mmu.h 6.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181
  1. #ifndef __KVM_X86_MMU_H
  2. #define __KVM_X86_MMU_H
  3. #include <linux/kvm_host.h>
  4. #include "kvm_cache_regs.h"
  5. #define PT64_PT_BITS 9
  6. #define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
  7. #define PT32_PT_BITS 10
  8. #define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
  9. #define PT_WRITABLE_SHIFT 1
  10. #define PT_PRESENT_MASK (1ULL << 0)
  11. #define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
  12. #define PT_USER_MASK (1ULL << 2)
  13. #define PT_PWT_MASK (1ULL << 3)
  14. #define PT_PCD_MASK (1ULL << 4)
  15. #define PT_ACCESSED_SHIFT 5
  16. #define PT_ACCESSED_MASK (1ULL << PT_ACCESSED_SHIFT)
  17. #define PT_DIRTY_SHIFT 6
  18. #define PT_DIRTY_MASK (1ULL << PT_DIRTY_SHIFT)
  19. #define PT_PAGE_SIZE_SHIFT 7
  20. #define PT_PAGE_SIZE_MASK (1ULL << PT_PAGE_SIZE_SHIFT)
  21. #define PT_PAT_MASK (1ULL << 7)
  22. #define PT_GLOBAL_MASK (1ULL << 8)
  23. #define PT64_NX_SHIFT 63
  24. #define PT64_NX_MASK (1ULL << PT64_NX_SHIFT)
  25. #define PT_PAT_SHIFT 7
  26. #define PT_DIR_PAT_SHIFT 12
  27. #define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
  28. #define PT32_DIR_PSE36_SIZE 4
  29. #define PT32_DIR_PSE36_SHIFT 13
  30. #define PT32_DIR_PSE36_MASK \
  31. (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
  32. #define PT64_ROOT_LEVEL 4
  33. #define PT32_ROOT_LEVEL 2
  34. #define PT32E_ROOT_LEVEL 3
  35. #define PT_PDPE_LEVEL 3
  36. #define PT_DIRECTORY_LEVEL 2
  37. #define PT_PAGE_TABLE_LEVEL 1
  38. #define PFERR_PRESENT_BIT 0
  39. #define PFERR_WRITE_BIT 1
  40. #define PFERR_USER_BIT 2
  41. #define PFERR_RSVD_BIT 3
  42. #define PFERR_FETCH_BIT 4
  43. #define PFERR_PRESENT_MASK (1U << PFERR_PRESENT_BIT)
  44. #define PFERR_WRITE_MASK (1U << PFERR_WRITE_BIT)
  45. #define PFERR_USER_MASK (1U << PFERR_USER_BIT)
  46. #define PFERR_RSVD_MASK (1U << PFERR_RSVD_BIT)
  47. #define PFERR_FETCH_MASK (1U << PFERR_FETCH_BIT)
  48. int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4]);
  49. void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask);
  50. /*
  51. * Return values of handle_mmio_page_fault_common:
  52. * RET_MMIO_PF_EMULATE: it is a real mmio page fault, emulate the instruction
  53. * directly.
  54. * RET_MMIO_PF_INVALID: invalid spte is detected then let the real page
  55. * fault path update the mmio spte.
  56. * RET_MMIO_PF_RETRY: let CPU fault again on the address.
  57. * RET_MMIO_PF_BUG: bug is detected.
  58. */
  59. enum {
  60. RET_MMIO_PF_EMULATE = 1,
  61. RET_MMIO_PF_INVALID = 2,
  62. RET_MMIO_PF_RETRY = 0,
  63. RET_MMIO_PF_BUG = -1
  64. };
  65. int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct);
  66. void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context);
  67. void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
  68. bool execonly);
  69. void update_permission_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
  70. bool ept);
  71. static inline unsigned int kvm_mmu_available_pages(struct kvm *kvm)
  72. {
  73. if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
  74. return kvm->arch.n_max_mmu_pages -
  75. kvm->arch.n_used_mmu_pages;
  76. return 0;
  77. }
  78. static inline int kvm_mmu_reload(struct kvm_vcpu *vcpu)
  79. {
  80. if (likely(vcpu->arch.mmu.root_hpa != INVALID_PAGE))
  81. return 0;
  82. return kvm_mmu_load(vcpu);
  83. }
  84. static inline int is_present_gpte(unsigned long pte)
  85. {
  86. return pte & PT_PRESENT_MASK;
  87. }
  88. /*
  89. * Currently, we have two sorts of write-protection, a) the first one
  90. * write-protects guest page to sync the guest modification, b) another one is
  91. * used to sync dirty bitmap when we do KVM_GET_DIRTY_LOG. The differences
  92. * between these two sorts are:
  93. * 1) the first case clears SPTE_MMU_WRITEABLE bit.
  94. * 2) the first case requires flushing tlb immediately avoiding corrupting
  95. * shadow page table between all vcpus so it should be in the protection of
  96. * mmu-lock. And the another case does not need to flush tlb until returning
  97. * the dirty bitmap to userspace since it only write-protects the page
  98. * logged in the bitmap, that means the page in the dirty bitmap is not
  99. * missed, so it can flush tlb out of mmu-lock.
  100. *
  101. * So, there is the problem: the first case can meet the corrupted tlb caused
  102. * by another case which write-protects pages but without flush tlb
  103. * immediately. In order to making the first case be aware this problem we let
  104. * it flush tlb if we try to write-protect a spte whose SPTE_MMU_WRITEABLE bit
  105. * is set, it works since another case never touches SPTE_MMU_WRITEABLE bit.
  106. *
  107. * Anyway, whenever a spte is updated (only permission and status bits are
  108. * changed) we need to check whether the spte with SPTE_MMU_WRITEABLE becomes
  109. * readonly, if that happens, we need to flush tlb. Fortunately,
  110. * mmu_spte_update() has already handled it perfectly.
  111. *
  112. * The rules to use SPTE_MMU_WRITEABLE and PT_WRITABLE_MASK:
  113. * - if we want to see if it has writable tlb entry or if the spte can be
  114. * writable on the mmu mapping, check SPTE_MMU_WRITEABLE, this is the most
  115. * case, otherwise
  116. * - if we fix page fault on the spte or do write-protection by dirty logging,
  117. * check PT_WRITABLE_MASK.
  118. *
  119. * TODO: introduce APIs to split these two cases.
  120. */
  121. static inline int is_writable_pte(unsigned long pte)
  122. {
  123. return pte & PT_WRITABLE_MASK;
  124. }
  125. static inline bool is_write_protection(struct kvm_vcpu *vcpu)
  126. {
  127. return kvm_read_cr0_bits(vcpu, X86_CR0_WP);
  128. }
  129. /*
  130. * Will a fault with a given page-fault error code (pfec) cause a permission
  131. * fault with the given access (in ACC_* format)?
  132. */
  133. static inline bool permission_fault(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
  134. unsigned pte_access, unsigned pfec)
  135. {
  136. int cpl = kvm_x86_ops->get_cpl(vcpu);
  137. unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
  138. /*
  139. * If CPL < 3, SMAP prevention are disabled if EFLAGS.AC = 1.
  140. *
  141. * If CPL = 3, SMAP applies to all supervisor-mode data accesses
  142. * (these are implicit supervisor accesses) regardless of the value
  143. * of EFLAGS.AC.
  144. *
  145. * This computes (cpl < 3) && (rflags & X86_EFLAGS_AC), leaving
  146. * the result in X86_EFLAGS_AC. We then insert it in place of
  147. * the PFERR_RSVD_MASK bit; this bit will always be zero in pfec,
  148. * but it will be one in index if SMAP checks are being overridden.
  149. * It is important to keep this branchless.
  150. */
  151. unsigned long smap = (cpl - 3) & (rflags & X86_EFLAGS_AC);
  152. int index = (pfec >> 1) +
  153. (smap >> (X86_EFLAGS_AC_BIT - PFERR_RSVD_BIT + 1));
  154. return (mmu->permissions[index] >> pte_access) & 1;
  155. }
  156. void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm);
  157. #endif