init_64.c 33 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417
  1. /*
  2. * linux/arch/x86_64/mm/init.c
  3. *
  4. * Copyright (C) 1995 Linus Torvalds
  5. * Copyright (C) 2000 Pavel Machek <pavel@ucw.cz>
  6. * Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
  7. */
  8. #include <linux/signal.h>
  9. #include <linux/sched.h>
  10. #include <linux/kernel.h>
  11. #include <linux/errno.h>
  12. #include <linux/string.h>
  13. #include <linux/types.h>
  14. #include <linux/ptrace.h>
  15. #include <linux/mman.h>
  16. #include <linux/mm.h>
  17. #include <linux/swap.h>
  18. #include <linux/smp.h>
  19. #include <linux/init.h>
  20. #include <linux/initrd.h>
  21. #include <linux/pagemap.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/memblock.h>
  24. #include <linux/proc_fs.h>
  25. #include <linux/pci.h>
  26. #include <linux/pfn.h>
  27. #include <linux/poison.h>
  28. #include <linux/dma-mapping.h>
  29. #include <linux/module.h>
  30. #include <linux/memory.h>
  31. #include <linux/memory_hotplug.h>
  32. #include <linux/nmi.h>
  33. #include <linux/gfp.h>
  34. #include <linux/kcore.h>
  35. #include <asm/processor.h>
  36. #include <asm/bios_ebda.h>
  37. #include <asm/uaccess.h>
  38. #include <asm/pgtable.h>
  39. #include <asm/pgalloc.h>
  40. #include <asm/dma.h>
  41. #include <asm/fixmap.h>
  42. #include <asm/e820.h>
  43. #include <asm/apic.h>
  44. #include <asm/tlb.h>
  45. #include <asm/mmu_context.h>
  46. #include <asm/proto.h>
  47. #include <asm/smp.h>
  48. #include <asm/sections.h>
  49. #include <asm/kdebug.h>
  50. #include <asm/numa.h>
  51. #include <asm/cacheflush.h>
  52. #include <asm/init.h>
  53. #include <asm/uv/uv.h>
  54. #include <asm/setup.h>
  55. #include "mm_internal.h"
  56. static void ident_pmd_init(unsigned long pmd_flag, pmd_t *pmd_page,
  57. unsigned long addr, unsigned long end)
  58. {
  59. addr &= PMD_MASK;
  60. for (; addr < end; addr += PMD_SIZE) {
  61. pmd_t *pmd = pmd_page + pmd_index(addr);
  62. if (!pmd_present(*pmd))
  63. set_pmd(pmd, __pmd(addr | pmd_flag));
  64. }
  65. }
  66. static int ident_pud_init(struct x86_mapping_info *info, pud_t *pud_page,
  67. unsigned long addr, unsigned long end)
  68. {
  69. unsigned long next;
  70. for (; addr < end; addr = next) {
  71. pud_t *pud = pud_page + pud_index(addr);
  72. pmd_t *pmd;
  73. next = (addr & PUD_MASK) + PUD_SIZE;
  74. if (next > end)
  75. next = end;
  76. if (pud_present(*pud)) {
  77. pmd = pmd_offset(pud, 0);
  78. ident_pmd_init(info->pmd_flag, pmd, addr, next);
  79. continue;
  80. }
  81. pmd = (pmd_t *)info->alloc_pgt_page(info->context);
  82. if (!pmd)
  83. return -ENOMEM;
  84. ident_pmd_init(info->pmd_flag, pmd, addr, next);
  85. set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
  86. }
  87. return 0;
  88. }
  89. int kernel_ident_mapping_init(struct x86_mapping_info *info, pgd_t *pgd_page,
  90. unsigned long addr, unsigned long end)
  91. {
  92. unsigned long next;
  93. int result;
  94. int off = info->kernel_mapping ? pgd_index(__PAGE_OFFSET) : 0;
  95. for (; addr < end; addr = next) {
  96. pgd_t *pgd = pgd_page + pgd_index(addr) + off;
  97. pud_t *pud;
  98. next = (addr & PGDIR_MASK) + PGDIR_SIZE;
  99. if (next > end)
  100. next = end;
  101. if (pgd_present(*pgd)) {
  102. pud = pud_offset(pgd, 0);
  103. result = ident_pud_init(info, pud, addr, next);
  104. if (result)
  105. return result;
  106. continue;
  107. }
  108. pud = (pud_t *)info->alloc_pgt_page(info->context);
  109. if (!pud)
  110. return -ENOMEM;
  111. result = ident_pud_init(info, pud, addr, next);
  112. if (result)
  113. return result;
  114. set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE));
  115. }
  116. return 0;
  117. }
  118. static int __init parse_direct_gbpages_off(char *arg)
  119. {
  120. direct_gbpages = 0;
  121. return 0;
  122. }
  123. early_param("nogbpages", parse_direct_gbpages_off);
  124. static int __init parse_direct_gbpages_on(char *arg)
  125. {
  126. direct_gbpages = 1;
  127. return 0;
  128. }
  129. early_param("gbpages", parse_direct_gbpages_on);
  130. /*
  131. * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
  132. * physical space so we can cache the place of the first one and move
  133. * around without checking the pgd every time.
  134. */
  135. pteval_t __supported_pte_mask __read_mostly = ~_PAGE_IOMAP;
  136. EXPORT_SYMBOL_GPL(__supported_pte_mask);
  137. int force_personality32;
  138. /*
  139. * noexec32=on|off
  140. * Control non executable heap for 32bit processes.
  141. * To control the stack too use noexec=off
  142. *
  143. * on PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
  144. * off PROT_READ implies PROT_EXEC
  145. */
  146. static int __init nonx32_setup(char *str)
  147. {
  148. if (!strcmp(str, "on"))
  149. force_personality32 &= ~READ_IMPLIES_EXEC;
  150. else if (!strcmp(str, "off"))
  151. force_personality32 |= READ_IMPLIES_EXEC;
  152. return 1;
  153. }
  154. __setup("noexec32=", nonx32_setup);
  155. /*
  156. * When memory was added/removed make sure all the processes MM have
  157. * suitable PGD entries in the local PGD level page.
  158. */
  159. void sync_global_pgds(unsigned long start, unsigned long end)
  160. {
  161. unsigned long address;
  162. for (address = start; address <= end; address += PGDIR_SIZE) {
  163. const pgd_t *pgd_ref = pgd_offset_k(address);
  164. struct page *page;
  165. if (pgd_none(*pgd_ref))
  166. continue;
  167. spin_lock(&pgd_lock);
  168. list_for_each_entry(page, &pgd_list, lru) {
  169. pgd_t *pgd;
  170. spinlock_t *pgt_lock;
  171. pgd = (pgd_t *)page_address(page) + pgd_index(address);
  172. /* the pgt_lock only for Xen */
  173. pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
  174. spin_lock(pgt_lock);
  175. if (pgd_none(*pgd))
  176. set_pgd(pgd, *pgd_ref);
  177. else
  178. BUG_ON(pgd_page_vaddr(*pgd)
  179. != pgd_page_vaddr(*pgd_ref));
  180. spin_unlock(pgt_lock);
  181. }
  182. spin_unlock(&pgd_lock);
  183. }
  184. }
  185. /*
  186. * NOTE: This function is marked __ref because it calls __init function
  187. * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
  188. */
  189. static __ref void *spp_getpage(void)
  190. {
  191. void *ptr;
  192. if (after_bootmem)
  193. ptr = (void *) get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
  194. else
  195. ptr = alloc_bootmem_pages(PAGE_SIZE);
  196. if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
  197. panic("set_pte_phys: cannot allocate page data %s\n",
  198. after_bootmem ? "after bootmem" : "");
  199. }
  200. pr_debug("spp_getpage %p\n", ptr);
  201. return ptr;
  202. }
  203. static pud_t *fill_pud(pgd_t *pgd, unsigned long vaddr)
  204. {
  205. if (pgd_none(*pgd)) {
  206. pud_t *pud = (pud_t *)spp_getpage();
  207. pgd_populate(&init_mm, pgd, pud);
  208. if (pud != pud_offset(pgd, 0))
  209. printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
  210. pud, pud_offset(pgd, 0));
  211. }
  212. return pud_offset(pgd, vaddr);
  213. }
  214. static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
  215. {
  216. if (pud_none(*pud)) {
  217. pmd_t *pmd = (pmd_t *) spp_getpage();
  218. pud_populate(&init_mm, pud, pmd);
  219. if (pmd != pmd_offset(pud, 0))
  220. printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
  221. pmd, pmd_offset(pud, 0));
  222. }
  223. return pmd_offset(pud, vaddr);
  224. }
  225. static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
  226. {
  227. if (pmd_none(*pmd)) {
  228. pte_t *pte = (pte_t *) spp_getpage();
  229. pmd_populate_kernel(&init_mm, pmd, pte);
  230. if (pte != pte_offset_kernel(pmd, 0))
  231. printk(KERN_ERR "PAGETABLE BUG #02!\n");
  232. }
  233. return pte_offset_kernel(pmd, vaddr);
  234. }
  235. void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
  236. {
  237. pud_t *pud;
  238. pmd_t *pmd;
  239. pte_t *pte;
  240. pud = pud_page + pud_index(vaddr);
  241. pmd = fill_pmd(pud, vaddr);
  242. pte = fill_pte(pmd, vaddr);
  243. set_pte(pte, new_pte);
  244. /*
  245. * It's enough to flush this one mapping.
  246. * (PGE mappings get flushed as well)
  247. */
  248. __flush_tlb_one(vaddr);
  249. }
  250. void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
  251. {
  252. pgd_t *pgd;
  253. pud_t *pud_page;
  254. pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
  255. pgd = pgd_offset_k(vaddr);
  256. if (pgd_none(*pgd)) {
  257. printk(KERN_ERR
  258. "PGD FIXMAP MISSING, it should be setup in head.S!\n");
  259. return;
  260. }
  261. pud_page = (pud_t*)pgd_page_vaddr(*pgd);
  262. set_pte_vaddr_pud(pud_page, vaddr, pteval);
  263. }
  264. pmd_t * __init populate_extra_pmd(unsigned long vaddr)
  265. {
  266. pgd_t *pgd;
  267. pud_t *pud;
  268. pgd = pgd_offset_k(vaddr);
  269. pud = fill_pud(pgd, vaddr);
  270. return fill_pmd(pud, vaddr);
  271. }
  272. pte_t * __init populate_extra_pte(unsigned long vaddr)
  273. {
  274. pmd_t *pmd;
  275. pmd = populate_extra_pmd(vaddr);
  276. return fill_pte(pmd, vaddr);
  277. }
  278. /*
  279. * Create large page table mappings for a range of physical addresses.
  280. */
  281. static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
  282. pgprot_t prot)
  283. {
  284. pgd_t *pgd;
  285. pud_t *pud;
  286. pmd_t *pmd;
  287. BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
  288. for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
  289. pgd = pgd_offset_k((unsigned long)__va(phys));
  290. if (pgd_none(*pgd)) {
  291. pud = (pud_t *) spp_getpage();
  292. set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE |
  293. _PAGE_USER));
  294. }
  295. pud = pud_offset(pgd, (unsigned long)__va(phys));
  296. if (pud_none(*pud)) {
  297. pmd = (pmd_t *) spp_getpage();
  298. set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
  299. _PAGE_USER));
  300. }
  301. pmd = pmd_offset(pud, phys);
  302. BUG_ON(!pmd_none(*pmd));
  303. set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
  304. }
  305. }
  306. void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
  307. {
  308. __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE);
  309. }
  310. void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
  311. {
  312. __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE_NOCACHE);
  313. }
  314. /*
  315. * The head.S code sets up the kernel high mapping:
  316. *
  317. * from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
  318. *
  319. * phys_base holds the negative offset to the kernel, which is added
  320. * to the compile time generated pmds. This results in invalid pmds up
  321. * to the point where we hit the physaddr 0 mapping.
  322. *
  323. * We limit the mappings to the region from _text to _brk_end. _brk_end
  324. * is rounded up to the 2MB boundary. This catches the invalid pmds as
  325. * well, as they are located before _text:
  326. */
  327. void __init cleanup_highmap(void)
  328. {
  329. unsigned long vaddr = __START_KERNEL_map;
  330. unsigned long vaddr_end = __START_KERNEL_map + KERNEL_IMAGE_SIZE;
  331. unsigned long end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
  332. pmd_t *pmd = level2_kernel_pgt;
  333. /*
  334. * Native path, max_pfn_mapped is not set yet.
  335. * Xen has valid max_pfn_mapped set in
  336. * arch/x86/xen/mmu.c:xen_setup_kernel_pagetable().
  337. */
  338. if (max_pfn_mapped)
  339. vaddr_end = __START_KERNEL_map + (max_pfn_mapped << PAGE_SHIFT);
  340. for (; vaddr + PMD_SIZE - 1 < vaddr_end; pmd++, vaddr += PMD_SIZE) {
  341. if (pmd_none(*pmd))
  342. continue;
  343. if (vaddr < (unsigned long) _text || vaddr > end)
  344. set_pmd(pmd, __pmd(0));
  345. }
  346. }
  347. static unsigned long __meminit
  348. phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end,
  349. pgprot_t prot)
  350. {
  351. unsigned long pages = 0, next;
  352. unsigned long last_map_addr = end;
  353. int i;
  354. pte_t *pte = pte_page + pte_index(addr);
  355. for (i = pte_index(addr); i < PTRS_PER_PTE; i++, addr = next, pte++) {
  356. next = (addr & PAGE_MASK) + PAGE_SIZE;
  357. if (addr >= end) {
  358. if (!after_bootmem &&
  359. !e820_any_mapped(addr & PAGE_MASK, next, E820_RAM) &&
  360. !e820_any_mapped(addr & PAGE_MASK, next, E820_RESERVED_KERN))
  361. set_pte(pte, __pte(0));
  362. continue;
  363. }
  364. /*
  365. * We will re-use the existing mapping.
  366. * Xen for example has some special requirements, like mapping
  367. * pagetable pages as RO. So assume someone who pre-setup
  368. * these mappings are more intelligent.
  369. */
  370. if (pte_val(*pte)) {
  371. if (!after_bootmem)
  372. pages++;
  373. continue;
  374. }
  375. if (0)
  376. printk(" pte=%p addr=%lx pte=%016lx\n",
  377. pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte);
  378. pages++;
  379. set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, prot));
  380. last_map_addr = (addr & PAGE_MASK) + PAGE_SIZE;
  381. }
  382. update_page_count(PG_LEVEL_4K, pages);
  383. return last_map_addr;
  384. }
  385. static unsigned long __meminit
  386. phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end,
  387. unsigned long page_size_mask, pgprot_t prot)
  388. {
  389. unsigned long pages = 0, next;
  390. unsigned long last_map_addr = end;
  391. int i = pmd_index(address);
  392. for (; i < PTRS_PER_PMD; i++, address = next) {
  393. pmd_t *pmd = pmd_page + pmd_index(address);
  394. pte_t *pte;
  395. pgprot_t new_prot = prot;
  396. next = (address & PMD_MASK) + PMD_SIZE;
  397. if (address >= end) {
  398. if (!after_bootmem &&
  399. !e820_any_mapped(address & PMD_MASK, next, E820_RAM) &&
  400. !e820_any_mapped(address & PMD_MASK, next, E820_RESERVED_KERN))
  401. set_pmd(pmd, __pmd(0));
  402. continue;
  403. }
  404. if (pmd_val(*pmd)) {
  405. if (!pmd_large(*pmd)) {
  406. spin_lock(&init_mm.page_table_lock);
  407. pte = (pte_t *)pmd_page_vaddr(*pmd);
  408. last_map_addr = phys_pte_init(pte, address,
  409. end, prot);
  410. spin_unlock(&init_mm.page_table_lock);
  411. continue;
  412. }
  413. /*
  414. * If we are ok with PG_LEVEL_2M mapping, then we will
  415. * use the existing mapping,
  416. *
  417. * Otherwise, we will split the large page mapping but
  418. * use the same existing protection bits except for
  419. * large page, so that we don't violate Intel's TLB
  420. * Application note (317080) which says, while changing
  421. * the page sizes, new and old translations should
  422. * not differ with respect to page frame and
  423. * attributes.
  424. */
  425. if (page_size_mask & (1 << PG_LEVEL_2M)) {
  426. if (!after_bootmem)
  427. pages++;
  428. last_map_addr = next;
  429. continue;
  430. }
  431. new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
  432. }
  433. if (page_size_mask & (1<<PG_LEVEL_2M)) {
  434. pages++;
  435. spin_lock(&init_mm.page_table_lock);
  436. set_pte((pte_t *)pmd,
  437. pfn_pte((address & PMD_MASK) >> PAGE_SHIFT,
  438. __pgprot(pgprot_val(prot) | _PAGE_PSE)));
  439. spin_unlock(&init_mm.page_table_lock);
  440. last_map_addr = next;
  441. continue;
  442. }
  443. pte = alloc_low_page();
  444. last_map_addr = phys_pte_init(pte, address, end, new_prot);
  445. spin_lock(&init_mm.page_table_lock);
  446. pmd_populate_kernel(&init_mm, pmd, pte);
  447. spin_unlock(&init_mm.page_table_lock);
  448. }
  449. update_page_count(PG_LEVEL_2M, pages);
  450. return last_map_addr;
  451. }
  452. static unsigned long __meminit
  453. phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end,
  454. unsigned long page_size_mask)
  455. {
  456. unsigned long pages = 0, next;
  457. unsigned long last_map_addr = end;
  458. int i = pud_index(addr);
  459. for (; i < PTRS_PER_PUD; i++, addr = next) {
  460. pud_t *pud = pud_page + pud_index(addr);
  461. pmd_t *pmd;
  462. pgprot_t prot = PAGE_KERNEL;
  463. next = (addr & PUD_MASK) + PUD_SIZE;
  464. if (addr >= end) {
  465. if (!after_bootmem &&
  466. !e820_any_mapped(addr & PUD_MASK, next, E820_RAM) &&
  467. !e820_any_mapped(addr & PUD_MASK, next, E820_RESERVED_KERN))
  468. set_pud(pud, __pud(0));
  469. continue;
  470. }
  471. if (pud_val(*pud)) {
  472. if (!pud_large(*pud)) {
  473. pmd = pmd_offset(pud, 0);
  474. last_map_addr = phys_pmd_init(pmd, addr, end,
  475. page_size_mask, prot);
  476. __flush_tlb_all();
  477. continue;
  478. }
  479. /*
  480. * If we are ok with PG_LEVEL_1G mapping, then we will
  481. * use the existing mapping.
  482. *
  483. * Otherwise, we will split the gbpage mapping but use
  484. * the same existing protection bits except for large
  485. * page, so that we don't violate Intel's TLB
  486. * Application note (317080) which says, while changing
  487. * the page sizes, new and old translations should
  488. * not differ with respect to page frame and
  489. * attributes.
  490. */
  491. if (page_size_mask & (1 << PG_LEVEL_1G)) {
  492. if (!after_bootmem)
  493. pages++;
  494. last_map_addr = next;
  495. continue;
  496. }
  497. prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
  498. }
  499. if (page_size_mask & (1<<PG_LEVEL_1G)) {
  500. pages++;
  501. spin_lock(&init_mm.page_table_lock);
  502. set_pte((pte_t *)pud,
  503. pfn_pte((addr & PUD_MASK) >> PAGE_SHIFT,
  504. PAGE_KERNEL_LARGE));
  505. spin_unlock(&init_mm.page_table_lock);
  506. last_map_addr = next;
  507. continue;
  508. }
  509. pmd = alloc_low_page();
  510. last_map_addr = phys_pmd_init(pmd, addr, end, page_size_mask,
  511. prot);
  512. spin_lock(&init_mm.page_table_lock);
  513. pud_populate(&init_mm, pud, pmd);
  514. spin_unlock(&init_mm.page_table_lock);
  515. }
  516. __flush_tlb_all();
  517. update_page_count(PG_LEVEL_1G, pages);
  518. return last_map_addr;
  519. }
  520. unsigned long __meminit
  521. kernel_physical_mapping_init(unsigned long start,
  522. unsigned long end,
  523. unsigned long page_size_mask)
  524. {
  525. bool pgd_changed = false;
  526. unsigned long next, last_map_addr = end;
  527. unsigned long addr;
  528. start = (unsigned long)__va(start);
  529. end = (unsigned long)__va(end);
  530. addr = start;
  531. for (; start < end; start = next) {
  532. pgd_t *pgd = pgd_offset_k(start);
  533. pud_t *pud;
  534. next = (start & PGDIR_MASK) + PGDIR_SIZE;
  535. if (pgd_val(*pgd)) {
  536. pud = (pud_t *)pgd_page_vaddr(*pgd);
  537. last_map_addr = phys_pud_init(pud, __pa(start),
  538. __pa(end), page_size_mask);
  539. continue;
  540. }
  541. pud = alloc_low_page();
  542. last_map_addr = phys_pud_init(pud, __pa(start), __pa(end),
  543. page_size_mask);
  544. spin_lock(&init_mm.page_table_lock);
  545. pgd_populate(&init_mm, pgd, pud);
  546. spin_unlock(&init_mm.page_table_lock);
  547. pgd_changed = true;
  548. }
  549. if (pgd_changed)
  550. sync_global_pgds(addr, end - 1);
  551. __flush_tlb_all();
  552. return last_map_addr;
  553. }
  554. #ifndef CONFIG_NUMA
  555. void __init initmem_init(void)
  556. {
  557. memblock_set_node(0, (phys_addr_t)ULLONG_MAX, &memblock.memory, 0);
  558. }
  559. #endif
  560. void __init paging_init(void)
  561. {
  562. sparse_memory_present_with_active_regions(MAX_NUMNODES);
  563. sparse_init();
  564. /*
  565. * clear the default setting with node 0
  566. * note: don't use nodes_clear here, that is really clearing when
  567. * numa support is not compiled in, and later node_set_state
  568. * will not set it back.
  569. */
  570. node_clear_state(0, N_MEMORY);
  571. if (N_MEMORY != N_NORMAL_MEMORY)
  572. node_clear_state(0, N_NORMAL_MEMORY);
  573. zone_sizes_init();
  574. }
  575. /*
  576. * Memory hotplug specific functions
  577. */
  578. #ifdef CONFIG_MEMORY_HOTPLUG
  579. /*
  580. * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need
  581. * updating.
  582. */
  583. static void update_end_of_memory_vars(u64 start, u64 size)
  584. {
  585. unsigned long end_pfn = PFN_UP(start + size);
  586. if (end_pfn > max_pfn) {
  587. max_pfn = end_pfn;
  588. max_low_pfn = end_pfn;
  589. high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
  590. }
  591. }
  592. /*
  593. * Memory is added always to NORMAL zone. This means you will never get
  594. * additional DMA/DMA32 memory.
  595. */
  596. int arch_add_memory(int nid, u64 start, u64 size)
  597. {
  598. struct pglist_data *pgdat = NODE_DATA(nid);
  599. struct zone *zone = pgdat->node_zones + ZONE_NORMAL;
  600. unsigned long start_pfn = start >> PAGE_SHIFT;
  601. unsigned long nr_pages = size >> PAGE_SHIFT;
  602. int ret;
  603. init_memory_mapping(start, start + size);
  604. ret = __add_pages(nid, zone, start_pfn, nr_pages);
  605. WARN_ON_ONCE(ret);
  606. /* update max_pfn, max_low_pfn and high_memory */
  607. update_end_of_memory_vars(start, size);
  608. return ret;
  609. }
  610. EXPORT_SYMBOL_GPL(arch_add_memory);
  611. #define PAGE_INUSE 0xFD
  612. static void __meminit free_pagetable(struct page *page, int order)
  613. {
  614. unsigned long magic;
  615. unsigned int nr_pages = 1 << order;
  616. /* bootmem page has reserved flag */
  617. if (PageReserved(page)) {
  618. __ClearPageReserved(page);
  619. magic = (unsigned long)page->lru.next;
  620. if (magic == SECTION_INFO || magic == MIX_SECTION_INFO) {
  621. while (nr_pages--)
  622. put_page_bootmem(page++);
  623. } else
  624. while (nr_pages--)
  625. free_reserved_page(page++);
  626. } else
  627. free_pages((unsigned long)page_address(page), order);
  628. }
  629. static void __meminit free_pte_table(pte_t *pte_start, pmd_t *pmd)
  630. {
  631. pte_t *pte;
  632. int i;
  633. for (i = 0; i < PTRS_PER_PTE; i++) {
  634. pte = pte_start + i;
  635. if (pte_val(*pte))
  636. return;
  637. }
  638. /* free a pte talbe */
  639. free_pagetable(pmd_page(*pmd), 0);
  640. spin_lock(&init_mm.page_table_lock);
  641. pmd_clear(pmd);
  642. spin_unlock(&init_mm.page_table_lock);
  643. }
  644. static void __meminit free_pmd_table(pmd_t *pmd_start, pud_t *pud)
  645. {
  646. pmd_t *pmd;
  647. int i;
  648. for (i = 0; i < PTRS_PER_PMD; i++) {
  649. pmd = pmd_start + i;
  650. if (pmd_val(*pmd))
  651. return;
  652. }
  653. /* free a pmd talbe */
  654. free_pagetable(pud_page(*pud), 0);
  655. spin_lock(&init_mm.page_table_lock);
  656. pud_clear(pud);
  657. spin_unlock(&init_mm.page_table_lock);
  658. }
  659. /* Return true if pgd is changed, otherwise return false. */
  660. static bool __meminit free_pud_table(pud_t *pud_start, pgd_t *pgd)
  661. {
  662. pud_t *pud;
  663. int i;
  664. for (i = 0; i < PTRS_PER_PUD; i++) {
  665. pud = pud_start + i;
  666. if (pud_val(*pud))
  667. return false;
  668. }
  669. /* free a pud table */
  670. free_pagetable(pgd_page(*pgd), 0);
  671. spin_lock(&init_mm.page_table_lock);
  672. pgd_clear(pgd);
  673. spin_unlock(&init_mm.page_table_lock);
  674. return true;
  675. }
  676. static void __meminit
  677. remove_pte_table(pte_t *pte_start, unsigned long addr, unsigned long end,
  678. bool direct)
  679. {
  680. unsigned long next, pages = 0;
  681. pte_t *pte;
  682. void *page_addr;
  683. phys_addr_t phys_addr;
  684. pte = pte_start + pte_index(addr);
  685. for (; addr < end; addr = next, pte++) {
  686. next = (addr + PAGE_SIZE) & PAGE_MASK;
  687. if (next > end)
  688. next = end;
  689. if (!pte_present(*pte))
  690. continue;
  691. /*
  692. * We mapped [0,1G) memory as identity mapping when
  693. * initializing, in arch/x86/kernel/head_64.S. These
  694. * pagetables cannot be removed.
  695. */
  696. phys_addr = pte_val(*pte) + (addr & PAGE_MASK);
  697. if (phys_addr < (phys_addr_t)0x40000000)
  698. return;
  699. if (IS_ALIGNED(addr, PAGE_SIZE) &&
  700. IS_ALIGNED(next, PAGE_SIZE)) {
  701. /*
  702. * Do not free direct mapping pages since they were
  703. * freed when offlining, or simplely not in use.
  704. */
  705. if (!direct)
  706. free_pagetable(pte_page(*pte), 0);
  707. spin_lock(&init_mm.page_table_lock);
  708. pte_clear(&init_mm, addr, pte);
  709. spin_unlock(&init_mm.page_table_lock);
  710. /* For non-direct mapping, pages means nothing. */
  711. pages++;
  712. } else {
  713. /*
  714. * If we are here, we are freeing vmemmap pages since
  715. * direct mapped memory ranges to be freed are aligned.
  716. *
  717. * If we are not removing the whole page, it means
  718. * other page structs in this page are being used and
  719. * we canot remove them. So fill the unused page_structs
  720. * with 0xFD, and remove the page when it is wholly
  721. * filled with 0xFD.
  722. */
  723. memset((void *)addr, PAGE_INUSE, next - addr);
  724. page_addr = page_address(pte_page(*pte));
  725. if (!memchr_inv(page_addr, PAGE_INUSE, PAGE_SIZE)) {
  726. free_pagetable(pte_page(*pte), 0);
  727. spin_lock(&init_mm.page_table_lock);
  728. pte_clear(&init_mm, addr, pte);
  729. spin_unlock(&init_mm.page_table_lock);
  730. }
  731. }
  732. }
  733. /* Call free_pte_table() in remove_pmd_table(). */
  734. flush_tlb_all();
  735. if (direct)
  736. update_page_count(PG_LEVEL_4K, -pages);
  737. }
  738. static void __meminit
  739. remove_pmd_table(pmd_t *pmd_start, unsigned long addr, unsigned long end,
  740. bool direct)
  741. {
  742. unsigned long next, pages = 0;
  743. pte_t *pte_base;
  744. pmd_t *pmd;
  745. void *page_addr;
  746. pmd = pmd_start + pmd_index(addr);
  747. for (; addr < end; addr = next, pmd++) {
  748. next = pmd_addr_end(addr, end);
  749. if (!pmd_present(*pmd))
  750. continue;
  751. if (pmd_large(*pmd)) {
  752. if (IS_ALIGNED(addr, PMD_SIZE) &&
  753. IS_ALIGNED(next, PMD_SIZE)) {
  754. if (!direct)
  755. free_pagetable(pmd_page(*pmd),
  756. get_order(PMD_SIZE));
  757. spin_lock(&init_mm.page_table_lock);
  758. pmd_clear(pmd);
  759. spin_unlock(&init_mm.page_table_lock);
  760. pages++;
  761. } else {
  762. /* If here, we are freeing vmemmap pages. */
  763. memset((void *)addr, PAGE_INUSE, next - addr);
  764. page_addr = page_address(pmd_page(*pmd));
  765. if (!memchr_inv(page_addr, PAGE_INUSE,
  766. PMD_SIZE)) {
  767. free_pagetable(pmd_page(*pmd),
  768. get_order(PMD_SIZE));
  769. spin_lock(&init_mm.page_table_lock);
  770. pmd_clear(pmd);
  771. spin_unlock(&init_mm.page_table_lock);
  772. }
  773. }
  774. continue;
  775. }
  776. pte_base = (pte_t *)pmd_page_vaddr(*pmd);
  777. remove_pte_table(pte_base, addr, next, direct);
  778. free_pte_table(pte_base, pmd);
  779. }
  780. /* Call free_pmd_table() in remove_pud_table(). */
  781. if (direct)
  782. update_page_count(PG_LEVEL_2M, -pages);
  783. }
  784. static void __meminit
  785. remove_pud_table(pud_t *pud_start, unsigned long addr, unsigned long end,
  786. bool direct)
  787. {
  788. unsigned long next, pages = 0;
  789. pmd_t *pmd_base;
  790. pud_t *pud;
  791. void *page_addr;
  792. pud = pud_start + pud_index(addr);
  793. for (; addr < end; addr = next, pud++) {
  794. next = pud_addr_end(addr, end);
  795. if (!pud_present(*pud))
  796. continue;
  797. if (pud_large(*pud)) {
  798. if (IS_ALIGNED(addr, PUD_SIZE) &&
  799. IS_ALIGNED(next, PUD_SIZE)) {
  800. if (!direct)
  801. free_pagetable(pud_page(*pud),
  802. get_order(PUD_SIZE));
  803. spin_lock(&init_mm.page_table_lock);
  804. pud_clear(pud);
  805. spin_unlock(&init_mm.page_table_lock);
  806. pages++;
  807. } else {
  808. /* If here, we are freeing vmemmap pages. */
  809. memset((void *)addr, PAGE_INUSE, next - addr);
  810. page_addr = page_address(pud_page(*pud));
  811. if (!memchr_inv(page_addr, PAGE_INUSE,
  812. PUD_SIZE)) {
  813. free_pagetable(pud_page(*pud),
  814. get_order(PUD_SIZE));
  815. spin_lock(&init_mm.page_table_lock);
  816. pud_clear(pud);
  817. spin_unlock(&init_mm.page_table_lock);
  818. }
  819. }
  820. continue;
  821. }
  822. pmd_base = (pmd_t *)pud_page_vaddr(*pud);
  823. remove_pmd_table(pmd_base, addr, next, direct);
  824. free_pmd_table(pmd_base, pud);
  825. }
  826. if (direct)
  827. update_page_count(PG_LEVEL_1G, -pages);
  828. }
  829. /* start and end are both virtual address. */
  830. static void __meminit
  831. remove_pagetable(unsigned long start, unsigned long end, bool direct)
  832. {
  833. unsigned long next;
  834. pgd_t *pgd;
  835. pud_t *pud;
  836. bool pgd_changed = false;
  837. for (; start < end; start = next) {
  838. next = pgd_addr_end(start, end);
  839. pgd = pgd_offset_k(start);
  840. if (!pgd_present(*pgd))
  841. continue;
  842. pud = (pud_t *)pgd_page_vaddr(*pgd);
  843. remove_pud_table(pud, start, next, direct);
  844. if (free_pud_table(pud, pgd))
  845. pgd_changed = true;
  846. }
  847. if (pgd_changed)
  848. sync_global_pgds(start, end - 1);
  849. flush_tlb_all();
  850. }
  851. void __ref vmemmap_free(unsigned long start, unsigned long end)
  852. {
  853. remove_pagetable(start, end, false);
  854. }
  855. #ifdef CONFIG_MEMORY_HOTREMOVE
  856. static void __meminit
  857. kernel_physical_mapping_remove(unsigned long start, unsigned long end)
  858. {
  859. start = (unsigned long)__va(start);
  860. end = (unsigned long)__va(end);
  861. remove_pagetable(start, end, true);
  862. }
  863. int __ref arch_remove_memory(u64 start, u64 size)
  864. {
  865. unsigned long start_pfn = start >> PAGE_SHIFT;
  866. unsigned long nr_pages = size >> PAGE_SHIFT;
  867. struct zone *zone;
  868. int ret;
  869. zone = page_zone(pfn_to_page(start_pfn));
  870. kernel_physical_mapping_remove(start, start + size);
  871. ret = __remove_pages(zone, start_pfn, nr_pages);
  872. WARN_ON_ONCE(ret);
  873. return ret;
  874. }
  875. #endif
  876. #endif /* CONFIG_MEMORY_HOTPLUG */
  877. static struct kcore_list kcore_vsyscall;
  878. static void __init register_page_bootmem_info(void)
  879. {
  880. #ifdef CONFIG_NUMA
  881. int i;
  882. for_each_online_node(i)
  883. register_page_bootmem_info_node(NODE_DATA(i));
  884. #endif
  885. }
  886. void __init mem_init(void)
  887. {
  888. pci_iommu_alloc();
  889. /* clear_bss() already clear the empty_zero_page */
  890. register_page_bootmem_info();
  891. /* this will put all memory onto the freelists */
  892. free_all_bootmem();
  893. after_bootmem = 1;
  894. /* Register memory areas for /proc/kcore */
  895. kclist_add(&kcore_vsyscall, (void *)VSYSCALL_ADDR,
  896. PAGE_SIZE, KCORE_OTHER);
  897. mem_init_print_info(NULL);
  898. }
  899. #ifdef CONFIG_DEBUG_RODATA
  900. const int rodata_test_data = 0xC3;
  901. EXPORT_SYMBOL_GPL(rodata_test_data);
  902. int kernel_set_to_readonly;
  903. void set_kernel_text_rw(void)
  904. {
  905. unsigned long start = PFN_ALIGN(_text);
  906. unsigned long end = PFN_ALIGN(__stop___ex_table);
  907. if (!kernel_set_to_readonly)
  908. return;
  909. pr_debug("Set kernel text: %lx - %lx for read write\n",
  910. start, end);
  911. /*
  912. * Make the kernel identity mapping for text RW. Kernel text
  913. * mapping will always be RO. Refer to the comment in
  914. * static_protections() in pageattr.c
  915. */
  916. set_memory_rw(start, (end - start) >> PAGE_SHIFT);
  917. }
  918. void set_kernel_text_ro(void)
  919. {
  920. unsigned long start = PFN_ALIGN(_text);
  921. unsigned long end = PFN_ALIGN(__stop___ex_table);
  922. if (!kernel_set_to_readonly)
  923. return;
  924. pr_debug("Set kernel text: %lx - %lx for read only\n",
  925. start, end);
  926. /*
  927. * Set the kernel identity mapping for text RO.
  928. */
  929. set_memory_ro(start, (end - start) >> PAGE_SHIFT);
  930. }
  931. void mark_rodata_ro(void)
  932. {
  933. unsigned long start = PFN_ALIGN(_text);
  934. unsigned long rodata_start = PFN_ALIGN(__start_rodata);
  935. unsigned long end = (unsigned long) &__end_rodata_hpage_align;
  936. unsigned long text_end = PFN_ALIGN(&__stop___ex_table);
  937. unsigned long rodata_end = PFN_ALIGN(&__end_rodata);
  938. unsigned long all_end = PFN_ALIGN(&_end);
  939. printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
  940. (end - start) >> 10);
  941. set_memory_ro(start, (end - start) >> PAGE_SHIFT);
  942. kernel_set_to_readonly = 1;
  943. /*
  944. * The rodata/data/bss/brk section (but not the kernel text!)
  945. * should also be not-executable.
  946. */
  947. set_memory_nx(rodata_start, (all_end - rodata_start) >> PAGE_SHIFT);
  948. rodata_test();
  949. #ifdef CONFIG_CPA_DEBUG
  950. printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
  951. set_memory_rw(start, (end-start) >> PAGE_SHIFT);
  952. printk(KERN_INFO "Testing CPA: again\n");
  953. set_memory_ro(start, (end-start) >> PAGE_SHIFT);
  954. #endif
  955. free_init_pages("unused kernel",
  956. (unsigned long) __va(__pa_symbol(text_end)),
  957. (unsigned long) __va(__pa_symbol(rodata_start)));
  958. free_init_pages("unused kernel",
  959. (unsigned long) __va(__pa_symbol(rodata_end)),
  960. (unsigned long) __va(__pa_symbol(_sdata)));
  961. }
  962. #endif
  963. int kern_addr_valid(unsigned long addr)
  964. {
  965. unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
  966. pgd_t *pgd;
  967. pud_t *pud;
  968. pmd_t *pmd;
  969. pte_t *pte;
  970. if (above != 0 && above != -1UL)
  971. return 0;
  972. pgd = pgd_offset_k(addr);
  973. if (pgd_none(*pgd))
  974. return 0;
  975. pud = pud_offset(pgd, addr);
  976. if (pud_none(*pud))
  977. return 0;
  978. if (pud_large(*pud))
  979. return pfn_valid(pud_pfn(*pud));
  980. pmd = pmd_offset(pud, addr);
  981. if (pmd_none(*pmd))
  982. return 0;
  983. if (pmd_large(*pmd))
  984. return pfn_valid(pmd_pfn(*pmd));
  985. pte = pte_offset_kernel(pmd, addr);
  986. if (pte_none(*pte))
  987. return 0;
  988. return pfn_valid(pte_pfn(*pte));
  989. }
  990. /*
  991. * A pseudo VMA to allow ptrace access for the vsyscall page. This only
  992. * covers the 64bit vsyscall page now. 32bit has a real VMA now and does
  993. * not need special handling anymore:
  994. */
  995. static const char *gate_vma_name(struct vm_area_struct *vma)
  996. {
  997. return "[vsyscall]";
  998. }
  999. static struct vm_operations_struct gate_vma_ops = {
  1000. .name = gate_vma_name,
  1001. };
  1002. static struct vm_area_struct gate_vma = {
  1003. .vm_start = VSYSCALL_ADDR,
  1004. .vm_end = VSYSCALL_ADDR + PAGE_SIZE,
  1005. .vm_page_prot = PAGE_READONLY_EXEC,
  1006. .vm_flags = VM_READ | VM_EXEC,
  1007. .vm_ops = &gate_vma_ops,
  1008. };
  1009. struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
  1010. {
  1011. #ifdef CONFIG_IA32_EMULATION
  1012. if (!mm || mm->context.ia32_compat)
  1013. return NULL;
  1014. #endif
  1015. return &gate_vma;
  1016. }
  1017. int in_gate_area(struct mm_struct *mm, unsigned long addr)
  1018. {
  1019. struct vm_area_struct *vma = get_gate_vma(mm);
  1020. if (!vma)
  1021. return 0;
  1022. return (addr >= vma->vm_start) && (addr < vma->vm_end);
  1023. }
  1024. /*
  1025. * Use this when you have no reliable mm, typically from interrupt
  1026. * context. It is less reliable than using a task's mm and may give
  1027. * false positives.
  1028. */
  1029. int in_gate_area_no_mm(unsigned long addr)
  1030. {
  1031. return (addr & PAGE_MASK) == VSYSCALL_ADDR;
  1032. }
  1033. static unsigned long probe_memory_block_size(void)
  1034. {
  1035. /* start from 2g */
  1036. unsigned long bz = 1UL<<31;
  1037. #ifdef CONFIG_X86_UV
  1038. if (is_uv_system()) {
  1039. printk(KERN_INFO "UV: memory block size 2GB\n");
  1040. return 2UL * 1024 * 1024 * 1024;
  1041. }
  1042. #endif
  1043. /* less than 64g installed */
  1044. if ((max_pfn << PAGE_SHIFT) < (16UL << 32))
  1045. return MIN_MEMORY_BLOCK_SIZE;
  1046. /* get the tail size */
  1047. while (bz > MIN_MEMORY_BLOCK_SIZE) {
  1048. if (!((max_pfn << PAGE_SHIFT) & (bz - 1)))
  1049. break;
  1050. bz >>= 1;
  1051. }
  1052. printk(KERN_DEBUG "memory block size : %ldMB\n", bz >> 20);
  1053. return bz;
  1054. }
  1055. static unsigned long memory_block_size_probed;
  1056. unsigned long memory_block_size_bytes(void)
  1057. {
  1058. if (!memory_block_size_probed)
  1059. memory_block_size_probed = probe_memory_block_size();
  1060. return memory_block_size_probed;
  1061. }
  1062. #ifdef CONFIG_SPARSEMEM_VMEMMAP
  1063. /*
  1064. * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
  1065. */
  1066. static long __meminitdata addr_start, addr_end;
  1067. static void __meminitdata *p_start, *p_end;
  1068. static int __meminitdata node_start;
  1069. static int __meminit vmemmap_populate_hugepages(unsigned long start,
  1070. unsigned long end, int node)
  1071. {
  1072. unsigned long addr;
  1073. unsigned long next;
  1074. pgd_t *pgd;
  1075. pud_t *pud;
  1076. pmd_t *pmd;
  1077. for (addr = start; addr < end; addr = next) {
  1078. next = pmd_addr_end(addr, end);
  1079. pgd = vmemmap_pgd_populate(addr, node);
  1080. if (!pgd)
  1081. return -ENOMEM;
  1082. pud = vmemmap_pud_populate(pgd, addr, node);
  1083. if (!pud)
  1084. return -ENOMEM;
  1085. pmd = pmd_offset(pud, addr);
  1086. if (pmd_none(*pmd)) {
  1087. void *p;
  1088. p = vmemmap_alloc_block_buf(PMD_SIZE, node);
  1089. if (p) {
  1090. pte_t entry;
  1091. entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
  1092. PAGE_KERNEL_LARGE);
  1093. set_pmd(pmd, __pmd(pte_val(entry)));
  1094. /* check to see if we have contiguous blocks */
  1095. if (p_end != p || node_start != node) {
  1096. if (p_start)
  1097. printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
  1098. addr_start, addr_end-1, p_start, p_end-1, node_start);
  1099. addr_start = addr;
  1100. node_start = node;
  1101. p_start = p;
  1102. }
  1103. addr_end = addr + PMD_SIZE;
  1104. p_end = p + PMD_SIZE;
  1105. continue;
  1106. }
  1107. } else if (pmd_large(*pmd)) {
  1108. vmemmap_verify((pte_t *)pmd, node, addr, next);
  1109. continue;
  1110. }
  1111. pr_warn_once("vmemmap: falling back to regular page backing\n");
  1112. if (vmemmap_populate_basepages(addr, next, node))
  1113. return -ENOMEM;
  1114. }
  1115. return 0;
  1116. }
  1117. int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node)
  1118. {
  1119. int err;
  1120. if (cpu_has_pse)
  1121. err = vmemmap_populate_hugepages(start, end, node);
  1122. else
  1123. err = vmemmap_populate_basepages(start, end, node);
  1124. if (!err)
  1125. sync_global_pgds(start, end - 1);
  1126. return err;
  1127. }
  1128. #if defined(CONFIG_MEMORY_HOTPLUG_SPARSE) && defined(CONFIG_HAVE_BOOTMEM_INFO_NODE)
  1129. void register_page_bootmem_memmap(unsigned long section_nr,
  1130. struct page *start_page, unsigned long size)
  1131. {
  1132. unsigned long addr = (unsigned long)start_page;
  1133. unsigned long end = (unsigned long)(start_page + size);
  1134. unsigned long next;
  1135. pgd_t *pgd;
  1136. pud_t *pud;
  1137. pmd_t *pmd;
  1138. unsigned int nr_pages;
  1139. struct page *page;
  1140. for (; addr < end; addr = next) {
  1141. pte_t *pte = NULL;
  1142. pgd = pgd_offset_k(addr);
  1143. if (pgd_none(*pgd)) {
  1144. next = (addr + PAGE_SIZE) & PAGE_MASK;
  1145. continue;
  1146. }
  1147. get_page_bootmem(section_nr, pgd_page(*pgd), MIX_SECTION_INFO);
  1148. pud = pud_offset(pgd, addr);
  1149. if (pud_none(*pud)) {
  1150. next = (addr + PAGE_SIZE) & PAGE_MASK;
  1151. continue;
  1152. }
  1153. get_page_bootmem(section_nr, pud_page(*pud), MIX_SECTION_INFO);
  1154. if (!cpu_has_pse) {
  1155. next = (addr + PAGE_SIZE) & PAGE_MASK;
  1156. pmd = pmd_offset(pud, addr);
  1157. if (pmd_none(*pmd))
  1158. continue;
  1159. get_page_bootmem(section_nr, pmd_page(*pmd),
  1160. MIX_SECTION_INFO);
  1161. pte = pte_offset_kernel(pmd, addr);
  1162. if (pte_none(*pte))
  1163. continue;
  1164. get_page_bootmem(section_nr, pte_page(*pte),
  1165. SECTION_INFO);
  1166. } else {
  1167. next = pmd_addr_end(addr, end);
  1168. pmd = pmd_offset(pud, addr);
  1169. if (pmd_none(*pmd))
  1170. continue;
  1171. nr_pages = 1 << (get_order(PMD_SIZE));
  1172. page = pmd_page(*pmd);
  1173. while (nr_pages--)
  1174. get_page_bootmem(section_nr, page++,
  1175. SECTION_INFO);
  1176. }
  1177. }
  1178. }
  1179. #endif
  1180. void __meminit vmemmap_populate_print_last(void)
  1181. {
  1182. if (p_start) {
  1183. printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
  1184. addr_start, addr_end-1, p_start, p_end-1, node_start);
  1185. p_start = NULL;
  1186. p_end = NULL;
  1187. node_start = 0;
  1188. }
  1189. }
  1190. #endif