x86.c 191 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * derived from drivers/kvm/kvm_main.c
  5. *
  6. * Copyright (C) 2006 Qumranet, Inc.
  7. * Copyright (C) 2008 Qumranet, Inc.
  8. * Copyright IBM Corporation, 2008
  9. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  10. *
  11. * Authors:
  12. * Avi Kivity <avi@qumranet.com>
  13. * Yaniv Kamay <yaniv@qumranet.com>
  14. * Amit Shah <amit.shah@qumranet.com>
  15. * Ben-Ami Yassour <benami@il.ibm.com>
  16. *
  17. * This work is licensed under the terms of the GNU GPL, version 2. See
  18. * the COPYING file in the top-level directory.
  19. *
  20. */
  21. #include <linux/kvm_host.h>
  22. #include "irq.h"
  23. #include "mmu.h"
  24. #include "i8254.h"
  25. #include "tss.h"
  26. #include "kvm_cache_regs.h"
  27. #include "x86.h"
  28. #include "cpuid.h"
  29. #include <linux/clocksource.h>
  30. #include <linux/interrupt.h>
  31. #include <linux/kvm.h>
  32. #include <linux/fs.h>
  33. #include <linux/vmalloc.h>
  34. #include <linux/module.h>
  35. #include <linux/mman.h>
  36. #include <linux/highmem.h>
  37. #include <linux/iommu.h>
  38. #include <linux/intel-iommu.h>
  39. #include <linux/cpufreq.h>
  40. #include <linux/user-return-notifier.h>
  41. #include <linux/srcu.h>
  42. #include <linux/slab.h>
  43. #include <linux/perf_event.h>
  44. #include <linux/uaccess.h>
  45. #include <linux/hash.h>
  46. #include <linux/pci.h>
  47. #include <linux/timekeeper_internal.h>
  48. #include <linux/pvclock_gtod.h>
  49. #include <trace/events/kvm.h>
  50. #define CREATE_TRACE_POINTS
  51. #include "trace.h"
  52. #include <asm/debugreg.h>
  53. #include <asm/msr.h>
  54. #include <asm/desc.h>
  55. #include <asm/mtrr.h>
  56. #include <asm/mce.h>
  57. #include <asm/i387.h>
  58. #include <asm/fpu-internal.h> /* Ugh! */
  59. #include <asm/xcr.h>
  60. #include <asm/pvclock.h>
  61. #include <asm/div64.h>
  62. #define MAX_IO_MSRS 256
  63. #define KVM_MAX_MCE_BANKS 32
  64. #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
  65. #define emul_to_vcpu(ctxt) \
  66. container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
  67. /* EFER defaults:
  68. * - enable syscall per default because its emulated by KVM
  69. * - enable LME and LMA per default on 64 bit KVM
  70. */
  71. #ifdef CONFIG_X86_64
  72. static
  73. u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
  74. #else
  75. static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
  76. #endif
  77. #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
  78. #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
  79. static void update_cr8_intercept(struct kvm_vcpu *vcpu);
  80. static void process_nmi(struct kvm_vcpu *vcpu);
  81. struct kvm_x86_ops *kvm_x86_ops;
  82. EXPORT_SYMBOL_GPL(kvm_x86_ops);
  83. static bool ignore_msrs = 0;
  84. module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
  85. unsigned int min_timer_period_us = 500;
  86. module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
  87. bool kvm_has_tsc_control;
  88. EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
  89. u32 kvm_max_guest_tsc_khz;
  90. EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
  91. /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
  92. static u32 tsc_tolerance_ppm = 250;
  93. module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
  94. static bool backwards_tsc_observed = false;
  95. #define KVM_NR_SHARED_MSRS 16
  96. struct kvm_shared_msrs_global {
  97. int nr;
  98. u32 msrs[KVM_NR_SHARED_MSRS];
  99. };
  100. struct kvm_shared_msrs {
  101. struct user_return_notifier urn;
  102. bool registered;
  103. struct kvm_shared_msr_values {
  104. u64 host;
  105. u64 curr;
  106. } values[KVM_NR_SHARED_MSRS];
  107. };
  108. static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
  109. static struct kvm_shared_msrs __percpu *shared_msrs;
  110. struct kvm_stats_debugfs_item debugfs_entries[] = {
  111. { "pf_fixed", VCPU_STAT(pf_fixed) },
  112. { "pf_guest", VCPU_STAT(pf_guest) },
  113. { "tlb_flush", VCPU_STAT(tlb_flush) },
  114. { "invlpg", VCPU_STAT(invlpg) },
  115. { "exits", VCPU_STAT(exits) },
  116. { "io_exits", VCPU_STAT(io_exits) },
  117. { "mmio_exits", VCPU_STAT(mmio_exits) },
  118. { "signal_exits", VCPU_STAT(signal_exits) },
  119. { "irq_window", VCPU_STAT(irq_window_exits) },
  120. { "nmi_window", VCPU_STAT(nmi_window_exits) },
  121. { "halt_exits", VCPU_STAT(halt_exits) },
  122. { "halt_wakeup", VCPU_STAT(halt_wakeup) },
  123. { "hypercalls", VCPU_STAT(hypercalls) },
  124. { "request_irq", VCPU_STAT(request_irq_exits) },
  125. { "irq_exits", VCPU_STAT(irq_exits) },
  126. { "host_state_reload", VCPU_STAT(host_state_reload) },
  127. { "efer_reload", VCPU_STAT(efer_reload) },
  128. { "fpu_reload", VCPU_STAT(fpu_reload) },
  129. { "insn_emulation", VCPU_STAT(insn_emulation) },
  130. { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
  131. { "irq_injections", VCPU_STAT(irq_injections) },
  132. { "nmi_injections", VCPU_STAT(nmi_injections) },
  133. { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
  134. { "mmu_pte_write", VM_STAT(mmu_pte_write) },
  135. { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
  136. { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
  137. { "mmu_flooded", VM_STAT(mmu_flooded) },
  138. { "mmu_recycled", VM_STAT(mmu_recycled) },
  139. { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
  140. { "mmu_unsync", VM_STAT(mmu_unsync) },
  141. { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
  142. { "largepages", VM_STAT(lpages) },
  143. { NULL }
  144. };
  145. u64 __read_mostly host_xcr0;
  146. static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
  147. static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
  148. {
  149. int i;
  150. for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
  151. vcpu->arch.apf.gfns[i] = ~0;
  152. }
  153. static void kvm_on_user_return(struct user_return_notifier *urn)
  154. {
  155. unsigned slot;
  156. struct kvm_shared_msrs *locals
  157. = container_of(urn, struct kvm_shared_msrs, urn);
  158. struct kvm_shared_msr_values *values;
  159. for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
  160. values = &locals->values[slot];
  161. if (values->host != values->curr) {
  162. wrmsrl(shared_msrs_global.msrs[slot], values->host);
  163. values->curr = values->host;
  164. }
  165. }
  166. locals->registered = false;
  167. user_return_notifier_unregister(urn);
  168. }
  169. static void shared_msr_update(unsigned slot, u32 msr)
  170. {
  171. u64 value;
  172. unsigned int cpu = smp_processor_id();
  173. struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
  174. /* only read, and nobody should modify it at this time,
  175. * so don't need lock */
  176. if (slot >= shared_msrs_global.nr) {
  177. printk(KERN_ERR "kvm: invalid MSR slot!");
  178. return;
  179. }
  180. rdmsrl_safe(msr, &value);
  181. smsr->values[slot].host = value;
  182. smsr->values[slot].curr = value;
  183. }
  184. void kvm_define_shared_msr(unsigned slot, u32 msr)
  185. {
  186. if (slot >= shared_msrs_global.nr)
  187. shared_msrs_global.nr = slot + 1;
  188. shared_msrs_global.msrs[slot] = msr;
  189. /* we need ensured the shared_msr_global have been updated */
  190. smp_wmb();
  191. }
  192. EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
  193. static void kvm_shared_msr_cpu_online(void)
  194. {
  195. unsigned i;
  196. for (i = 0; i < shared_msrs_global.nr; ++i)
  197. shared_msr_update(i, shared_msrs_global.msrs[i]);
  198. }
  199. void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
  200. {
  201. unsigned int cpu = smp_processor_id();
  202. struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
  203. if (((value ^ smsr->values[slot].curr) & mask) == 0)
  204. return;
  205. smsr->values[slot].curr = value;
  206. wrmsrl(shared_msrs_global.msrs[slot], value);
  207. if (!smsr->registered) {
  208. smsr->urn.on_user_return = kvm_on_user_return;
  209. user_return_notifier_register(&smsr->urn);
  210. smsr->registered = true;
  211. }
  212. }
  213. EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
  214. static void drop_user_return_notifiers(void *ignore)
  215. {
  216. unsigned int cpu = smp_processor_id();
  217. struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
  218. if (smsr->registered)
  219. kvm_on_user_return(&smsr->urn);
  220. }
  221. u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
  222. {
  223. return vcpu->arch.apic_base;
  224. }
  225. EXPORT_SYMBOL_GPL(kvm_get_apic_base);
  226. int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
  227. {
  228. u64 old_state = vcpu->arch.apic_base &
  229. (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
  230. u64 new_state = msr_info->data &
  231. (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
  232. u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
  233. 0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
  234. if (!msr_info->host_initiated &&
  235. ((msr_info->data & reserved_bits) != 0 ||
  236. new_state == X2APIC_ENABLE ||
  237. (new_state == MSR_IA32_APICBASE_ENABLE &&
  238. old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
  239. (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
  240. old_state == 0)))
  241. return 1;
  242. kvm_lapic_set_base(vcpu, msr_info->data);
  243. return 0;
  244. }
  245. EXPORT_SYMBOL_GPL(kvm_set_apic_base);
  246. asmlinkage __visible void kvm_spurious_fault(void)
  247. {
  248. /* Fault while not rebooting. We want the trace. */
  249. BUG();
  250. }
  251. EXPORT_SYMBOL_GPL(kvm_spurious_fault);
  252. #define EXCPT_BENIGN 0
  253. #define EXCPT_CONTRIBUTORY 1
  254. #define EXCPT_PF 2
  255. static int exception_class(int vector)
  256. {
  257. switch (vector) {
  258. case PF_VECTOR:
  259. return EXCPT_PF;
  260. case DE_VECTOR:
  261. case TS_VECTOR:
  262. case NP_VECTOR:
  263. case SS_VECTOR:
  264. case GP_VECTOR:
  265. return EXCPT_CONTRIBUTORY;
  266. default:
  267. break;
  268. }
  269. return EXCPT_BENIGN;
  270. }
  271. static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
  272. unsigned nr, bool has_error, u32 error_code,
  273. bool reinject)
  274. {
  275. u32 prev_nr;
  276. int class1, class2;
  277. kvm_make_request(KVM_REQ_EVENT, vcpu);
  278. if (!vcpu->arch.exception.pending) {
  279. queue:
  280. vcpu->arch.exception.pending = true;
  281. vcpu->arch.exception.has_error_code = has_error;
  282. vcpu->arch.exception.nr = nr;
  283. vcpu->arch.exception.error_code = error_code;
  284. vcpu->arch.exception.reinject = reinject;
  285. return;
  286. }
  287. /* to check exception */
  288. prev_nr = vcpu->arch.exception.nr;
  289. if (prev_nr == DF_VECTOR) {
  290. /* triple fault -> shutdown */
  291. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  292. return;
  293. }
  294. class1 = exception_class(prev_nr);
  295. class2 = exception_class(nr);
  296. if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
  297. || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
  298. /* generate double fault per SDM Table 5-5 */
  299. vcpu->arch.exception.pending = true;
  300. vcpu->arch.exception.has_error_code = true;
  301. vcpu->arch.exception.nr = DF_VECTOR;
  302. vcpu->arch.exception.error_code = 0;
  303. } else
  304. /* replace previous exception with a new one in a hope
  305. that instruction re-execution will regenerate lost
  306. exception */
  307. goto queue;
  308. }
  309. void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
  310. {
  311. kvm_multiple_exception(vcpu, nr, false, 0, false);
  312. }
  313. EXPORT_SYMBOL_GPL(kvm_queue_exception);
  314. void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
  315. {
  316. kvm_multiple_exception(vcpu, nr, false, 0, true);
  317. }
  318. EXPORT_SYMBOL_GPL(kvm_requeue_exception);
  319. void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
  320. {
  321. if (err)
  322. kvm_inject_gp(vcpu, 0);
  323. else
  324. kvm_x86_ops->skip_emulated_instruction(vcpu);
  325. }
  326. EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
  327. void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
  328. {
  329. ++vcpu->stat.pf_guest;
  330. vcpu->arch.cr2 = fault->address;
  331. kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
  332. }
  333. EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
  334. void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
  335. {
  336. if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
  337. vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
  338. else
  339. vcpu->arch.mmu.inject_page_fault(vcpu, fault);
  340. }
  341. void kvm_inject_nmi(struct kvm_vcpu *vcpu)
  342. {
  343. atomic_inc(&vcpu->arch.nmi_queued);
  344. kvm_make_request(KVM_REQ_NMI, vcpu);
  345. }
  346. EXPORT_SYMBOL_GPL(kvm_inject_nmi);
  347. void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
  348. {
  349. kvm_multiple_exception(vcpu, nr, true, error_code, false);
  350. }
  351. EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
  352. void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
  353. {
  354. kvm_multiple_exception(vcpu, nr, true, error_code, true);
  355. }
  356. EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
  357. /*
  358. * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
  359. * a #GP and return false.
  360. */
  361. bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
  362. {
  363. if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
  364. return true;
  365. kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
  366. return false;
  367. }
  368. EXPORT_SYMBOL_GPL(kvm_require_cpl);
  369. /*
  370. * This function will be used to read from the physical memory of the currently
  371. * running guest. The difference to kvm_read_guest_page is that this function
  372. * can read from guest physical or from the guest's guest physical memory.
  373. */
  374. int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
  375. gfn_t ngfn, void *data, int offset, int len,
  376. u32 access)
  377. {
  378. gfn_t real_gfn;
  379. gpa_t ngpa;
  380. ngpa = gfn_to_gpa(ngfn);
  381. real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
  382. if (real_gfn == UNMAPPED_GVA)
  383. return -EFAULT;
  384. real_gfn = gpa_to_gfn(real_gfn);
  385. return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
  386. }
  387. EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
  388. int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
  389. void *data, int offset, int len, u32 access)
  390. {
  391. return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
  392. data, offset, len, access);
  393. }
  394. /*
  395. * Load the pae pdptrs. Return true is they are all valid.
  396. */
  397. int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
  398. {
  399. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  400. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  401. int i;
  402. int ret;
  403. u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
  404. ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
  405. offset * sizeof(u64), sizeof(pdpte),
  406. PFERR_USER_MASK|PFERR_WRITE_MASK);
  407. if (ret < 0) {
  408. ret = 0;
  409. goto out;
  410. }
  411. for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
  412. if (is_present_gpte(pdpte[i]) &&
  413. (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
  414. ret = 0;
  415. goto out;
  416. }
  417. }
  418. ret = 1;
  419. memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
  420. __set_bit(VCPU_EXREG_PDPTR,
  421. (unsigned long *)&vcpu->arch.regs_avail);
  422. __set_bit(VCPU_EXREG_PDPTR,
  423. (unsigned long *)&vcpu->arch.regs_dirty);
  424. out:
  425. return ret;
  426. }
  427. EXPORT_SYMBOL_GPL(load_pdptrs);
  428. static bool pdptrs_changed(struct kvm_vcpu *vcpu)
  429. {
  430. u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
  431. bool changed = true;
  432. int offset;
  433. gfn_t gfn;
  434. int r;
  435. if (is_long_mode(vcpu) || !is_pae(vcpu))
  436. return false;
  437. if (!test_bit(VCPU_EXREG_PDPTR,
  438. (unsigned long *)&vcpu->arch.regs_avail))
  439. return true;
  440. gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
  441. offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
  442. r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
  443. PFERR_USER_MASK | PFERR_WRITE_MASK);
  444. if (r < 0)
  445. goto out;
  446. changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
  447. out:
  448. return changed;
  449. }
  450. int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  451. {
  452. unsigned long old_cr0 = kvm_read_cr0(vcpu);
  453. unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
  454. X86_CR0_CD | X86_CR0_NW;
  455. cr0 |= X86_CR0_ET;
  456. #ifdef CONFIG_X86_64
  457. if (cr0 & 0xffffffff00000000UL)
  458. return 1;
  459. #endif
  460. cr0 &= ~CR0_RESERVED_BITS;
  461. if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
  462. return 1;
  463. if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
  464. return 1;
  465. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  466. #ifdef CONFIG_X86_64
  467. if ((vcpu->arch.efer & EFER_LME)) {
  468. int cs_db, cs_l;
  469. if (!is_pae(vcpu))
  470. return 1;
  471. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  472. if (cs_l)
  473. return 1;
  474. } else
  475. #endif
  476. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
  477. kvm_read_cr3(vcpu)))
  478. return 1;
  479. }
  480. if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
  481. return 1;
  482. kvm_x86_ops->set_cr0(vcpu, cr0);
  483. if ((cr0 ^ old_cr0) & X86_CR0_PG) {
  484. kvm_clear_async_pf_completion_queue(vcpu);
  485. kvm_async_pf_hash_reset(vcpu);
  486. }
  487. if ((cr0 ^ old_cr0) & update_bits)
  488. kvm_mmu_reset_context(vcpu);
  489. return 0;
  490. }
  491. EXPORT_SYMBOL_GPL(kvm_set_cr0);
  492. void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  493. {
  494. (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
  495. }
  496. EXPORT_SYMBOL_GPL(kvm_lmsw);
  497. static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
  498. {
  499. if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
  500. !vcpu->guest_xcr0_loaded) {
  501. /* kvm_set_xcr() also depends on this */
  502. xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
  503. vcpu->guest_xcr0_loaded = 1;
  504. }
  505. }
  506. static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
  507. {
  508. if (vcpu->guest_xcr0_loaded) {
  509. if (vcpu->arch.xcr0 != host_xcr0)
  510. xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
  511. vcpu->guest_xcr0_loaded = 0;
  512. }
  513. }
  514. int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
  515. {
  516. u64 xcr0 = xcr;
  517. u64 old_xcr0 = vcpu->arch.xcr0;
  518. u64 valid_bits;
  519. /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
  520. if (index != XCR_XFEATURE_ENABLED_MASK)
  521. return 1;
  522. if (!(xcr0 & XSTATE_FP))
  523. return 1;
  524. if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
  525. return 1;
  526. /*
  527. * Do not allow the guest to set bits that we do not support
  528. * saving. However, xcr0 bit 0 is always set, even if the
  529. * emulated CPU does not support XSAVE (see fx_init).
  530. */
  531. valid_bits = vcpu->arch.guest_supported_xcr0 | XSTATE_FP;
  532. if (xcr0 & ~valid_bits)
  533. return 1;
  534. if ((!(xcr0 & XSTATE_BNDREGS)) != (!(xcr0 & XSTATE_BNDCSR)))
  535. return 1;
  536. kvm_put_guest_xcr0(vcpu);
  537. vcpu->arch.xcr0 = xcr0;
  538. if ((xcr0 ^ old_xcr0) & XSTATE_EXTEND_MASK)
  539. kvm_update_cpuid(vcpu);
  540. return 0;
  541. }
  542. int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
  543. {
  544. if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
  545. __kvm_set_xcr(vcpu, index, xcr)) {
  546. kvm_inject_gp(vcpu, 0);
  547. return 1;
  548. }
  549. return 0;
  550. }
  551. EXPORT_SYMBOL_GPL(kvm_set_xcr);
  552. int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  553. {
  554. unsigned long old_cr4 = kvm_read_cr4(vcpu);
  555. unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE |
  556. X86_CR4_PAE | X86_CR4_SMEP;
  557. if (cr4 & CR4_RESERVED_BITS)
  558. return 1;
  559. if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
  560. return 1;
  561. if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
  562. return 1;
  563. if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
  564. return 1;
  565. if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
  566. return 1;
  567. if (is_long_mode(vcpu)) {
  568. if (!(cr4 & X86_CR4_PAE))
  569. return 1;
  570. } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
  571. && ((cr4 ^ old_cr4) & pdptr_bits)
  572. && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
  573. kvm_read_cr3(vcpu)))
  574. return 1;
  575. if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
  576. if (!guest_cpuid_has_pcid(vcpu))
  577. return 1;
  578. /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
  579. if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
  580. return 1;
  581. }
  582. if (kvm_x86_ops->set_cr4(vcpu, cr4))
  583. return 1;
  584. if (((cr4 ^ old_cr4) & pdptr_bits) ||
  585. (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
  586. kvm_mmu_reset_context(vcpu);
  587. if ((cr4 ^ old_cr4) & X86_CR4_SMAP)
  588. update_permission_bitmask(vcpu, vcpu->arch.walk_mmu, false);
  589. if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
  590. kvm_update_cpuid(vcpu);
  591. return 0;
  592. }
  593. EXPORT_SYMBOL_GPL(kvm_set_cr4);
  594. int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  595. {
  596. if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
  597. kvm_mmu_sync_roots(vcpu);
  598. kvm_mmu_flush_tlb(vcpu);
  599. return 0;
  600. }
  601. if (is_long_mode(vcpu)) {
  602. if (cr3 & CR3_L_MODE_RESERVED_BITS)
  603. return 1;
  604. } else if (is_pae(vcpu) && is_paging(vcpu) &&
  605. !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
  606. return 1;
  607. vcpu->arch.cr3 = cr3;
  608. __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
  609. kvm_mmu_new_cr3(vcpu);
  610. return 0;
  611. }
  612. EXPORT_SYMBOL_GPL(kvm_set_cr3);
  613. int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  614. {
  615. if (cr8 & CR8_RESERVED_BITS)
  616. return 1;
  617. if (irqchip_in_kernel(vcpu->kvm))
  618. kvm_lapic_set_tpr(vcpu, cr8);
  619. else
  620. vcpu->arch.cr8 = cr8;
  621. return 0;
  622. }
  623. EXPORT_SYMBOL_GPL(kvm_set_cr8);
  624. unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
  625. {
  626. if (irqchip_in_kernel(vcpu->kvm))
  627. return kvm_lapic_get_cr8(vcpu);
  628. else
  629. return vcpu->arch.cr8;
  630. }
  631. EXPORT_SYMBOL_GPL(kvm_get_cr8);
  632. static void kvm_update_dr6(struct kvm_vcpu *vcpu)
  633. {
  634. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
  635. kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
  636. }
  637. static void kvm_update_dr7(struct kvm_vcpu *vcpu)
  638. {
  639. unsigned long dr7;
  640. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
  641. dr7 = vcpu->arch.guest_debug_dr7;
  642. else
  643. dr7 = vcpu->arch.dr7;
  644. kvm_x86_ops->set_dr7(vcpu, dr7);
  645. vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
  646. if (dr7 & DR7_BP_EN_MASK)
  647. vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
  648. }
  649. static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
  650. {
  651. switch (dr) {
  652. case 0 ... 3:
  653. vcpu->arch.db[dr] = val;
  654. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
  655. vcpu->arch.eff_db[dr] = val;
  656. break;
  657. case 4:
  658. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
  659. return 1; /* #UD */
  660. /* fall through */
  661. case 6:
  662. if (val & 0xffffffff00000000ULL)
  663. return -1; /* #GP */
  664. vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
  665. kvm_update_dr6(vcpu);
  666. break;
  667. case 5:
  668. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
  669. return 1; /* #UD */
  670. /* fall through */
  671. default: /* 7 */
  672. if (val & 0xffffffff00000000ULL)
  673. return -1; /* #GP */
  674. vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
  675. kvm_update_dr7(vcpu);
  676. break;
  677. }
  678. return 0;
  679. }
  680. int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
  681. {
  682. int res;
  683. res = __kvm_set_dr(vcpu, dr, val);
  684. if (res > 0)
  685. kvm_queue_exception(vcpu, UD_VECTOR);
  686. else if (res < 0)
  687. kvm_inject_gp(vcpu, 0);
  688. return res;
  689. }
  690. EXPORT_SYMBOL_GPL(kvm_set_dr);
  691. static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
  692. {
  693. switch (dr) {
  694. case 0 ... 3:
  695. *val = vcpu->arch.db[dr];
  696. break;
  697. case 4:
  698. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
  699. return 1;
  700. /* fall through */
  701. case 6:
  702. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
  703. *val = vcpu->arch.dr6;
  704. else
  705. *val = kvm_x86_ops->get_dr6(vcpu);
  706. break;
  707. case 5:
  708. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
  709. return 1;
  710. /* fall through */
  711. default: /* 7 */
  712. *val = vcpu->arch.dr7;
  713. break;
  714. }
  715. return 0;
  716. }
  717. int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
  718. {
  719. if (_kvm_get_dr(vcpu, dr, val)) {
  720. kvm_queue_exception(vcpu, UD_VECTOR);
  721. return 1;
  722. }
  723. return 0;
  724. }
  725. EXPORT_SYMBOL_GPL(kvm_get_dr);
  726. bool kvm_rdpmc(struct kvm_vcpu *vcpu)
  727. {
  728. u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  729. u64 data;
  730. int err;
  731. err = kvm_pmu_read_pmc(vcpu, ecx, &data);
  732. if (err)
  733. return err;
  734. kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
  735. kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
  736. return err;
  737. }
  738. EXPORT_SYMBOL_GPL(kvm_rdpmc);
  739. /*
  740. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  741. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  742. *
  743. * This list is modified at module load time to reflect the
  744. * capabilities of the host cpu. This capabilities test skips MSRs that are
  745. * kvm-specific. Those are put in the beginning of the list.
  746. */
  747. #define KVM_SAVE_MSRS_BEGIN 12
  748. static u32 msrs_to_save[] = {
  749. MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
  750. MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
  751. HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
  752. HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
  753. HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
  754. MSR_KVM_PV_EOI_EN,
  755. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  756. MSR_STAR,
  757. #ifdef CONFIG_X86_64
  758. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  759. #endif
  760. MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
  761. MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS
  762. };
  763. static unsigned num_msrs_to_save;
  764. static const u32 emulated_msrs[] = {
  765. MSR_IA32_TSC_ADJUST,
  766. MSR_IA32_TSCDEADLINE,
  767. MSR_IA32_MISC_ENABLE,
  768. MSR_IA32_MCG_STATUS,
  769. MSR_IA32_MCG_CTL,
  770. };
  771. bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
  772. {
  773. if (efer & efer_reserved_bits)
  774. return false;
  775. if (efer & EFER_FFXSR) {
  776. struct kvm_cpuid_entry2 *feat;
  777. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  778. if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
  779. return false;
  780. }
  781. if (efer & EFER_SVME) {
  782. struct kvm_cpuid_entry2 *feat;
  783. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  784. if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
  785. return false;
  786. }
  787. return true;
  788. }
  789. EXPORT_SYMBOL_GPL(kvm_valid_efer);
  790. static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
  791. {
  792. u64 old_efer = vcpu->arch.efer;
  793. if (!kvm_valid_efer(vcpu, efer))
  794. return 1;
  795. if (is_paging(vcpu)
  796. && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
  797. return 1;
  798. efer &= ~EFER_LMA;
  799. efer |= vcpu->arch.efer & EFER_LMA;
  800. kvm_x86_ops->set_efer(vcpu, efer);
  801. /* Update reserved bits */
  802. if ((efer ^ old_efer) & EFER_NX)
  803. kvm_mmu_reset_context(vcpu);
  804. return 0;
  805. }
  806. void kvm_enable_efer_bits(u64 mask)
  807. {
  808. efer_reserved_bits &= ~mask;
  809. }
  810. EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
  811. /*
  812. * Writes msr value into into the appropriate "register".
  813. * Returns 0 on success, non-0 otherwise.
  814. * Assumes vcpu_load() was already called.
  815. */
  816. int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
  817. {
  818. return kvm_x86_ops->set_msr(vcpu, msr);
  819. }
  820. /*
  821. * Adapt set_msr() to msr_io()'s calling convention
  822. */
  823. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  824. {
  825. struct msr_data msr;
  826. msr.data = *data;
  827. msr.index = index;
  828. msr.host_initiated = true;
  829. return kvm_set_msr(vcpu, &msr);
  830. }
  831. #ifdef CONFIG_X86_64
  832. struct pvclock_gtod_data {
  833. seqcount_t seq;
  834. struct { /* extract of a clocksource struct */
  835. int vclock_mode;
  836. cycle_t cycle_last;
  837. cycle_t mask;
  838. u32 mult;
  839. u32 shift;
  840. } clock;
  841. /* open coded 'struct timespec' */
  842. u64 monotonic_time_snsec;
  843. time_t monotonic_time_sec;
  844. };
  845. static struct pvclock_gtod_data pvclock_gtod_data;
  846. static void update_pvclock_gtod(struct timekeeper *tk)
  847. {
  848. struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
  849. write_seqcount_begin(&vdata->seq);
  850. /* copy pvclock gtod data */
  851. vdata->clock.vclock_mode = tk->clock->archdata.vclock_mode;
  852. vdata->clock.cycle_last = tk->clock->cycle_last;
  853. vdata->clock.mask = tk->clock->mask;
  854. vdata->clock.mult = tk->mult;
  855. vdata->clock.shift = tk->shift;
  856. vdata->monotonic_time_sec = tk->xtime_sec
  857. + tk->wall_to_monotonic.tv_sec;
  858. vdata->monotonic_time_snsec = tk->xtime_nsec
  859. + (tk->wall_to_monotonic.tv_nsec
  860. << tk->shift);
  861. while (vdata->monotonic_time_snsec >=
  862. (((u64)NSEC_PER_SEC) << tk->shift)) {
  863. vdata->monotonic_time_snsec -=
  864. ((u64)NSEC_PER_SEC) << tk->shift;
  865. vdata->monotonic_time_sec++;
  866. }
  867. write_seqcount_end(&vdata->seq);
  868. }
  869. #endif
  870. static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
  871. {
  872. int version;
  873. int r;
  874. struct pvclock_wall_clock wc;
  875. struct timespec boot;
  876. if (!wall_clock)
  877. return;
  878. r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
  879. if (r)
  880. return;
  881. if (version & 1)
  882. ++version; /* first time write, random junk */
  883. ++version;
  884. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  885. /*
  886. * The guest calculates current wall clock time by adding
  887. * system time (updated by kvm_guest_time_update below) to the
  888. * wall clock specified here. guest system time equals host
  889. * system time for us, thus we must fill in host boot time here.
  890. */
  891. getboottime(&boot);
  892. if (kvm->arch.kvmclock_offset) {
  893. struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
  894. boot = timespec_sub(boot, ts);
  895. }
  896. wc.sec = boot.tv_sec;
  897. wc.nsec = boot.tv_nsec;
  898. wc.version = version;
  899. kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
  900. version++;
  901. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  902. }
  903. static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
  904. {
  905. uint32_t quotient, remainder;
  906. /* Don't try to replace with do_div(), this one calculates
  907. * "(dividend << 32) / divisor" */
  908. __asm__ ( "divl %4"
  909. : "=a" (quotient), "=d" (remainder)
  910. : "0" (0), "1" (dividend), "r" (divisor) );
  911. return quotient;
  912. }
  913. static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
  914. s8 *pshift, u32 *pmultiplier)
  915. {
  916. uint64_t scaled64;
  917. int32_t shift = 0;
  918. uint64_t tps64;
  919. uint32_t tps32;
  920. tps64 = base_khz * 1000LL;
  921. scaled64 = scaled_khz * 1000LL;
  922. while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
  923. tps64 >>= 1;
  924. shift--;
  925. }
  926. tps32 = (uint32_t)tps64;
  927. while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
  928. if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
  929. scaled64 >>= 1;
  930. else
  931. tps32 <<= 1;
  932. shift++;
  933. }
  934. *pshift = shift;
  935. *pmultiplier = div_frac(scaled64, tps32);
  936. pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
  937. __func__, base_khz, scaled_khz, shift, *pmultiplier);
  938. }
  939. static inline u64 get_kernel_ns(void)
  940. {
  941. struct timespec ts;
  942. ktime_get_ts(&ts);
  943. monotonic_to_bootbased(&ts);
  944. return timespec_to_ns(&ts);
  945. }
  946. #ifdef CONFIG_X86_64
  947. static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
  948. #endif
  949. static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
  950. unsigned long max_tsc_khz;
  951. static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
  952. {
  953. return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
  954. vcpu->arch.virtual_tsc_shift);
  955. }
  956. static u32 adjust_tsc_khz(u32 khz, s32 ppm)
  957. {
  958. u64 v = (u64)khz * (1000000 + ppm);
  959. do_div(v, 1000000);
  960. return v;
  961. }
  962. static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
  963. {
  964. u32 thresh_lo, thresh_hi;
  965. int use_scaling = 0;
  966. /* tsc_khz can be zero if TSC calibration fails */
  967. if (this_tsc_khz == 0)
  968. return;
  969. /* Compute a scale to convert nanoseconds in TSC cycles */
  970. kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
  971. &vcpu->arch.virtual_tsc_shift,
  972. &vcpu->arch.virtual_tsc_mult);
  973. vcpu->arch.virtual_tsc_khz = this_tsc_khz;
  974. /*
  975. * Compute the variation in TSC rate which is acceptable
  976. * within the range of tolerance and decide if the
  977. * rate being applied is within that bounds of the hardware
  978. * rate. If so, no scaling or compensation need be done.
  979. */
  980. thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
  981. thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
  982. if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
  983. pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
  984. use_scaling = 1;
  985. }
  986. kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
  987. }
  988. static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
  989. {
  990. u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
  991. vcpu->arch.virtual_tsc_mult,
  992. vcpu->arch.virtual_tsc_shift);
  993. tsc += vcpu->arch.this_tsc_write;
  994. return tsc;
  995. }
  996. void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
  997. {
  998. #ifdef CONFIG_X86_64
  999. bool vcpus_matched;
  1000. bool do_request = false;
  1001. struct kvm_arch *ka = &vcpu->kvm->arch;
  1002. struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
  1003. vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
  1004. atomic_read(&vcpu->kvm->online_vcpus));
  1005. if (vcpus_matched && gtod->clock.vclock_mode == VCLOCK_TSC)
  1006. if (!ka->use_master_clock)
  1007. do_request = 1;
  1008. if (!vcpus_matched && ka->use_master_clock)
  1009. do_request = 1;
  1010. if (do_request)
  1011. kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
  1012. trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
  1013. atomic_read(&vcpu->kvm->online_vcpus),
  1014. ka->use_master_clock, gtod->clock.vclock_mode);
  1015. #endif
  1016. }
  1017. static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
  1018. {
  1019. u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
  1020. vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
  1021. }
  1022. void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
  1023. {
  1024. struct kvm *kvm = vcpu->kvm;
  1025. u64 offset, ns, elapsed;
  1026. unsigned long flags;
  1027. s64 usdiff;
  1028. bool matched;
  1029. u64 data = msr->data;
  1030. raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
  1031. offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
  1032. ns = get_kernel_ns();
  1033. elapsed = ns - kvm->arch.last_tsc_nsec;
  1034. if (vcpu->arch.virtual_tsc_khz) {
  1035. int faulted = 0;
  1036. /* n.b - signed multiplication and division required */
  1037. usdiff = data - kvm->arch.last_tsc_write;
  1038. #ifdef CONFIG_X86_64
  1039. usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
  1040. #else
  1041. /* do_div() only does unsigned */
  1042. asm("1: idivl %[divisor]\n"
  1043. "2: xor %%edx, %%edx\n"
  1044. " movl $0, %[faulted]\n"
  1045. "3:\n"
  1046. ".section .fixup,\"ax\"\n"
  1047. "4: movl $1, %[faulted]\n"
  1048. " jmp 3b\n"
  1049. ".previous\n"
  1050. _ASM_EXTABLE(1b, 4b)
  1051. : "=A"(usdiff), [faulted] "=r" (faulted)
  1052. : "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
  1053. #endif
  1054. do_div(elapsed, 1000);
  1055. usdiff -= elapsed;
  1056. if (usdiff < 0)
  1057. usdiff = -usdiff;
  1058. /* idivl overflow => difference is larger than USEC_PER_SEC */
  1059. if (faulted)
  1060. usdiff = USEC_PER_SEC;
  1061. } else
  1062. usdiff = USEC_PER_SEC; /* disable TSC match window below */
  1063. /*
  1064. * Special case: TSC write with a small delta (1 second) of virtual
  1065. * cycle time against real time is interpreted as an attempt to
  1066. * synchronize the CPU.
  1067. *
  1068. * For a reliable TSC, we can match TSC offsets, and for an unstable
  1069. * TSC, we add elapsed time in this computation. We could let the
  1070. * compensation code attempt to catch up if we fall behind, but
  1071. * it's better to try to match offsets from the beginning.
  1072. */
  1073. if (usdiff < USEC_PER_SEC &&
  1074. vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
  1075. if (!check_tsc_unstable()) {
  1076. offset = kvm->arch.cur_tsc_offset;
  1077. pr_debug("kvm: matched tsc offset for %llu\n", data);
  1078. } else {
  1079. u64 delta = nsec_to_cycles(vcpu, elapsed);
  1080. data += delta;
  1081. offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
  1082. pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
  1083. }
  1084. matched = true;
  1085. } else {
  1086. /*
  1087. * We split periods of matched TSC writes into generations.
  1088. * For each generation, we track the original measured
  1089. * nanosecond time, offset, and write, so if TSCs are in
  1090. * sync, we can match exact offset, and if not, we can match
  1091. * exact software computation in compute_guest_tsc()
  1092. *
  1093. * These values are tracked in kvm->arch.cur_xxx variables.
  1094. */
  1095. kvm->arch.cur_tsc_generation++;
  1096. kvm->arch.cur_tsc_nsec = ns;
  1097. kvm->arch.cur_tsc_write = data;
  1098. kvm->arch.cur_tsc_offset = offset;
  1099. matched = false;
  1100. pr_debug("kvm: new tsc generation %u, clock %llu\n",
  1101. kvm->arch.cur_tsc_generation, data);
  1102. }
  1103. /*
  1104. * We also track th most recent recorded KHZ, write and time to
  1105. * allow the matching interval to be extended at each write.
  1106. */
  1107. kvm->arch.last_tsc_nsec = ns;
  1108. kvm->arch.last_tsc_write = data;
  1109. kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
  1110. vcpu->arch.last_guest_tsc = data;
  1111. /* Keep track of which generation this VCPU has synchronized to */
  1112. vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
  1113. vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
  1114. vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
  1115. if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
  1116. update_ia32_tsc_adjust_msr(vcpu, offset);
  1117. kvm_x86_ops->write_tsc_offset(vcpu, offset);
  1118. raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
  1119. spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
  1120. if (matched)
  1121. kvm->arch.nr_vcpus_matched_tsc++;
  1122. else
  1123. kvm->arch.nr_vcpus_matched_tsc = 0;
  1124. kvm_track_tsc_matching(vcpu);
  1125. spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
  1126. }
  1127. EXPORT_SYMBOL_GPL(kvm_write_tsc);
  1128. #ifdef CONFIG_X86_64
  1129. static cycle_t read_tsc(void)
  1130. {
  1131. cycle_t ret;
  1132. u64 last;
  1133. /*
  1134. * Empirically, a fence (of type that depends on the CPU)
  1135. * before rdtsc is enough to ensure that rdtsc is ordered
  1136. * with respect to loads. The various CPU manuals are unclear
  1137. * as to whether rdtsc can be reordered with later loads,
  1138. * but no one has ever seen it happen.
  1139. */
  1140. rdtsc_barrier();
  1141. ret = (cycle_t)vget_cycles();
  1142. last = pvclock_gtod_data.clock.cycle_last;
  1143. if (likely(ret >= last))
  1144. return ret;
  1145. /*
  1146. * GCC likes to generate cmov here, but this branch is extremely
  1147. * predictable (it's just a funciton of time and the likely is
  1148. * very likely) and there's a data dependence, so force GCC
  1149. * to generate a branch instead. I don't barrier() because
  1150. * we don't actually need a barrier, and if this function
  1151. * ever gets inlined it will generate worse code.
  1152. */
  1153. asm volatile ("");
  1154. return last;
  1155. }
  1156. static inline u64 vgettsc(cycle_t *cycle_now)
  1157. {
  1158. long v;
  1159. struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
  1160. *cycle_now = read_tsc();
  1161. v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
  1162. return v * gtod->clock.mult;
  1163. }
  1164. static int do_monotonic(struct timespec *ts, cycle_t *cycle_now)
  1165. {
  1166. unsigned long seq;
  1167. u64 ns;
  1168. int mode;
  1169. struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
  1170. ts->tv_nsec = 0;
  1171. do {
  1172. seq = read_seqcount_begin(&gtod->seq);
  1173. mode = gtod->clock.vclock_mode;
  1174. ts->tv_sec = gtod->monotonic_time_sec;
  1175. ns = gtod->monotonic_time_snsec;
  1176. ns += vgettsc(cycle_now);
  1177. ns >>= gtod->clock.shift;
  1178. } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
  1179. timespec_add_ns(ts, ns);
  1180. return mode;
  1181. }
  1182. /* returns true if host is using tsc clocksource */
  1183. static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
  1184. {
  1185. struct timespec ts;
  1186. /* checked again under seqlock below */
  1187. if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
  1188. return false;
  1189. if (do_monotonic(&ts, cycle_now) != VCLOCK_TSC)
  1190. return false;
  1191. monotonic_to_bootbased(&ts);
  1192. *kernel_ns = timespec_to_ns(&ts);
  1193. return true;
  1194. }
  1195. #endif
  1196. /*
  1197. *
  1198. * Assuming a stable TSC across physical CPUS, and a stable TSC
  1199. * across virtual CPUs, the following condition is possible.
  1200. * Each numbered line represents an event visible to both
  1201. * CPUs at the next numbered event.
  1202. *
  1203. * "timespecX" represents host monotonic time. "tscX" represents
  1204. * RDTSC value.
  1205. *
  1206. * VCPU0 on CPU0 | VCPU1 on CPU1
  1207. *
  1208. * 1. read timespec0,tsc0
  1209. * 2. | timespec1 = timespec0 + N
  1210. * | tsc1 = tsc0 + M
  1211. * 3. transition to guest | transition to guest
  1212. * 4. ret0 = timespec0 + (rdtsc - tsc0) |
  1213. * 5. | ret1 = timespec1 + (rdtsc - tsc1)
  1214. * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
  1215. *
  1216. * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
  1217. *
  1218. * - ret0 < ret1
  1219. * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
  1220. * ...
  1221. * - 0 < N - M => M < N
  1222. *
  1223. * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
  1224. * always the case (the difference between two distinct xtime instances
  1225. * might be smaller then the difference between corresponding TSC reads,
  1226. * when updating guest vcpus pvclock areas).
  1227. *
  1228. * To avoid that problem, do not allow visibility of distinct
  1229. * system_timestamp/tsc_timestamp values simultaneously: use a master
  1230. * copy of host monotonic time values. Update that master copy
  1231. * in lockstep.
  1232. *
  1233. * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
  1234. *
  1235. */
  1236. static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
  1237. {
  1238. #ifdef CONFIG_X86_64
  1239. struct kvm_arch *ka = &kvm->arch;
  1240. int vclock_mode;
  1241. bool host_tsc_clocksource, vcpus_matched;
  1242. vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
  1243. atomic_read(&kvm->online_vcpus));
  1244. /*
  1245. * If the host uses TSC clock, then passthrough TSC as stable
  1246. * to the guest.
  1247. */
  1248. host_tsc_clocksource = kvm_get_time_and_clockread(
  1249. &ka->master_kernel_ns,
  1250. &ka->master_cycle_now);
  1251. ka->use_master_clock = host_tsc_clocksource && vcpus_matched
  1252. && !backwards_tsc_observed;
  1253. if (ka->use_master_clock)
  1254. atomic_set(&kvm_guest_has_master_clock, 1);
  1255. vclock_mode = pvclock_gtod_data.clock.vclock_mode;
  1256. trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
  1257. vcpus_matched);
  1258. #endif
  1259. }
  1260. static void kvm_gen_update_masterclock(struct kvm *kvm)
  1261. {
  1262. #ifdef CONFIG_X86_64
  1263. int i;
  1264. struct kvm_vcpu *vcpu;
  1265. struct kvm_arch *ka = &kvm->arch;
  1266. spin_lock(&ka->pvclock_gtod_sync_lock);
  1267. kvm_make_mclock_inprogress_request(kvm);
  1268. /* no guest entries from this point */
  1269. pvclock_update_vm_gtod_copy(kvm);
  1270. kvm_for_each_vcpu(i, vcpu, kvm)
  1271. set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
  1272. /* guest entries allowed */
  1273. kvm_for_each_vcpu(i, vcpu, kvm)
  1274. clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
  1275. spin_unlock(&ka->pvclock_gtod_sync_lock);
  1276. #endif
  1277. }
  1278. static int kvm_guest_time_update(struct kvm_vcpu *v)
  1279. {
  1280. unsigned long flags, this_tsc_khz;
  1281. struct kvm_vcpu_arch *vcpu = &v->arch;
  1282. struct kvm_arch *ka = &v->kvm->arch;
  1283. s64 kernel_ns;
  1284. u64 tsc_timestamp, host_tsc;
  1285. struct pvclock_vcpu_time_info guest_hv_clock;
  1286. u8 pvclock_flags;
  1287. bool use_master_clock;
  1288. kernel_ns = 0;
  1289. host_tsc = 0;
  1290. /*
  1291. * If the host uses TSC clock, then passthrough TSC as stable
  1292. * to the guest.
  1293. */
  1294. spin_lock(&ka->pvclock_gtod_sync_lock);
  1295. use_master_clock = ka->use_master_clock;
  1296. if (use_master_clock) {
  1297. host_tsc = ka->master_cycle_now;
  1298. kernel_ns = ka->master_kernel_ns;
  1299. }
  1300. spin_unlock(&ka->pvclock_gtod_sync_lock);
  1301. /* Keep irq disabled to prevent changes to the clock */
  1302. local_irq_save(flags);
  1303. this_tsc_khz = __get_cpu_var(cpu_tsc_khz);
  1304. if (unlikely(this_tsc_khz == 0)) {
  1305. local_irq_restore(flags);
  1306. kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
  1307. return 1;
  1308. }
  1309. if (!use_master_clock) {
  1310. host_tsc = native_read_tsc();
  1311. kernel_ns = get_kernel_ns();
  1312. }
  1313. tsc_timestamp = kvm_x86_ops->read_l1_tsc(v, host_tsc);
  1314. /*
  1315. * We may have to catch up the TSC to match elapsed wall clock
  1316. * time for two reasons, even if kvmclock is used.
  1317. * 1) CPU could have been running below the maximum TSC rate
  1318. * 2) Broken TSC compensation resets the base at each VCPU
  1319. * entry to avoid unknown leaps of TSC even when running
  1320. * again on the same CPU. This may cause apparent elapsed
  1321. * time to disappear, and the guest to stand still or run
  1322. * very slowly.
  1323. */
  1324. if (vcpu->tsc_catchup) {
  1325. u64 tsc = compute_guest_tsc(v, kernel_ns);
  1326. if (tsc > tsc_timestamp) {
  1327. adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
  1328. tsc_timestamp = tsc;
  1329. }
  1330. }
  1331. local_irq_restore(flags);
  1332. if (!vcpu->pv_time_enabled)
  1333. return 0;
  1334. if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
  1335. kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
  1336. &vcpu->hv_clock.tsc_shift,
  1337. &vcpu->hv_clock.tsc_to_system_mul);
  1338. vcpu->hw_tsc_khz = this_tsc_khz;
  1339. }
  1340. /* With all the info we got, fill in the values */
  1341. vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
  1342. vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
  1343. vcpu->last_guest_tsc = tsc_timestamp;
  1344. /*
  1345. * The interface expects us to write an even number signaling that the
  1346. * update is finished. Since the guest won't see the intermediate
  1347. * state, we just increase by 2 at the end.
  1348. */
  1349. vcpu->hv_clock.version += 2;
  1350. if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
  1351. &guest_hv_clock, sizeof(guest_hv_clock))))
  1352. return 0;
  1353. /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
  1354. pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
  1355. if (vcpu->pvclock_set_guest_stopped_request) {
  1356. pvclock_flags |= PVCLOCK_GUEST_STOPPED;
  1357. vcpu->pvclock_set_guest_stopped_request = false;
  1358. }
  1359. /* If the host uses TSC clocksource, then it is stable */
  1360. if (use_master_clock)
  1361. pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
  1362. vcpu->hv_clock.flags = pvclock_flags;
  1363. kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
  1364. &vcpu->hv_clock,
  1365. sizeof(vcpu->hv_clock));
  1366. return 0;
  1367. }
  1368. /*
  1369. * kvmclock updates which are isolated to a given vcpu, such as
  1370. * vcpu->cpu migration, should not allow system_timestamp from
  1371. * the rest of the vcpus to remain static. Otherwise ntp frequency
  1372. * correction applies to one vcpu's system_timestamp but not
  1373. * the others.
  1374. *
  1375. * So in those cases, request a kvmclock update for all vcpus.
  1376. * We need to rate-limit these requests though, as they can
  1377. * considerably slow guests that have a large number of vcpus.
  1378. * The time for a remote vcpu to update its kvmclock is bound
  1379. * by the delay we use to rate-limit the updates.
  1380. */
  1381. #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
  1382. static void kvmclock_update_fn(struct work_struct *work)
  1383. {
  1384. int i;
  1385. struct delayed_work *dwork = to_delayed_work(work);
  1386. struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
  1387. kvmclock_update_work);
  1388. struct kvm *kvm = container_of(ka, struct kvm, arch);
  1389. struct kvm_vcpu *vcpu;
  1390. kvm_for_each_vcpu(i, vcpu, kvm) {
  1391. set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
  1392. kvm_vcpu_kick(vcpu);
  1393. }
  1394. }
  1395. static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
  1396. {
  1397. struct kvm *kvm = v->kvm;
  1398. set_bit(KVM_REQ_CLOCK_UPDATE, &v->requests);
  1399. schedule_delayed_work(&kvm->arch.kvmclock_update_work,
  1400. KVMCLOCK_UPDATE_DELAY);
  1401. }
  1402. #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
  1403. static void kvmclock_sync_fn(struct work_struct *work)
  1404. {
  1405. struct delayed_work *dwork = to_delayed_work(work);
  1406. struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
  1407. kvmclock_sync_work);
  1408. struct kvm *kvm = container_of(ka, struct kvm, arch);
  1409. schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
  1410. schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
  1411. KVMCLOCK_SYNC_PERIOD);
  1412. }
  1413. static bool msr_mtrr_valid(unsigned msr)
  1414. {
  1415. switch (msr) {
  1416. case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
  1417. case MSR_MTRRfix64K_00000:
  1418. case MSR_MTRRfix16K_80000:
  1419. case MSR_MTRRfix16K_A0000:
  1420. case MSR_MTRRfix4K_C0000:
  1421. case MSR_MTRRfix4K_C8000:
  1422. case MSR_MTRRfix4K_D0000:
  1423. case MSR_MTRRfix4K_D8000:
  1424. case MSR_MTRRfix4K_E0000:
  1425. case MSR_MTRRfix4K_E8000:
  1426. case MSR_MTRRfix4K_F0000:
  1427. case MSR_MTRRfix4K_F8000:
  1428. case MSR_MTRRdefType:
  1429. case MSR_IA32_CR_PAT:
  1430. return true;
  1431. case 0x2f8:
  1432. return true;
  1433. }
  1434. return false;
  1435. }
  1436. static bool valid_pat_type(unsigned t)
  1437. {
  1438. return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
  1439. }
  1440. static bool valid_mtrr_type(unsigned t)
  1441. {
  1442. return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
  1443. }
  1444. static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1445. {
  1446. int i;
  1447. if (!msr_mtrr_valid(msr))
  1448. return false;
  1449. if (msr == MSR_IA32_CR_PAT) {
  1450. for (i = 0; i < 8; i++)
  1451. if (!valid_pat_type((data >> (i * 8)) & 0xff))
  1452. return false;
  1453. return true;
  1454. } else if (msr == MSR_MTRRdefType) {
  1455. if (data & ~0xcff)
  1456. return false;
  1457. return valid_mtrr_type(data & 0xff);
  1458. } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
  1459. for (i = 0; i < 8 ; i++)
  1460. if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
  1461. return false;
  1462. return true;
  1463. }
  1464. /* variable MTRRs */
  1465. return valid_mtrr_type(data & 0xff);
  1466. }
  1467. static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1468. {
  1469. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  1470. if (!mtrr_valid(vcpu, msr, data))
  1471. return 1;
  1472. if (msr == MSR_MTRRdefType) {
  1473. vcpu->arch.mtrr_state.def_type = data;
  1474. vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
  1475. } else if (msr == MSR_MTRRfix64K_00000)
  1476. p[0] = data;
  1477. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  1478. p[1 + msr - MSR_MTRRfix16K_80000] = data;
  1479. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  1480. p[3 + msr - MSR_MTRRfix4K_C0000] = data;
  1481. else if (msr == MSR_IA32_CR_PAT)
  1482. vcpu->arch.pat = data;
  1483. else { /* Variable MTRRs */
  1484. int idx, is_mtrr_mask;
  1485. u64 *pt;
  1486. idx = (msr - 0x200) / 2;
  1487. is_mtrr_mask = msr - 0x200 - 2 * idx;
  1488. if (!is_mtrr_mask)
  1489. pt =
  1490. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  1491. else
  1492. pt =
  1493. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  1494. *pt = data;
  1495. }
  1496. kvm_mmu_reset_context(vcpu);
  1497. return 0;
  1498. }
  1499. static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1500. {
  1501. u64 mcg_cap = vcpu->arch.mcg_cap;
  1502. unsigned bank_num = mcg_cap & 0xff;
  1503. switch (msr) {
  1504. case MSR_IA32_MCG_STATUS:
  1505. vcpu->arch.mcg_status = data;
  1506. break;
  1507. case MSR_IA32_MCG_CTL:
  1508. if (!(mcg_cap & MCG_CTL_P))
  1509. return 1;
  1510. if (data != 0 && data != ~(u64)0)
  1511. return -1;
  1512. vcpu->arch.mcg_ctl = data;
  1513. break;
  1514. default:
  1515. if (msr >= MSR_IA32_MC0_CTL &&
  1516. msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
  1517. u32 offset = msr - MSR_IA32_MC0_CTL;
  1518. /* only 0 or all 1s can be written to IA32_MCi_CTL
  1519. * some Linux kernels though clear bit 10 in bank 4 to
  1520. * workaround a BIOS/GART TBL issue on AMD K8s, ignore
  1521. * this to avoid an uncatched #GP in the guest
  1522. */
  1523. if ((offset & 0x3) == 0 &&
  1524. data != 0 && (data | (1 << 10)) != ~(u64)0)
  1525. return -1;
  1526. vcpu->arch.mce_banks[offset] = data;
  1527. break;
  1528. }
  1529. return 1;
  1530. }
  1531. return 0;
  1532. }
  1533. static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
  1534. {
  1535. struct kvm *kvm = vcpu->kvm;
  1536. int lm = is_long_mode(vcpu);
  1537. u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
  1538. : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
  1539. u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
  1540. : kvm->arch.xen_hvm_config.blob_size_32;
  1541. u32 page_num = data & ~PAGE_MASK;
  1542. u64 page_addr = data & PAGE_MASK;
  1543. u8 *page;
  1544. int r;
  1545. r = -E2BIG;
  1546. if (page_num >= blob_size)
  1547. goto out;
  1548. r = -ENOMEM;
  1549. page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
  1550. if (IS_ERR(page)) {
  1551. r = PTR_ERR(page);
  1552. goto out;
  1553. }
  1554. if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
  1555. goto out_free;
  1556. r = 0;
  1557. out_free:
  1558. kfree(page);
  1559. out:
  1560. return r;
  1561. }
  1562. static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
  1563. {
  1564. return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
  1565. }
  1566. static bool kvm_hv_msr_partition_wide(u32 msr)
  1567. {
  1568. bool r = false;
  1569. switch (msr) {
  1570. case HV_X64_MSR_GUEST_OS_ID:
  1571. case HV_X64_MSR_HYPERCALL:
  1572. case HV_X64_MSR_REFERENCE_TSC:
  1573. case HV_X64_MSR_TIME_REF_COUNT:
  1574. r = true;
  1575. break;
  1576. }
  1577. return r;
  1578. }
  1579. static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1580. {
  1581. struct kvm *kvm = vcpu->kvm;
  1582. switch (msr) {
  1583. case HV_X64_MSR_GUEST_OS_ID:
  1584. kvm->arch.hv_guest_os_id = data;
  1585. /* setting guest os id to zero disables hypercall page */
  1586. if (!kvm->arch.hv_guest_os_id)
  1587. kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
  1588. break;
  1589. case HV_X64_MSR_HYPERCALL: {
  1590. u64 gfn;
  1591. unsigned long addr;
  1592. u8 instructions[4];
  1593. /* if guest os id is not set hypercall should remain disabled */
  1594. if (!kvm->arch.hv_guest_os_id)
  1595. break;
  1596. if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
  1597. kvm->arch.hv_hypercall = data;
  1598. break;
  1599. }
  1600. gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
  1601. addr = gfn_to_hva(kvm, gfn);
  1602. if (kvm_is_error_hva(addr))
  1603. return 1;
  1604. kvm_x86_ops->patch_hypercall(vcpu, instructions);
  1605. ((unsigned char *)instructions)[3] = 0xc3; /* ret */
  1606. if (__copy_to_user((void __user *)addr, instructions, 4))
  1607. return 1;
  1608. kvm->arch.hv_hypercall = data;
  1609. mark_page_dirty(kvm, gfn);
  1610. break;
  1611. }
  1612. case HV_X64_MSR_REFERENCE_TSC: {
  1613. u64 gfn;
  1614. HV_REFERENCE_TSC_PAGE tsc_ref;
  1615. memset(&tsc_ref, 0, sizeof(tsc_ref));
  1616. kvm->arch.hv_tsc_page = data;
  1617. if (!(data & HV_X64_MSR_TSC_REFERENCE_ENABLE))
  1618. break;
  1619. gfn = data >> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT;
  1620. if (kvm_write_guest(kvm, gfn << HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT,
  1621. &tsc_ref, sizeof(tsc_ref)))
  1622. return 1;
  1623. mark_page_dirty(kvm, gfn);
  1624. break;
  1625. }
  1626. default:
  1627. vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
  1628. "data 0x%llx\n", msr, data);
  1629. return 1;
  1630. }
  1631. return 0;
  1632. }
  1633. static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1634. {
  1635. switch (msr) {
  1636. case HV_X64_MSR_APIC_ASSIST_PAGE: {
  1637. u64 gfn;
  1638. unsigned long addr;
  1639. if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
  1640. vcpu->arch.hv_vapic = data;
  1641. if (kvm_lapic_enable_pv_eoi(vcpu, 0))
  1642. return 1;
  1643. break;
  1644. }
  1645. gfn = data >> HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT;
  1646. addr = gfn_to_hva(vcpu->kvm, gfn);
  1647. if (kvm_is_error_hva(addr))
  1648. return 1;
  1649. if (__clear_user((void __user *)addr, PAGE_SIZE))
  1650. return 1;
  1651. vcpu->arch.hv_vapic = data;
  1652. mark_page_dirty(vcpu->kvm, gfn);
  1653. if (kvm_lapic_enable_pv_eoi(vcpu, gfn_to_gpa(gfn) | KVM_MSR_ENABLED))
  1654. return 1;
  1655. break;
  1656. }
  1657. case HV_X64_MSR_EOI:
  1658. return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
  1659. case HV_X64_MSR_ICR:
  1660. return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
  1661. case HV_X64_MSR_TPR:
  1662. return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
  1663. default:
  1664. vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
  1665. "data 0x%llx\n", msr, data);
  1666. return 1;
  1667. }
  1668. return 0;
  1669. }
  1670. static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
  1671. {
  1672. gpa_t gpa = data & ~0x3f;
  1673. /* Bits 2:5 are reserved, Should be zero */
  1674. if (data & 0x3c)
  1675. return 1;
  1676. vcpu->arch.apf.msr_val = data;
  1677. if (!(data & KVM_ASYNC_PF_ENABLED)) {
  1678. kvm_clear_async_pf_completion_queue(vcpu);
  1679. kvm_async_pf_hash_reset(vcpu);
  1680. return 0;
  1681. }
  1682. if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
  1683. sizeof(u32)))
  1684. return 1;
  1685. vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
  1686. kvm_async_pf_wakeup_all(vcpu);
  1687. return 0;
  1688. }
  1689. static void kvmclock_reset(struct kvm_vcpu *vcpu)
  1690. {
  1691. vcpu->arch.pv_time_enabled = false;
  1692. }
  1693. static void accumulate_steal_time(struct kvm_vcpu *vcpu)
  1694. {
  1695. u64 delta;
  1696. if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
  1697. return;
  1698. delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
  1699. vcpu->arch.st.last_steal = current->sched_info.run_delay;
  1700. vcpu->arch.st.accum_steal = delta;
  1701. }
  1702. static void record_steal_time(struct kvm_vcpu *vcpu)
  1703. {
  1704. if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
  1705. return;
  1706. if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
  1707. &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
  1708. return;
  1709. vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
  1710. vcpu->arch.st.steal.version += 2;
  1711. vcpu->arch.st.accum_steal = 0;
  1712. kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
  1713. &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
  1714. }
  1715. int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
  1716. {
  1717. bool pr = false;
  1718. u32 msr = msr_info->index;
  1719. u64 data = msr_info->data;
  1720. switch (msr) {
  1721. case MSR_AMD64_NB_CFG:
  1722. case MSR_IA32_UCODE_REV:
  1723. case MSR_IA32_UCODE_WRITE:
  1724. case MSR_VM_HSAVE_PA:
  1725. case MSR_AMD64_PATCH_LOADER:
  1726. case MSR_AMD64_BU_CFG2:
  1727. break;
  1728. case MSR_EFER:
  1729. return set_efer(vcpu, data);
  1730. case MSR_K7_HWCR:
  1731. data &= ~(u64)0x40; /* ignore flush filter disable */
  1732. data &= ~(u64)0x100; /* ignore ignne emulation enable */
  1733. data &= ~(u64)0x8; /* ignore TLB cache disable */
  1734. if (data != 0) {
  1735. vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
  1736. data);
  1737. return 1;
  1738. }
  1739. break;
  1740. case MSR_FAM10H_MMIO_CONF_BASE:
  1741. if (data != 0) {
  1742. vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
  1743. "0x%llx\n", data);
  1744. return 1;
  1745. }
  1746. break;
  1747. case MSR_IA32_DEBUGCTLMSR:
  1748. if (!data) {
  1749. /* We support the non-activated case already */
  1750. break;
  1751. } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
  1752. /* Values other than LBR and BTF are vendor-specific,
  1753. thus reserved and should throw a #GP */
  1754. return 1;
  1755. }
  1756. vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
  1757. __func__, data);
  1758. break;
  1759. case 0x200 ... 0x2ff:
  1760. return set_msr_mtrr(vcpu, msr, data);
  1761. case MSR_IA32_APICBASE:
  1762. return kvm_set_apic_base(vcpu, msr_info);
  1763. case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
  1764. return kvm_x2apic_msr_write(vcpu, msr, data);
  1765. case MSR_IA32_TSCDEADLINE:
  1766. kvm_set_lapic_tscdeadline_msr(vcpu, data);
  1767. break;
  1768. case MSR_IA32_TSC_ADJUST:
  1769. if (guest_cpuid_has_tsc_adjust(vcpu)) {
  1770. if (!msr_info->host_initiated) {
  1771. u64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
  1772. kvm_x86_ops->adjust_tsc_offset(vcpu, adj, true);
  1773. }
  1774. vcpu->arch.ia32_tsc_adjust_msr = data;
  1775. }
  1776. break;
  1777. case MSR_IA32_MISC_ENABLE:
  1778. vcpu->arch.ia32_misc_enable_msr = data;
  1779. break;
  1780. case MSR_KVM_WALL_CLOCK_NEW:
  1781. case MSR_KVM_WALL_CLOCK:
  1782. vcpu->kvm->arch.wall_clock = data;
  1783. kvm_write_wall_clock(vcpu->kvm, data);
  1784. break;
  1785. case MSR_KVM_SYSTEM_TIME_NEW:
  1786. case MSR_KVM_SYSTEM_TIME: {
  1787. u64 gpa_offset;
  1788. kvmclock_reset(vcpu);
  1789. vcpu->arch.time = data;
  1790. kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
  1791. /* we verify if the enable bit is set... */
  1792. if (!(data & 1))
  1793. break;
  1794. gpa_offset = data & ~(PAGE_MASK | 1);
  1795. if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
  1796. &vcpu->arch.pv_time, data & ~1ULL,
  1797. sizeof(struct pvclock_vcpu_time_info)))
  1798. vcpu->arch.pv_time_enabled = false;
  1799. else
  1800. vcpu->arch.pv_time_enabled = true;
  1801. break;
  1802. }
  1803. case MSR_KVM_ASYNC_PF_EN:
  1804. if (kvm_pv_enable_async_pf(vcpu, data))
  1805. return 1;
  1806. break;
  1807. case MSR_KVM_STEAL_TIME:
  1808. if (unlikely(!sched_info_on()))
  1809. return 1;
  1810. if (data & KVM_STEAL_RESERVED_MASK)
  1811. return 1;
  1812. if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
  1813. data & KVM_STEAL_VALID_BITS,
  1814. sizeof(struct kvm_steal_time)))
  1815. return 1;
  1816. vcpu->arch.st.msr_val = data;
  1817. if (!(data & KVM_MSR_ENABLED))
  1818. break;
  1819. vcpu->arch.st.last_steal = current->sched_info.run_delay;
  1820. preempt_disable();
  1821. accumulate_steal_time(vcpu);
  1822. preempt_enable();
  1823. kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
  1824. break;
  1825. case MSR_KVM_PV_EOI_EN:
  1826. if (kvm_lapic_enable_pv_eoi(vcpu, data))
  1827. return 1;
  1828. break;
  1829. case MSR_IA32_MCG_CTL:
  1830. case MSR_IA32_MCG_STATUS:
  1831. case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
  1832. return set_msr_mce(vcpu, msr, data);
  1833. /* Performance counters are not protected by a CPUID bit,
  1834. * so we should check all of them in the generic path for the sake of
  1835. * cross vendor migration.
  1836. * Writing a zero into the event select MSRs disables them,
  1837. * which we perfectly emulate ;-). Any other value should be at least
  1838. * reported, some guests depend on them.
  1839. */
  1840. case MSR_K7_EVNTSEL0:
  1841. case MSR_K7_EVNTSEL1:
  1842. case MSR_K7_EVNTSEL2:
  1843. case MSR_K7_EVNTSEL3:
  1844. if (data != 0)
  1845. vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
  1846. "0x%x data 0x%llx\n", msr, data);
  1847. break;
  1848. /* at least RHEL 4 unconditionally writes to the perfctr registers,
  1849. * so we ignore writes to make it happy.
  1850. */
  1851. case MSR_K7_PERFCTR0:
  1852. case MSR_K7_PERFCTR1:
  1853. case MSR_K7_PERFCTR2:
  1854. case MSR_K7_PERFCTR3:
  1855. vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
  1856. "0x%x data 0x%llx\n", msr, data);
  1857. break;
  1858. case MSR_P6_PERFCTR0:
  1859. case MSR_P6_PERFCTR1:
  1860. pr = true;
  1861. case MSR_P6_EVNTSEL0:
  1862. case MSR_P6_EVNTSEL1:
  1863. if (kvm_pmu_msr(vcpu, msr))
  1864. return kvm_pmu_set_msr(vcpu, msr_info);
  1865. if (pr || data != 0)
  1866. vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
  1867. "0x%x data 0x%llx\n", msr, data);
  1868. break;
  1869. case MSR_K7_CLK_CTL:
  1870. /*
  1871. * Ignore all writes to this no longer documented MSR.
  1872. * Writes are only relevant for old K7 processors,
  1873. * all pre-dating SVM, but a recommended workaround from
  1874. * AMD for these chips. It is possible to specify the
  1875. * affected processor models on the command line, hence
  1876. * the need to ignore the workaround.
  1877. */
  1878. break;
  1879. case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
  1880. if (kvm_hv_msr_partition_wide(msr)) {
  1881. int r;
  1882. mutex_lock(&vcpu->kvm->lock);
  1883. r = set_msr_hyperv_pw(vcpu, msr, data);
  1884. mutex_unlock(&vcpu->kvm->lock);
  1885. return r;
  1886. } else
  1887. return set_msr_hyperv(vcpu, msr, data);
  1888. break;
  1889. case MSR_IA32_BBL_CR_CTL3:
  1890. /* Drop writes to this legacy MSR -- see rdmsr
  1891. * counterpart for further detail.
  1892. */
  1893. vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
  1894. break;
  1895. case MSR_AMD64_OSVW_ID_LENGTH:
  1896. if (!guest_cpuid_has_osvw(vcpu))
  1897. return 1;
  1898. vcpu->arch.osvw.length = data;
  1899. break;
  1900. case MSR_AMD64_OSVW_STATUS:
  1901. if (!guest_cpuid_has_osvw(vcpu))
  1902. return 1;
  1903. vcpu->arch.osvw.status = data;
  1904. break;
  1905. default:
  1906. if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
  1907. return xen_hvm_config(vcpu, data);
  1908. if (kvm_pmu_msr(vcpu, msr))
  1909. return kvm_pmu_set_msr(vcpu, msr_info);
  1910. if (!ignore_msrs) {
  1911. vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
  1912. msr, data);
  1913. return 1;
  1914. } else {
  1915. vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
  1916. msr, data);
  1917. break;
  1918. }
  1919. }
  1920. return 0;
  1921. }
  1922. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  1923. /*
  1924. * Reads an msr value (of 'msr_index') into 'pdata'.
  1925. * Returns 0 on success, non-0 otherwise.
  1926. * Assumes vcpu_load() was already called.
  1927. */
  1928. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1929. {
  1930. return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
  1931. }
  1932. static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1933. {
  1934. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  1935. if (!msr_mtrr_valid(msr))
  1936. return 1;
  1937. if (msr == MSR_MTRRdefType)
  1938. *pdata = vcpu->arch.mtrr_state.def_type +
  1939. (vcpu->arch.mtrr_state.enabled << 10);
  1940. else if (msr == MSR_MTRRfix64K_00000)
  1941. *pdata = p[0];
  1942. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  1943. *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
  1944. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  1945. *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
  1946. else if (msr == MSR_IA32_CR_PAT)
  1947. *pdata = vcpu->arch.pat;
  1948. else { /* Variable MTRRs */
  1949. int idx, is_mtrr_mask;
  1950. u64 *pt;
  1951. idx = (msr - 0x200) / 2;
  1952. is_mtrr_mask = msr - 0x200 - 2 * idx;
  1953. if (!is_mtrr_mask)
  1954. pt =
  1955. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  1956. else
  1957. pt =
  1958. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  1959. *pdata = *pt;
  1960. }
  1961. return 0;
  1962. }
  1963. static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1964. {
  1965. u64 data;
  1966. u64 mcg_cap = vcpu->arch.mcg_cap;
  1967. unsigned bank_num = mcg_cap & 0xff;
  1968. switch (msr) {
  1969. case MSR_IA32_P5_MC_ADDR:
  1970. case MSR_IA32_P5_MC_TYPE:
  1971. data = 0;
  1972. break;
  1973. case MSR_IA32_MCG_CAP:
  1974. data = vcpu->arch.mcg_cap;
  1975. break;
  1976. case MSR_IA32_MCG_CTL:
  1977. if (!(mcg_cap & MCG_CTL_P))
  1978. return 1;
  1979. data = vcpu->arch.mcg_ctl;
  1980. break;
  1981. case MSR_IA32_MCG_STATUS:
  1982. data = vcpu->arch.mcg_status;
  1983. break;
  1984. default:
  1985. if (msr >= MSR_IA32_MC0_CTL &&
  1986. msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
  1987. u32 offset = msr - MSR_IA32_MC0_CTL;
  1988. data = vcpu->arch.mce_banks[offset];
  1989. break;
  1990. }
  1991. return 1;
  1992. }
  1993. *pdata = data;
  1994. return 0;
  1995. }
  1996. static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1997. {
  1998. u64 data = 0;
  1999. struct kvm *kvm = vcpu->kvm;
  2000. switch (msr) {
  2001. case HV_X64_MSR_GUEST_OS_ID:
  2002. data = kvm->arch.hv_guest_os_id;
  2003. break;
  2004. case HV_X64_MSR_HYPERCALL:
  2005. data = kvm->arch.hv_hypercall;
  2006. break;
  2007. case HV_X64_MSR_TIME_REF_COUNT: {
  2008. data =
  2009. div_u64(get_kernel_ns() + kvm->arch.kvmclock_offset, 100);
  2010. break;
  2011. }
  2012. case HV_X64_MSR_REFERENCE_TSC:
  2013. data = kvm->arch.hv_tsc_page;
  2014. break;
  2015. default:
  2016. vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
  2017. return 1;
  2018. }
  2019. *pdata = data;
  2020. return 0;
  2021. }
  2022. static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  2023. {
  2024. u64 data = 0;
  2025. switch (msr) {
  2026. case HV_X64_MSR_VP_INDEX: {
  2027. int r;
  2028. struct kvm_vcpu *v;
  2029. kvm_for_each_vcpu(r, v, vcpu->kvm) {
  2030. if (v == vcpu) {
  2031. data = r;
  2032. break;
  2033. }
  2034. }
  2035. break;
  2036. }
  2037. case HV_X64_MSR_EOI:
  2038. return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
  2039. case HV_X64_MSR_ICR:
  2040. return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
  2041. case HV_X64_MSR_TPR:
  2042. return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
  2043. case HV_X64_MSR_APIC_ASSIST_PAGE:
  2044. data = vcpu->arch.hv_vapic;
  2045. break;
  2046. default:
  2047. vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
  2048. return 1;
  2049. }
  2050. *pdata = data;
  2051. return 0;
  2052. }
  2053. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  2054. {
  2055. u64 data;
  2056. switch (msr) {
  2057. case MSR_IA32_PLATFORM_ID:
  2058. case MSR_IA32_EBL_CR_POWERON:
  2059. case MSR_IA32_DEBUGCTLMSR:
  2060. case MSR_IA32_LASTBRANCHFROMIP:
  2061. case MSR_IA32_LASTBRANCHTOIP:
  2062. case MSR_IA32_LASTINTFROMIP:
  2063. case MSR_IA32_LASTINTTOIP:
  2064. case MSR_K8_SYSCFG:
  2065. case MSR_K7_HWCR:
  2066. case MSR_VM_HSAVE_PA:
  2067. case MSR_K7_EVNTSEL0:
  2068. case MSR_K7_PERFCTR0:
  2069. case MSR_K8_INT_PENDING_MSG:
  2070. case MSR_AMD64_NB_CFG:
  2071. case MSR_FAM10H_MMIO_CONF_BASE:
  2072. case MSR_AMD64_BU_CFG2:
  2073. data = 0;
  2074. break;
  2075. case MSR_P6_PERFCTR0:
  2076. case MSR_P6_PERFCTR1:
  2077. case MSR_P6_EVNTSEL0:
  2078. case MSR_P6_EVNTSEL1:
  2079. if (kvm_pmu_msr(vcpu, msr))
  2080. return kvm_pmu_get_msr(vcpu, msr, pdata);
  2081. data = 0;
  2082. break;
  2083. case MSR_IA32_UCODE_REV:
  2084. data = 0x100000000ULL;
  2085. break;
  2086. case MSR_MTRRcap:
  2087. data = 0x500 | KVM_NR_VAR_MTRR;
  2088. break;
  2089. case 0x200 ... 0x2ff:
  2090. return get_msr_mtrr(vcpu, msr, pdata);
  2091. case 0xcd: /* fsb frequency */
  2092. data = 3;
  2093. break;
  2094. /*
  2095. * MSR_EBC_FREQUENCY_ID
  2096. * Conservative value valid for even the basic CPU models.
  2097. * Models 0,1: 000 in bits 23:21 indicating a bus speed of
  2098. * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
  2099. * and 266MHz for model 3, or 4. Set Core Clock
  2100. * Frequency to System Bus Frequency Ratio to 1 (bits
  2101. * 31:24) even though these are only valid for CPU
  2102. * models > 2, however guests may end up dividing or
  2103. * multiplying by zero otherwise.
  2104. */
  2105. case MSR_EBC_FREQUENCY_ID:
  2106. data = 1 << 24;
  2107. break;
  2108. case MSR_IA32_APICBASE:
  2109. data = kvm_get_apic_base(vcpu);
  2110. break;
  2111. case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
  2112. return kvm_x2apic_msr_read(vcpu, msr, pdata);
  2113. break;
  2114. case MSR_IA32_TSCDEADLINE:
  2115. data = kvm_get_lapic_tscdeadline_msr(vcpu);
  2116. break;
  2117. case MSR_IA32_TSC_ADJUST:
  2118. data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
  2119. break;
  2120. case MSR_IA32_MISC_ENABLE:
  2121. data = vcpu->arch.ia32_misc_enable_msr;
  2122. break;
  2123. case MSR_IA32_PERF_STATUS:
  2124. /* TSC increment by tick */
  2125. data = 1000ULL;
  2126. /* CPU multiplier */
  2127. data |= (((uint64_t)4ULL) << 40);
  2128. break;
  2129. case MSR_EFER:
  2130. data = vcpu->arch.efer;
  2131. break;
  2132. case MSR_KVM_WALL_CLOCK:
  2133. case MSR_KVM_WALL_CLOCK_NEW:
  2134. data = vcpu->kvm->arch.wall_clock;
  2135. break;
  2136. case MSR_KVM_SYSTEM_TIME:
  2137. case MSR_KVM_SYSTEM_TIME_NEW:
  2138. data = vcpu->arch.time;
  2139. break;
  2140. case MSR_KVM_ASYNC_PF_EN:
  2141. data = vcpu->arch.apf.msr_val;
  2142. break;
  2143. case MSR_KVM_STEAL_TIME:
  2144. data = vcpu->arch.st.msr_val;
  2145. break;
  2146. case MSR_KVM_PV_EOI_EN:
  2147. data = vcpu->arch.pv_eoi.msr_val;
  2148. break;
  2149. case MSR_IA32_P5_MC_ADDR:
  2150. case MSR_IA32_P5_MC_TYPE:
  2151. case MSR_IA32_MCG_CAP:
  2152. case MSR_IA32_MCG_CTL:
  2153. case MSR_IA32_MCG_STATUS:
  2154. case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
  2155. return get_msr_mce(vcpu, msr, pdata);
  2156. case MSR_K7_CLK_CTL:
  2157. /*
  2158. * Provide expected ramp-up count for K7. All other
  2159. * are set to zero, indicating minimum divisors for
  2160. * every field.
  2161. *
  2162. * This prevents guest kernels on AMD host with CPU
  2163. * type 6, model 8 and higher from exploding due to
  2164. * the rdmsr failing.
  2165. */
  2166. data = 0x20000000;
  2167. break;
  2168. case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
  2169. if (kvm_hv_msr_partition_wide(msr)) {
  2170. int r;
  2171. mutex_lock(&vcpu->kvm->lock);
  2172. r = get_msr_hyperv_pw(vcpu, msr, pdata);
  2173. mutex_unlock(&vcpu->kvm->lock);
  2174. return r;
  2175. } else
  2176. return get_msr_hyperv(vcpu, msr, pdata);
  2177. break;
  2178. case MSR_IA32_BBL_CR_CTL3:
  2179. /* This legacy MSR exists but isn't fully documented in current
  2180. * silicon. It is however accessed by winxp in very narrow
  2181. * scenarios where it sets bit #19, itself documented as
  2182. * a "reserved" bit. Best effort attempt to source coherent
  2183. * read data here should the balance of the register be
  2184. * interpreted by the guest:
  2185. *
  2186. * L2 cache control register 3: 64GB range, 256KB size,
  2187. * enabled, latency 0x1, configured
  2188. */
  2189. data = 0xbe702111;
  2190. break;
  2191. case MSR_AMD64_OSVW_ID_LENGTH:
  2192. if (!guest_cpuid_has_osvw(vcpu))
  2193. return 1;
  2194. data = vcpu->arch.osvw.length;
  2195. break;
  2196. case MSR_AMD64_OSVW_STATUS:
  2197. if (!guest_cpuid_has_osvw(vcpu))
  2198. return 1;
  2199. data = vcpu->arch.osvw.status;
  2200. break;
  2201. default:
  2202. if (kvm_pmu_msr(vcpu, msr))
  2203. return kvm_pmu_get_msr(vcpu, msr, pdata);
  2204. if (!ignore_msrs) {
  2205. vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
  2206. return 1;
  2207. } else {
  2208. vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
  2209. data = 0;
  2210. }
  2211. break;
  2212. }
  2213. *pdata = data;
  2214. return 0;
  2215. }
  2216. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  2217. /*
  2218. * Read or write a bunch of msrs. All parameters are kernel addresses.
  2219. *
  2220. * @return number of msrs set successfully.
  2221. */
  2222. static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
  2223. struct kvm_msr_entry *entries,
  2224. int (*do_msr)(struct kvm_vcpu *vcpu,
  2225. unsigned index, u64 *data))
  2226. {
  2227. int i, idx;
  2228. idx = srcu_read_lock(&vcpu->kvm->srcu);
  2229. for (i = 0; i < msrs->nmsrs; ++i)
  2230. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  2231. break;
  2232. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  2233. return i;
  2234. }
  2235. /*
  2236. * Read or write a bunch of msrs. Parameters are user addresses.
  2237. *
  2238. * @return number of msrs set successfully.
  2239. */
  2240. static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
  2241. int (*do_msr)(struct kvm_vcpu *vcpu,
  2242. unsigned index, u64 *data),
  2243. int writeback)
  2244. {
  2245. struct kvm_msrs msrs;
  2246. struct kvm_msr_entry *entries;
  2247. int r, n;
  2248. unsigned size;
  2249. r = -EFAULT;
  2250. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  2251. goto out;
  2252. r = -E2BIG;
  2253. if (msrs.nmsrs >= MAX_IO_MSRS)
  2254. goto out;
  2255. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  2256. entries = memdup_user(user_msrs->entries, size);
  2257. if (IS_ERR(entries)) {
  2258. r = PTR_ERR(entries);
  2259. goto out;
  2260. }
  2261. r = n = __msr_io(vcpu, &msrs, entries, do_msr);
  2262. if (r < 0)
  2263. goto out_free;
  2264. r = -EFAULT;
  2265. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  2266. goto out_free;
  2267. r = n;
  2268. out_free:
  2269. kfree(entries);
  2270. out:
  2271. return r;
  2272. }
  2273. int kvm_dev_ioctl_check_extension(long ext)
  2274. {
  2275. int r;
  2276. switch (ext) {
  2277. case KVM_CAP_IRQCHIP:
  2278. case KVM_CAP_HLT:
  2279. case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
  2280. case KVM_CAP_SET_TSS_ADDR:
  2281. case KVM_CAP_EXT_CPUID:
  2282. case KVM_CAP_EXT_EMUL_CPUID:
  2283. case KVM_CAP_CLOCKSOURCE:
  2284. case KVM_CAP_PIT:
  2285. case KVM_CAP_NOP_IO_DELAY:
  2286. case KVM_CAP_MP_STATE:
  2287. case KVM_CAP_SYNC_MMU:
  2288. case KVM_CAP_USER_NMI:
  2289. case KVM_CAP_REINJECT_CONTROL:
  2290. case KVM_CAP_IRQ_INJECT_STATUS:
  2291. case KVM_CAP_IRQFD:
  2292. case KVM_CAP_IOEVENTFD:
  2293. case KVM_CAP_IOEVENTFD_NO_LENGTH:
  2294. case KVM_CAP_PIT2:
  2295. case KVM_CAP_PIT_STATE2:
  2296. case KVM_CAP_SET_IDENTITY_MAP_ADDR:
  2297. case KVM_CAP_XEN_HVM:
  2298. case KVM_CAP_ADJUST_CLOCK:
  2299. case KVM_CAP_VCPU_EVENTS:
  2300. case KVM_CAP_HYPERV:
  2301. case KVM_CAP_HYPERV_VAPIC:
  2302. case KVM_CAP_HYPERV_SPIN:
  2303. case KVM_CAP_PCI_SEGMENT:
  2304. case KVM_CAP_DEBUGREGS:
  2305. case KVM_CAP_X86_ROBUST_SINGLESTEP:
  2306. case KVM_CAP_XSAVE:
  2307. case KVM_CAP_ASYNC_PF:
  2308. case KVM_CAP_GET_TSC_KHZ:
  2309. case KVM_CAP_KVMCLOCK_CTRL:
  2310. case KVM_CAP_READONLY_MEM:
  2311. case KVM_CAP_HYPERV_TIME:
  2312. case KVM_CAP_IOAPIC_POLARITY_IGNORED:
  2313. #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
  2314. case KVM_CAP_ASSIGN_DEV_IRQ:
  2315. case KVM_CAP_PCI_2_3:
  2316. #endif
  2317. r = 1;
  2318. break;
  2319. case KVM_CAP_COALESCED_MMIO:
  2320. r = KVM_COALESCED_MMIO_PAGE_OFFSET;
  2321. break;
  2322. case KVM_CAP_VAPIC:
  2323. r = !kvm_x86_ops->cpu_has_accelerated_tpr();
  2324. break;
  2325. case KVM_CAP_NR_VCPUS:
  2326. r = KVM_SOFT_MAX_VCPUS;
  2327. break;
  2328. case KVM_CAP_MAX_VCPUS:
  2329. r = KVM_MAX_VCPUS;
  2330. break;
  2331. case KVM_CAP_NR_MEMSLOTS:
  2332. r = KVM_USER_MEM_SLOTS;
  2333. break;
  2334. case KVM_CAP_PV_MMU: /* obsolete */
  2335. r = 0;
  2336. break;
  2337. #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
  2338. case KVM_CAP_IOMMU:
  2339. r = iommu_present(&pci_bus_type);
  2340. break;
  2341. #endif
  2342. case KVM_CAP_MCE:
  2343. r = KVM_MAX_MCE_BANKS;
  2344. break;
  2345. case KVM_CAP_XCRS:
  2346. r = cpu_has_xsave;
  2347. break;
  2348. case KVM_CAP_TSC_CONTROL:
  2349. r = kvm_has_tsc_control;
  2350. break;
  2351. case KVM_CAP_TSC_DEADLINE_TIMER:
  2352. r = boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER);
  2353. break;
  2354. default:
  2355. r = 0;
  2356. break;
  2357. }
  2358. return r;
  2359. }
  2360. long kvm_arch_dev_ioctl(struct file *filp,
  2361. unsigned int ioctl, unsigned long arg)
  2362. {
  2363. void __user *argp = (void __user *)arg;
  2364. long r;
  2365. switch (ioctl) {
  2366. case KVM_GET_MSR_INDEX_LIST: {
  2367. struct kvm_msr_list __user *user_msr_list = argp;
  2368. struct kvm_msr_list msr_list;
  2369. unsigned n;
  2370. r = -EFAULT;
  2371. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  2372. goto out;
  2373. n = msr_list.nmsrs;
  2374. msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
  2375. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  2376. goto out;
  2377. r = -E2BIG;
  2378. if (n < msr_list.nmsrs)
  2379. goto out;
  2380. r = -EFAULT;
  2381. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  2382. num_msrs_to_save * sizeof(u32)))
  2383. goto out;
  2384. if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
  2385. &emulated_msrs,
  2386. ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
  2387. goto out;
  2388. r = 0;
  2389. break;
  2390. }
  2391. case KVM_GET_SUPPORTED_CPUID:
  2392. case KVM_GET_EMULATED_CPUID: {
  2393. struct kvm_cpuid2 __user *cpuid_arg = argp;
  2394. struct kvm_cpuid2 cpuid;
  2395. r = -EFAULT;
  2396. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2397. goto out;
  2398. r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
  2399. ioctl);
  2400. if (r)
  2401. goto out;
  2402. r = -EFAULT;
  2403. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  2404. goto out;
  2405. r = 0;
  2406. break;
  2407. }
  2408. case KVM_X86_GET_MCE_CAP_SUPPORTED: {
  2409. u64 mce_cap;
  2410. mce_cap = KVM_MCE_CAP_SUPPORTED;
  2411. r = -EFAULT;
  2412. if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
  2413. goto out;
  2414. r = 0;
  2415. break;
  2416. }
  2417. default:
  2418. r = -EINVAL;
  2419. }
  2420. out:
  2421. return r;
  2422. }
  2423. static void wbinvd_ipi(void *garbage)
  2424. {
  2425. wbinvd();
  2426. }
  2427. static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
  2428. {
  2429. return kvm_arch_has_noncoherent_dma(vcpu->kvm);
  2430. }
  2431. void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  2432. {
  2433. /* Address WBINVD may be executed by guest */
  2434. if (need_emulate_wbinvd(vcpu)) {
  2435. if (kvm_x86_ops->has_wbinvd_exit())
  2436. cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
  2437. else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
  2438. smp_call_function_single(vcpu->cpu,
  2439. wbinvd_ipi, NULL, 1);
  2440. }
  2441. kvm_x86_ops->vcpu_load(vcpu, cpu);
  2442. /* Apply any externally detected TSC adjustments (due to suspend) */
  2443. if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
  2444. adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
  2445. vcpu->arch.tsc_offset_adjustment = 0;
  2446. set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
  2447. }
  2448. if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
  2449. s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
  2450. native_read_tsc() - vcpu->arch.last_host_tsc;
  2451. if (tsc_delta < 0)
  2452. mark_tsc_unstable("KVM discovered backwards TSC");
  2453. if (check_tsc_unstable()) {
  2454. u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu,
  2455. vcpu->arch.last_guest_tsc);
  2456. kvm_x86_ops->write_tsc_offset(vcpu, offset);
  2457. vcpu->arch.tsc_catchup = 1;
  2458. }
  2459. /*
  2460. * On a host with synchronized TSC, there is no need to update
  2461. * kvmclock on vcpu->cpu migration
  2462. */
  2463. if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
  2464. kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
  2465. if (vcpu->cpu != cpu)
  2466. kvm_migrate_timers(vcpu);
  2467. vcpu->cpu = cpu;
  2468. }
  2469. accumulate_steal_time(vcpu);
  2470. kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
  2471. }
  2472. void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
  2473. {
  2474. kvm_x86_ops->vcpu_put(vcpu);
  2475. kvm_put_guest_fpu(vcpu);
  2476. vcpu->arch.last_host_tsc = native_read_tsc();
  2477. }
  2478. static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
  2479. struct kvm_lapic_state *s)
  2480. {
  2481. kvm_x86_ops->sync_pir_to_irr(vcpu);
  2482. memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
  2483. return 0;
  2484. }
  2485. static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
  2486. struct kvm_lapic_state *s)
  2487. {
  2488. kvm_apic_post_state_restore(vcpu, s);
  2489. update_cr8_intercept(vcpu);
  2490. return 0;
  2491. }
  2492. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  2493. struct kvm_interrupt *irq)
  2494. {
  2495. if (irq->irq >= KVM_NR_INTERRUPTS)
  2496. return -EINVAL;
  2497. if (irqchip_in_kernel(vcpu->kvm))
  2498. return -ENXIO;
  2499. kvm_queue_interrupt(vcpu, irq->irq, false);
  2500. kvm_make_request(KVM_REQ_EVENT, vcpu);
  2501. return 0;
  2502. }
  2503. static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
  2504. {
  2505. kvm_inject_nmi(vcpu);
  2506. return 0;
  2507. }
  2508. static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
  2509. struct kvm_tpr_access_ctl *tac)
  2510. {
  2511. if (tac->flags)
  2512. return -EINVAL;
  2513. vcpu->arch.tpr_access_reporting = !!tac->enabled;
  2514. return 0;
  2515. }
  2516. static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
  2517. u64 mcg_cap)
  2518. {
  2519. int r;
  2520. unsigned bank_num = mcg_cap & 0xff, bank;
  2521. r = -EINVAL;
  2522. if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
  2523. goto out;
  2524. if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
  2525. goto out;
  2526. r = 0;
  2527. vcpu->arch.mcg_cap = mcg_cap;
  2528. /* Init IA32_MCG_CTL to all 1s */
  2529. if (mcg_cap & MCG_CTL_P)
  2530. vcpu->arch.mcg_ctl = ~(u64)0;
  2531. /* Init IA32_MCi_CTL to all 1s */
  2532. for (bank = 0; bank < bank_num; bank++)
  2533. vcpu->arch.mce_banks[bank*4] = ~(u64)0;
  2534. out:
  2535. return r;
  2536. }
  2537. static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
  2538. struct kvm_x86_mce *mce)
  2539. {
  2540. u64 mcg_cap = vcpu->arch.mcg_cap;
  2541. unsigned bank_num = mcg_cap & 0xff;
  2542. u64 *banks = vcpu->arch.mce_banks;
  2543. if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
  2544. return -EINVAL;
  2545. /*
  2546. * if IA32_MCG_CTL is not all 1s, the uncorrected error
  2547. * reporting is disabled
  2548. */
  2549. if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
  2550. vcpu->arch.mcg_ctl != ~(u64)0)
  2551. return 0;
  2552. banks += 4 * mce->bank;
  2553. /*
  2554. * if IA32_MCi_CTL is not all 1s, the uncorrected error
  2555. * reporting is disabled for the bank
  2556. */
  2557. if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
  2558. return 0;
  2559. if (mce->status & MCI_STATUS_UC) {
  2560. if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
  2561. !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
  2562. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  2563. return 0;
  2564. }
  2565. if (banks[1] & MCI_STATUS_VAL)
  2566. mce->status |= MCI_STATUS_OVER;
  2567. banks[2] = mce->addr;
  2568. banks[3] = mce->misc;
  2569. vcpu->arch.mcg_status = mce->mcg_status;
  2570. banks[1] = mce->status;
  2571. kvm_queue_exception(vcpu, MC_VECTOR);
  2572. } else if (!(banks[1] & MCI_STATUS_VAL)
  2573. || !(banks[1] & MCI_STATUS_UC)) {
  2574. if (banks[1] & MCI_STATUS_VAL)
  2575. mce->status |= MCI_STATUS_OVER;
  2576. banks[2] = mce->addr;
  2577. banks[3] = mce->misc;
  2578. banks[1] = mce->status;
  2579. } else
  2580. banks[1] |= MCI_STATUS_OVER;
  2581. return 0;
  2582. }
  2583. static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
  2584. struct kvm_vcpu_events *events)
  2585. {
  2586. process_nmi(vcpu);
  2587. events->exception.injected =
  2588. vcpu->arch.exception.pending &&
  2589. !kvm_exception_is_soft(vcpu->arch.exception.nr);
  2590. events->exception.nr = vcpu->arch.exception.nr;
  2591. events->exception.has_error_code = vcpu->arch.exception.has_error_code;
  2592. events->exception.pad = 0;
  2593. events->exception.error_code = vcpu->arch.exception.error_code;
  2594. events->interrupt.injected =
  2595. vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
  2596. events->interrupt.nr = vcpu->arch.interrupt.nr;
  2597. events->interrupt.soft = 0;
  2598. events->interrupt.shadow =
  2599. kvm_x86_ops->get_interrupt_shadow(vcpu,
  2600. KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
  2601. events->nmi.injected = vcpu->arch.nmi_injected;
  2602. events->nmi.pending = vcpu->arch.nmi_pending != 0;
  2603. events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
  2604. events->nmi.pad = 0;
  2605. events->sipi_vector = 0; /* never valid when reporting to user space */
  2606. events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
  2607. | KVM_VCPUEVENT_VALID_SHADOW);
  2608. memset(&events->reserved, 0, sizeof(events->reserved));
  2609. }
  2610. static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
  2611. struct kvm_vcpu_events *events)
  2612. {
  2613. if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
  2614. | KVM_VCPUEVENT_VALID_SIPI_VECTOR
  2615. | KVM_VCPUEVENT_VALID_SHADOW))
  2616. return -EINVAL;
  2617. process_nmi(vcpu);
  2618. vcpu->arch.exception.pending = events->exception.injected;
  2619. vcpu->arch.exception.nr = events->exception.nr;
  2620. vcpu->arch.exception.has_error_code = events->exception.has_error_code;
  2621. vcpu->arch.exception.error_code = events->exception.error_code;
  2622. vcpu->arch.interrupt.pending = events->interrupt.injected;
  2623. vcpu->arch.interrupt.nr = events->interrupt.nr;
  2624. vcpu->arch.interrupt.soft = events->interrupt.soft;
  2625. if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
  2626. kvm_x86_ops->set_interrupt_shadow(vcpu,
  2627. events->interrupt.shadow);
  2628. vcpu->arch.nmi_injected = events->nmi.injected;
  2629. if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
  2630. vcpu->arch.nmi_pending = events->nmi.pending;
  2631. kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
  2632. if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
  2633. kvm_vcpu_has_lapic(vcpu))
  2634. vcpu->arch.apic->sipi_vector = events->sipi_vector;
  2635. kvm_make_request(KVM_REQ_EVENT, vcpu);
  2636. return 0;
  2637. }
  2638. static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
  2639. struct kvm_debugregs *dbgregs)
  2640. {
  2641. unsigned long val;
  2642. memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
  2643. _kvm_get_dr(vcpu, 6, &val);
  2644. dbgregs->dr6 = val;
  2645. dbgregs->dr7 = vcpu->arch.dr7;
  2646. dbgregs->flags = 0;
  2647. memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
  2648. }
  2649. static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
  2650. struct kvm_debugregs *dbgregs)
  2651. {
  2652. if (dbgregs->flags)
  2653. return -EINVAL;
  2654. memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
  2655. vcpu->arch.dr6 = dbgregs->dr6;
  2656. kvm_update_dr6(vcpu);
  2657. vcpu->arch.dr7 = dbgregs->dr7;
  2658. kvm_update_dr7(vcpu);
  2659. return 0;
  2660. }
  2661. static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
  2662. struct kvm_xsave *guest_xsave)
  2663. {
  2664. if (cpu_has_xsave) {
  2665. memcpy(guest_xsave->region,
  2666. &vcpu->arch.guest_fpu.state->xsave,
  2667. vcpu->arch.guest_xstate_size);
  2668. *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] &=
  2669. vcpu->arch.guest_supported_xcr0 | XSTATE_FPSSE;
  2670. } else {
  2671. memcpy(guest_xsave->region,
  2672. &vcpu->arch.guest_fpu.state->fxsave,
  2673. sizeof(struct i387_fxsave_struct));
  2674. *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
  2675. XSTATE_FPSSE;
  2676. }
  2677. }
  2678. static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
  2679. struct kvm_xsave *guest_xsave)
  2680. {
  2681. u64 xstate_bv =
  2682. *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
  2683. if (cpu_has_xsave) {
  2684. /*
  2685. * Here we allow setting states that are not present in
  2686. * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility
  2687. * with old userspace.
  2688. */
  2689. if (xstate_bv & ~kvm_supported_xcr0())
  2690. return -EINVAL;
  2691. memcpy(&vcpu->arch.guest_fpu.state->xsave,
  2692. guest_xsave->region, vcpu->arch.guest_xstate_size);
  2693. } else {
  2694. if (xstate_bv & ~XSTATE_FPSSE)
  2695. return -EINVAL;
  2696. memcpy(&vcpu->arch.guest_fpu.state->fxsave,
  2697. guest_xsave->region, sizeof(struct i387_fxsave_struct));
  2698. }
  2699. return 0;
  2700. }
  2701. static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
  2702. struct kvm_xcrs *guest_xcrs)
  2703. {
  2704. if (!cpu_has_xsave) {
  2705. guest_xcrs->nr_xcrs = 0;
  2706. return;
  2707. }
  2708. guest_xcrs->nr_xcrs = 1;
  2709. guest_xcrs->flags = 0;
  2710. guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
  2711. guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
  2712. }
  2713. static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
  2714. struct kvm_xcrs *guest_xcrs)
  2715. {
  2716. int i, r = 0;
  2717. if (!cpu_has_xsave)
  2718. return -EINVAL;
  2719. if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
  2720. return -EINVAL;
  2721. for (i = 0; i < guest_xcrs->nr_xcrs; i++)
  2722. /* Only support XCR0 currently */
  2723. if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
  2724. r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
  2725. guest_xcrs->xcrs[i].value);
  2726. break;
  2727. }
  2728. if (r)
  2729. r = -EINVAL;
  2730. return r;
  2731. }
  2732. /*
  2733. * kvm_set_guest_paused() indicates to the guest kernel that it has been
  2734. * stopped by the hypervisor. This function will be called from the host only.
  2735. * EINVAL is returned when the host attempts to set the flag for a guest that
  2736. * does not support pv clocks.
  2737. */
  2738. static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
  2739. {
  2740. if (!vcpu->arch.pv_time_enabled)
  2741. return -EINVAL;
  2742. vcpu->arch.pvclock_set_guest_stopped_request = true;
  2743. kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
  2744. return 0;
  2745. }
  2746. long kvm_arch_vcpu_ioctl(struct file *filp,
  2747. unsigned int ioctl, unsigned long arg)
  2748. {
  2749. struct kvm_vcpu *vcpu = filp->private_data;
  2750. void __user *argp = (void __user *)arg;
  2751. int r;
  2752. union {
  2753. struct kvm_lapic_state *lapic;
  2754. struct kvm_xsave *xsave;
  2755. struct kvm_xcrs *xcrs;
  2756. void *buffer;
  2757. } u;
  2758. u.buffer = NULL;
  2759. switch (ioctl) {
  2760. case KVM_GET_LAPIC: {
  2761. r = -EINVAL;
  2762. if (!vcpu->arch.apic)
  2763. goto out;
  2764. u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  2765. r = -ENOMEM;
  2766. if (!u.lapic)
  2767. goto out;
  2768. r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
  2769. if (r)
  2770. goto out;
  2771. r = -EFAULT;
  2772. if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
  2773. goto out;
  2774. r = 0;
  2775. break;
  2776. }
  2777. case KVM_SET_LAPIC: {
  2778. r = -EINVAL;
  2779. if (!vcpu->arch.apic)
  2780. goto out;
  2781. u.lapic = memdup_user(argp, sizeof(*u.lapic));
  2782. if (IS_ERR(u.lapic))
  2783. return PTR_ERR(u.lapic);
  2784. r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
  2785. break;
  2786. }
  2787. case KVM_INTERRUPT: {
  2788. struct kvm_interrupt irq;
  2789. r = -EFAULT;
  2790. if (copy_from_user(&irq, argp, sizeof irq))
  2791. goto out;
  2792. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  2793. break;
  2794. }
  2795. case KVM_NMI: {
  2796. r = kvm_vcpu_ioctl_nmi(vcpu);
  2797. break;
  2798. }
  2799. case KVM_SET_CPUID: {
  2800. struct kvm_cpuid __user *cpuid_arg = argp;
  2801. struct kvm_cpuid cpuid;
  2802. r = -EFAULT;
  2803. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2804. goto out;
  2805. r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
  2806. break;
  2807. }
  2808. case KVM_SET_CPUID2: {
  2809. struct kvm_cpuid2 __user *cpuid_arg = argp;
  2810. struct kvm_cpuid2 cpuid;
  2811. r = -EFAULT;
  2812. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2813. goto out;
  2814. r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
  2815. cpuid_arg->entries);
  2816. break;
  2817. }
  2818. case KVM_GET_CPUID2: {
  2819. struct kvm_cpuid2 __user *cpuid_arg = argp;
  2820. struct kvm_cpuid2 cpuid;
  2821. r = -EFAULT;
  2822. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2823. goto out;
  2824. r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
  2825. cpuid_arg->entries);
  2826. if (r)
  2827. goto out;
  2828. r = -EFAULT;
  2829. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  2830. goto out;
  2831. r = 0;
  2832. break;
  2833. }
  2834. case KVM_GET_MSRS:
  2835. r = msr_io(vcpu, argp, kvm_get_msr, 1);
  2836. break;
  2837. case KVM_SET_MSRS:
  2838. r = msr_io(vcpu, argp, do_set_msr, 0);
  2839. break;
  2840. case KVM_TPR_ACCESS_REPORTING: {
  2841. struct kvm_tpr_access_ctl tac;
  2842. r = -EFAULT;
  2843. if (copy_from_user(&tac, argp, sizeof tac))
  2844. goto out;
  2845. r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
  2846. if (r)
  2847. goto out;
  2848. r = -EFAULT;
  2849. if (copy_to_user(argp, &tac, sizeof tac))
  2850. goto out;
  2851. r = 0;
  2852. break;
  2853. };
  2854. case KVM_SET_VAPIC_ADDR: {
  2855. struct kvm_vapic_addr va;
  2856. r = -EINVAL;
  2857. if (!irqchip_in_kernel(vcpu->kvm))
  2858. goto out;
  2859. r = -EFAULT;
  2860. if (copy_from_user(&va, argp, sizeof va))
  2861. goto out;
  2862. r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
  2863. break;
  2864. }
  2865. case KVM_X86_SETUP_MCE: {
  2866. u64 mcg_cap;
  2867. r = -EFAULT;
  2868. if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
  2869. goto out;
  2870. r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
  2871. break;
  2872. }
  2873. case KVM_X86_SET_MCE: {
  2874. struct kvm_x86_mce mce;
  2875. r = -EFAULT;
  2876. if (copy_from_user(&mce, argp, sizeof mce))
  2877. goto out;
  2878. r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
  2879. break;
  2880. }
  2881. case KVM_GET_VCPU_EVENTS: {
  2882. struct kvm_vcpu_events events;
  2883. kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
  2884. r = -EFAULT;
  2885. if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
  2886. break;
  2887. r = 0;
  2888. break;
  2889. }
  2890. case KVM_SET_VCPU_EVENTS: {
  2891. struct kvm_vcpu_events events;
  2892. r = -EFAULT;
  2893. if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
  2894. break;
  2895. r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
  2896. break;
  2897. }
  2898. case KVM_GET_DEBUGREGS: {
  2899. struct kvm_debugregs dbgregs;
  2900. kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
  2901. r = -EFAULT;
  2902. if (copy_to_user(argp, &dbgregs,
  2903. sizeof(struct kvm_debugregs)))
  2904. break;
  2905. r = 0;
  2906. break;
  2907. }
  2908. case KVM_SET_DEBUGREGS: {
  2909. struct kvm_debugregs dbgregs;
  2910. r = -EFAULT;
  2911. if (copy_from_user(&dbgregs, argp,
  2912. sizeof(struct kvm_debugregs)))
  2913. break;
  2914. r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
  2915. break;
  2916. }
  2917. case KVM_GET_XSAVE: {
  2918. u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
  2919. r = -ENOMEM;
  2920. if (!u.xsave)
  2921. break;
  2922. kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
  2923. r = -EFAULT;
  2924. if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
  2925. break;
  2926. r = 0;
  2927. break;
  2928. }
  2929. case KVM_SET_XSAVE: {
  2930. u.xsave = memdup_user(argp, sizeof(*u.xsave));
  2931. if (IS_ERR(u.xsave))
  2932. return PTR_ERR(u.xsave);
  2933. r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
  2934. break;
  2935. }
  2936. case KVM_GET_XCRS: {
  2937. u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
  2938. r = -ENOMEM;
  2939. if (!u.xcrs)
  2940. break;
  2941. kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
  2942. r = -EFAULT;
  2943. if (copy_to_user(argp, u.xcrs,
  2944. sizeof(struct kvm_xcrs)))
  2945. break;
  2946. r = 0;
  2947. break;
  2948. }
  2949. case KVM_SET_XCRS: {
  2950. u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
  2951. if (IS_ERR(u.xcrs))
  2952. return PTR_ERR(u.xcrs);
  2953. r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
  2954. break;
  2955. }
  2956. case KVM_SET_TSC_KHZ: {
  2957. u32 user_tsc_khz;
  2958. r = -EINVAL;
  2959. user_tsc_khz = (u32)arg;
  2960. if (user_tsc_khz >= kvm_max_guest_tsc_khz)
  2961. goto out;
  2962. if (user_tsc_khz == 0)
  2963. user_tsc_khz = tsc_khz;
  2964. kvm_set_tsc_khz(vcpu, user_tsc_khz);
  2965. r = 0;
  2966. goto out;
  2967. }
  2968. case KVM_GET_TSC_KHZ: {
  2969. r = vcpu->arch.virtual_tsc_khz;
  2970. goto out;
  2971. }
  2972. case KVM_KVMCLOCK_CTRL: {
  2973. r = kvm_set_guest_paused(vcpu);
  2974. goto out;
  2975. }
  2976. default:
  2977. r = -EINVAL;
  2978. }
  2979. out:
  2980. kfree(u.buffer);
  2981. return r;
  2982. }
  2983. int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
  2984. {
  2985. return VM_FAULT_SIGBUS;
  2986. }
  2987. static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
  2988. {
  2989. int ret;
  2990. if (addr > (unsigned int)(-3 * PAGE_SIZE))
  2991. return -EINVAL;
  2992. ret = kvm_x86_ops->set_tss_addr(kvm, addr);
  2993. return ret;
  2994. }
  2995. static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
  2996. u64 ident_addr)
  2997. {
  2998. kvm->arch.ept_identity_map_addr = ident_addr;
  2999. return 0;
  3000. }
  3001. static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
  3002. u32 kvm_nr_mmu_pages)
  3003. {
  3004. if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
  3005. return -EINVAL;
  3006. mutex_lock(&kvm->slots_lock);
  3007. kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
  3008. kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
  3009. mutex_unlock(&kvm->slots_lock);
  3010. return 0;
  3011. }
  3012. static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
  3013. {
  3014. return kvm->arch.n_max_mmu_pages;
  3015. }
  3016. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  3017. {
  3018. int r;
  3019. r = 0;
  3020. switch (chip->chip_id) {
  3021. case KVM_IRQCHIP_PIC_MASTER:
  3022. memcpy(&chip->chip.pic,
  3023. &pic_irqchip(kvm)->pics[0],
  3024. sizeof(struct kvm_pic_state));
  3025. break;
  3026. case KVM_IRQCHIP_PIC_SLAVE:
  3027. memcpy(&chip->chip.pic,
  3028. &pic_irqchip(kvm)->pics[1],
  3029. sizeof(struct kvm_pic_state));
  3030. break;
  3031. case KVM_IRQCHIP_IOAPIC:
  3032. r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
  3033. break;
  3034. default:
  3035. r = -EINVAL;
  3036. break;
  3037. }
  3038. return r;
  3039. }
  3040. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  3041. {
  3042. int r;
  3043. r = 0;
  3044. switch (chip->chip_id) {
  3045. case KVM_IRQCHIP_PIC_MASTER:
  3046. spin_lock(&pic_irqchip(kvm)->lock);
  3047. memcpy(&pic_irqchip(kvm)->pics[0],
  3048. &chip->chip.pic,
  3049. sizeof(struct kvm_pic_state));
  3050. spin_unlock(&pic_irqchip(kvm)->lock);
  3051. break;
  3052. case KVM_IRQCHIP_PIC_SLAVE:
  3053. spin_lock(&pic_irqchip(kvm)->lock);
  3054. memcpy(&pic_irqchip(kvm)->pics[1],
  3055. &chip->chip.pic,
  3056. sizeof(struct kvm_pic_state));
  3057. spin_unlock(&pic_irqchip(kvm)->lock);
  3058. break;
  3059. case KVM_IRQCHIP_IOAPIC:
  3060. r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
  3061. break;
  3062. default:
  3063. r = -EINVAL;
  3064. break;
  3065. }
  3066. kvm_pic_update_irq(pic_irqchip(kvm));
  3067. return r;
  3068. }
  3069. static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  3070. {
  3071. int r = 0;
  3072. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  3073. memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
  3074. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  3075. return r;
  3076. }
  3077. static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  3078. {
  3079. int r = 0;
  3080. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  3081. memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
  3082. kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
  3083. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  3084. return r;
  3085. }
  3086. static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
  3087. {
  3088. int r = 0;
  3089. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  3090. memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
  3091. sizeof(ps->channels));
  3092. ps->flags = kvm->arch.vpit->pit_state.flags;
  3093. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  3094. memset(&ps->reserved, 0, sizeof(ps->reserved));
  3095. return r;
  3096. }
  3097. static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
  3098. {
  3099. int r = 0, start = 0;
  3100. u32 prev_legacy, cur_legacy;
  3101. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  3102. prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
  3103. cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
  3104. if (!prev_legacy && cur_legacy)
  3105. start = 1;
  3106. memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
  3107. sizeof(kvm->arch.vpit->pit_state.channels));
  3108. kvm->arch.vpit->pit_state.flags = ps->flags;
  3109. kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
  3110. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  3111. return r;
  3112. }
  3113. static int kvm_vm_ioctl_reinject(struct kvm *kvm,
  3114. struct kvm_reinject_control *control)
  3115. {
  3116. if (!kvm->arch.vpit)
  3117. return -ENXIO;
  3118. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  3119. kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
  3120. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  3121. return 0;
  3122. }
  3123. /**
  3124. * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
  3125. * @kvm: kvm instance
  3126. * @log: slot id and address to which we copy the log
  3127. *
  3128. * We need to keep it in mind that VCPU threads can write to the bitmap
  3129. * concurrently. So, to avoid losing data, we keep the following order for
  3130. * each bit:
  3131. *
  3132. * 1. Take a snapshot of the bit and clear it if needed.
  3133. * 2. Write protect the corresponding page.
  3134. * 3. Flush TLB's if needed.
  3135. * 4. Copy the snapshot to the userspace.
  3136. *
  3137. * Between 2 and 3, the guest may write to the page using the remaining TLB
  3138. * entry. This is not a problem because the page will be reported dirty at
  3139. * step 4 using the snapshot taken before and step 3 ensures that successive
  3140. * writes will be logged for the next call.
  3141. */
  3142. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
  3143. {
  3144. int r;
  3145. struct kvm_memory_slot *memslot;
  3146. unsigned long n, i;
  3147. unsigned long *dirty_bitmap;
  3148. unsigned long *dirty_bitmap_buffer;
  3149. bool is_dirty = false;
  3150. mutex_lock(&kvm->slots_lock);
  3151. r = -EINVAL;
  3152. if (log->slot >= KVM_USER_MEM_SLOTS)
  3153. goto out;
  3154. memslot = id_to_memslot(kvm->memslots, log->slot);
  3155. dirty_bitmap = memslot->dirty_bitmap;
  3156. r = -ENOENT;
  3157. if (!dirty_bitmap)
  3158. goto out;
  3159. n = kvm_dirty_bitmap_bytes(memslot);
  3160. dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
  3161. memset(dirty_bitmap_buffer, 0, n);
  3162. spin_lock(&kvm->mmu_lock);
  3163. for (i = 0; i < n / sizeof(long); i++) {
  3164. unsigned long mask;
  3165. gfn_t offset;
  3166. if (!dirty_bitmap[i])
  3167. continue;
  3168. is_dirty = true;
  3169. mask = xchg(&dirty_bitmap[i], 0);
  3170. dirty_bitmap_buffer[i] = mask;
  3171. offset = i * BITS_PER_LONG;
  3172. kvm_mmu_write_protect_pt_masked(kvm, memslot, offset, mask);
  3173. }
  3174. spin_unlock(&kvm->mmu_lock);
  3175. /* See the comments in kvm_mmu_slot_remove_write_access(). */
  3176. lockdep_assert_held(&kvm->slots_lock);
  3177. /*
  3178. * All the TLBs can be flushed out of mmu lock, see the comments in
  3179. * kvm_mmu_slot_remove_write_access().
  3180. */
  3181. if (is_dirty)
  3182. kvm_flush_remote_tlbs(kvm);
  3183. r = -EFAULT;
  3184. if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
  3185. goto out;
  3186. r = 0;
  3187. out:
  3188. mutex_unlock(&kvm->slots_lock);
  3189. return r;
  3190. }
  3191. int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
  3192. bool line_status)
  3193. {
  3194. if (!irqchip_in_kernel(kvm))
  3195. return -ENXIO;
  3196. irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
  3197. irq_event->irq, irq_event->level,
  3198. line_status);
  3199. return 0;
  3200. }
  3201. long kvm_arch_vm_ioctl(struct file *filp,
  3202. unsigned int ioctl, unsigned long arg)
  3203. {
  3204. struct kvm *kvm = filp->private_data;
  3205. void __user *argp = (void __user *)arg;
  3206. int r = -ENOTTY;
  3207. /*
  3208. * This union makes it completely explicit to gcc-3.x
  3209. * that these two variables' stack usage should be
  3210. * combined, not added together.
  3211. */
  3212. union {
  3213. struct kvm_pit_state ps;
  3214. struct kvm_pit_state2 ps2;
  3215. struct kvm_pit_config pit_config;
  3216. } u;
  3217. switch (ioctl) {
  3218. case KVM_SET_TSS_ADDR:
  3219. r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
  3220. break;
  3221. case KVM_SET_IDENTITY_MAP_ADDR: {
  3222. u64 ident_addr;
  3223. r = -EFAULT;
  3224. if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
  3225. goto out;
  3226. r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
  3227. break;
  3228. }
  3229. case KVM_SET_NR_MMU_PAGES:
  3230. r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
  3231. break;
  3232. case KVM_GET_NR_MMU_PAGES:
  3233. r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
  3234. break;
  3235. case KVM_CREATE_IRQCHIP: {
  3236. struct kvm_pic *vpic;
  3237. mutex_lock(&kvm->lock);
  3238. r = -EEXIST;
  3239. if (kvm->arch.vpic)
  3240. goto create_irqchip_unlock;
  3241. r = -EINVAL;
  3242. if (atomic_read(&kvm->online_vcpus))
  3243. goto create_irqchip_unlock;
  3244. r = -ENOMEM;
  3245. vpic = kvm_create_pic(kvm);
  3246. if (vpic) {
  3247. r = kvm_ioapic_init(kvm);
  3248. if (r) {
  3249. mutex_lock(&kvm->slots_lock);
  3250. kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
  3251. &vpic->dev_master);
  3252. kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
  3253. &vpic->dev_slave);
  3254. kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
  3255. &vpic->dev_eclr);
  3256. mutex_unlock(&kvm->slots_lock);
  3257. kfree(vpic);
  3258. goto create_irqchip_unlock;
  3259. }
  3260. } else
  3261. goto create_irqchip_unlock;
  3262. smp_wmb();
  3263. kvm->arch.vpic = vpic;
  3264. smp_wmb();
  3265. r = kvm_setup_default_irq_routing(kvm);
  3266. if (r) {
  3267. mutex_lock(&kvm->slots_lock);
  3268. mutex_lock(&kvm->irq_lock);
  3269. kvm_ioapic_destroy(kvm);
  3270. kvm_destroy_pic(kvm);
  3271. mutex_unlock(&kvm->irq_lock);
  3272. mutex_unlock(&kvm->slots_lock);
  3273. }
  3274. create_irqchip_unlock:
  3275. mutex_unlock(&kvm->lock);
  3276. break;
  3277. }
  3278. case KVM_CREATE_PIT:
  3279. u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
  3280. goto create_pit;
  3281. case KVM_CREATE_PIT2:
  3282. r = -EFAULT;
  3283. if (copy_from_user(&u.pit_config, argp,
  3284. sizeof(struct kvm_pit_config)))
  3285. goto out;
  3286. create_pit:
  3287. mutex_lock(&kvm->slots_lock);
  3288. r = -EEXIST;
  3289. if (kvm->arch.vpit)
  3290. goto create_pit_unlock;
  3291. r = -ENOMEM;
  3292. kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
  3293. if (kvm->arch.vpit)
  3294. r = 0;
  3295. create_pit_unlock:
  3296. mutex_unlock(&kvm->slots_lock);
  3297. break;
  3298. case KVM_GET_IRQCHIP: {
  3299. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  3300. struct kvm_irqchip *chip;
  3301. chip = memdup_user(argp, sizeof(*chip));
  3302. if (IS_ERR(chip)) {
  3303. r = PTR_ERR(chip);
  3304. goto out;
  3305. }
  3306. r = -ENXIO;
  3307. if (!irqchip_in_kernel(kvm))
  3308. goto get_irqchip_out;
  3309. r = kvm_vm_ioctl_get_irqchip(kvm, chip);
  3310. if (r)
  3311. goto get_irqchip_out;
  3312. r = -EFAULT;
  3313. if (copy_to_user(argp, chip, sizeof *chip))
  3314. goto get_irqchip_out;
  3315. r = 0;
  3316. get_irqchip_out:
  3317. kfree(chip);
  3318. break;
  3319. }
  3320. case KVM_SET_IRQCHIP: {
  3321. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  3322. struct kvm_irqchip *chip;
  3323. chip = memdup_user(argp, sizeof(*chip));
  3324. if (IS_ERR(chip)) {
  3325. r = PTR_ERR(chip);
  3326. goto out;
  3327. }
  3328. r = -ENXIO;
  3329. if (!irqchip_in_kernel(kvm))
  3330. goto set_irqchip_out;
  3331. r = kvm_vm_ioctl_set_irqchip(kvm, chip);
  3332. if (r)
  3333. goto set_irqchip_out;
  3334. r = 0;
  3335. set_irqchip_out:
  3336. kfree(chip);
  3337. break;
  3338. }
  3339. case KVM_GET_PIT: {
  3340. r = -EFAULT;
  3341. if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
  3342. goto out;
  3343. r = -ENXIO;
  3344. if (!kvm->arch.vpit)
  3345. goto out;
  3346. r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
  3347. if (r)
  3348. goto out;
  3349. r = -EFAULT;
  3350. if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
  3351. goto out;
  3352. r = 0;
  3353. break;
  3354. }
  3355. case KVM_SET_PIT: {
  3356. r = -EFAULT;
  3357. if (copy_from_user(&u.ps, argp, sizeof u.ps))
  3358. goto out;
  3359. r = -ENXIO;
  3360. if (!kvm->arch.vpit)
  3361. goto out;
  3362. r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
  3363. break;
  3364. }
  3365. case KVM_GET_PIT2: {
  3366. r = -ENXIO;
  3367. if (!kvm->arch.vpit)
  3368. goto out;
  3369. r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
  3370. if (r)
  3371. goto out;
  3372. r = -EFAULT;
  3373. if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
  3374. goto out;
  3375. r = 0;
  3376. break;
  3377. }
  3378. case KVM_SET_PIT2: {
  3379. r = -EFAULT;
  3380. if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
  3381. goto out;
  3382. r = -ENXIO;
  3383. if (!kvm->arch.vpit)
  3384. goto out;
  3385. r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
  3386. break;
  3387. }
  3388. case KVM_REINJECT_CONTROL: {
  3389. struct kvm_reinject_control control;
  3390. r = -EFAULT;
  3391. if (copy_from_user(&control, argp, sizeof(control)))
  3392. goto out;
  3393. r = kvm_vm_ioctl_reinject(kvm, &control);
  3394. break;
  3395. }
  3396. case KVM_XEN_HVM_CONFIG: {
  3397. r = -EFAULT;
  3398. if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
  3399. sizeof(struct kvm_xen_hvm_config)))
  3400. goto out;
  3401. r = -EINVAL;
  3402. if (kvm->arch.xen_hvm_config.flags)
  3403. goto out;
  3404. r = 0;
  3405. break;
  3406. }
  3407. case KVM_SET_CLOCK: {
  3408. struct kvm_clock_data user_ns;
  3409. u64 now_ns;
  3410. s64 delta;
  3411. r = -EFAULT;
  3412. if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
  3413. goto out;
  3414. r = -EINVAL;
  3415. if (user_ns.flags)
  3416. goto out;
  3417. r = 0;
  3418. local_irq_disable();
  3419. now_ns = get_kernel_ns();
  3420. delta = user_ns.clock - now_ns;
  3421. local_irq_enable();
  3422. kvm->arch.kvmclock_offset = delta;
  3423. kvm_gen_update_masterclock(kvm);
  3424. break;
  3425. }
  3426. case KVM_GET_CLOCK: {
  3427. struct kvm_clock_data user_ns;
  3428. u64 now_ns;
  3429. local_irq_disable();
  3430. now_ns = get_kernel_ns();
  3431. user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
  3432. local_irq_enable();
  3433. user_ns.flags = 0;
  3434. memset(&user_ns.pad, 0, sizeof(user_ns.pad));
  3435. r = -EFAULT;
  3436. if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
  3437. goto out;
  3438. r = 0;
  3439. break;
  3440. }
  3441. default:
  3442. ;
  3443. }
  3444. out:
  3445. return r;
  3446. }
  3447. static void kvm_init_msr_list(void)
  3448. {
  3449. u32 dummy[2];
  3450. unsigned i, j;
  3451. /* skip the first msrs in the list. KVM-specific */
  3452. for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
  3453. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  3454. continue;
  3455. /*
  3456. * Even MSRs that are valid in the host may not be exposed
  3457. * to the guests in some cases. We could work around this
  3458. * in VMX with the generic MSR save/load machinery, but it
  3459. * is not really worthwhile since it will really only
  3460. * happen with nested virtualization.
  3461. */
  3462. switch (msrs_to_save[i]) {
  3463. case MSR_IA32_BNDCFGS:
  3464. if (!kvm_x86_ops->mpx_supported())
  3465. continue;
  3466. break;
  3467. default:
  3468. break;
  3469. }
  3470. if (j < i)
  3471. msrs_to_save[j] = msrs_to_save[i];
  3472. j++;
  3473. }
  3474. num_msrs_to_save = j;
  3475. }
  3476. static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
  3477. const void *v)
  3478. {
  3479. int handled = 0;
  3480. int n;
  3481. do {
  3482. n = min(len, 8);
  3483. if (!(vcpu->arch.apic &&
  3484. !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v))
  3485. && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
  3486. break;
  3487. handled += n;
  3488. addr += n;
  3489. len -= n;
  3490. v += n;
  3491. } while (len);
  3492. return handled;
  3493. }
  3494. static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
  3495. {
  3496. int handled = 0;
  3497. int n;
  3498. do {
  3499. n = min(len, 8);
  3500. if (!(vcpu->arch.apic &&
  3501. !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v))
  3502. && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
  3503. break;
  3504. trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
  3505. handled += n;
  3506. addr += n;
  3507. len -= n;
  3508. v += n;
  3509. } while (len);
  3510. return handled;
  3511. }
  3512. static void kvm_set_segment(struct kvm_vcpu *vcpu,
  3513. struct kvm_segment *var, int seg)
  3514. {
  3515. kvm_x86_ops->set_segment(vcpu, var, seg);
  3516. }
  3517. void kvm_get_segment(struct kvm_vcpu *vcpu,
  3518. struct kvm_segment *var, int seg)
  3519. {
  3520. kvm_x86_ops->get_segment(vcpu, var, seg);
  3521. }
  3522. gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
  3523. {
  3524. gpa_t t_gpa;
  3525. struct x86_exception exception;
  3526. BUG_ON(!mmu_is_nested(vcpu));
  3527. /* NPT walks are always user-walks */
  3528. access |= PFERR_USER_MASK;
  3529. t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception);
  3530. return t_gpa;
  3531. }
  3532. gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
  3533. struct x86_exception *exception)
  3534. {
  3535. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  3536. return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
  3537. }
  3538. gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
  3539. struct x86_exception *exception)
  3540. {
  3541. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  3542. access |= PFERR_FETCH_MASK;
  3543. return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
  3544. }
  3545. gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
  3546. struct x86_exception *exception)
  3547. {
  3548. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  3549. access |= PFERR_WRITE_MASK;
  3550. return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
  3551. }
  3552. /* uses this to access any guest's mapped memory without checking CPL */
  3553. gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
  3554. struct x86_exception *exception)
  3555. {
  3556. return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
  3557. }
  3558. static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
  3559. struct kvm_vcpu *vcpu, u32 access,
  3560. struct x86_exception *exception)
  3561. {
  3562. void *data = val;
  3563. int r = X86EMUL_CONTINUE;
  3564. while (bytes) {
  3565. gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
  3566. exception);
  3567. unsigned offset = addr & (PAGE_SIZE-1);
  3568. unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
  3569. int ret;
  3570. if (gpa == UNMAPPED_GVA)
  3571. return X86EMUL_PROPAGATE_FAULT;
  3572. ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
  3573. if (ret < 0) {
  3574. r = X86EMUL_IO_NEEDED;
  3575. goto out;
  3576. }
  3577. bytes -= toread;
  3578. data += toread;
  3579. addr += toread;
  3580. }
  3581. out:
  3582. return r;
  3583. }
  3584. /* used for instruction fetching */
  3585. static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
  3586. gva_t addr, void *val, unsigned int bytes,
  3587. struct x86_exception *exception)
  3588. {
  3589. struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
  3590. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  3591. return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
  3592. access | PFERR_FETCH_MASK,
  3593. exception);
  3594. }
  3595. int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
  3596. gva_t addr, void *val, unsigned int bytes,
  3597. struct x86_exception *exception)
  3598. {
  3599. struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
  3600. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  3601. return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
  3602. exception);
  3603. }
  3604. EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
  3605. static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
  3606. gva_t addr, void *val, unsigned int bytes,
  3607. struct x86_exception *exception)
  3608. {
  3609. struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
  3610. return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
  3611. }
  3612. int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
  3613. gva_t addr, void *val,
  3614. unsigned int bytes,
  3615. struct x86_exception *exception)
  3616. {
  3617. struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
  3618. void *data = val;
  3619. int r = X86EMUL_CONTINUE;
  3620. while (bytes) {
  3621. gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
  3622. PFERR_WRITE_MASK,
  3623. exception);
  3624. unsigned offset = addr & (PAGE_SIZE-1);
  3625. unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
  3626. int ret;
  3627. if (gpa == UNMAPPED_GVA)
  3628. return X86EMUL_PROPAGATE_FAULT;
  3629. ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
  3630. if (ret < 0) {
  3631. r = X86EMUL_IO_NEEDED;
  3632. goto out;
  3633. }
  3634. bytes -= towrite;
  3635. data += towrite;
  3636. addr += towrite;
  3637. }
  3638. out:
  3639. return r;
  3640. }
  3641. EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
  3642. static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
  3643. gpa_t *gpa, struct x86_exception *exception,
  3644. bool write)
  3645. {
  3646. u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
  3647. | (write ? PFERR_WRITE_MASK : 0);
  3648. if (vcpu_match_mmio_gva(vcpu, gva)
  3649. && !permission_fault(vcpu, vcpu->arch.walk_mmu,
  3650. vcpu->arch.access, access)) {
  3651. *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
  3652. (gva & (PAGE_SIZE - 1));
  3653. trace_vcpu_match_mmio(gva, *gpa, write, false);
  3654. return 1;
  3655. }
  3656. *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
  3657. if (*gpa == UNMAPPED_GVA)
  3658. return -1;
  3659. /* For APIC access vmexit */
  3660. if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  3661. return 1;
  3662. if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
  3663. trace_vcpu_match_mmio(gva, *gpa, write, true);
  3664. return 1;
  3665. }
  3666. return 0;
  3667. }
  3668. int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  3669. const void *val, int bytes)
  3670. {
  3671. int ret;
  3672. ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
  3673. if (ret < 0)
  3674. return 0;
  3675. kvm_mmu_pte_write(vcpu, gpa, val, bytes);
  3676. return 1;
  3677. }
  3678. struct read_write_emulator_ops {
  3679. int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
  3680. int bytes);
  3681. int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
  3682. void *val, int bytes);
  3683. int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
  3684. int bytes, void *val);
  3685. int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
  3686. void *val, int bytes);
  3687. bool write;
  3688. };
  3689. static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
  3690. {
  3691. if (vcpu->mmio_read_completed) {
  3692. trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
  3693. vcpu->mmio_fragments[0].gpa, *(u64 *)val);
  3694. vcpu->mmio_read_completed = 0;
  3695. return 1;
  3696. }
  3697. return 0;
  3698. }
  3699. static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
  3700. void *val, int bytes)
  3701. {
  3702. return !kvm_read_guest(vcpu->kvm, gpa, val, bytes);
  3703. }
  3704. static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
  3705. void *val, int bytes)
  3706. {
  3707. return emulator_write_phys(vcpu, gpa, val, bytes);
  3708. }
  3709. static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
  3710. {
  3711. trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
  3712. return vcpu_mmio_write(vcpu, gpa, bytes, val);
  3713. }
  3714. static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
  3715. void *val, int bytes)
  3716. {
  3717. trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
  3718. return X86EMUL_IO_NEEDED;
  3719. }
  3720. static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
  3721. void *val, int bytes)
  3722. {
  3723. struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
  3724. memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
  3725. return X86EMUL_CONTINUE;
  3726. }
  3727. static const struct read_write_emulator_ops read_emultor = {
  3728. .read_write_prepare = read_prepare,
  3729. .read_write_emulate = read_emulate,
  3730. .read_write_mmio = vcpu_mmio_read,
  3731. .read_write_exit_mmio = read_exit_mmio,
  3732. };
  3733. static const struct read_write_emulator_ops write_emultor = {
  3734. .read_write_emulate = write_emulate,
  3735. .read_write_mmio = write_mmio,
  3736. .read_write_exit_mmio = write_exit_mmio,
  3737. .write = true,
  3738. };
  3739. static int emulator_read_write_onepage(unsigned long addr, void *val,
  3740. unsigned int bytes,
  3741. struct x86_exception *exception,
  3742. struct kvm_vcpu *vcpu,
  3743. const struct read_write_emulator_ops *ops)
  3744. {
  3745. gpa_t gpa;
  3746. int handled, ret;
  3747. bool write = ops->write;
  3748. struct kvm_mmio_fragment *frag;
  3749. ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
  3750. if (ret < 0)
  3751. return X86EMUL_PROPAGATE_FAULT;
  3752. /* For APIC access vmexit */
  3753. if (ret)
  3754. goto mmio;
  3755. if (ops->read_write_emulate(vcpu, gpa, val, bytes))
  3756. return X86EMUL_CONTINUE;
  3757. mmio:
  3758. /*
  3759. * Is this MMIO handled locally?
  3760. */
  3761. handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
  3762. if (handled == bytes)
  3763. return X86EMUL_CONTINUE;
  3764. gpa += handled;
  3765. bytes -= handled;
  3766. val += handled;
  3767. WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
  3768. frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
  3769. frag->gpa = gpa;
  3770. frag->data = val;
  3771. frag->len = bytes;
  3772. return X86EMUL_CONTINUE;
  3773. }
  3774. int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr,
  3775. void *val, unsigned int bytes,
  3776. struct x86_exception *exception,
  3777. const struct read_write_emulator_ops *ops)
  3778. {
  3779. struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
  3780. gpa_t gpa;
  3781. int rc;
  3782. if (ops->read_write_prepare &&
  3783. ops->read_write_prepare(vcpu, val, bytes))
  3784. return X86EMUL_CONTINUE;
  3785. vcpu->mmio_nr_fragments = 0;
  3786. /* Crossing a page boundary? */
  3787. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  3788. int now;
  3789. now = -addr & ~PAGE_MASK;
  3790. rc = emulator_read_write_onepage(addr, val, now, exception,
  3791. vcpu, ops);
  3792. if (rc != X86EMUL_CONTINUE)
  3793. return rc;
  3794. addr += now;
  3795. val += now;
  3796. bytes -= now;
  3797. }
  3798. rc = emulator_read_write_onepage(addr, val, bytes, exception,
  3799. vcpu, ops);
  3800. if (rc != X86EMUL_CONTINUE)
  3801. return rc;
  3802. if (!vcpu->mmio_nr_fragments)
  3803. return rc;
  3804. gpa = vcpu->mmio_fragments[0].gpa;
  3805. vcpu->mmio_needed = 1;
  3806. vcpu->mmio_cur_fragment = 0;
  3807. vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
  3808. vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
  3809. vcpu->run->exit_reason = KVM_EXIT_MMIO;
  3810. vcpu->run->mmio.phys_addr = gpa;
  3811. return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
  3812. }
  3813. static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
  3814. unsigned long addr,
  3815. void *val,
  3816. unsigned int bytes,
  3817. struct x86_exception *exception)
  3818. {
  3819. return emulator_read_write(ctxt, addr, val, bytes,
  3820. exception, &read_emultor);
  3821. }
  3822. int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
  3823. unsigned long addr,
  3824. const void *val,
  3825. unsigned int bytes,
  3826. struct x86_exception *exception)
  3827. {
  3828. return emulator_read_write(ctxt, addr, (void *)val, bytes,
  3829. exception, &write_emultor);
  3830. }
  3831. #define CMPXCHG_TYPE(t, ptr, old, new) \
  3832. (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
  3833. #ifdef CONFIG_X86_64
  3834. # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
  3835. #else
  3836. # define CMPXCHG64(ptr, old, new) \
  3837. (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
  3838. #endif
  3839. static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
  3840. unsigned long addr,
  3841. const void *old,
  3842. const void *new,
  3843. unsigned int bytes,
  3844. struct x86_exception *exception)
  3845. {
  3846. struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
  3847. gpa_t gpa;
  3848. struct page *page;
  3849. char *kaddr;
  3850. bool exchanged;
  3851. /* guests cmpxchg8b have to be emulated atomically */
  3852. if (bytes > 8 || (bytes & (bytes - 1)))
  3853. goto emul_write;
  3854. gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
  3855. if (gpa == UNMAPPED_GVA ||
  3856. (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  3857. goto emul_write;
  3858. if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
  3859. goto emul_write;
  3860. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  3861. if (is_error_page(page))
  3862. goto emul_write;
  3863. kaddr = kmap_atomic(page);
  3864. kaddr += offset_in_page(gpa);
  3865. switch (bytes) {
  3866. case 1:
  3867. exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
  3868. break;
  3869. case 2:
  3870. exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
  3871. break;
  3872. case 4:
  3873. exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
  3874. break;
  3875. case 8:
  3876. exchanged = CMPXCHG64(kaddr, old, new);
  3877. break;
  3878. default:
  3879. BUG();
  3880. }
  3881. kunmap_atomic(kaddr);
  3882. kvm_release_page_dirty(page);
  3883. if (!exchanged)
  3884. return X86EMUL_CMPXCHG_FAILED;
  3885. mark_page_dirty(vcpu->kvm, gpa >> PAGE_SHIFT);
  3886. kvm_mmu_pte_write(vcpu, gpa, new, bytes);
  3887. return X86EMUL_CONTINUE;
  3888. emul_write:
  3889. printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
  3890. return emulator_write_emulated(ctxt, addr, new, bytes, exception);
  3891. }
  3892. static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
  3893. {
  3894. /* TODO: String I/O for in kernel device */
  3895. int r;
  3896. if (vcpu->arch.pio.in)
  3897. r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
  3898. vcpu->arch.pio.size, pd);
  3899. else
  3900. r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
  3901. vcpu->arch.pio.port, vcpu->arch.pio.size,
  3902. pd);
  3903. return r;
  3904. }
  3905. static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
  3906. unsigned short port, void *val,
  3907. unsigned int count, bool in)
  3908. {
  3909. vcpu->arch.pio.port = port;
  3910. vcpu->arch.pio.in = in;
  3911. vcpu->arch.pio.count = count;
  3912. vcpu->arch.pio.size = size;
  3913. if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
  3914. vcpu->arch.pio.count = 0;
  3915. return 1;
  3916. }
  3917. vcpu->run->exit_reason = KVM_EXIT_IO;
  3918. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  3919. vcpu->run->io.size = size;
  3920. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  3921. vcpu->run->io.count = count;
  3922. vcpu->run->io.port = port;
  3923. return 0;
  3924. }
  3925. static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
  3926. int size, unsigned short port, void *val,
  3927. unsigned int count)
  3928. {
  3929. struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
  3930. int ret;
  3931. if (vcpu->arch.pio.count)
  3932. goto data_avail;
  3933. ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
  3934. if (ret) {
  3935. data_avail:
  3936. memcpy(val, vcpu->arch.pio_data, size * count);
  3937. trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
  3938. vcpu->arch.pio.count = 0;
  3939. return 1;
  3940. }
  3941. return 0;
  3942. }
  3943. static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
  3944. int size, unsigned short port,
  3945. const void *val, unsigned int count)
  3946. {
  3947. struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
  3948. memcpy(vcpu->arch.pio_data, val, size * count);
  3949. trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
  3950. return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
  3951. }
  3952. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  3953. {
  3954. return kvm_x86_ops->get_segment_base(vcpu, seg);
  3955. }
  3956. static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
  3957. {
  3958. kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
  3959. }
  3960. int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
  3961. {
  3962. if (!need_emulate_wbinvd(vcpu))
  3963. return X86EMUL_CONTINUE;
  3964. if (kvm_x86_ops->has_wbinvd_exit()) {
  3965. int cpu = get_cpu();
  3966. cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
  3967. smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
  3968. wbinvd_ipi, NULL, 1);
  3969. put_cpu();
  3970. cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
  3971. } else
  3972. wbinvd();
  3973. return X86EMUL_CONTINUE;
  3974. }
  3975. EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
  3976. static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
  3977. {
  3978. kvm_emulate_wbinvd(emul_to_vcpu(ctxt));
  3979. }
  3980. int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
  3981. {
  3982. return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
  3983. }
  3984. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  3985. {
  3986. return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
  3987. }
  3988. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  3989. {
  3990. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  3991. }
  3992. static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
  3993. {
  3994. struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
  3995. unsigned long value;
  3996. switch (cr) {
  3997. case 0:
  3998. value = kvm_read_cr0(vcpu);
  3999. break;
  4000. case 2:
  4001. value = vcpu->arch.cr2;
  4002. break;
  4003. case 3:
  4004. value = kvm_read_cr3(vcpu);
  4005. break;
  4006. case 4:
  4007. value = kvm_read_cr4(vcpu);
  4008. break;
  4009. case 8:
  4010. value = kvm_get_cr8(vcpu);
  4011. break;
  4012. default:
  4013. kvm_err("%s: unexpected cr %u\n", __func__, cr);
  4014. return 0;
  4015. }
  4016. return value;
  4017. }
  4018. static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
  4019. {
  4020. struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
  4021. int res = 0;
  4022. switch (cr) {
  4023. case 0:
  4024. res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
  4025. break;
  4026. case 2:
  4027. vcpu->arch.cr2 = val;
  4028. break;
  4029. case 3:
  4030. res = kvm_set_cr3(vcpu, val);
  4031. break;
  4032. case 4:
  4033. res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
  4034. break;
  4035. case 8:
  4036. res = kvm_set_cr8(vcpu, val);
  4037. break;
  4038. default:
  4039. kvm_err("%s: unexpected cr %u\n", __func__, cr);
  4040. res = -1;
  4041. }
  4042. return res;
  4043. }
  4044. static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
  4045. {
  4046. return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
  4047. }
  4048. static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
  4049. {
  4050. kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
  4051. }
  4052. static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
  4053. {
  4054. kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
  4055. }
  4056. static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
  4057. {
  4058. kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
  4059. }
  4060. static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
  4061. {
  4062. kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
  4063. }
  4064. static unsigned long emulator_get_cached_segment_base(
  4065. struct x86_emulate_ctxt *ctxt, int seg)
  4066. {
  4067. return get_segment_base(emul_to_vcpu(ctxt), seg);
  4068. }
  4069. static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
  4070. struct desc_struct *desc, u32 *base3,
  4071. int seg)
  4072. {
  4073. struct kvm_segment var;
  4074. kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
  4075. *selector = var.selector;
  4076. if (var.unusable) {
  4077. memset(desc, 0, sizeof(*desc));
  4078. return false;
  4079. }
  4080. if (var.g)
  4081. var.limit >>= 12;
  4082. set_desc_limit(desc, var.limit);
  4083. set_desc_base(desc, (unsigned long)var.base);
  4084. #ifdef CONFIG_X86_64
  4085. if (base3)
  4086. *base3 = var.base >> 32;
  4087. #endif
  4088. desc->type = var.type;
  4089. desc->s = var.s;
  4090. desc->dpl = var.dpl;
  4091. desc->p = var.present;
  4092. desc->avl = var.avl;
  4093. desc->l = var.l;
  4094. desc->d = var.db;
  4095. desc->g = var.g;
  4096. return true;
  4097. }
  4098. static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
  4099. struct desc_struct *desc, u32 base3,
  4100. int seg)
  4101. {
  4102. struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
  4103. struct kvm_segment var;
  4104. var.selector = selector;
  4105. var.base = get_desc_base(desc);
  4106. #ifdef CONFIG_X86_64
  4107. var.base |= ((u64)base3) << 32;
  4108. #endif
  4109. var.limit = get_desc_limit(desc);
  4110. if (desc->g)
  4111. var.limit = (var.limit << 12) | 0xfff;
  4112. var.type = desc->type;
  4113. var.present = desc->p;
  4114. var.dpl = desc->dpl;
  4115. var.db = desc->d;
  4116. var.s = desc->s;
  4117. var.l = desc->l;
  4118. var.g = desc->g;
  4119. var.avl = desc->avl;
  4120. var.present = desc->p;
  4121. var.unusable = !var.present;
  4122. var.padding = 0;
  4123. kvm_set_segment(vcpu, &var, seg);
  4124. return;
  4125. }
  4126. static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
  4127. u32 msr_index, u64 *pdata)
  4128. {
  4129. return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
  4130. }
  4131. static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
  4132. u32 msr_index, u64 data)
  4133. {
  4134. struct msr_data msr;
  4135. msr.data = data;
  4136. msr.index = msr_index;
  4137. msr.host_initiated = false;
  4138. return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
  4139. }
  4140. static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
  4141. u32 pmc, u64 *pdata)
  4142. {
  4143. return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata);
  4144. }
  4145. static void emulator_halt(struct x86_emulate_ctxt *ctxt)
  4146. {
  4147. emul_to_vcpu(ctxt)->arch.halt_request = 1;
  4148. }
  4149. static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
  4150. {
  4151. preempt_disable();
  4152. kvm_load_guest_fpu(emul_to_vcpu(ctxt));
  4153. /*
  4154. * CR0.TS may reference the host fpu state, not the guest fpu state,
  4155. * so it may be clear at this point.
  4156. */
  4157. clts();
  4158. }
  4159. static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
  4160. {
  4161. preempt_enable();
  4162. }
  4163. static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
  4164. struct x86_instruction_info *info,
  4165. enum x86_intercept_stage stage)
  4166. {
  4167. return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
  4168. }
  4169. static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
  4170. u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
  4171. {
  4172. kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
  4173. }
  4174. static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
  4175. {
  4176. return kvm_register_read(emul_to_vcpu(ctxt), reg);
  4177. }
  4178. static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
  4179. {
  4180. kvm_register_write(emul_to_vcpu(ctxt), reg, val);
  4181. }
  4182. static const struct x86_emulate_ops emulate_ops = {
  4183. .read_gpr = emulator_read_gpr,
  4184. .write_gpr = emulator_write_gpr,
  4185. .read_std = kvm_read_guest_virt_system,
  4186. .write_std = kvm_write_guest_virt_system,
  4187. .fetch = kvm_fetch_guest_virt,
  4188. .read_emulated = emulator_read_emulated,
  4189. .write_emulated = emulator_write_emulated,
  4190. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  4191. .invlpg = emulator_invlpg,
  4192. .pio_in_emulated = emulator_pio_in_emulated,
  4193. .pio_out_emulated = emulator_pio_out_emulated,
  4194. .get_segment = emulator_get_segment,
  4195. .set_segment = emulator_set_segment,
  4196. .get_cached_segment_base = emulator_get_cached_segment_base,
  4197. .get_gdt = emulator_get_gdt,
  4198. .get_idt = emulator_get_idt,
  4199. .set_gdt = emulator_set_gdt,
  4200. .set_idt = emulator_set_idt,
  4201. .get_cr = emulator_get_cr,
  4202. .set_cr = emulator_set_cr,
  4203. .cpl = emulator_get_cpl,
  4204. .get_dr = emulator_get_dr,
  4205. .set_dr = emulator_set_dr,
  4206. .set_msr = emulator_set_msr,
  4207. .get_msr = emulator_get_msr,
  4208. .read_pmc = emulator_read_pmc,
  4209. .halt = emulator_halt,
  4210. .wbinvd = emulator_wbinvd,
  4211. .fix_hypercall = emulator_fix_hypercall,
  4212. .get_fpu = emulator_get_fpu,
  4213. .put_fpu = emulator_put_fpu,
  4214. .intercept = emulator_intercept,
  4215. .get_cpuid = emulator_get_cpuid,
  4216. };
  4217. static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
  4218. {
  4219. u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
  4220. /*
  4221. * an sti; sti; sequence only disable interrupts for the first
  4222. * instruction. So, if the last instruction, be it emulated or
  4223. * not, left the system with the INT_STI flag enabled, it
  4224. * means that the last instruction is an sti. We should not
  4225. * leave the flag on in this case. The same goes for mov ss
  4226. */
  4227. if (!(int_shadow & mask))
  4228. kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
  4229. }
  4230. static void inject_emulated_exception(struct kvm_vcpu *vcpu)
  4231. {
  4232. struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
  4233. if (ctxt->exception.vector == PF_VECTOR)
  4234. kvm_propagate_fault(vcpu, &ctxt->exception);
  4235. else if (ctxt->exception.error_code_valid)
  4236. kvm_queue_exception_e(vcpu, ctxt->exception.vector,
  4237. ctxt->exception.error_code);
  4238. else
  4239. kvm_queue_exception(vcpu, ctxt->exception.vector);
  4240. }
  4241. static void init_decode_cache(struct x86_emulate_ctxt *ctxt)
  4242. {
  4243. memset(&ctxt->opcode_len, 0,
  4244. (void *)&ctxt->_regs - (void *)&ctxt->opcode_len);
  4245. ctxt->fetch.start = 0;
  4246. ctxt->fetch.end = 0;
  4247. ctxt->io_read.pos = 0;
  4248. ctxt->io_read.end = 0;
  4249. ctxt->mem_read.pos = 0;
  4250. ctxt->mem_read.end = 0;
  4251. }
  4252. static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
  4253. {
  4254. struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
  4255. int cs_db, cs_l;
  4256. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  4257. ctxt->eflags = kvm_get_rflags(vcpu);
  4258. ctxt->eip = kvm_rip_read(vcpu);
  4259. ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
  4260. (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
  4261. (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
  4262. cs_db ? X86EMUL_MODE_PROT32 :
  4263. X86EMUL_MODE_PROT16;
  4264. ctxt->guest_mode = is_guest_mode(vcpu);
  4265. init_decode_cache(ctxt);
  4266. vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
  4267. }
  4268. int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
  4269. {
  4270. struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
  4271. int ret;
  4272. init_emulate_ctxt(vcpu);
  4273. ctxt->op_bytes = 2;
  4274. ctxt->ad_bytes = 2;
  4275. ctxt->_eip = ctxt->eip + inc_eip;
  4276. ret = emulate_int_real(ctxt, irq);
  4277. if (ret != X86EMUL_CONTINUE)
  4278. return EMULATE_FAIL;
  4279. ctxt->eip = ctxt->_eip;
  4280. kvm_rip_write(vcpu, ctxt->eip);
  4281. kvm_set_rflags(vcpu, ctxt->eflags);
  4282. if (irq == NMI_VECTOR)
  4283. vcpu->arch.nmi_pending = 0;
  4284. else
  4285. vcpu->arch.interrupt.pending = false;
  4286. return EMULATE_DONE;
  4287. }
  4288. EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
  4289. static int handle_emulation_failure(struct kvm_vcpu *vcpu)
  4290. {
  4291. int r = EMULATE_DONE;
  4292. ++vcpu->stat.insn_emulation_fail;
  4293. trace_kvm_emulate_insn_failed(vcpu);
  4294. if (!is_guest_mode(vcpu)) {
  4295. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  4296. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
  4297. vcpu->run->internal.ndata = 0;
  4298. r = EMULATE_FAIL;
  4299. }
  4300. kvm_queue_exception(vcpu, UD_VECTOR);
  4301. return r;
  4302. }
  4303. static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
  4304. bool write_fault_to_shadow_pgtable,
  4305. int emulation_type)
  4306. {
  4307. gpa_t gpa = cr2;
  4308. pfn_t pfn;
  4309. if (emulation_type & EMULTYPE_NO_REEXECUTE)
  4310. return false;
  4311. if (!vcpu->arch.mmu.direct_map) {
  4312. /*
  4313. * Write permission should be allowed since only
  4314. * write access need to be emulated.
  4315. */
  4316. gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
  4317. /*
  4318. * If the mapping is invalid in guest, let cpu retry
  4319. * it to generate fault.
  4320. */
  4321. if (gpa == UNMAPPED_GVA)
  4322. return true;
  4323. }
  4324. /*
  4325. * Do not retry the unhandleable instruction if it faults on the
  4326. * readonly host memory, otherwise it will goto a infinite loop:
  4327. * retry instruction -> write #PF -> emulation fail -> retry
  4328. * instruction -> ...
  4329. */
  4330. pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
  4331. /*
  4332. * If the instruction failed on the error pfn, it can not be fixed,
  4333. * report the error to userspace.
  4334. */
  4335. if (is_error_noslot_pfn(pfn))
  4336. return false;
  4337. kvm_release_pfn_clean(pfn);
  4338. /* The instructions are well-emulated on direct mmu. */
  4339. if (vcpu->arch.mmu.direct_map) {
  4340. unsigned int indirect_shadow_pages;
  4341. spin_lock(&vcpu->kvm->mmu_lock);
  4342. indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
  4343. spin_unlock(&vcpu->kvm->mmu_lock);
  4344. if (indirect_shadow_pages)
  4345. kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
  4346. return true;
  4347. }
  4348. /*
  4349. * if emulation was due to access to shadowed page table
  4350. * and it failed try to unshadow page and re-enter the
  4351. * guest to let CPU execute the instruction.
  4352. */
  4353. kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
  4354. /*
  4355. * If the access faults on its page table, it can not
  4356. * be fixed by unprotecting shadow page and it should
  4357. * be reported to userspace.
  4358. */
  4359. return !write_fault_to_shadow_pgtable;
  4360. }
  4361. static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
  4362. unsigned long cr2, int emulation_type)
  4363. {
  4364. struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
  4365. unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
  4366. last_retry_eip = vcpu->arch.last_retry_eip;
  4367. last_retry_addr = vcpu->arch.last_retry_addr;
  4368. /*
  4369. * If the emulation is caused by #PF and it is non-page_table
  4370. * writing instruction, it means the VM-EXIT is caused by shadow
  4371. * page protected, we can zap the shadow page and retry this
  4372. * instruction directly.
  4373. *
  4374. * Note: if the guest uses a non-page-table modifying instruction
  4375. * on the PDE that points to the instruction, then we will unmap
  4376. * the instruction and go to an infinite loop. So, we cache the
  4377. * last retried eip and the last fault address, if we meet the eip
  4378. * and the address again, we can break out of the potential infinite
  4379. * loop.
  4380. */
  4381. vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
  4382. if (!(emulation_type & EMULTYPE_RETRY))
  4383. return false;
  4384. if (x86_page_table_writing_insn(ctxt))
  4385. return false;
  4386. if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
  4387. return false;
  4388. vcpu->arch.last_retry_eip = ctxt->eip;
  4389. vcpu->arch.last_retry_addr = cr2;
  4390. if (!vcpu->arch.mmu.direct_map)
  4391. gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
  4392. kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
  4393. return true;
  4394. }
  4395. static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
  4396. static int complete_emulated_pio(struct kvm_vcpu *vcpu);
  4397. static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
  4398. unsigned long *db)
  4399. {
  4400. u32 dr6 = 0;
  4401. int i;
  4402. u32 enable, rwlen;
  4403. enable = dr7;
  4404. rwlen = dr7 >> 16;
  4405. for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
  4406. if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
  4407. dr6 |= (1 << i);
  4408. return dr6;
  4409. }
  4410. static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, int *r)
  4411. {
  4412. struct kvm_run *kvm_run = vcpu->run;
  4413. /*
  4414. * Use the "raw" value to see if TF was passed to the processor.
  4415. * Note that the new value of the flags has not been saved yet.
  4416. *
  4417. * This is correct even for TF set by the guest, because "the
  4418. * processor will not generate this exception after the instruction
  4419. * that sets the TF flag".
  4420. */
  4421. unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
  4422. if (unlikely(rflags & X86_EFLAGS_TF)) {
  4423. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
  4424. kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1;
  4425. kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
  4426. kvm_run->debug.arch.exception = DB_VECTOR;
  4427. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  4428. *r = EMULATE_USER_EXIT;
  4429. } else {
  4430. vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF;
  4431. /*
  4432. * "Certain debug exceptions may clear bit 0-3. The
  4433. * remaining contents of the DR6 register are never
  4434. * cleared by the processor".
  4435. */
  4436. vcpu->arch.dr6 &= ~15;
  4437. vcpu->arch.dr6 |= DR6_BS;
  4438. kvm_queue_exception(vcpu, DB_VECTOR);
  4439. }
  4440. }
  4441. }
  4442. static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
  4443. {
  4444. struct kvm_run *kvm_run = vcpu->run;
  4445. unsigned long eip = vcpu->arch.emulate_ctxt.eip;
  4446. u32 dr6 = 0;
  4447. if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
  4448. (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
  4449. dr6 = kvm_vcpu_check_hw_bp(eip, 0,
  4450. vcpu->arch.guest_debug_dr7,
  4451. vcpu->arch.eff_db);
  4452. if (dr6 != 0) {
  4453. kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
  4454. kvm_run->debug.arch.pc = kvm_rip_read(vcpu) +
  4455. get_segment_base(vcpu, VCPU_SREG_CS);
  4456. kvm_run->debug.arch.exception = DB_VECTOR;
  4457. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  4458. *r = EMULATE_USER_EXIT;
  4459. return true;
  4460. }
  4461. }
  4462. if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK)) {
  4463. dr6 = kvm_vcpu_check_hw_bp(eip, 0,
  4464. vcpu->arch.dr7,
  4465. vcpu->arch.db);
  4466. if (dr6 != 0) {
  4467. vcpu->arch.dr6 &= ~15;
  4468. vcpu->arch.dr6 |= dr6;
  4469. kvm_queue_exception(vcpu, DB_VECTOR);
  4470. *r = EMULATE_DONE;
  4471. return true;
  4472. }
  4473. }
  4474. return false;
  4475. }
  4476. int x86_emulate_instruction(struct kvm_vcpu *vcpu,
  4477. unsigned long cr2,
  4478. int emulation_type,
  4479. void *insn,
  4480. int insn_len)
  4481. {
  4482. int r;
  4483. struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
  4484. bool writeback = true;
  4485. bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
  4486. /*
  4487. * Clear write_fault_to_shadow_pgtable here to ensure it is
  4488. * never reused.
  4489. */
  4490. vcpu->arch.write_fault_to_shadow_pgtable = false;
  4491. kvm_clear_exception_queue(vcpu);
  4492. if (!(emulation_type & EMULTYPE_NO_DECODE)) {
  4493. init_emulate_ctxt(vcpu);
  4494. /*
  4495. * We will reenter on the same instruction since
  4496. * we do not set complete_userspace_io. This does not
  4497. * handle watchpoints yet, those would be handled in
  4498. * the emulate_ops.
  4499. */
  4500. if (kvm_vcpu_check_breakpoint(vcpu, &r))
  4501. return r;
  4502. ctxt->interruptibility = 0;
  4503. ctxt->have_exception = false;
  4504. ctxt->perm_ok = false;
  4505. ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
  4506. r = x86_decode_insn(ctxt, insn, insn_len);
  4507. trace_kvm_emulate_insn_start(vcpu);
  4508. ++vcpu->stat.insn_emulation;
  4509. if (r != EMULATION_OK) {
  4510. if (emulation_type & EMULTYPE_TRAP_UD)
  4511. return EMULATE_FAIL;
  4512. if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
  4513. emulation_type))
  4514. return EMULATE_DONE;
  4515. if (emulation_type & EMULTYPE_SKIP)
  4516. return EMULATE_FAIL;
  4517. return handle_emulation_failure(vcpu);
  4518. }
  4519. }
  4520. if (emulation_type & EMULTYPE_SKIP) {
  4521. kvm_rip_write(vcpu, ctxt->_eip);
  4522. return EMULATE_DONE;
  4523. }
  4524. if (retry_instruction(ctxt, cr2, emulation_type))
  4525. return EMULATE_DONE;
  4526. /* this is needed for vmware backdoor interface to work since it
  4527. changes registers values during IO operation */
  4528. if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
  4529. vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
  4530. emulator_invalidate_register_cache(ctxt);
  4531. }
  4532. restart:
  4533. r = x86_emulate_insn(ctxt);
  4534. if (r == EMULATION_INTERCEPTED)
  4535. return EMULATE_DONE;
  4536. if (r == EMULATION_FAILED) {
  4537. if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
  4538. emulation_type))
  4539. return EMULATE_DONE;
  4540. return handle_emulation_failure(vcpu);
  4541. }
  4542. if (ctxt->have_exception) {
  4543. inject_emulated_exception(vcpu);
  4544. r = EMULATE_DONE;
  4545. } else if (vcpu->arch.pio.count) {
  4546. if (!vcpu->arch.pio.in) {
  4547. /* FIXME: return into emulator if single-stepping. */
  4548. vcpu->arch.pio.count = 0;
  4549. } else {
  4550. writeback = false;
  4551. vcpu->arch.complete_userspace_io = complete_emulated_pio;
  4552. }
  4553. r = EMULATE_USER_EXIT;
  4554. } else if (vcpu->mmio_needed) {
  4555. if (!vcpu->mmio_is_write)
  4556. writeback = false;
  4557. r = EMULATE_USER_EXIT;
  4558. vcpu->arch.complete_userspace_io = complete_emulated_mmio;
  4559. } else if (r == EMULATION_RESTART)
  4560. goto restart;
  4561. else
  4562. r = EMULATE_DONE;
  4563. if (writeback) {
  4564. toggle_interruptibility(vcpu, ctxt->interruptibility);
  4565. kvm_make_request(KVM_REQ_EVENT, vcpu);
  4566. vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
  4567. kvm_rip_write(vcpu, ctxt->eip);
  4568. if (r == EMULATE_DONE)
  4569. kvm_vcpu_check_singlestep(vcpu, &r);
  4570. kvm_set_rflags(vcpu, ctxt->eflags);
  4571. } else
  4572. vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
  4573. return r;
  4574. }
  4575. EXPORT_SYMBOL_GPL(x86_emulate_instruction);
  4576. int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
  4577. {
  4578. unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
  4579. int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
  4580. size, port, &val, 1);
  4581. /* do not return to emulator after return from userspace */
  4582. vcpu->arch.pio.count = 0;
  4583. return ret;
  4584. }
  4585. EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
  4586. static void tsc_bad(void *info)
  4587. {
  4588. __this_cpu_write(cpu_tsc_khz, 0);
  4589. }
  4590. static void tsc_khz_changed(void *data)
  4591. {
  4592. struct cpufreq_freqs *freq = data;
  4593. unsigned long khz = 0;
  4594. if (data)
  4595. khz = freq->new;
  4596. else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  4597. khz = cpufreq_quick_get(raw_smp_processor_id());
  4598. if (!khz)
  4599. khz = tsc_khz;
  4600. __this_cpu_write(cpu_tsc_khz, khz);
  4601. }
  4602. static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
  4603. void *data)
  4604. {
  4605. struct cpufreq_freqs *freq = data;
  4606. struct kvm *kvm;
  4607. struct kvm_vcpu *vcpu;
  4608. int i, send_ipi = 0;
  4609. /*
  4610. * We allow guests to temporarily run on slowing clocks,
  4611. * provided we notify them after, or to run on accelerating
  4612. * clocks, provided we notify them before. Thus time never
  4613. * goes backwards.
  4614. *
  4615. * However, we have a problem. We can't atomically update
  4616. * the frequency of a given CPU from this function; it is
  4617. * merely a notifier, which can be called from any CPU.
  4618. * Changing the TSC frequency at arbitrary points in time
  4619. * requires a recomputation of local variables related to
  4620. * the TSC for each VCPU. We must flag these local variables
  4621. * to be updated and be sure the update takes place with the
  4622. * new frequency before any guests proceed.
  4623. *
  4624. * Unfortunately, the combination of hotplug CPU and frequency
  4625. * change creates an intractable locking scenario; the order
  4626. * of when these callouts happen is undefined with respect to
  4627. * CPU hotplug, and they can race with each other. As such,
  4628. * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
  4629. * undefined; you can actually have a CPU frequency change take
  4630. * place in between the computation of X and the setting of the
  4631. * variable. To protect against this problem, all updates of
  4632. * the per_cpu tsc_khz variable are done in an interrupt
  4633. * protected IPI, and all callers wishing to update the value
  4634. * must wait for a synchronous IPI to complete (which is trivial
  4635. * if the caller is on the CPU already). This establishes the
  4636. * necessary total order on variable updates.
  4637. *
  4638. * Note that because a guest time update may take place
  4639. * anytime after the setting of the VCPU's request bit, the
  4640. * correct TSC value must be set before the request. However,
  4641. * to ensure the update actually makes it to any guest which
  4642. * starts running in hardware virtualization between the set
  4643. * and the acquisition of the spinlock, we must also ping the
  4644. * CPU after setting the request bit.
  4645. *
  4646. */
  4647. if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
  4648. return 0;
  4649. if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
  4650. return 0;
  4651. smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
  4652. spin_lock(&kvm_lock);
  4653. list_for_each_entry(kvm, &vm_list, vm_list) {
  4654. kvm_for_each_vcpu(i, vcpu, kvm) {
  4655. if (vcpu->cpu != freq->cpu)
  4656. continue;
  4657. kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
  4658. if (vcpu->cpu != smp_processor_id())
  4659. send_ipi = 1;
  4660. }
  4661. }
  4662. spin_unlock(&kvm_lock);
  4663. if (freq->old < freq->new && send_ipi) {
  4664. /*
  4665. * We upscale the frequency. Must make the guest
  4666. * doesn't see old kvmclock values while running with
  4667. * the new frequency, otherwise we risk the guest sees
  4668. * time go backwards.
  4669. *
  4670. * In case we update the frequency for another cpu
  4671. * (which might be in guest context) send an interrupt
  4672. * to kick the cpu out of guest context. Next time
  4673. * guest context is entered kvmclock will be updated,
  4674. * so the guest will not see stale values.
  4675. */
  4676. smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
  4677. }
  4678. return 0;
  4679. }
  4680. static struct notifier_block kvmclock_cpufreq_notifier_block = {
  4681. .notifier_call = kvmclock_cpufreq_notifier
  4682. };
  4683. static int kvmclock_cpu_notifier(struct notifier_block *nfb,
  4684. unsigned long action, void *hcpu)
  4685. {
  4686. unsigned int cpu = (unsigned long)hcpu;
  4687. switch (action) {
  4688. case CPU_ONLINE:
  4689. case CPU_DOWN_FAILED:
  4690. smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
  4691. break;
  4692. case CPU_DOWN_PREPARE:
  4693. smp_call_function_single(cpu, tsc_bad, NULL, 1);
  4694. break;
  4695. }
  4696. return NOTIFY_OK;
  4697. }
  4698. static struct notifier_block kvmclock_cpu_notifier_block = {
  4699. .notifier_call = kvmclock_cpu_notifier,
  4700. .priority = -INT_MAX
  4701. };
  4702. static void kvm_timer_init(void)
  4703. {
  4704. int cpu;
  4705. max_tsc_khz = tsc_khz;
  4706. cpu_notifier_register_begin();
  4707. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
  4708. #ifdef CONFIG_CPU_FREQ
  4709. struct cpufreq_policy policy;
  4710. memset(&policy, 0, sizeof(policy));
  4711. cpu = get_cpu();
  4712. cpufreq_get_policy(&policy, cpu);
  4713. if (policy.cpuinfo.max_freq)
  4714. max_tsc_khz = policy.cpuinfo.max_freq;
  4715. put_cpu();
  4716. #endif
  4717. cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
  4718. CPUFREQ_TRANSITION_NOTIFIER);
  4719. }
  4720. pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
  4721. for_each_online_cpu(cpu)
  4722. smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
  4723. __register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
  4724. cpu_notifier_register_done();
  4725. }
  4726. static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
  4727. int kvm_is_in_guest(void)
  4728. {
  4729. return __this_cpu_read(current_vcpu) != NULL;
  4730. }
  4731. static int kvm_is_user_mode(void)
  4732. {
  4733. int user_mode = 3;
  4734. if (__this_cpu_read(current_vcpu))
  4735. user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
  4736. return user_mode != 0;
  4737. }
  4738. static unsigned long kvm_get_guest_ip(void)
  4739. {
  4740. unsigned long ip = 0;
  4741. if (__this_cpu_read(current_vcpu))
  4742. ip = kvm_rip_read(__this_cpu_read(current_vcpu));
  4743. return ip;
  4744. }
  4745. static struct perf_guest_info_callbacks kvm_guest_cbs = {
  4746. .is_in_guest = kvm_is_in_guest,
  4747. .is_user_mode = kvm_is_user_mode,
  4748. .get_guest_ip = kvm_get_guest_ip,
  4749. };
  4750. void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
  4751. {
  4752. __this_cpu_write(current_vcpu, vcpu);
  4753. }
  4754. EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
  4755. void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
  4756. {
  4757. __this_cpu_write(current_vcpu, NULL);
  4758. }
  4759. EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
  4760. static void kvm_set_mmio_spte_mask(void)
  4761. {
  4762. u64 mask;
  4763. int maxphyaddr = boot_cpu_data.x86_phys_bits;
  4764. /*
  4765. * Set the reserved bits and the present bit of an paging-structure
  4766. * entry to generate page fault with PFER.RSV = 1.
  4767. */
  4768. /* Mask the reserved physical address bits. */
  4769. mask = ((1ull << (51 - maxphyaddr + 1)) - 1) << maxphyaddr;
  4770. /* Bit 62 is always reserved for 32bit host. */
  4771. mask |= 0x3ull << 62;
  4772. /* Set the present bit. */
  4773. mask |= 1ull;
  4774. #ifdef CONFIG_X86_64
  4775. /*
  4776. * If reserved bit is not supported, clear the present bit to disable
  4777. * mmio page fault.
  4778. */
  4779. if (maxphyaddr == 52)
  4780. mask &= ~1ull;
  4781. #endif
  4782. kvm_mmu_set_mmio_spte_mask(mask);
  4783. }
  4784. #ifdef CONFIG_X86_64
  4785. static void pvclock_gtod_update_fn(struct work_struct *work)
  4786. {
  4787. struct kvm *kvm;
  4788. struct kvm_vcpu *vcpu;
  4789. int i;
  4790. spin_lock(&kvm_lock);
  4791. list_for_each_entry(kvm, &vm_list, vm_list)
  4792. kvm_for_each_vcpu(i, vcpu, kvm)
  4793. set_bit(KVM_REQ_MASTERCLOCK_UPDATE, &vcpu->requests);
  4794. atomic_set(&kvm_guest_has_master_clock, 0);
  4795. spin_unlock(&kvm_lock);
  4796. }
  4797. static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
  4798. /*
  4799. * Notification about pvclock gtod data update.
  4800. */
  4801. static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
  4802. void *priv)
  4803. {
  4804. struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
  4805. struct timekeeper *tk = priv;
  4806. update_pvclock_gtod(tk);
  4807. /* disable master clock if host does not trust, or does not
  4808. * use, TSC clocksource
  4809. */
  4810. if (gtod->clock.vclock_mode != VCLOCK_TSC &&
  4811. atomic_read(&kvm_guest_has_master_clock) != 0)
  4812. queue_work(system_long_wq, &pvclock_gtod_work);
  4813. return 0;
  4814. }
  4815. static struct notifier_block pvclock_gtod_notifier = {
  4816. .notifier_call = pvclock_gtod_notify,
  4817. };
  4818. #endif
  4819. int kvm_arch_init(void *opaque)
  4820. {
  4821. int r;
  4822. struct kvm_x86_ops *ops = opaque;
  4823. if (kvm_x86_ops) {
  4824. printk(KERN_ERR "kvm: already loaded the other module\n");
  4825. r = -EEXIST;
  4826. goto out;
  4827. }
  4828. if (!ops->cpu_has_kvm_support()) {
  4829. printk(KERN_ERR "kvm: no hardware support\n");
  4830. r = -EOPNOTSUPP;
  4831. goto out;
  4832. }
  4833. if (ops->disabled_by_bios()) {
  4834. printk(KERN_ERR "kvm: disabled by bios\n");
  4835. r = -EOPNOTSUPP;
  4836. goto out;
  4837. }
  4838. r = -ENOMEM;
  4839. shared_msrs = alloc_percpu(struct kvm_shared_msrs);
  4840. if (!shared_msrs) {
  4841. printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
  4842. goto out;
  4843. }
  4844. r = kvm_mmu_module_init();
  4845. if (r)
  4846. goto out_free_percpu;
  4847. kvm_set_mmio_spte_mask();
  4848. kvm_x86_ops = ops;
  4849. kvm_init_msr_list();
  4850. kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
  4851. PT_DIRTY_MASK, PT64_NX_MASK, 0);
  4852. kvm_timer_init();
  4853. perf_register_guest_info_callbacks(&kvm_guest_cbs);
  4854. if (cpu_has_xsave)
  4855. host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
  4856. kvm_lapic_init();
  4857. #ifdef CONFIG_X86_64
  4858. pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
  4859. #endif
  4860. return 0;
  4861. out_free_percpu:
  4862. free_percpu(shared_msrs);
  4863. out:
  4864. return r;
  4865. }
  4866. void kvm_arch_exit(void)
  4867. {
  4868. perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
  4869. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  4870. cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
  4871. CPUFREQ_TRANSITION_NOTIFIER);
  4872. unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
  4873. #ifdef CONFIG_X86_64
  4874. pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
  4875. #endif
  4876. kvm_x86_ops = NULL;
  4877. kvm_mmu_module_exit();
  4878. free_percpu(shared_msrs);
  4879. }
  4880. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  4881. {
  4882. ++vcpu->stat.halt_exits;
  4883. if (irqchip_in_kernel(vcpu->kvm)) {
  4884. vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
  4885. return 1;
  4886. } else {
  4887. vcpu->run->exit_reason = KVM_EXIT_HLT;
  4888. return 0;
  4889. }
  4890. }
  4891. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  4892. int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
  4893. {
  4894. u64 param, ingpa, outgpa, ret;
  4895. uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
  4896. bool fast, longmode;
  4897. int cs_db, cs_l;
  4898. /*
  4899. * hypercall generates UD from non zero cpl and real mode
  4900. * per HYPER-V spec
  4901. */
  4902. if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
  4903. kvm_queue_exception(vcpu, UD_VECTOR);
  4904. return 0;
  4905. }
  4906. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  4907. longmode = is_long_mode(vcpu) && cs_l == 1;
  4908. if (!longmode) {
  4909. param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
  4910. (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
  4911. ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
  4912. (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
  4913. outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
  4914. (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
  4915. }
  4916. #ifdef CONFIG_X86_64
  4917. else {
  4918. param = kvm_register_read(vcpu, VCPU_REGS_RCX);
  4919. ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
  4920. outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
  4921. }
  4922. #endif
  4923. code = param & 0xffff;
  4924. fast = (param >> 16) & 0x1;
  4925. rep_cnt = (param >> 32) & 0xfff;
  4926. rep_idx = (param >> 48) & 0xfff;
  4927. trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
  4928. switch (code) {
  4929. case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
  4930. kvm_vcpu_on_spin(vcpu);
  4931. break;
  4932. default:
  4933. res = HV_STATUS_INVALID_HYPERCALL_CODE;
  4934. break;
  4935. }
  4936. ret = res | (((u64)rep_done & 0xfff) << 32);
  4937. if (longmode) {
  4938. kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
  4939. } else {
  4940. kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
  4941. kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
  4942. }
  4943. return 1;
  4944. }
  4945. /*
  4946. * kvm_pv_kick_cpu_op: Kick a vcpu.
  4947. *
  4948. * @apicid - apicid of vcpu to be kicked.
  4949. */
  4950. static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
  4951. {
  4952. struct kvm_lapic_irq lapic_irq;
  4953. lapic_irq.shorthand = 0;
  4954. lapic_irq.dest_mode = 0;
  4955. lapic_irq.dest_id = apicid;
  4956. lapic_irq.delivery_mode = APIC_DM_REMRD;
  4957. kvm_irq_delivery_to_apic(kvm, 0, &lapic_irq, NULL);
  4958. }
  4959. int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
  4960. {
  4961. unsigned long nr, a0, a1, a2, a3, ret;
  4962. int r = 1;
  4963. if (kvm_hv_hypercall_enabled(vcpu->kvm))
  4964. return kvm_hv_hypercall(vcpu);
  4965. nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
  4966. a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
  4967. a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
  4968. a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
  4969. a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
  4970. trace_kvm_hypercall(nr, a0, a1, a2, a3);
  4971. if (!is_long_mode(vcpu)) {
  4972. nr &= 0xFFFFFFFF;
  4973. a0 &= 0xFFFFFFFF;
  4974. a1 &= 0xFFFFFFFF;
  4975. a2 &= 0xFFFFFFFF;
  4976. a3 &= 0xFFFFFFFF;
  4977. }
  4978. if (kvm_x86_ops->get_cpl(vcpu) != 0) {
  4979. ret = -KVM_EPERM;
  4980. goto out;
  4981. }
  4982. switch (nr) {
  4983. case KVM_HC_VAPIC_POLL_IRQ:
  4984. ret = 0;
  4985. break;
  4986. case KVM_HC_KICK_CPU:
  4987. kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
  4988. ret = 0;
  4989. break;
  4990. default:
  4991. ret = -KVM_ENOSYS;
  4992. break;
  4993. }
  4994. out:
  4995. kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
  4996. ++vcpu->stat.hypercalls;
  4997. return r;
  4998. }
  4999. EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
  5000. static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
  5001. {
  5002. struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
  5003. char instruction[3];
  5004. unsigned long rip = kvm_rip_read(vcpu);
  5005. kvm_x86_ops->patch_hypercall(vcpu, instruction);
  5006. return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
  5007. }
  5008. /*
  5009. * Check if userspace requested an interrupt window, and that the
  5010. * interrupt window is open.
  5011. *
  5012. * No need to exit to userspace if we already have an interrupt queued.
  5013. */
  5014. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
  5015. {
  5016. return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
  5017. vcpu->run->request_interrupt_window &&
  5018. kvm_arch_interrupt_allowed(vcpu));
  5019. }
  5020. static void post_kvm_run_save(struct kvm_vcpu *vcpu)
  5021. {
  5022. struct kvm_run *kvm_run = vcpu->run;
  5023. kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
  5024. kvm_run->cr8 = kvm_get_cr8(vcpu);
  5025. kvm_run->apic_base = kvm_get_apic_base(vcpu);
  5026. if (irqchip_in_kernel(vcpu->kvm))
  5027. kvm_run->ready_for_interrupt_injection = 1;
  5028. else
  5029. kvm_run->ready_for_interrupt_injection =
  5030. kvm_arch_interrupt_allowed(vcpu) &&
  5031. !kvm_cpu_has_interrupt(vcpu) &&
  5032. !kvm_event_needs_reinjection(vcpu);
  5033. }
  5034. static void update_cr8_intercept(struct kvm_vcpu *vcpu)
  5035. {
  5036. int max_irr, tpr;
  5037. if (!kvm_x86_ops->update_cr8_intercept)
  5038. return;
  5039. if (!vcpu->arch.apic)
  5040. return;
  5041. if (!vcpu->arch.apic->vapic_addr)
  5042. max_irr = kvm_lapic_find_highest_irr(vcpu);
  5043. else
  5044. max_irr = -1;
  5045. if (max_irr != -1)
  5046. max_irr >>= 4;
  5047. tpr = kvm_lapic_get_cr8(vcpu);
  5048. kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
  5049. }
  5050. static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
  5051. {
  5052. int r;
  5053. /* try to reinject previous events if any */
  5054. if (vcpu->arch.exception.pending) {
  5055. trace_kvm_inj_exception(vcpu->arch.exception.nr,
  5056. vcpu->arch.exception.has_error_code,
  5057. vcpu->arch.exception.error_code);
  5058. kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
  5059. vcpu->arch.exception.has_error_code,
  5060. vcpu->arch.exception.error_code,
  5061. vcpu->arch.exception.reinject);
  5062. return 0;
  5063. }
  5064. if (vcpu->arch.nmi_injected) {
  5065. kvm_x86_ops->set_nmi(vcpu);
  5066. return 0;
  5067. }
  5068. if (vcpu->arch.interrupt.pending) {
  5069. kvm_x86_ops->set_irq(vcpu);
  5070. return 0;
  5071. }
  5072. if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
  5073. r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
  5074. if (r != 0)
  5075. return r;
  5076. }
  5077. /* try to inject new event if pending */
  5078. if (vcpu->arch.nmi_pending) {
  5079. if (kvm_x86_ops->nmi_allowed(vcpu)) {
  5080. --vcpu->arch.nmi_pending;
  5081. vcpu->arch.nmi_injected = true;
  5082. kvm_x86_ops->set_nmi(vcpu);
  5083. }
  5084. } else if (kvm_cpu_has_injectable_intr(vcpu)) {
  5085. /*
  5086. * Because interrupts can be injected asynchronously, we are
  5087. * calling check_nested_events again here to avoid a race condition.
  5088. * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
  5089. * proposal and current concerns. Perhaps we should be setting
  5090. * KVM_REQ_EVENT only on certain events and not unconditionally?
  5091. */
  5092. if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
  5093. r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
  5094. if (r != 0)
  5095. return r;
  5096. }
  5097. if (kvm_x86_ops->interrupt_allowed(vcpu)) {
  5098. kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
  5099. false);
  5100. kvm_x86_ops->set_irq(vcpu);
  5101. }
  5102. }
  5103. return 0;
  5104. }
  5105. static void process_nmi(struct kvm_vcpu *vcpu)
  5106. {
  5107. unsigned limit = 2;
  5108. /*
  5109. * x86 is limited to one NMI running, and one NMI pending after it.
  5110. * If an NMI is already in progress, limit further NMIs to just one.
  5111. * Otherwise, allow two (and we'll inject the first one immediately).
  5112. */
  5113. if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
  5114. limit = 1;
  5115. vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
  5116. vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
  5117. kvm_make_request(KVM_REQ_EVENT, vcpu);
  5118. }
  5119. static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
  5120. {
  5121. u64 eoi_exit_bitmap[4];
  5122. u32 tmr[8];
  5123. if (!kvm_apic_hw_enabled(vcpu->arch.apic))
  5124. return;
  5125. memset(eoi_exit_bitmap, 0, 32);
  5126. memset(tmr, 0, 32);
  5127. kvm_ioapic_scan_entry(vcpu, eoi_exit_bitmap, tmr);
  5128. kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
  5129. kvm_apic_update_tmr(vcpu, tmr);
  5130. }
  5131. /*
  5132. * Returns 1 to let __vcpu_run() continue the guest execution loop without
  5133. * exiting to the userspace. Otherwise, the value will be returned to the
  5134. * userspace.
  5135. */
  5136. static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
  5137. {
  5138. int r;
  5139. bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
  5140. vcpu->run->request_interrupt_window;
  5141. bool req_immediate_exit = false;
  5142. if (vcpu->requests) {
  5143. if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
  5144. kvm_mmu_unload(vcpu);
  5145. if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
  5146. __kvm_migrate_timers(vcpu);
  5147. if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
  5148. kvm_gen_update_masterclock(vcpu->kvm);
  5149. if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
  5150. kvm_gen_kvmclock_update(vcpu);
  5151. if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
  5152. r = kvm_guest_time_update(vcpu);
  5153. if (unlikely(r))
  5154. goto out;
  5155. }
  5156. if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
  5157. kvm_mmu_sync_roots(vcpu);
  5158. if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
  5159. kvm_x86_ops->tlb_flush(vcpu);
  5160. if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
  5161. vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
  5162. r = 0;
  5163. goto out;
  5164. }
  5165. if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
  5166. vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
  5167. r = 0;
  5168. goto out;
  5169. }
  5170. if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
  5171. vcpu->fpu_active = 0;
  5172. kvm_x86_ops->fpu_deactivate(vcpu);
  5173. }
  5174. if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
  5175. /* Page is swapped out. Do synthetic halt */
  5176. vcpu->arch.apf.halted = true;
  5177. r = 1;
  5178. goto out;
  5179. }
  5180. if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
  5181. record_steal_time(vcpu);
  5182. if (kvm_check_request(KVM_REQ_NMI, vcpu))
  5183. process_nmi(vcpu);
  5184. if (kvm_check_request(KVM_REQ_PMU, vcpu))
  5185. kvm_handle_pmu_event(vcpu);
  5186. if (kvm_check_request(KVM_REQ_PMI, vcpu))
  5187. kvm_deliver_pmi(vcpu);
  5188. if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
  5189. vcpu_scan_ioapic(vcpu);
  5190. }
  5191. if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
  5192. kvm_apic_accept_events(vcpu);
  5193. if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
  5194. r = 1;
  5195. goto out;
  5196. }
  5197. if (inject_pending_event(vcpu, req_int_win) != 0)
  5198. req_immediate_exit = true;
  5199. /* enable NMI/IRQ window open exits if needed */
  5200. else if (vcpu->arch.nmi_pending)
  5201. kvm_x86_ops->enable_nmi_window(vcpu);
  5202. else if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
  5203. kvm_x86_ops->enable_irq_window(vcpu);
  5204. if (kvm_lapic_enabled(vcpu)) {
  5205. /*
  5206. * Update architecture specific hints for APIC
  5207. * virtual interrupt delivery.
  5208. */
  5209. if (kvm_x86_ops->hwapic_irr_update)
  5210. kvm_x86_ops->hwapic_irr_update(vcpu,
  5211. kvm_lapic_find_highest_irr(vcpu));
  5212. update_cr8_intercept(vcpu);
  5213. kvm_lapic_sync_to_vapic(vcpu);
  5214. }
  5215. }
  5216. r = kvm_mmu_reload(vcpu);
  5217. if (unlikely(r)) {
  5218. goto cancel_injection;
  5219. }
  5220. preempt_disable();
  5221. kvm_x86_ops->prepare_guest_switch(vcpu);
  5222. if (vcpu->fpu_active)
  5223. kvm_load_guest_fpu(vcpu);
  5224. kvm_load_guest_xcr0(vcpu);
  5225. vcpu->mode = IN_GUEST_MODE;
  5226. srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
  5227. /* We should set ->mode before check ->requests,
  5228. * see the comment in make_all_cpus_request.
  5229. */
  5230. smp_mb__after_srcu_read_unlock();
  5231. local_irq_disable();
  5232. if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
  5233. || need_resched() || signal_pending(current)) {
  5234. vcpu->mode = OUTSIDE_GUEST_MODE;
  5235. smp_wmb();
  5236. local_irq_enable();
  5237. preempt_enable();
  5238. vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  5239. r = 1;
  5240. goto cancel_injection;
  5241. }
  5242. if (req_immediate_exit)
  5243. smp_send_reschedule(vcpu->cpu);
  5244. kvm_guest_enter();
  5245. if (unlikely(vcpu->arch.switch_db_regs)) {
  5246. set_debugreg(0, 7);
  5247. set_debugreg(vcpu->arch.eff_db[0], 0);
  5248. set_debugreg(vcpu->arch.eff_db[1], 1);
  5249. set_debugreg(vcpu->arch.eff_db[2], 2);
  5250. set_debugreg(vcpu->arch.eff_db[3], 3);
  5251. set_debugreg(vcpu->arch.dr6, 6);
  5252. }
  5253. trace_kvm_entry(vcpu->vcpu_id);
  5254. kvm_x86_ops->run(vcpu);
  5255. /*
  5256. * Do this here before restoring debug registers on the host. And
  5257. * since we do this before handling the vmexit, a DR access vmexit
  5258. * can (a) read the correct value of the debug registers, (b) set
  5259. * KVM_DEBUGREG_WONT_EXIT again.
  5260. */
  5261. if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
  5262. int i;
  5263. WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
  5264. kvm_x86_ops->sync_dirty_debug_regs(vcpu);
  5265. for (i = 0; i < KVM_NR_DB_REGS; i++)
  5266. vcpu->arch.eff_db[i] = vcpu->arch.db[i];
  5267. }
  5268. /*
  5269. * If the guest has used debug registers, at least dr7
  5270. * will be disabled while returning to the host.
  5271. * If we don't have active breakpoints in the host, we don't
  5272. * care about the messed up debug address registers. But if
  5273. * we have some of them active, restore the old state.
  5274. */
  5275. if (hw_breakpoint_active())
  5276. hw_breakpoint_restore();
  5277. vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu,
  5278. native_read_tsc());
  5279. vcpu->mode = OUTSIDE_GUEST_MODE;
  5280. smp_wmb();
  5281. /* Interrupt is enabled by handle_external_intr() */
  5282. kvm_x86_ops->handle_external_intr(vcpu);
  5283. ++vcpu->stat.exits;
  5284. /*
  5285. * We must have an instruction between local_irq_enable() and
  5286. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  5287. * the interrupt shadow. The stat.exits increment will do nicely.
  5288. * But we need to prevent reordering, hence this barrier():
  5289. */
  5290. barrier();
  5291. kvm_guest_exit();
  5292. preempt_enable();
  5293. vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  5294. /*
  5295. * Profile KVM exit RIPs:
  5296. */
  5297. if (unlikely(prof_on == KVM_PROFILING)) {
  5298. unsigned long rip = kvm_rip_read(vcpu);
  5299. profile_hit(KVM_PROFILING, (void *)rip);
  5300. }
  5301. if (unlikely(vcpu->arch.tsc_always_catchup))
  5302. kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
  5303. if (vcpu->arch.apic_attention)
  5304. kvm_lapic_sync_from_vapic(vcpu);
  5305. r = kvm_x86_ops->handle_exit(vcpu);
  5306. return r;
  5307. cancel_injection:
  5308. kvm_x86_ops->cancel_injection(vcpu);
  5309. if (unlikely(vcpu->arch.apic_attention))
  5310. kvm_lapic_sync_from_vapic(vcpu);
  5311. out:
  5312. return r;
  5313. }
  5314. static int __vcpu_run(struct kvm_vcpu *vcpu)
  5315. {
  5316. int r;
  5317. struct kvm *kvm = vcpu->kvm;
  5318. vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
  5319. r = 1;
  5320. while (r > 0) {
  5321. if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
  5322. !vcpu->arch.apf.halted)
  5323. r = vcpu_enter_guest(vcpu);
  5324. else {
  5325. srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
  5326. kvm_vcpu_block(vcpu);
  5327. vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
  5328. if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) {
  5329. kvm_apic_accept_events(vcpu);
  5330. switch(vcpu->arch.mp_state) {
  5331. case KVM_MP_STATE_HALTED:
  5332. vcpu->arch.pv.pv_unhalted = false;
  5333. vcpu->arch.mp_state =
  5334. KVM_MP_STATE_RUNNABLE;
  5335. case KVM_MP_STATE_RUNNABLE:
  5336. vcpu->arch.apf.halted = false;
  5337. break;
  5338. case KVM_MP_STATE_INIT_RECEIVED:
  5339. break;
  5340. default:
  5341. r = -EINTR;
  5342. break;
  5343. }
  5344. }
  5345. }
  5346. if (r <= 0)
  5347. break;
  5348. clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
  5349. if (kvm_cpu_has_pending_timer(vcpu))
  5350. kvm_inject_pending_timer_irqs(vcpu);
  5351. if (dm_request_for_irq_injection(vcpu)) {
  5352. r = -EINTR;
  5353. vcpu->run->exit_reason = KVM_EXIT_INTR;
  5354. ++vcpu->stat.request_irq_exits;
  5355. }
  5356. kvm_check_async_pf_completion(vcpu);
  5357. if (signal_pending(current)) {
  5358. r = -EINTR;
  5359. vcpu->run->exit_reason = KVM_EXIT_INTR;
  5360. ++vcpu->stat.signal_exits;
  5361. }
  5362. if (need_resched()) {
  5363. srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
  5364. cond_resched();
  5365. vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
  5366. }
  5367. }
  5368. srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
  5369. return r;
  5370. }
  5371. static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
  5372. {
  5373. int r;
  5374. vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  5375. r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
  5376. srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
  5377. if (r != EMULATE_DONE)
  5378. return 0;
  5379. return 1;
  5380. }
  5381. static int complete_emulated_pio(struct kvm_vcpu *vcpu)
  5382. {
  5383. BUG_ON(!vcpu->arch.pio.count);
  5384. return complete_emulated_io(vcpu);
  5385. }
  5386. /*
  5387. * Implements the following, as a state machine:
  5388. *
  5389. * read:
  5390. * for each fragment
  5391. * for each mmio piece in the fragment
  5392. * write gpa, len
  5393. * exit
  5394. * copy data
  5395. * execute insn
  5396. *
  5397. * write:
  5398. * for each fragment
  5399. * for each mmio piece in the fragment
  5400. * write gpa, len
  5401. * copy data
  5402. * exit
  5403. */
  5404. static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
  5405. {
  5406. struct kvm_run *run = vcpu->run;
  5407. struct kvm_mmio_fragment *frag;
  5408. unsigned len;
  5409. BUG_ON(!vcpu->mmio_needed);
  5410. /* Complete previous fragment */
  5411. frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
  5412. len = min(8u, frag->len);
  5413. if (!vcpu->mmio_is_write)
  5414. memcpy(frag->data, run->mmio.data, len);
  5415. if (frag->len <= 8) {
  5416. /* Switch to the next fragment. */
  5417. frag++;
  5418. vcpu->mmio_cur_fragment++;
  5419. } else {
  5420. /* Go forward to the next mmio piece. */
  5421. frag->data += len;
  5422. frag->gpa += len;
  5423. frag->len -= len;
  5424. }
  5425. if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
  5426. vcpu->mmio_needed = 0;
  5427. /* FIXME: return into emulator if single-stepping. */
  5428. if (vcpu->mmio_is_write)
  5429. return 1;
  5430. vcpu->mmio_read_completed = 1;
  5431. return complete_emulated_io(vcpu);
  5432. }
  5433. run->exit_reason = KVM_EXIT_MMIO;
  5434. run->mmio.phys_addr = frag->gpa;
  5435. if (vcpu->mmio_is_write)
  5436. memcpy(run->mmio.data, frag->data, min(8u, frag->len));
  5437. run->mmio.len = min(8u, frag->len);
  5438. run->mmio.is_write = vcpu->mmio_is_write;
  5439. vcpu->arch.complete_userspace_io = complete_emulated_mmio;
  5440. return 0;
  5441. }
  5442. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  5443. {
  5444. int r;
  5445. sigset_t sigsaved;
  5446. if (!tsk_used_math(current) && init_fpu(current))
  5447. return -ENOMEM;
  5448. if (vcpu->sigset_active)
  5449. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  5450. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
  5451. kvm_vcpu_block(vcpu);
  5452. kvm_apic_accept_events(vcpu);
  5453. clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
  5454. r = -EAGAIN;
  5455. goto out;
  5456. }
  5457. /* re-sync apic's tpr */
  5458. if (!irqchip_in_kernel(vcpu->kvm)) {
  5459. if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
  5460. r = -EINVAL;
  5461. goto out;
  5462. }
  5463. }
  5464. if (unlikely(vcpu->arch.complete_userspace_io)) {
  5465. int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
  5466. vcpu->arch.complete_userspace_io = NULL;
  5467. r = cui(vcpu);
  5468. if (r <= 0)
  5469. goto out;
  5470. } else
  5471. WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
  5472. r = __vcpu_run(vcpu);
  5473. out:
  5474. post_kvm_run_save(vcpu);
  5475. if (vcpu->sigset_active)
  5476. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  5477. return r;
  5478. }
  5479. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  5480. {
  5481. if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
  5482. /*
  5483. * We are here if userspace calls get_regs() in the middle of
  5484. * instruction emulation. Registers state needs to be copied
  5485. * back from emulation context to vcpu. Userspace shouldn't do
  5486. * that usually, but some bad designed PV devices (vmware
  5487. * backdoor interface) need this to work
  5488. */
  5489. emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
  5490. vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
  5491. }
  5492. regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  5493. regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  5494. regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  5495. regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  5496. regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
  5497. regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
  5498. regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  5499. regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  5500. #ifdef CONFIG_X86_64
  5501. regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
  5502. regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
  5503. regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
  5504. regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
  5505. regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
  5506. regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
  5507. regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
  5508. regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
  5509. #endif
  5510. regs->rip = kvm_rip_read(vcpu);
  5511. regs->rflags = kvm_get_rflags(vcpu);
  5512. return 0;
  5513. }
  5514. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  5515. {
  5516. vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
  5517. vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
  5518. kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
  5519. kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
  5520. kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
  5521. kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
  5522. kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
  5523. kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
  5524. kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
  5525. kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
  5526. #ifdef CONFIG_X86_64
  5527. kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
  5528. kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
  5529. kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
  5530. kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
  5531. kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
  5532. kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
  5533. kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
  5534. kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
  5535. #endif
  5536. kvm_rip_write(vcpu, regs->rip);
  5537. kvm_set_rflags(vcpu, regs->rflags);
  5538. vcpu->arch.exception.pending = false;
  5539. kvm_make_request(KVM_REQ_EVENT, vcpu);
  5540. return 0;
  5541. }
  5542. void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  5543. {
  5544. struct kvm_segment cs;
  5545. kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
  5546. *db = cs.db;
  5547. *l = cs.l;
  5548. }
  5549. EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
  5550. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  5551. struct kvm_sregs *sregs)
  5552. {
  5553. struct desc_ptr dt;
  5554. kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  5555. kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  5556. kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  5557. kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  5558. kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  5559. kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  5560. kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  5561. kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  5562. kvm_x86_ops->get_idt(vcpu, &dt);
  5563. sregs->idt.limit = dt.size;
  5564. sregs->idt.base = dt.address;
  5565. kvm_x86_ops->get_gdt(vcpu, &dt);
  5566. sregs->gdt.limit = dt.size;
  5567. sregs->gdt.base = dt.address;
  5568. sregs->cr0 = kvm_read_cr0(vcpu);
  5569. sregs->cr2 = vcpu->arch.cr2;
  5570. sregs->cr3 = kvm_read_cr3(vcpu);
  5571. sregs->cr4 = kvm_read_cr4(vcpu);
  5572. sregs->cr8 = kvm_get_cr8(vcpu);
  5573. sregs->efer = vcpu->arch.efer;
  5574. sregs->apic_base = kvm_get_apic_base(vcpu);
  5575. memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
  5576. if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
  5577. set_bit(vcpu->arch.interrupt.nr,
  5578. (unsigned long *)sregs->interrupt_bitmap);
  5579. return 0;
  5580. }
  5581. int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
  5582. struct kvm_mp_state *mp_state)
  5583. {
  5584. kvm_apic_accept_events(vcpu);
  5585. if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
  5586. vcpu->arch.pv.pv_unhalted)
  5587. mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
  5588. else
  5589. mp_state->mp_state = vcpu->arch.mp_state;
  5590. return 0;
  5591. }
  5592. int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
  5593. struct kvm_mp_state *mp_state)
  5594. {
  5595. if (!kvm_vcpu_has_lapic(vcpu) &&
  5596. mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
  5597. return -EINVAL;
  5598. if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
  5599. vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
  5600. set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
  5601. } else
  5602. vcpu->arch.mp_state = mp_state->mp_state;
  5603. kvm_make_request(KVM_REQ_EVENT, vcpu);
  5604. return 0;
  5605. }
  5606. int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
  5607. int reason, bool has_error_code, u32 error_code)
  5608. {
  5609. struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
  5610. int ret;
  5611. init_emulate_ctxt(vcpu);
  5612. ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
  5613. has_error_code, error_code);
  5614. if (ret)
  5615. return EMULATE_FAIL;
  5616. kvm_rip_write(vcpu, ctxt->eip);
  5617. kvm_set_rflags(vcpu, ctxt->eflags);
  5618. kvm_make_request(KVM_REQ_EVENT, vcpu);
  5619. return EMULATE_DONE;
  5620. }
  5621. EXPORT_SYMBOL_GPL(kvm_task_switch);
  5622. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  5623. struct kvm_sregs *sregs)
  5624. {
  5625. struct msr_data apic_base_msr;
  5626. int mmu_reset_needed = 0;
  5627. int pending_vec, max_bits, idx;
  5628. struct desc_ptr dt;
  5629. if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
  5630. return -EINVAL;
  5631. dt.size = sregs->idt.limit;
  5632. dt.address = sregs->idt.base;
  5633. kvm_x86_ops->set_idt(vcpu, &dt);
  5634. dt.size = sregs->gdt.limit;
  5635. dt.address = sregs->gdt.base;
  5636. kvm_x86_ops->set_gdt(vcpu, &dt);
  5637. vcpu->arch.cr2 = sregs->cr2;
  5638. mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
  5639. vcpu->arch.cr3 = sregs->cr3;
  5640. __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
  5641. kvm_set_cr8(vcpu, sregs->cr8);
  5642. mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
  5643. kvm_x86_ops->set_efer(vcpu, sregs->efer);
  5644. apic_base_msr.data = sregs->apic_base;
  5645. apic_base_msr.host_initiated = true;
  5646. kvm_set_apic_base(vcpu, &apic_base_msr);
  5647. mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
  5648. kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
  5649. vcpu->arch.cr0 = sregs->cr0;
  5650. mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
  5651. kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
  5652. if (sregs->cr4 & X86_CR4_OSXSAVE)
  5653. kvm_update_cpuid(vcpu);
  5654. idx = srcu_read_lock(&vcpu->kvm->srcu);
  5655. if (!is_long_mode(vcpu) && is_pae(vcpu)) {
  5656. load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
  5657. mmu_reset_needed = 1;
  5658. }
  5659. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  5660. if (mmu_reset_needed)
  5661. kvm_mmu_reset_context(vcpu);
  5662. max_bits = KVM_NR_INTERRUPTS;
  5663. pending_vec = find_first_bit(
  5664. (const unsigned long *)sregs->interrupt_bitmap, max_bits);
  5665. if (pending_vec < max_bits) {
  5666. kvm_queue_interrupt(vcpu, pending_vec, false);
  5667. pr_debug("Set back pending irq %d\n", pending_vec);
  5668. }
  5669. kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  5670. kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  5671. kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  5672. kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  5673. kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  5674. kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  5675. kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  5676. kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  5677. update_cr8_intercept(vcpu);
  5678. /* Older userspace won't unhalt the vcpu on reset. */
  5679. if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
  5680. sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
  5681. !is_protmode(vcpu))
  5682. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  5683. kvm_make_request(KVM_REQ_EVENT, vcpu);
  5684. return 0;
  5685. }
  5686. int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
  5687. struct kvm_guest_debug *dbg)
  5688. {
  5689. unsigned long rflags;
  5690. int i, r;
  5691. if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
  5692. r = -EBUSY;
  5693. if (vcpu->arch.exception.pending)
  5694. goto out;
  5695. if (dbg->control & KVM_GUESTDBG_INJECT_DB)
  5696. kvm_queue_exception(vcpu, DB_VECTOR);
  5697. else
  5698. kvm_queue_exception(vcpu, BP_VECTOR);
  5699. }
  5700. /*
  5701. * Read rflags as long as potentially injected trace flags are still
  5702. * filtered out.
  5703. */
  5704. rflags = kvm_get_rflags(vcpu);
  5705. vcpu->guest_debug = dbg->control;
  5706. if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
  5707. vcpu->guest_debug = 0;
  5708. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
  5709. for (i = 0; i < KVM_NR_DB_REGS; ++i)
  5710. vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
  5711. vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
  5712. } else {
  5713. for (i = 0; i < KVM_NR_DB_REGS; i++)
  5714. vcpu->arch.eff_db[i] = vcpu->arch.db[i];
  5715. }
  5716. kvm_update_dr7(vcpu);
  5717. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  5718. vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
  5719. get_segment_base(vcpu, VCPU_SREG_CS);
  5720. /*
  5721. * Trigger an rflags update that will inject or remove the trace
  5722. * flags.
  5723. */
  5724. kvm_set_rflags(vcpu, rflags);
  5725. kvm_x86_ops->update_db_bp_intercept(vcpu);
  5726. r = 0;
  5727. out:
  5728. return r;
  5729. }
  5730. /*
  5731. * Translate a guest virtual address to a guest physical address.
  5732. */
  5733. int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  5734. struct kvm_translation *tr)
  5735. {
  5736. unsigned long vaddr = tr->linear_address;
  5737. gpa_t gpa;
  5738. int idx;
  5739. idx = srcu_read_lock(&vcpu->kvm->srcu);
  5740. gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
  5741. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  5742. tr->physical_address = gpa;
  5743. tr->valid = gpa != UNMAPPED_GVA;
  5744. tr->writeable = 1;
  5745. tr->usermode = 0;
  5746. return 0;
  5747. }
  5748. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  5749. {
  5750. struct i387_fxsave_struct *fxsave =
  5751. &vcpu->arch.guest_fpu.state->fxsave;
  5752. memcpy(fpu->fpr, fxsave->st_space, 128);
  5753. fpu->fcw = fxsave->cwd;
  5754. fpu->fsw = fxsave->swd;
  5755. fpu->ftwx = fxsave->twd;
  5756. fpu->last_opcode = fxsave->fop;
  5757. fpu->last_ip = fxsave->rip;
  5758. fpu->last_dp = fxsave->rdp;
  5759. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  5760. return 0;
  5761. }
  5762. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  5763. {
  5764. struct i387_fxsave_struct *fxsave =
  5765. &vcpu->arch.guest_fpu.state->fxsave;
  5766. memcpy(fxsave->st_space, fpu->fpr, 128);
  5767. fxsave->cwd = fpu->fcw;
  5768. fxsave->swd = fpu->fsw;
  5769. fxsave->twd = fpu->ftwx;
  5770. fxsave->fop = fpu->last_opcode;
  5771. fxsave->rip = fpu->last_ip;
  5772. fxsave->rdp = fpu->last_dp;
  5773. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  5774. return 0;
  5775. }
  5776. int fx_init(struct kvm_vcpu *vcpu)
  5777. {
  5778. int err;
  5779. err = fpu_alloc(&vcpu->arch.guest_fpu);
  5780. if (err)
  5781. return err;
  5782. fpu_finit(&vcpu->arch.guest_fpu);
  5783. /*
  5784. * Ensure guest xcr0 is valid for loading
  5785. */
  5786. vcpu->arch.xcr0 = XSTATE_FP;
  5787. vcpu->arch.cr0 |= X86_CR0_ET;
  5788. return 0;
  5789. }
  5790. EXPORT_SYMBOL_GPL(fx_init);
  5791. static void fx_free(struct kvm_vcpu *vcpu)
  5792. {
  5793. fpu_free(&vcpu->arch.guest_fpu);
  5794. }
  5795. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  5796. {
  5797. if (vcpu->guest_fpu_loaded)
  5798. return;
  5799. /*
  5800. * Restore all possible states in the guest,
  5801. * and assume host would use all available bits.
  5802. * Guest xcr0 would be loaded later.
  5803. */
  5804. kvm_put_guest_xcr0(vcpu);
  5805. vcpu->guest_fpu_loaded = 1;
  5806. __kernel_fpu_begin();
  5807. fpu_restore_checking(&vcpu->arch.guest_fpu);
  5808. trace_kvm_fpu(1);
  5809. }
  5810. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  5811. {
  5812. kvm_put_guest_xcr0(vcpu);
  5813. if (!vcpu->guest_fpu_loaded)
  5814. return;
  5815. vcpu->guest_fpu_loaded = 0;
  5816. fpu_save_init(&vcpu->arch.guest_fpu);
  5817. __kernel_fpu_end();
  5818. ++vcpu->stat.fpu_reload;
  5819. kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
  5820. trace_kvm_fpu(0);
  5821. }
  5822. void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
  5823. {
  5824. kvmclock_reset(vcpu);
  5825. free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
  5826. fx_free(vcpu);
  5827. kvm_x86_ops->vcpu_free(vcpu);
  5828. }
  5829. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
  5830. unsigned int id)
  5831. {
  5832. if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
  5833. printk_once(KERN_WARNING
  5834. "kvm: SMP vm created on host with unstable TSC; "
  5835. "guest TSC will not be reliable\n");
  5836. return kvm_x86_ops->vcpu_create(kvm, id);
  5837. }
  5838. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  5839. {
  5840. int r;
  5841. vcpu->arch.mtrr_state.have_fixed = 1;
  5842. r = vcpu_load(vcpu);
  5843. if (r)
  5844. return r;
  5845. kvm_vcpu_reset(vcpu);
  5846. kvm_mmu_setup(vcpu);
  5847. vcpu_put(vcpu);
  5848. return r;
  5849. }
  5850. int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
  5851. {
  5852. int r;
  5853. struct msr_data msr;
  5854. struct kvm *kvm = vcpu->kvm;
  5855. r = vcpu_load(vcpu);
  5856. if (r)
  5857. return r;
  5858. msr.data = 0x0;
  5859. msr.index = MSR_IA32_TSC;
  5860. msr.host_initiated = true;
  5861. kvm_write_tsc(vcpu, &msr);
  5862. vcpu_put(vcpu);
  5863. schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
  5864. KVMCLOCK_SYNC_PERIOD);
  5865. return r;
  5866. }
  5867. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  5868. {
  5869. int r;
  5870. vcpu->arch.apf.msr_val = 0;
  5871. r = vcpu_load(vcpu);
  5872. BUG_ON(r);
  5873. kvm_mmu_unload(vcpu);
  5874. vcpu_put(vcpu);
  5875. fx_free(vcpu);
  5876. kvm_x86_ops->vcpu_free(vcpu);
  5877. }
  5878. void kvm_vcpu_reset(struct kvm_vcpu *vcpu)
  5879. {
  5880. atomic_set(&vcpu->arch.nmi_queued, 0);
  5881. vcpu->arch.nmi_pending = 0;
  5882. vcpu->arch.nmi_injected = false;
  5883. memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
  5884. vcpu->arch.dr6 = DR6_FIXED_1;
  5885. kvm_update_dr6(vcpu);
  5886. vcpu->arch.dr7 = DR7_FIXED_1;
  5887. kvm_update_dr7(vcpu);
  5888. kvm_make_request(KVM_REQ_EVENT, vcpu);
  5889. vcpu->arch.apf.msr_val = 0;
  5890. vcpu->arch.st.msr_val = 0;
  5891. kvmclock_reset(vcpu);
  5892. kvm_clear_async_pf_completion_queue(vcpu);
  5893. kvm_async_pf_hash_reset(vcpu);
  5894. vcpu->arch.apf.halted = false;
  5895. kvm_pmu_reset(vcpu);
  5896. memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
  5897. vcpu->arch.regs_avail = ~0;
  5898. vcpu->arch.regs_dirty = ~0;
  5899. kvm_x86_ops->vcpu_reset(vcpu);
  5900. }
  5901. void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, unsigned int vector)
  5902. {
  5903. struct kvm_segment cs;
  5904. kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
  5905. cs.selector = vector << 8;
  5906. cs.base = vector << 12;
  5907. kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
  5908. kvm_rip_write(vcpu, 0);
  5909. }
  5910. int kvm_arch_hardware_enable(void *garbage)
  5911. {
  5912. struct kvm *kvm;
  5913. struct kvm_vcpu *vcpu;
  5914. int i;
  5915. int ret;
  5916. u64 local_tsc;
  5917. u64 max_tsc = 0;
  5918. bool stable, backwards_tsc = false;
  5919. kvm_shared_msr_cpu_online();
  5920. ret = kvm_x86_ops->hardware_enable(garbage);
  5921. if (ret != 0)
  5922. return ret;
  5923. local_tsc = native_read_tsc();
  5924. stable = !check_tsc_unstable();
  5925. list_for_each_entry(kvm, &vm_list, vm_list) {
  5926. kvm_for_each_vcpu(i, vcpu, kvm) {
  5927. if (!stable && vcpu->cpu == smp_processor_id())
  5928. set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
  5929. if (stable && vcpu->arch.last_host_tsc > local_tsc) {
  5930. backwards_tsc = true;
  5931. if (vcpu->arch.last_host_tsc > max_tsc)
  5932. max_tsc = vcpu->arch.last_host_tsc;
  5933. }
  5934. }
  5935. }
  5936. /*
  5937. * Sometimes, even reliable TSCs go backwards. This happens on
  5938. * platforms that reset TSC during suspend or hibernate actions, but
  5939. * maintain synchronization. We must compensate. Fortunately, we can
  5940. * detect that condition here, which happens early in CPU bringup,
  5941. * before any KVM threads can be running. Unfortunately, we can't
  5942. * bring the TSCs fully up to date with real time, as we aren't yet far
  5943. * enough into CPU bringup that we know how much real time has actually
  5944. * elapsed; our helper function, get_kernel_ns() will be using boot
  5945. * variables that haven't been updated yet.
  5946. *
  5947. * So we simply find the maximum observed TSC above, then record the
  5948. * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
  5949. * the adjustment will be applied. Note that we accumulate
  5950. * adjustments, in case multiple suspend cycles happen before some VCPU
  5951. * gets a chance to run again. In the event that no KVM threads get a
  5952. * chance to run, we will miss the entire elapsed period, as we'll have
  5953. * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
  5954. * loose cycle time. This isn't too big a deal, since the loss will be
  5955. * uniform across all VCPUs (not to mention the scenario is extremely
  5956. * unlikely). It is possible that a second hibernate recovery happens
  5957. * much faster than a first, causing the observed TSC here to be
  5958. * smaller; this would require additional padding adjustment, which is
  5959. * why we set last_host_tsc to the local tsc observed here.
  5960. *
  5961. * N.B. - this code below runs only on platforms with reliable TSC,
  5962. * as that is the only way backwards_tsc is set above. Also note
  5963. * that this runs for ALL vcpus, which is not a bug; all VCPUs should
  5964. * have the same delta_cyc adjustment applied if backwards_tsc
  5965. * is detected. Note further, this adjustment is only done once,
  5966. * as we reset last_host_tsc on all VCPUs to stop this from being
  5967. * called multiple times (one for each physical CPU bringup).
  5968. *
  5969. * Platforms with unreliable TSCs don't have to deal with this, they
  5970. * will be compensated by the logic in vcpu_load, which sets the TSC to
  5971. * catchup mode. This will catchup all VCPUs to real time, but cannot
  5972. * guarantee that they stay in perfect synchronization.
  5973. */
  5974. if (backwards_tsc) {
  5975. u64 delta_cyc = max_tsc - local_tsc;
  5976. backwards_tsc_observed = true;
  5977. list_for_each_entry(kvm, &vm_list, vm_list) {
  5978. kvm_for_each_vcpu(i, vcpu, kvm) {
  5979. vcpu->arch.tsc_offset_adjustment += delta_cyc;
  5980. vcpu->arch.last_host_tsc = local_tsc;
  5981. set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
  5982. &vcpu->requests);
  5983. }
  5984. /*
  5985. * We have to disable TSC offset matching.. if you were
  5986. * booting a VM while issuing an S4 host suspend....
  5987. * you may have some problem. Solving this issue is
  5988. * left as an exercise to the reader.
  5989. */
  5990. kvm->arch.last_tsc_nsec = 0;
  5991. kvm->arch.last_tsc_write = 0;
  5992. }
  5993. }
  5994. return 0;
  5995. }
  5996. void kvm_arch_hardware_disable(void *garbage)
  5997. {
  5998. kvm_x86_ops->hardware_disable(garbage);
  5999. drop_user_return_notifiers(garbage);
  6000. }
  6001. int kvm_arch_hardware_setup(void)
  6002. {
  6003. return kvm_x86_ops->hardware_setup();
  6004. }
  6005. void kvm_arch_hardware_unsetup(void)
  6006. {
  6007. kvm_x86_ops->hardware_unsetup();
  6008. }
  6009. void kvm_arch_check_processor_compat(void *rtn)
  6010. {
  6011. kvm_x86_ops->check_processor_compatibility(rtn);
  6012. }
  6013. bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
  6014. {
  6015. return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
  6016. }
  6017. struct static_key kvm_no_apic_vcpu __read_mostly;
  6018. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  6019. {
  6020. struct page *page;
  6021. struct kvm *kvm;
  6022. int r;
  6023. BUG_ON(vcpu->kvm == NULL);
  6024. kvm = vcpu->kvm;
  6025. vcpu->arch.pv.pv_unhalted = false;
  6026. vcpu->arch.emulate_ctxt.ops = &emulate_ops;
  6027. if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
  6028. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  6029. else
  6030. vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
  6031. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  6032. if (!page) {
  6033. r = -ENOMEM;
  6034. goto fail;
  6035. }
  6036. vcpu->arch.pio_data = page_address(page);
  6037. kvm_set_tsc_khz(vcpu, max_tsc_khz);
  6038. r = kvm_mmu_create(vcpu);
  6039. if (r < 0)
  6040. goto fail_free_pio_data;
  6041. if (irqchip_in_kernel(kvm)) {
  6042. r = kvm_create_lapic(vcpu);
  6043. if (r < 0)
  6044. goto fail_mmu_destroy;
  6045. } else
  6046. static_key_slow_inc(&kvm_no_apic_vcpu);
  6047. vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
  6048. GFP_KERNEL);
  6049. if (!vcpu->arch.mce_banks) {
  6050. r = -ENOMEM;
  6051. goto fail_free_lapic;
  6052. }
  6053. vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
  6054. if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
  6055. r = -ENOMEM;
  6056. goto fail_free_mce_banks;
  6057. }
  6058. r = fx_init(vcpu);
  6059. if (r)
  6060. goto fail_free_wbinvd_dirty_mask;
  6061. vcpu->arch.ia32_tsc_adjust_msr = 0x0;
  6062. vcpu->arch.pv_time_enabled = false;
  6063. vcpu->arch.guest_supported_xcr0 = 0;
  6064. vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
  6065. kvm_async_pf_hash_reset(vcpu);
  6066. kvm_pmu_init(vcpu);
  6067. return 0;
  6068. fail_free_wbinvd_dirty_mask:
  6069. free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
  6070. fail_free_mce_banks:
  6071. kfree(vcpu->arch.mce_banks);
  6072. fail_free_lapic:
  6073. kvm_free_lapic(vcpu);
  6074. fail_mmu_destroy:
  6075. kvm_mmu_destroy(vcpu);
  6076. fail_free_pio_data:
  6077. free_page((unsigned long)vcpu->arch.pio_data);
  6078. fail:
  6079. return r;
  6080. }
  6081. void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
  6082. {
  6083. int idx;
  6084. kvm_pmu_destroy(vcpu);
  6085. kfree(vcpu->arch.mce_banks);
  6086. kvm_free_lapic(vcpu);
  6087. idx = srcu_read_lock(&vcpu->kvm->srcu);
  6088. kvm_mmu_destroy(vcpu);
  6089. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  6090. free_page((unsigned long)vcpu->arch.pio_data);
  6091. if (!irqchip_in_kernel(vcpu->kvm))
  6092. static_key_slow_dec(&kvm_no_apic_vcpu);
  6093. }
  6094. int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
  6095. {
  6096. if (type)
  6097. return -EINVAL;
  6098. INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
  6099. INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
  6100. INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
  6101. atomic_set(&kvm->arch.noncoherent_dma_count, 0);
  6102. /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
  6103. set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
  6104. /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
  6105. set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
  6106. &kvm->arch.irq_sources_bitmap);
  6107. raw_spin_lock_init(&kvm->arch.tsc_write_lock);
  6108. mutex_init(&kvm->arch.apic_map_lock);
  6109. spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
  6110. pvclock_update_vm_gtod_copy(kvm);
  6111. INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
  6112. INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
  6113. return 0;
  6114. }
  6115. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  6116. {
  6117. int r;
  6118. r = vcpu_load(vcpu);
  6119. BUG_ON(r);
  6120. kvm_mmu_unload(vcpu);
  6121. vcpu_put(vcpu);
  6122. }
  6123. static void kvm_free_vcpus(struct kvm *kvm)
  6124. {
  6125. unsigned int i;
  6126. struct kvm_vcpu *vcpu;
  6127. /*
  6128. * Unpin any mmu pages first.
  6129. */
  6130. kvm_for_each_vcpu(i, vcpu, kvm) {
  6131. kvm_clear_async_pf_completion_queue(vcpu);
  6132. kvm_unload_vcpu_mmu(vcpu);
  6133. }
  6134. kvm_for_each_vcpu(i, vcpu, kvm)
  6135. kvm_arch_vcpu_free(vcpu);
  6136. mutex_lock(&kvm->lock);
  6137. for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
  6138. kvm->vcpus[i] = NULL;
  6139. atomic_set(&kvm->online_vcpus, 0);
  6140. mutex_unlock(&kvm->lock);
  6141. }
  6142. void kvm_arch_sync_events(struct kvm *kvm)
  6143. {
  6144. cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
  6145. cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
  6146. kvm_free_all_assigned_devices(kvm);
  6147. kvm_free_pit(kvm);
  6148. }
  6149. void kvm_arch_destroy_vm(struct kvm *kvm)
  6150. {
  6151. if (current->mm == kvm->mm) {
  6152. /*
  6153. * Free memory regions allocated on behalf of userspace,
  6154. * unless the the memory map has changed due to process exit
  6155. * or fd copying.
  6156. */
  6157. struct kvm_userspace_memory_region mem;
  6158. memset(&mem, 0, sizeof(mem));
  6159. mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
  6160. kvm_set_memory_region(kvm, &mem);
  6161. mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
  6162. kvm_set_memory_region(kvm, &mem);
  6163. mem.slot = TSS_PRIVATE_MEMSLOT;
  6164. kvm_set_memory_region(kvm, &mem);
  6165. }
  6166. kvm_iommu_unmap_guest(kvm);
  6167. kfree(kvm->arch.vpic);
  6168. kfree(kvm->arch.vioapic);
  6169. kvm_free_vcpus(kvm);
  6170. if (kvm->arch.apic_access_page)
  6171. put_page(kvm->arch.apic_access_page);
  6172. if (kvm->arch.ept_identity_pagetable)
  6173. put_page(kvm->arch.ept_identity_pagetable);
  6174. kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
  6175. }
  6176. void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
  6177. struct kvm_memory_slot *dont)
  6178. {
  6179. int i;
  6180. for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
  6181. if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
  6182. kvm_kvfree(free->arch.rmap[i]);
  6183. free->arch.rmap[i] = NULL;
  6184. }
  6185. if (i == 0)
  6186. continue;
  6187. if (!dont || free->arch.lpage_info[i - 1] !=
  6188. dont->arch.lpage_info[i - 1]) {
  6189. kvm_kvfree(free->arch.lpage_info[i - 1]);
  6190. free->arch.lpage_info[i - 1] = NULL;
  6191. }
  6192. }
  6193. }
  6194. int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
  6195. unsigned long npages)
  6196. {
  6197. int i;
  6198. for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
  6199. unsigned long ugfn;
  6200. int lpages;
  6201. int level = i + 1;
  6202. lpages = gfn_to_index(slot->base_gfn + npages - 1,
  6203. slot->base_gfn, level) + 1;
  6204. slot->arch.rmap[i] =
  6205. kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
  6206. if (!slot->arch.rmap[i])
  6207. goto out_free;
  6208. if (i == 0)
  6209. continue;
  6210. slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages *
  6211. sizeof(*slot->arch.lpage_info[i - 1]));
  6212. if (!slot->arch.lpage_info[i - 1])
  6213. goto out_free;
  6214. if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
  6215. slot->arch.lpage_info[i - 1][0].write_count = 1;
  6216. if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
  6217. slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1;
  6218. ugfn = slot->userspace_addr >> PAGE_SHIFT;
  6219. /*
  6220. * If the gfn and userspace address are not aligned wrt each
  6221. * other, or if explicitly asked to, disable large page
  6222. * support for this slot
  6223. */
  6224. if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
  6225. !kvm_largepages_enabled()) {
  6226. unsigned long j;
  6227. for (j = 0; j < lpages; ++j)
  6228. slot->arch.lpage_info[i - 1][j].write_count = 1;
  6229. }
  6230. }
  6231. return 0;
  6232. out_free:
  6233. for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
  6234. kvm_kvfree(slot->arch.rmap[i]);
  6235. slot->arch.rmap[i] = NULL;
  6236. if (i == 0)
  6237. continue;
  6238. kvm_kvfree(slot->arch.lpage_info[i - 1]);
  6239. slot->arch.lpage_info[i - 1] = NULL;
  6240. }
  6241. return -ENOMEM;
  6242. }
  6243. void kvm_arch_memslots_updated(struct kvm *kvm)
  6244. {
  6245. /*
  6246. * memslots->generation has been incremented.
  6247. * mmio generation may have reached its maximum value.
  6248. */
  6249. kvm_mmu_invalidate_mmio_sptes(kvm);
  6250. }
  6251. int kvm_arch_prepare_memory_region(struct kvm *kvm,
  6252. struct kvm_memory_slot *memslot,
  6253. struct kvm_userspace_memory_region *mem,
  6254. enum kvm_mr_change change)
  6255. {
  6256. /*
  6257. * Only private memory slots need to be mapped here since
  6258. * KVM_SET_MEMORY_REGION ioctl is no longer supported.
  6259. */
  6260. if ((memslot->id >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_CREATE)) {
  6261. unsigned long userspace_addr;
  6262. /*
  6263. * MAP_SHARED to prevent internal slot pages from being moved
  6264. * by fork()/COW.
  6265. */
  6266. userspace_addr = vm_mmap(NULL, 0, memslot->npages * PAGE_SIZE,
  6267. PROT_READ | PROT_WRITE,
  6268. MAP_SHARED | MAP_ANONYMOUS, 0);
  6269. if (IS_ERR((void *)userspace_addr))
  6270. return PTR_ERR((void *)userspace_addr);
  6271. memslot->userspace_addr = userspace_addr;
  6272. }
  6273. return 0;
  6274. }
  6275. void kvm_arch_commit_memory_region(struct kvm *kvm,
  6276. struct kvm_userspace_memory_region *mem,
  6277. const struct kvm_memory_slot *old,
  6278. enum kvm_mr_change change)
  6279. {
  6280. int nr_mmu_pages = 0;
  6281. if ((mem->slot >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_DELETE)) {
  6282. int ret;
  6283. ret = vm_munmap(old->userspace_addr,
  6284. old->npages * PAGE_SIZE);
  6285. if (ret < 0)
  6286. printk(KERN_WARNING
  6287. "kvm_vm_ioctl_set_memory_region: "
  6288. "failed to munmap memory\n");
  6289. }
  6290. if (!kvm->arch.n_requested_mmu_pages)
  6291. nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
  6292. if (nr_mmu_pages)
  6293. kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
  6294. /*
  6295. * Write protect all pages for dirty logging.
  6296. *
  6297. * All the sptes including the large sptes which point to this
  6298. * slot are set to readonly. We can not create any new large
  6299. * spte on this slot until the end of the logging.
  6300. *
  6301. * See the comments in fast_page_fault().
  6302. */
  6303. if ((change != KVM_MR_DELETE) && (mem->flags & KVM_MEM_LOG_DIRTY_PAGES))
  6304. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  6305. }
  6306. void kvm_arch_flush_shadow_all(struct kvm *kvm)
  6307. {
  6308. kvm_mmu_invalidate_zap_all_pages(kvm);
  6309. }
  6310. void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
  6311. struct kvm_memory_slot *slot)
  6312. {
  6313. kvm_mmu_invalidate_zap_all_pages(kvm);
  6314. }
  6315. int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  6316. {
  6317. if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
  6318. kvm_x86_ops->check_nested_events(vcpu, false);
  6319. return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
  6320. !vcpu->arch.apf.halted)
  6321. || !list_empty_careful(&vcpu->async_pf.done)
  6322. || kvm_apic_has_events(vcpu)
  6323. || vcpu->arch.pv.pv_unhalted
  6324. || atomic_read(&vcpu->arch.nmi_queued) ||
  6325. (kvm_arch_interrupt_allowed(vcpu) &&
  6326. kvm_cpu_has_interrupt(vcpu));
  6327. }
  6328. int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
  6329. {
  6330. return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
  6331. }
  6332. int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
  6333. {
  6334. return kvm_x86_ops->interrupt_allowed(vcpu);
  6335. }
  6336. bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
  6337. {
  6338. unsigned long current_rip = kvm_rip_read(vcpu) +
  6339. get_segment_base(vcpu, VCPU_SREG_CS);
  6340. return current_rip == linear_rip;
  6341. }
  6342. EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
  6343. unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
  6344. {
  6345. unsigned long rflags;
  6346. rflags = kvm_x86_ops->get_rflags(vcpu);
  6347. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  6348. rflags &= ~X86_EFLAGS_TF;
  6349. return rflags;
  6350. }
  6351. EXPORT_SYMBOL_GPL(kvm_get_rflags);
  6352. void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  6353. {
  6354. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
  6355. kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
  6356. rflags |= X86_EFLAGS_TF;
  6357. kvm_x86_ops->set_rflags(vcpu, rflags);
  6358. kvm_make_request(KVM_REQ_EVENT, vcpu);
  6359. }
  6360. EXPORT_SYMBOL_GPL(kvm_set_rflags);
  6361. void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
  6362. {
  6363. int r;
  6364. if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
  6365. work->wakeup_all)
  6366. return;
  6367. r = kvm_mmu_reload(vcpu);
  6368. if (unlikely(r))
  6369. return;
  6370. if (!vcpu->arch.mmu.direct_map &&
  6371. work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
  6372. return;
  6373. vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
  6374. }
  6375. static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
  6376. {
  6377. return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
  6378. }
  6379. static inline u32 kvm_async_pf_next_probe(u32 key)
  6380. {
  6381. return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
  6382. }
  6383. static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
  6384. {
  6385. u32 key = kvm_async_pf_hash_fn(gfn);
  6386. while (vcpu->arch.apf.gfns[key] != ~0)
  6387. key = kvm_async_pf_next_probe(key);
  6388. vcpu->arch.apf.gfns[key] = gfn;
  6389. }
  6390. static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
  6391. {
  6392. int i;
  6393. u32 key = kvm_async_pf_hash_fn(gfn);
  6394. for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
  6395. (vcpu->arch.apf.gfns[key] != gfn &&
  6396. vcpu->arch.apf.gfns[key] != ~0); i++)
  6397. key = kvm_async_pf_next_probe(key);
  6398. return key;
  6399. }
  6400. bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
  6401. {
  6402. return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
  6403. }
  6404. static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
  6405. {
  6406. u32 i, j, k;
  6407. i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
  6408. while (true) {
  6409. vcpu->arch.apf.gfns[i] = ~0;
  6410. do {
  6411. j = kvm_async_pf_next_probe(j);
  6412. if (vcpu->arch.apf.gfns[j] == ~0)
  6413. return;
  6414. k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
  6415. /*
  6416. * k lies cyclically in ]i,j]
  6417. * | i.k.j |
  6418. * |....j i.k.| or |.k..j i...|
  6419. */
  6420. } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
  6421. vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
  6422. i = j;
  6423. }
  6424. }
  6425. static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
  6426. {
  6427. return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
  6428. sizeof(val));
  6429. }
  6430. void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
  6431. struct kvm_async_pf *work)
  6432. {
  6433. struct x86_exception fault;
  6434. trace_kvm_async_pf_not_present(work->arch.token, work->gva);
  6435. kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
  6436. if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
  6437. (vcpu->arch.apf.send_user_only &&
  6438. kvm_x86_ops->get_cpl(vcpu) == 0))
  6439. kvm_make_request(KVM_REQ_APF_HALT, vcpu);
  6440. else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
  6441. fault.vector = PF_VECTOR;
  6442. fault.error_code_valid = true;
  6443. fault.error_code = 0;
  6444. fault.nested_page_fault = false;
  6445. fault.address = work->arch.token;
  6446. kvm_inject_page_fault(vcpu, &fault);
  6447. }
  6448. }
  6449. void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
  6450. struct kvm_async_pf *work)
  6451. {
  6452. struct x86_exception fault;
  6453. trace_kvm_async_pf_ready(work->arch.token, work->gva);
  6454. if (work->wakeup_all)
  6455. work->arch.token = ~0; /* broadcast wakeup */
  6456. else
  6457. kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
  6458. if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
  6459. !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
  6460. fault.vector = PF_VECTOR;
  6461. fault.error_code_valid = true;
  6462. fault.error_code = 0;
  6463. fault.nested_page_fault = false;
  6464. fault.address = work->arch.token;
  6465. kvm_inject_page_fault(vcpu, &fault);
  6466. }
  6467. vcpu->arch.apf.halted = false;
  6468. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  6469. }
  6470. bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
  6471. {
  6472. if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
  6473. return true;
  6474. else
  6475. return !kvm_event_needs_reinjection(vcpu) &&
  6476. kvm_x86_ops->interrupt_allowed(vcpu);
  6477. }
  6478. void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
  6479. {
  6480. atomic_inc(&kvm->arch.noncoherent_dma_count);
  6481. }
  6482. EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
  6483. void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
  6484. {
  6485. atomic_dec(&kvm->arch.noncoherent_dma_count);
  6486. }
  6487. EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
  6488. bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
  6489. {
  6490. return atomic_read(&kvm->arch.noncoherent_dma_count);
  6491. }
  6492. EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
  6493. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
  6494. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
  6495. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
  6496. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
  6497. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
  6498. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
  6499. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
  6500. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
  6501. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
  6502. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
  6503. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
  6504. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
  6505. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);