, 52, 1 },
  373. /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
  374. { S(128), 103, 78, 51, 27, 2 },
  375. /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
  376. { S(64), 52, 39, 26, 14, 1 },
  377. #endif
  378. };
  379. /*
  380. * Static global variables
  381. */
  382. static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
  383. static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
  384. static struct fasync_struct *fasync;
  385. /**********************************************************************
  386. *
  387. * OS independent entropy store. Here are the functions which handle
  388. * storing entropy in an entropy pool.
  389. *
  390. **********************************************************************/
  391. struct entropy_store;
  392. struct entropy_store {
  393. /* read-only data: */
  394. const struct poolinfo *poolinfo;
  395. __u32 *pool;
  396. const char *name;
  397. struct entropy_store *pull;
  398. struct work_struct push_work;
  399. /* read-write data: */
  400. unsigned long last_pulled;
  401. spinlock_t lock;
  402. unsigned short add_ptr;
  403. unsigned short input_rotate;
  404. int entropy_count;
  405. int entropy_total;
  406. unsigned int initialized:1;
  407. unsigned int limit:1;
  408. unsigned int last_data_init:1;
  409. __u8 last_data[EXTRACT_SIZE];
  410. };
  411. static void push_to_pool(struct work_struct *work);
  412. static __u32 input_pool_data[INPUT_POOL_WORDS];
  413. static __u32 blocking_pool_data[OUTPUT_POOL_WORDS];
  414. static __u32 nonblocking_pool_data[OUTPUT_POOL_WORDS];
  415. static struct entropy_store input_pool = {
  416. .poolinfo = &poolinfo_table[0],
  417. .name = "input",
  418. .limit = 1,
  419. .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
  420. .pool = input_pool_data
  421. };
  422. static struct entropy_store blocking_pool = {
  423. .poolinfo = &poolinfo_table[1],
  424. .name = "blocking",
  425. .limit = 1,
  426. .pull = &input_pool,
  427. .lock = __SPIN_LOCK_UNLOCKED(blocking_pool.lock),
  428. .pool = blocking_pool_data,
  429. .push_work = __WORK_INITIALIZER(blocking_pool.push_work,
  430. push_to_pool),
  431. };
  432. static struct entropy_store nonblocking_pool = {
  433. .poolinfo = &poolinfo_table[1],
  434. .name = "nonblocking",
  435. .pull = &input_pool,
  436. .lock = __SPIN_LOCK_UNLOCKED(nonblocking_pool.lock),
  437. .pool = nonblocking_pool_data,
  438. .push_work = __WORK_INITIALIZER(nonblocking_pool.push_work,
  439. push_to_pool),
  440. };
  441. static __u32 const twist_table[8] = {
  442. 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
  443. 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
  444. /*
  445. * This function adds bytes into the entropy "pool". It does not
  446. * update the entropy estimate. The caller should call
  447. * credit_entropy_bits if this is appropriate.
  448. *
  449. * The pool is stirred with a primitive polynomial of the appropriate
  450. * degree, and then twisted. We twist by three bits at a time because
  451. * it's cheap to do so and helps slightly in the expected case where
  452. * the entropy is concentrated in the low-order bits.
  453. */
  454. static void _mix_pool_bytes(struct entropy_store *r, const void *in,
  455. int nbytes, __u8 out[64])
  456. {
  457. unsigned long i, j, tap1, tap2, tap3, tap4, tap5;
  458. int input_rotate;
  459. int wordmask = r->poolinfo->poolwords - 1;
  460. const char *bytes = in;
  461. __u32 w;
  462. tap1 = r->poolinfo->tap1;
  463. tap2 = r->poolinfo->tap2;
  464. tap3 = r->poolinfo->tap3;
  465. tap4 = r->poolinfo->tap4;
  466. tap5 = r->poolinfo->tap5;
  467. smp_rmb();
  468. input_rotate = ACCESS_ONCE(r->input_rotate);
  469. i = ACCESS_ONCE(r->add_ptr);
  470. /* mix one byte at a time to simplify size handling and churn faster */
  471. while (nbytes--) {
  472. w = rol32(*bytes++, input_rotate);
  473. i = (i - 1) & wordmask;
  474. /* XOR in the various taps */
  475. w ^= r->pool[i];
  476. w ^= r->pool[(i + tap1) & wordmask];
  477. w ^= r->pool[(i + tap2) & wordmask];
  478. w ^= r->pool[(i + tap3) & wordmask];
  479. w ^= r->pool[(i + tap4) & wordmask];
  480. w ^= r->pool[(i + tap5) & wordmask];
  481. /* Mix the result back in with a twist */
  482. r->pool[i] = (w >> 3) ^ twist_table[w & 7];
  483. /*
  484. * Normally, we add 7 bits of rotation to the pool.
  485. * At the beginning of the pool, add an extra 7 bits
  486. * rotation, so that successive passes spread the
  487. * input bits across the pool evenly.
  488. */
  489. input_rotate = (input_rotate + (i ? 7 : 14)) & 31;
  490. }
  491. ACCESS_ONCE(r->input_rotate) = input_rotate;
  492. ACCESS_ONCE(r->add_ptr) = i;
  493. smp_wmb();
  494. if (out)
  495. for (j = 0; j < 16; j++)
  496. ((__u32 *)out)[j] = r->pool[(i - j) & wordmask];
  497. }
  498. static void __mix_pool_bytes(struct entropy_store *r, const void *in,
  499. int nbytes, __u8 out[64])
  500. {
  501. trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
  502. _mix_pool_bytes(r, in, nbytes, out);
  503. }
  504. static void mix_pool_bytes(struct entropy_store *r, const void *in,
  505. int nbytes, __u8 out[64])
  506. {
  507. unsigned long flags;
  508. trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
  509. spin_lock_irqsave(&r->lock, flags);
  510. _mix_pool_bytes(r, in, nbytes, out);
  511. spin_unlock_irqrestore(&r->lock, flags);
  512. }
  513. struct fast_pool {
  514. __u32 pool[4];
  515. unsigned long last;
  516. unsigned short count;
  517. unsigned char rotate;
  518. unsigned char last_timer_intr;
  519. };
  520. /*
  521. * This is a fast mixing routine used by the interrupt randomness
  522. * collector. It's hardcoded for an 128 bit pool and assumes that any
  523. * locks that might be needed are taken by the caller.
  524. */
  525. static void fast_mix(struct fast_pool *f, __u32 input[4])
  526. {
  527. __u32 w;
  528. unsigned input_rotate = f->rotate;
  529. w = rol32(input[0], input_rotate) ^ f->pool[0] ^ f->pool[3];
  530. f->pool[0] = (w >> 3) ^ twist_table[w & 7];
  531. input_rotate = (input_rotate + 14) & 31;
  532. w = rol32(input[1], input_rotate) ^ f->pool[1] ^ f->pool[0];
  533. f->pool[1] = (w >> 3) ^ twist_table[w & 7];
  534. input_rotate = (input_rotate + 7) & 31;
  535. w = rol32(input[2], input_rotate) ^ f->pool[2] ^ f->pool[1];
  536. f->pool[2] = (w >> 3) ^ twist_table[w & 7];
  537. input_rotate = (input_rotate + 7) & 31;
  538. w = rol32(input[3], input_rotate) ^ f->pool[3] ^ f->pool[2];
  539. f->pool[3] = (w >> 3) ^ twist_table[w & 7];
  540. input_rotate = (input_rotate + 7) & 31;
  541. f->rotate = input_rotate;
  542. f->count++;
  543. }
  544. /*
  545. * Credit (or debit) the entropy store with n bits of entropy.
  546. * Use credit_entropy_bits_safe() if the value comes from userspace
  547. * or otherwise should be checked for extreme values.
  548. */
  549. static void credit_entropy_bits(struct entropy_store *r, int nbits)
  550. {
  551. int entropy_count, orig;
  552. const int pool_size = r->poolinfo->poolfracbits;
  553. int nfrac = nbits << ENTROPY_SHIFT;
  554. if (!nbits)
  555. return;
  556. retry:
  557. entropy_count = orig = ACCESS_ONCE(r->entropy_count);
  558. if (nfrac < 0) {
  559. /* Debit */
  560. entropy_count += nfrac;
  561. } else {
  562. /*
  563. * Credit: we have to account for the possibility of
  564. * overwriting already present entropy. Even in the
  565. * ideal case of pure Shannon entropy, new contributions
  566. * approach the full value asymptotically:
  567. *
  568. * entropy <- entropy + (pool_size - entropy) *
  569. * (1 - exp(-add_entropy/pool_size))
  570. *
  571. * For add_entropy <= pool_size/2 then
  572. * (1 - exp(-add_entropy/pool_size)) >=
  573. * (add_entropy/pool_size)*0.7869...
  574. * so we can approximate the exponential with
  575. * 3/4*add_entropy/pool_size and still be on the
  576. * safe side by adding at most pool_size/2 at a time.
  577. *
  578. * The use of pool_size-2 in the while statement is to
  579. * prevent rounding artifacts from making the loop
  580. * arbitrarily long; this limits the loop to log2(pool_size)*2
  581. * turns no matter how large nbits is.
  582. */
  583. int pnfrac = nfrac;
  584. const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2;
  585. /* The +2 corresponds to the /4 in the denominator */
  586. do {
  587. unsigned int anfrac = min(pnfrac, pool_size/2);
  588. unsigned int add =
  589. ((pool_size - entropy_count)*anfrac*3) >> s;
  590. entropy_count += add;
  591. pnfrac -= anfrac;
  592. } while (unlikely(entropy_count < pool_size-2 && pnfrac));
  593. }
  594. if (unlikely(entropy_count < 0)) {
  595. pr_warn("random: negative entropy/overflow: pool %s count %d\n",
  596. r->name, entropy_count);
  597. WARN_ON(1);
  598. entropy_count = 0;
  599. } else if (entropy_count > pool_size)
  600. entropy_count = pool_size;
  601. if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
  602. goto retry;
  603. r->entropy_total += nbits;
  604. if (!r->initialized && r->entropy_total > 128) {
  605. r->initialized = 1;
  606. r->entropy_total = 0;
  607. if (r == &nonblocking_pool) {
  608. prandom_reseed_late();
  609. pr_notice("random: %s pool is initialized\n", r->name);
  610. }
  611. }
  612. trace_credit_entropy_bits(r->name, nbits,
  613. entropy_count >> ENTROPY_SHIFT,
  614. r->entropy_total, _RET_IP_);
  615. if (r == &input_pool) {
  616. int entropy_bits = entropy_count >> ENTROPY_SHIFT;
  617. /* should we wake readers? */
  618. if (entropy_bits >= random_read_wakeup_bits) {
  619. wake_up_interruptible(&random_read_wait);
  620. kill_fasync(&fasync, SIGIO, POLL_IN);
  621. }
  622. /* If the input pool is getting full, send some
  623. * entropy to the two output pools, flipping back and
  624. * forth between them, until the output pools are 75%
  625. * full.
  626. */
  627. if (entropy_bits > random_write_wakeup_bits &&
  628. r->initialized &&
  629. r->entropy_total >= 2*random_read_wakeup_bits) {
  630. static struct entropy_store *last = &blocking_pool;
  631. struct entropy_store *other = &blocking_pool;
  632. if (last == &blocking_pool)
  633. other = &nonblocking_pool;
  634. if (other->entropy_count <=
  635. 3 * other->poolinfo->poolfracbits / 4)
  636. last = other;
  637. if (last->entropy_count <=
  638. 3 * last->poolinfo->poolfracbits / 4) {
  639. schedule_work(&last->push_work);
  640. r->entropy_total = 0;
  641. }
  642. }
  643. }
  644. }
  645. static void credit_entropy_bits_safe(struct entropy_store *r, int nbits)
  646. {
  647. const int nbits_max = (int)(~0U >> (ENTROPY_SHIFT + 1));
  648. /* Cap the value to avoid overflows */
  649. nbits = min(nbits, nbits_max);
  650. nbits = max(nbits, -nbits_max);
  651. credit_entropy_bits(r, nbits);
  652. }
  653. /*********************************************************************
  654. *
  655. * Entropy input management
  656. *
  657. *********************************************************************/
  658. /* There is one of these per entropy source */
  659. struct timer_rand_state {
  660. cycles_t last_time;
  661. long last_delta, last_delta2;
  662. unsigned dont_count_entropy:1;
  663. };
  664. #define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };
  665. /*
  666. * Add device- or boot-specific data to the input and nonblocking
  667. * pools to help initialize them to unique values.
  668. *
  669. * None of this adds any entropy, it is meant to avoid the
  670. * problem of the nonblocking pool having similar initial state
  671. * across largely identical devices.
  672. */
  673. void add_device_randomness(const void *buf, unsigned int size)
  674. {
  675. unsigned long time = random_get_entropy() ^ jiffies;
  676. unsigned long flags;
  677. trace_add_device_randomness(size, _RET_IP_);
  678. spin_lock_irqsave(&input_pool.lock, flags);
  679. _mix_pool_bytes(&input_pool, buf, size, NULL);
  680. _mix_pool_bytes(&input_pool, &time, sizeof(time), NULL);
  681. spin_unlock_irqrestore(&input_pool.lock, flags);
  682. spin_lock_irqsave(&nonblocking_pool.lock, flags);
  683. _mix_pool_bytes(&nonblocking_pool, buf, size, NULL);
  684. _mix_pool_bytes(&nonblocking_pool, &time, sizeof(time), NULL);
  685. spin_unlock_irqrestore(&nonblocking_pool.lock, flags);
  686. }
  687. EXPORT_SYMBOL(add_device_randomness);
  688. static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE;
  689. /*
  690. * This function adds entropy to the entropy "pool" by using timing
  691. * delays. It uses the timer_rand_state structure to make an estimate
  692. * of how many bits of entropy this call has added to the pool.
  693. *
  694. * The number "num" is also added to the pool - it should somehow describe
  695. * the type of event which just happened. This is currently 0-255 for
  696. * keyboard scan codes, and 256 upwards for interrupts.
  697. *
  698. */
  699. static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
  700. {
  701. struct entropy_store *r;
  702. struct {
  703. long jiffies;
  704. unsigned cycles;
  705. unsigned num;
  706. } sample;
  707. long delta, delta2, delta3;
  708. preempt_disable();
  709. sample.jiffies = jiffies;
  710. sample.cycles = random_get_entropy();
  711. sample.num = num;
  712. r = nonblocking_pool.initialized ? &input_pool : &nonblocking_pool;
  713. mix_pool_bytes(r, &sample, sizeof(sample), NULL);
  714. /*
  715. * Calculate number of bits of randomness we probably added.
  716. * We take into account the first, second and third-order deltas
  717. * in order to make our estimate.
  718. */
  719. if (!state->dont_count_entropy) {
  720. delta = sample.jiffies - state->last_time;
  721. state->last_time = sample.jiffies;
  722. delta2 = delta - state->last_delta;
  723. state->last_delta = delta;
  724. delta3 = delta2 - state->last_delta2;
  725. state->last_delta2 = delta2;
  726. if (delta < 0)
  727. delta = -delta;
  728. if (delta2 < 0)
  729. delta2 = -delta2;
  730. if (delta3 < 0)
  731. delta3 = -delta3;
  732. if (delta > delta2)
  733. delta = delta2;
  734. if (delta > delta3)
  735. delta = delta3;
  736. /*
  737. * delta is now minimum absolute delta.
  738. * Round down by 1 bit on general principles,
  739. * and limit entropy entimate to 12 bits.
  740. */
  741. credit_entropy_bits(r, min_t(int, fls(delta>>1), 11));
  742. }
  743. preempt_enable();
  744. }
  745. void add_input_randomness(unsigned int type, unsigned int code,
  746. unsigned int value)
  747. {
  748. static unsigned char last_value;
  749. /* ignore autorepeat and the like */
  750. if (value == last_value)
  751. return;
  752. last_value = value;
  753. add_timer_randomness(&input_timer_state,
  754. (type << 4) ^ code ^ (code >> 4) ^ value);
  755. trace_add_input_randomness(ENTROPY_BITS(&input_pool));
  756. }
  757. EXPORT_SYMBOL_GPL(add_input_randomness);
  758. static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
  759. void add_interrupt_randomness(int irq, int irq_flags)
  760. {
  761. struct entropy_store *r;
  762. struct fast_pool *fast_pool = &__get_cpu_var(irq_randomness);
  763. struct pt_regs *regs = get_irq_regs();
  764. unsigned long now = jiffies;
  765. cycles_t cycles = random_get_entropy();
  766. __u32 input[4], c_high, j_high;
  767. __u64 ip;
  768. unsigned long seed;
  769. int credit;
  770. c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0;
  771. j_high = (sizeof(now) > 4) ? now >> 32 : 0;
  772. input[0] = cycles ^ j_high ^ irq;
  773. input[1] = now ^ c_high;
  774. ip = regs ? instruction_pointer(regs) : _RET_IP_;
  775. input[2] = ip;
  776. input[3] = ip >> 32;
  777. fast_mix(fast_pool, input);
  778. if ((fast_pool->count & 63) && !time_after(now, fast_pool->last + HZ))
  779. return;
  780. fast_pool->last = now;
  781. r = nonblocking_pool.initialized ? &input_pool : &nonblocking_pool;
  782. __mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool), NULL);
  783. /*
  784. * If we don't have a valid cycle counter, and we see
  785. * back-to-back timer interrupts, then skip giving credit for
  786. * any entropy, otherwise credit 1 bit.
  787. */
  788. credit = 1;
  789. if (cycles == 0) {
  790. if (irq_flags & __IRQF_TIMER) {
  791. if (fast_pool->last_timer_intr)
  792. credit = 0;
  793. fast_pool->last_timer_intr = 1;
  794. } else
  795. fast_pool->last_timer_intr = 0;
  796. }
  797. /*
  798. * If we have architectural seed generator, produce a seed and
  799. * add it to the pool. For the sake of paranoia count it as
  800. * 50% entropic.
  801. */
  802. if (arch_get_random_seed_long(&seed)) {
  803. __mix_pool_bytes(r, &seed, sizeof(seed), NULL);
  804. credit += sizeof(seed) * 4;
  805. }
  806. credit_entropy_bits(r, credit);
  807. }
  808. #ifdef CONFIG_BLOCK
  809. void add_disk_randomness(struct gendisk *disk)
  810. {
  811. if (!disk || !disk->random)
  812. return;
  813. /* first major is 1, so we get >= 0x200 here */
  814. add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
  815. trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool));
  816. }
  817. EXPORT_SYMBOL_GPL(add_disk_randomness);
  818. #endif
  819. /*********************************************************************
  820. *
  821. * Entropy extraction routines
  822. *
  823. *********************************************************************/
  824. static ssize_t extract_entropy(struct entropy_store *r, void *buf,
  825. size_t nbytes, int min, int rsvd);
  826. /*
  827. * This utility inline function is responsible for transferring entropy
  828. * from the primary pool to the secondary extraction pool. We make
  829. * sure we pull enough for a 'catastrophic reseed'.
  830. */
  831. static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes);
  832. static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
  833. {
  834. if (r->limit == 0 && random_min_urandom_seed) {
  835. unsigned long now = jiffies;
  836. if (time_before(now,
  837. r->last_pulled + random_min_urandom_seed * HZ))
  838. return;
  839. r->last_pulled = now;
  840. }
  841. if (r->pull &&
  842. r->entropy_count < (nbytes << (ENTROPY_SHIFT + 3)) &&
  843. r->entropy_count < r->poolinfo->poolfracbits)
  844. _xfer_secondary_pool(r, nbytes);
  845. }
  846. static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
  847. {
  848. __u32 tmp[OUTPUT_POOL_WORDS];
  849. /* For /dev/random's pool, always leave two wakeups' worth */
  850. int rsvd_bytes = r->limit ? 0 : random_read_wakeup_bits / 4;
  851. int bytes = nbytes;
  852. /* pull at least as much as a wakeup */
  853. bytes = max_t(int, bytes, random_read_wakeup_bits / 8);
  854. /* but never more than the buffer size */
  855. bytes = min_t(int, bytes, sizeof(tmp));
  856. trace_xfer_secondary_pool(r->name, bytes * 8, nbytes * 8,
  857. ENTROPY_BITS(r), ENTROPY_BITS(r->pull));
  858. bytes = extract_entropy(r->pull, tmp, bytes,
  859. random_read_wakeup_bits / 8, rsvd_bytes);
  860. mix_pool_bytes(r, tmp, bytes, NULL);
  861. credit_entropy_bits(r, bytes*8);
  862. }
  863. /*
  864. * Used as a workqueue function so that when the input pool is getting
  865. * full, we can "spill over" some entropy to the output pools. That
  866. * way the output pools can store some of the excess entropy instead
  867. * of letting it go to waste.
  868. */
  869. static void push_to_pool(struct work_struct *work)
  870. {
  871. struct entropy_store *r = container_of(work, struct entropy_store,
  872. push_work);
  873. BUG_ON(!r);
  874. _xfer_secondary_pool(r, random_read_wakeup_bits/8);
  875. trace_push_to_pool(r->name, r->entropy_count >> ENTROPY_SHIFT,
  876. r->pull->entropy_count >> ENTROPY_SHIFT);
  877. }
  878. /*
  879. * This function decides how many bytes to actually take from the
  880. * given pool, and also debits the entropy count accordingly.
  881. */
  882. static size_t account(struct entropy_store *r, size_t nbytes, int min,
  883. int reserved)
  884. {
  885. int entropy_count, orig;
  886. size_t ibytes, nfrac;
  887. BUG_ON(r->entropy_count > r->poolinfo->poolfracbits);
  888. /* Can we pull enough? */
  889. retry:
  890. entropy_count = orig = ACCESS_ONCE(r->entropy_count);
  891. ibytes = nbytes;
  892. /* If limited, never pull more than available */
  893. if (r->limit) {
  894. int have_bytes = entropy_count >> (ENTROPY_SHIFT + 3);
  895. if ((have_bytes -= reserved) < 0)
  896. have_bytes = 0;
  897. ibytes = min_t(size_t, ibytes, have_bytes);
  898. }
  899. if (ibytes < min)
  900. ibytes = 0;
  901. if (unlikely(entropy_count < 0)) {
  902. pr_warn("random: negative entropy count: pool %s count %d\n",
  903. r->name, entropy_count);
  904. WARN_ON(1);
  905. entropy_count = 0;
  906. }
  907. nfrac = ibytes << (ENTROPY_SHIFT + 3);
  908. if ((size_t) entropy_count > nfrac)
  909. entropy_count -= nfrac;
  910. else
  911. entropy_count = 0;
  912. if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
  913. goto retry;
  914. trace_debit_entropy(r->name, 8 * ibytes);
  915. if (ibytes &&
  916. (r->entropy_count >> ENTROPY_SHIFT) < random_write_wakeup_bits) {
  917. wake_up_interruptible(&random_write_wait);
  918. kill_fasync(&fasync, SIGIO, POLL_OUT);
  919. }
  920. return ibytes;
  921. }
  922. /*
  923. * This function does the actual extraction for extract_entropy and
  924. * extract_entropy_user.
  925. *
  926. * Note: we assume that .poolwords is a multiple of 16 words.
  927. */
  928. static void extract_buf(struct entropy_store *r, __u8 *out)
  929. {
  930. int i;
  931. union {
  932. __u32 w[5];
  933. unsigned long l[LONGS(20)];
  934. } hash;
  935. __u32 workspace[SHA_WORKSPACE_WORDS];
  936. __u8 extract[64];
  937. unsigned long flags;
  938. /*
  939. * If we have an architectural hardware random number
  940. * generator, use it for SHA's initial vector
  941. */
  942. sha_init(hash.w);
  943. for (i = 0; i < LONGS(20); i++) {
  944. unsigned long v;
  945. if (!arch_get_random_long(&v))
  946. break;
  947. hash.l[i] = v;
  948. }
  949. /* Generate a hash across the pool, 16 words (512 bits) at a time */
  950. spin_lock_irqsave(&r->lock, flags);
  951. for (i = 0; i < r->poolinfo->poolwords; i += 16)
  952. sha_transform(hash.w, (__u8 *)(r->pool + i), workspace);
  953. /*
  954. * We mix the hash back into the pool to prevent backtracking
  955. * attacks (where the attacker knows the state of the pool
  956. * plus the current outputs, and attempts to find previous
  957. * ouputs), unless the hash function can be inverted. By
  958. * mixing at least a SHA1 worth of hash data back, we make
  959. * brute-forcing the feedback as hard as brute-forcing the
  960. * hash.
  961. */
  962. __mix_pool_bytes(r, hash.w, sizeof(hash.w), extract);
  963. spin_unlock_irqrestore(&r->lock, flags);
  964. /*
  965. * To avoid duplicates, we atomically extract a portion of the
  966. * pool while mixing, and hash one final time.
  967. */
  968. sha_transform(hash.w, extract, workspace);
  969. memset(extract, 0, sizeof(extract));
  970. memset(workspace, 0, sizeof(workspace));
  971. /*
  972. * In case the hash function has some recognizable output
  973. * pattern, we fold it in half. Thus, we always feed back
  974. * twice as much data as we output.
  975. */
  976. hash.w[0] ^= hash.w[3];
  977. hash.w[1] ^= hash.w[4];
  978. hash.w[2] ^= rol32(hash.w[2], 16);
  979. memcpy(out, &hash, EXTRACT_SIZE);
  980. memset(&hash, 0, sizeof(hash));
  981. }
  982. /*
  983. * This function extracts randomness from the "entropy pool", and
  984. * returns it in a buffer.
  985. *
  986. * The min parameter specifies the minimum amount we can pull before
  987. * failing to avoid races that defeat catastrophic reseeding while the
  988. * reserved parameter indicates how much entropy we must leave in the
  989. * pool after each pull to avoid starving other readers.
  990. */
  991. static ssize_t extract_entropy(struct entropy_store *r, void *buf,
  992. size_t nbytes, int min, int reserved)
  993. {
  994. ssize_t ret = 0, i;
  995. __u8 tmp[EXTRACT_SIZE];
  996. unsigned long flags;
  997. /* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
  998. if (fips_enabled) {
  999. spin_lock_irqsave(&r->lock, flags);
  1000. if (!r->last_data_init) {
  1001. r->last_data_init = 1;
  1002. spin_unlock_irqrestore(&r->lock, flags);
  1003. trace_extract_entropy(r->name, EXTRACT_SIZE,
  1004. ENTROPY_BITS(r), _RET_IP_);
  1005. xfer_secondary_pool(r, EXTRACT_SIZE);
  1006. extract_buf(r, tmp);
  1007. spin_lock_irqsave(&r->lock, flags);
  1008. memcpy(r->last_data, tmp, EXTRACT_SIZE);
  1009. }
  1010. spin_unlock_irqrestore(&r->lock, flags);
  1011. }
  1012. trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
  1013. xfer_secondary_pool(r, nbytes);
  1014. nbytes = account(r, nbytes, min, reserved);
  1015. while (nbytes) {
  1016. extract_buf(r, tmp);
  1017. if (fips_enabled) {
  1018. spin_lock_irqsave(&r->lock, flags);
  1019. if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
  1020. panic("Hardware RNG duplicated output!\n");
  1021. memcpy(r->last_data, tmp, EXTRACT_SIZE);
  1022. spin_unlock_irqrestore(&r->lock, flags);
  1023. }
  1024. i = min_t(int, nbytes, EXTRACT_SIZE);
  1025. memcpy(buf, tmp, i);
  1026. nbytes -= i;
  1027. buf += i;
  1028. ret += i;
  1029. }
  1030. /* Wipe data just returned from memory */
  1031. memset(tmp, 0, sizeof(tmp));
  1032. return ret;
  1033. }
  1034. /*
  1035. * This function extracts randomness from the "entropy pool", and
  1036. * returns it in a userspace buffer.
  1037. */
  1038. static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
  1039. size_t nbytes)
  1040. {
  1041. ssize_t ret = 0, i;
  1042. __u8 tmp[EXTRACT_SIZE];
  1043. trace_extract_entropy_user(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
  1044. xfer_secondary_pool(r, nbytes);
  1045. nbytes = account(r, nbytes, 0, 0);
  1046. while (nbytes) {
  1047. if (need_resched()) {
  1048. if (signal_pending(current)) {
  1049. if (ret == 0)
  1050. ret = -ERESTARTSYS;
  1051. break;
  1052. }
  1053. schedule();
  1054. }
  1055. extract_buf(r, tmp);
  1056. i = min_t(int, nbytes, EXTRACT_SIZE);
  1057. if (copy_to_user(buf, tmp, i)) {
  1058. ret = -EFAULT;
  1059. break;
  1060. }
  1061. nbytes -= i;
  1062. buf += i;
  1063. ret += i;
  1064. }
  1065. /* Wipe data just returned from memory */
  1066. memset(tmp, 0, sizeof(tmp));
  1067. return ret;
  1068. }
  1069. /*
  1070. * This function is the exported kernel interface. It returns some
  1071. * number of good random numbers, suitable for key generation, seeding
  1072. * TCP sequence numbers, etc. It does not rely on the hardware random
  1073. * number generator. For random bytes direct from the hardware RNG
  1074. * (when available), use get_random_bytes_arch().
  1075. */
  1076. void get_random_bytes(void *buf, int nbytes)
  1077. {
  1078. #if DEBUG_RANDOM_BOOT > 0
  1079. if (unlikely(nonblocking_pool.initialized == 0))
  1080. printk(KERN_NOTICE "random: %pF get_random_bytes called "
  1081. "with %d bits of entropy available\n",
  1082. (void *) _RET_IP_,
  1083. nonblocking_pool.entropy_total);
  1084. #endif
  1085. trace_get_random_bytes(nbytes, _RET_IP_);
  1086. extract_entropy(&nonblocking_pool, buf, nbytes, 0, 0);
  1087. }
  1088. EXPORT_SYMBOL(get_random_bytes);
  1089. /*
  1090. * This function will use the architecture-specific hardware random
  1091. * number generator if it is available. The arch-specific hw RNG will
  1092. * almost certainly be faster than what we can do in software, but it
  1093. * is impossible to verify that it is implemented securely (as
  1094. * opposed, to, say, the AES encryption of a sequence number using a
  1095. * key known by the NSA). So it's useful if we need the speed, but
  1096. * only if we're willing to trust the hardware manufacturer not to
  1097. * have put in a back door.
  1098. */
  1099. void get_random_bytes_arch(void *buf, int nbytes)
  1100. {
  1101. char *p = buf;
  1102. trace_get_random_bytes_arch(nbytes, _RET_IP_);
  1103. while (nbytes) {
  1104. unsigned long v;
  1105. int chunk = min(nbytes, (int)sizeof(unsigned long));
  1106. if (!arch_get_random_long(&v))
  1107. break;
  1108. memcpy(p, &v, chunk);
  1109. p += chunk;
  1110. nbytes -= chunk;
  1111. }
  1112. if (nbytes)
  1113. extract_entropy(&nonblocking_pool, p, nbytes, 0, 0);
  1114. }
  1115. EXPORT_SYMBOL(get_random_bytes_arch);
  1116. /*
  1117. * init_std_data - initialize pool with system data
  1118. *
  1119. * @r: pool to initialize
  1120. *
  1121. * This function clears the pool's entropy count and mixes some system
  1122. * data into the pool to prepare it for use. The pool is not cleared
  1123. * as that can only decrease the entropy in the pool.
  1124. */
  1125. static void init_std_data(struct entropy_store *r)
  1126. {
  1127. int i;
  1128. ktime_t now = ktime_get_real();
  1129. unsigned long rv;
  1130. r->last_pulled = jiffies;
  1131. mix_pool_bytes(r, &now, sizeof(now), NULL);
  1132. for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) {
  1133. if (!arch_get_random_seed_long(&rv) &&
  1134. !arch_get_random_long(&rv))
  1135. rv = random_get_entropy();
  1136. mix_pool_bytes(r, &rv, sizeof(rv), NULL);
  1137. }
  1138. mix_pool_bytes(r, utsname(), sizeof(*(utsname())), NULL);
  1139. }
  1140. /*
  1141. * Note that setup_arch() may call add_device_randomness()
  1142. * long before we get here. This allows seeding of the pools
  1143. * with some platform dependent data very early in the boot
  1144. * process. But it limits our options here. We must use
  1145. * statically allocated structures that already have all
  1146. * initializations complete at compile time. We should also
  1147. * take care not to overwrite the precious per platform data
  1148. * we were given.
  1149. */
  1150. static int rand_initialize(void)
  1151. {
  1152. init_std_data(&input_pool);
  1153. init_std_data(&blocking_pool);
  1154. init_std_data(&nonblocking_pool);
  1155. return 0;
  1156. }
  1157. early_initcall(rand_initialize);
  1158. #ifdef CONFIG_BLOCK
  1159. void rand_initialize_disk(struct gendisk *disk)
  1160. {
  1161. struct timer_rand_state *state;
  1162. /*
  1163. * If kzalloc returns null, we just won't use that entropy
  1164. * source.
  1165. */
  1166. state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
  1167. if (state) {
  1168. state->last_time = INITIAL_JIFFIES;
  1169. disk->random = state;
  1170. }
  1171. }
  1172. #endif
  1173. /*
  1174. * Attempt an emergency refill using arch_get_random_seed_long().
  1175. *
  1176. * As with add_interrupt_randomness() be paranoid and only
  1177. * credit the output as 50% entropic.
  1178. */
  1179. static int arch_random_refill(void)
  1180. {
  1181. const unsigned int nlongs = 64; /* Arbitrary number */
  1182. unsigned int n = 0;
  1183. unsigned int i;
  1184. unsigned long buf[nlongs];
  1185. if (!arch_has_random_seed())
  1186. return 0;
  1187. for (i = 0; i < nlongs; i++) {
  1188. if (arch_get_random_seed_long(&buf[n]))
  1189. n++;
  1190. }
  1191. if (n) {
  1192. unsigned int rand_bytes = n * sizeof(unsigned long);
  1193. mix_pool_bytes(&input_pool, buf, rand_bytes, NULL);
  1194. credit_entropy_bits(&input_pool, rand_bytes*4);
  1195. }
  1196. return n;
  1197. }
  1198. static ssize_t
  1199. random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
  1200. {
  1201. ssize_t n;
  1202. if (nbytes == 0)
  1203. return 0;
  1204. nbytes = min_t(size_t, nbytes, SEC_XFER_SIZE);
  1205. while (1) {
  1206. n = extract_entropy_user(&blocking_pool, buf, nbytes);
  1207. if (n < 0)
  1208. return n;
  1209. trace_random_read(n*8, (nbytes-n)*8,
  1210. ENTROPY_BITS(&blocking_pool),
  1211. ENTROPY_BITS(&input_pool));
  1212. if (n > 0)
  1213. return n;
  1214. /* Pool is (near) empty. Maybe wait and retry. */
  1215. /* First try an emergency refill */
  1216. if (arch_random_refill())
  1217. continue;
  1218. if (file->f_flags & O_NONBLOCK)
  1219. return -EAGAIN;
  1220. wait_event_interruptible(random_read_wait,
  1221. ENTROPY_BITS(&input_pool) >=
  1222. random_read_wakeup_bits);
  1223. if (signal_pending(current))
  1224. return -ERESTARTSYS;
  1225. }
  1226. }
  1227. static ssize_t
  1228. urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
  1229. {
  1230. int ret;
  1231. if (unlikely(nonblocking_pool.initialized == 0))
  1232. printk_once(KERN_NOTICE "random: %s urandom read "
  1233. "with %d bits of entropy available\n",
  1234. current->comm, nonblocking_pool.entropy_total);
  1235. nbytes = min_t(size_t, nbytes, INT_MAX >> (ENTROPY_SHIFT + 3));
  1236. ret = extract_entropy_user(&nonblocking_pool, buf, nbytes);
  1237. trace_urandom_read(8 * nbytes, ENTROPY_BITS(&nonblocking_pool),
  1238. ENTROPY_BITS(&input_pool));
  1239. return ret;
  1240. }
  1241. static unsigned int
  1242. random_poll(struct file *file, poll_table * wait)
  1243. {
  1244. unsigned int mask;
  1245. poll_wait(file, &random_read_wait, wait);
  1246. poll_wait(file, &random_write_wait, wait);
  1247. mask = 0;
  1248. if (ENTROPY_BITS(&input_pool) >= random_read_wakeup_bits)
  1249. mask |= POLLIN | POLLRDNORM;
  1250. if (ENTROPY_BITS(&input_pool) < random_write_wakeup_bits)
  1251. mask |= POLLOUT | POLLWRNORM;
  1252. return mask;
  1253. }
  1254. static int
  1255. write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
  1256. {
  1257. size_t bytes;
  1258. __u32 buf[16];
  1259. const char __user *p = buffer;
  1260. while (count > 0) {
  1261. bytes = min(count, sizeof(buf));
  1262. if (copy_from_user(&buf, p, bytes))
  1263. return -EFAULT;
  1264. count -= bytes;
  1265. p += bytes;
  1266. mix_pool_bytes(r, buf, bytes, NULL);
  1267. cond_resched();
  1268. }
  1269. return 0;
  1270. }
  1271. static ssize_t random_write(struct file *file, const char __user *buffer,
  1272. size_t count, loff_t *ppos)
  1273. {
  1274. size_t ret;
  1275. ret = write_pool(&blocking_pool, buffer, count);
  1276. if (ret)
  1277. return ret;
  1278. ret = write_pool(&nonblocking_pool, buffer, count);
  1279. if (ret)
  1280. return ret;
  1281. return (ssize_t)count;
  1282. }
  1283. static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
  1284. {
  1285. int size, ent_count;
  1286. int __user *p = (int __user *)arg;
  1287. int retval;
  1288. switch (cmd) {
  1289. case RNDGETENTCNT:
  1290. /* inherently racy, no point locking */
  1291. ent_count = ENTROPY_BITS(&input_pool);
  1292. if (put_user(ent_count, p))
  1293. return -EFAULT;
  1294. return 0;
  1295. case RNDADDTOENTCNT:
  1296. if (!capable(CAP_SYS_ADMIN))
  1297. return -EPERM;
  1298. if (get_user(ent_count, p))
  1299. return -EFAULT;
  1300. credit_entropy_bits_safe(&input_pool, ent_count);
  1301. return 0;
  1302. case RNDADDENTROPY:
  1303. if (!capable(CAP_SYS_ADMIN))
  1304. return -EPERM;
  1305. if (get_user(ent_count, p++))
  1306. return -EFAULT;
  1307. if (ent_count < 0)
  1308. return -EINVAL;
  1309. if (get_user(size, p++))
  1310. return -EFAULT;
  1311. retval = write_pool(&input_pool, (const char __user *)p,
  1312. size);
  1313. if (retval < 0)
  1314. return retval;
  1315. credit_entropy_bits_safe(&input_pool, ent_count);
  1316. return 0;
  1317. case RNDZAPENTCNT:
  1318. case RNDCLEARPOOL:
  1319. /*
  1320. * Clear the entropy pool counters. We no longer clear
  1321. * the entropy pool, as that's silly.
  1322. */
  1323. if (!capable(CAP_SYS_ADMIN))
  1324. return -EPERM;
  1325. input_pool.entropy_count = 0;
  1326. nonblocking_pool.entropy_count = 0;
  1327. blocking_pool.entropy_count = 0;
  1328. return 0;
  1329. default:
  1330. return -EINVAL;
  1331. }
  1332. }
  1333. static int random_fasync(int fd, struct file *filp, int on)
  1334. {
  1335. return fasync_helper(fd, filp, on, &fasync);
  1336. }
  1337. const struct file_operations random_fops = {
  1338. .read = random_read,
  1339. .write = random_write,
  1340. .poll = random_poll,
  1341. .unlocked_ioctl = random_ioctl,
  1342. .fasync = random_fasync,
  1343. .llseek = noop_llseek,
  1344. };
  1345. const struct file_operations urandom_fops = {
  1346. .read = urandom_read,
  1347. .write = random_write,
  1348. .unlocked_ioctl = random_ioctl,
  1349. .fasync = random_fasync,
  1350. .llseek = noop_llseek,
  1351. };
  1352. /***************************************************************
  1353. * Random UUID interface
  1354. *
  1355. * Used here for a Boot ID, but can be useful for other kernel
  1356. * drivers.
  1357. ***************************************************************/
  1358. /*
  1359. * Generate random UUID
  1360. */
  1361. void generate_random_uuid(unsigned char uuid_out[16])
  1362. {
  1363. get_random_bytes(uuid_out, 16);
  1364. /* Set UUID version to 4 --- truly random generation */
  1365. uuid_out[6] = (uuid_out[6] & 0x0F) | 0x40;
  1366. /* Set the UUID variant to DCE */
  1367. uuid_out[8] = (uuid_out[8] & 0x3F) | 0x80;
  1368. }
  1369. EXPORT_SYMBOL(generate_random_uuid);
  1370. /********************************************************************
  1371. *
  1372. * Sysctl interface
  1373. *
  1374. ********************************************************************/
  1375. #ifdef CONFIG_SYSCTL
  1376. #include <linux/sysctl.h>
  1377. static int min_read_thresh = 8, min_write_thresh;
  1378. static int max_read_thresh = OUTPUT_POOL_WORDS * 32;
  1379. static int max_write_thresh = INPUT_POOL_WORDS * 32;
  1380. static char sysctl_bootid[16];
  1381. /*
  1382. * This function is used to return both the bootid UUID, and random
  1383. * UUID. The difference is in whether table->data is NULL; if it is,
  1384. * then a new UUID is generated and returned to the user.
  1385. *
  1386. * If the user accesses this via the proc interface, the UUID will be
  1387. * returned as an ASCII string in the standard UUID format; if via the
  1388. * sysctl system call, as 16 bytes of binary data.
  1389. */
  1390. static int proc_do_uuid(struct ctl_table *table, int write,
  1391. void __user *buffer, size_t *lenp, loff_t *ppos)
  1392. {
  1393. struct ctl_table fake_table;
  1394. unsigned char buf[64], tmp_uuid[16], *uuid;
  1395. uuid = table->data;
  1396. if (!uuid) {
  1397. uuid = tmp_uuid;
  1398. generate_random_uuid(uuid);
  1399. } else {
  1400. static DEFINE_SPINLOCK(bootid_spinlock);
  1401. spin_lock(&bootid_spinlock);
  1402. if (!uuid[8])
  1403. generate_random_uuid(uuid);
  1404. spin_unlock(&bootid_spinlock);
  1405. }
  1406. sprintf(buf, "%pU", uuid);
  1407. fake_table.data = buf;
  1408. fake_table.maxlen = sizeof(buf);
  1409. return proc_dostring(&fake_table, write, buffer, lenp, ppos);
  1410. }
  1411. /*
  1412. * Return entropy available scaled to integral bits
  1413. */
  1414. static int proc_do_entropy(struct ctl_table *table, int write,
  1415. void __user *buffer, size_t *lenp, loff_t *ppos)
  1416. {
  1417. struct ctl_table fake_table;
  1418. int entropy_count;
  1419. entropy_count = *(int *)table->data >> ENTROPY_SHIFT;
  1420. fake_table.data = &entropy_count;
  1421. fake_table.maxlen = sizeof(entropy_count);
  1422. return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
  1423. }
  1424. static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
  1425. extern struct ctl_table random_table[];
  1426. struct ctl_table random_table[] = {
  1427. {
  1428. .procname = "poolsize",
  1429. .data = &sysctl_poolsize,
  1430. .maxlen = sizeof(int),
  1431. .mode = 0444,
  1432. .proc_handler = proc_dointvec,
  1433. },
  1434. {
  1435. .procname = "entropy_avail",
  1436. .maxlen = sizeof(int),
  1437. .mode = 0444,
  1438. .proc_handler = proc_do_entropy,
  1439. .data = &input_pool.entropy_count,
  1440. },
  1441. {
  1442. .procname = "read_wakeup_threshold",
  1443. .data = &random_read_wakeup_bits,
  1444. .maxlen = sizeof(int),
  1445. .mode = 0644,
  1446. .proc_handler = proc_dointvec_minmax,
  1447. .extra1 = &min_read_thresh,
  1448. .extra2 = &max_read_thresh,
  1449. },
  1450. {
  1451. .procname = "write_wakeup_threshold",
  1452. .data = &random_write_wakeup_bits,
  1453. .maxlen = sizeof(int),
  1454. .mode = 0644,
  1455. .proc_handler = proc_dointvec_minmax,
  1456. .extra1 = &min_write_thresh,
  1457. .extra2 = &max_write_thresh,
  1458. },
  1459. {
  1460. .procname = "urandom_min_reseed_secs",
  1461. .data = &random_min_urandom_seed,
  1462. .maxlen = sizeof(int),
  1463. .mode = 0644,
  1464. .proc_handler = proc_dointvec,
  1465. },
  1466. {
  1467. .procname = "boot_id",
  1468. .data = &sysctl_bootid,
  1469. .maxlen = 16,
  1470. .mode = 0444,
  1471. .proc_handler = proc_do_uuid,
  1472. },
  1473. {
  1474. .procname = "uuid",
  1475. .maxlen = 16,
  1476. .mode = 0444,
  1477. .proc_handler = proc_do_uuid,
  1478. },
  1479. { }
  1480. };
  1481. #endif /* CONFIG_SYSCTL */
  1482. static u32 random_int_secret[MD5_MESSAGE_BYTES / 4] ____cacheline_aligned;
  1483. int random_int_secret_init(void)
  1484. {
  1485. get_random_bytes(random_int_secret, sizeof(random_int_secret));
  1486. return 0;
  1487. }
  1488. /*
  1489. * Get a random word for internal kernel use only. Similar to urandom but
  1490. * with the goal of minimal entropy pool depletion. As a result, the random
  1491. * value is not cryptographically secure but for several uses the cost of
  1492. * depleting entropy is too high
  1493. */
  1494. static DEFINE_PER_CPU(__u32 [MD5_DIGEST_WORDS], get_random_int_hash);
  1495. unsigned int get_random_int(void)
  1496. {
  1497. __u32 *hash;
  1498. unsigned int ret;
  1499. if (arch_get_random_int(&ret))
  1500. return ret;
  1501. hash = get_cpu_var(get_random_int_hash);
  1502. hash[0] += current->pid + jiffies + random_get_entropy();
  1503. md5_transform(hash, random_int_secret);
  1504. ret = hash[0];
  1505. put_cpu_var(get_random_int_hash);
  1506. return ret;
  1507. }
  1508. EXPORT_SYMBOL(get_random_int);
  1509. /*
  1510. * randomize_range() returns a start address such that
  1511. *
  1512. * [...... <range> .....]
  1513. * start end
  1514. *
  1515. * a <range> with size "len" starting at the return value is inside in the
  1516. * area defined by [start, end], but is otherwise randomized.
  1517. */
  1518. unsigned long
  1519. randomize_range(unsigned long start, unsigned long end, unsigned long len)
  1520. {
  1521. unsigned long range = end - len - start;
  1522. if (end <= start + len)
  1523. return 0;
  1524. return PAGE_ALIGN(get_random_int() % range + start);
  1525. }