intel.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751
  1. #include <linux/kernel.h>
  2. #include <linux/string.h>
  3. #include <linux/bitops.h>
  4. #include <linux/smp.h>
  5. #include <linux/sched.h>
  6. #include <linux/thread_info.h>
  7. #include <linux/module.h>
  8. #include <linux/uaccess.h>
  9. #include <asm/processor.h>
  10. #include <asm/pgtable.h>
  11. #include <asm/msr.h>
  12. #include <asm/bugs.h>
  13. #include <asm/cpu.h>
  14. #ifdef CONFIG_X86_64
  15. #include <linux/topology.h>
  16. #endif
  17. #include "cpu.h"
  18. #ifdef CONFIG_X86_LOCAL_APIC
  19. #include <asm/mpspec.h>
  20. #include <asm/apic.h>
  21. #endif
  22. static void early_init_intel(struct cpuinfo_x86 *c)
  23. {
  24. u64 misc_enable;
  25. /* Unmask CPUID levels if masked: */
  26. if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
  27. if (msr_clear_bit(MSR_IA32_MISC_ENABLE,
  28. MSR_IA32_MISC_ENABLE_LIMIT_CPUID_BIT) > 0) {
  29. c->cpuid_level = cpuid_eax(0);
  30. get_cpu_cap(c);
  31. }
  32. }
  33. if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
  34. (c->x86 == 0x6 && c->x86_model >= 0x0e))
  35. set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
  36. if (c->x86 >= 6 && !cpu_has(c, X86_FEATURE_IA64)) {
  37. unsigned lower_word;
  38. wrmsr(MSR_IA32_UCODE_REV, 0, 0);
  39. /* Required by the SDM */
  40. sync_core();
  41. rdmsr(MSR_IA32_UCODE_REV, lower_word, c->microcode);
  42. }
  43. /*
  44. * Atom erratum AAE44/AAF40/AAG38/AAH41:
  45. *
  46. * A race condition between speculative fetches and invalidating
  47. * a large page. This is worked around in microcode, but we
  48. * need the microcode to have already been loaded... so if it is
  49. * not, recommend a BIOS update and disable large pages.
  50. */
  51. if (c->x86 == 6 && c->x86_model == 0x1c && c->x86_mask <= 2 &&
  52. c->microcode < 0x20e) {
  53. printk(KERN_WARNING "Atom PSE erratum detected, BIOS microcode update recommended\n");
  54. clear_cpu_cap(c, X86_FEATURE_PSE);
  55. }
  56. #ifdef CONFIG_X86_64
  57. set_cpu_cap(c, X86_FEATURE_SYSENTER32);
  58. #else
  59. /* Netburst reports 64 bytes clflush size, but does IO in 128 bytes */
  60. if (c->x86 == 15 && c->x86_cache_alignment == 64)
  61. c->x86_cache_alignment = 128;
  62. #endif
  63. /* CPUID workaround for 0F33/0F34 CPU */
  64. if (c->x86 == 0xF && c->x86_model == 0x3
  65. && (c->x86_mask == 0x3 || c->x86_mask == 0x4))
  66. c->x86_phys_bits = 36;
  67. /*
  68. * c->x86_power is 8000_0007 edx. Bit 8 is TSC runs at constant rate
  69. * with P/T states and does not stop in deep C-states.
  70. *
  71. * It is also reliable across cores and sockets. (but not across
  72. * cabinets - we turn it off in that case explicitly.)
  73. */
  74. if (c->x86_power & (1 << 8)) {
  75. set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
  76. set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC);
  77. if (!check_tsc_unstable())
  78. set_sched_clock_stable();
  79. }
  80. /* Penwell and Cloverview have the TSC which doesn't sleep on S3 */
  81. if (c->x86 == 6) {
  82. switch (c->x86_model) {
  83. case 0x27: /* Penwell */
  84. case 0x35: /* Cloverview */
  85. set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC_S3);
  86. break;
  87. default:
  88. break;
  89. }
  90. }
  91. /*
  92. * There is a known erratum on Pentium III and Core Solo
  93. * and Core Duo CPUs.
  94. * " Page with PAT set to WC while associated MTRR is UC
  95. * may consolidate to UC "
  96. * Because of this erratum, it is better to stick with
  97. * setting WC in MTRR rather than using PAT on these CPUs.
  98. *
  99. * Enable PAT WC only on P4, Core 2 or later CPUs.
  100. */
  101. if (c->x86 == 6 && c->x86_model < 15)
  102. clear_cpu_cap(c, X86_FEATURE_PAT);
  103. #ifdef CONFIG_KMEMCHECK
  104. /*
  105. * P4s have a "fast strings" feature which causes single-
  106. * stepping REP instructions to only generate a #DB on
  107. * cache-line boundaries.
  108. *
  109. * Ingo Molnar reported a Pentium D (model 6) and a Xeon
  110. * (model 2) with the same problem.
  111. */
  112. if (c->x86 == 15)
  113. if (msr_clear_bit(MSR_IA32_MISC_ENABLE,
  114. MSR_IA32_MISC_ENABLE_FAST_STRING_BIT) > 0)
  115. pr_info("kmemcheck: Disabling fast string operations\n");
  116. #endif
  117. /*
  118. * If fast string is not enabled in IA32_MISC_ENABLE for any reason,
  119. * clear the fast string and enhanced fast string CPU capabilities.
  120. */
  121. if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
  122. rdmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
  123. if (!(misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING)) {
  124. printk(KERN_INFO "Disabled fast string operations\n");
  125. setup_clear_cpu_cap(X86_FEATURE_REP_GOOD);
  126. setup_clear_cpu_cap(X86_FEATURE_ERMS);
  127. }
  128. }
  129. }
  130. #ifdef CONFIG_X86_32
  131. /*
  132. * Early probe support logic for ppro memory erratum #50
  133. *
  134. * This is called before we do cpu ident work
  135. */
  136. int ppro_with_ram_bug(void)
  137. {
  138. /* Uses data from early_cpu_detect now */
  139. if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
  140. boot_cpu_data.x86 == 6 &&
  141. boot_cpu_data.x86_model == 1 &&
  142. boot_cpu_data.x86_mask < 8) {
  143. printk(KERN_INFO "Pentium Pro with Errata#50 detected. Taking evasive action.\n");
  144. return 1;
  145. }
  146. return 0;
  147. }
  148. static void intel_smp_check(struct cpuinfo_x86 *c)
  149. {
  150. /* calling is from identify_secondary_cpu() ? */
  151. if (!c->cpu_index)
  152. return;
  153. /*
  154. * Mask B, Pentium, but not Pentium MMX
  155. */
  156. if (c->x86 == 5 &&
  157. c->x86_mask >= 1 && c->x86_mask <= 4 &&
  158. c->x86_model <= 3) {
  159. /*
  160. * Remember we have B step Pentia with bugs
  161. */
  162. WARN_ONCE(1, "WARNING: SMP operation may be unreliable"
  163. "with B stepping processors.\n");
  164. }
  165. }
  166. static int forcepae;
  167. static int __init forcepae_setup(char *__unused)
  168. {
  169. forcepae = 1;
  170. return 1;
  171. }
  172. __setup("forcepae", forcepae_setup);
  173. static void intel_workarounds(struct cpuinfo_x86 *c)
  174. {
  175. #ifdef CONFIG_X86_F00F_BUG
  176. /*
  177. * All current models of Pentium and Pentium with MMX technology CPUs
  178. * have the F0 0F bug, which lets nonprivileged users lock up the
  179. * system. Announce that the fault handler will be checking for it.
  180. */
  181. clear_cpu_bug(c, X86_BUG_F00F);
  182. if (!paravirt_enabled() && c->x86 == 5) {
  183. static int f00f_workaround_enabled;
  184. set_cpu_bug(c, X86_BUG_F00F);
  185. if (!f00f_workaround_enabled) {
  186. printk(KERN_NOTICE "Intel Pentium with F0 0F bug - workaround enabled.\n");
  187. f00f_workaround_enabled = 1;
  188. }
  189. }
  190. #endif
  191. /*
  192. * SEP CPUID bug: Pentium Pro reports SEP but doesn't have it until
  193. * model 3 mask 3
  194. */
  195. if ((c->x86<<8 | c->x86_model<<4 | c->x86_mask) < 0x633)
  196. clear_cpu_cap(c, X86_FEATURE_SEP);
  197. /*
  198. * PAE CPUID issue: many Pentium M report no PAE but may have a
  199. * functionally usable PAE implementation.
  200. * Forcefully enable PAE if kernel parameter "forcepae" is present.
  201. */
  202. if (forcepae) {
  203. printk(KERN_WARNING "PAE forced!\n");
  204. set_cpu_cap(c, X86_FEATURE_PAE);
  205. add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_NOW_UNRELIABLE);
  206. }
  207. /*
  208. * P4 Xeon errata 037 workaround.
  209. * Hardware prefetcher may cause stale data to be loaded into the cache.
  210. */
  211. if ((c->x86 == 15) && (c->x86_model == 1) && (c->x86_mask == 1)) {
  212. if (msr_set_bit(MSR_IA32_MISC_ENABLE,
  213. MSR_IA32_MISC_ENABLE_PREFETCH_DISABLE_BIT)
  214. > 0) {
  215. pr_info("CPU: C0 stepping P4 Xeon detected.\n");
  216. pr_info("CPU: Disabling hardware prefetching (Errata 037)\n");
  217. }
  218. }
  219. /*
  220. * See if we have a good local APIC by checking for buggy Pentia,
  221. * i.e. all B steppings and the C2 stepping of P54C when using their
  222. * integrated APIC (see 11AP erratum in "Pentium Processor
  223. * Specification Update").
  224. */
  225. if (cpu_has_apic && (c->x86<<8 | c->x86_model<<4) == 0x520 &&
  226. (c->x86_mask < 0x6 || c->x86_mask == 0xb))
  227. set_cpu_cap(c, X86_FEATURE_11AP);
  228. #ifdef CONFIG_X86_INTEL_USERCOPY
  229. /*
  230. * Set up the preferred alignment for movsl bulk memory moves
  231. */
  232. switch (c->x86) {
  233. case 4: /* 486: untested */
  234. break;
  235. case 5: /* Old Pentia: untested */
  236. break;
  237. case 6: /* PII/PIII only like movsl with 8-byte alignment */
  238. movsl_mask.mask = 7;
  239. break;
  240. case 15: /* P4 is OK down to 8-byte alignment */
  241. movsl_mask.mask = 7;
  242. break;
  243. }
  244. #endif
  245. intel_smp_check(c);
  246. }
  247. #else
  248. static void intel_workarounds(struct cpuinfo_x86 *c)
  249. {
  250. }
  251. #endif
  252. static void srat_detect_node(struct cpuinfo_x86 *c)
  253. {
  254. #ifdef CONFIG_NUMA
  255. unsigned node;
  256. int cpu = smp_processor_id();
  257. /* Don't do the funky fallback heuristics the AMD version employs
  258. for now. */
  259. node = numa_cpu_node(cpu);
  260. if (node == NUMA_NO_NODE || !node_online(node)) {
  261. /* reuse the value from init_cpu_to_node() */
  262. node = cpu_to_node(cpu);
  263. }
  264. numa_set_node(cpu, node);
  265. #endif
  266. }
  267. /*
  268. * find out the number of processor cores on the die
  269. */
  270. static int intel_num_cpu_cores(struct cpuinfo_x86 *c)
  271. {
  272. unsigned int eax, ebx, ecx, edx;
  273. if (c->cpuid_level < 4)
  274. return 1;
  275. /* Intel has a non-standard dependency on %ecx for this CPUID level. */
  276. cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
  277. if (eax & 0x1f)
  278. return (eax >> 26) + 1;
  279. else
  280. return 1;
  281. }
  282. static void detect_vmx_virtcap(struct cpuinfo_x86 *c)
  283. {
  284. /* Intel VMX MSR indicated features */
  285. #define X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW 0x00200000
  286. #define X86_VMX_FEATURE_PROC_CTLS_VNMI 0x00400000
  287. #define X86_VMX_FEATURE_PROC_CTLS_2ND_CTLS 0x80000000
  288. #define X86_VMX_FEATURE_PROC_CTLS2_VIRT_APIC 0x00000001
  289. #define X86_VMX_FEATURE_PROC_CTLS2_EPT 0x00000002
  290. #define X86_VMX_FEATURE_PROC_CTLS2_VPID 0x00000020
  291. u32 vmx_msr_low, vmx_msr_high, msr_ctl, msr_ctl2;
  292. clear_cpu_cap(c, X86_FEATURE_TPR_SHADOW);
  293. clear_cpu_cap(c, X86_FEATURE_VNMI);
  294. clear_cpu_cap(c, X86_FEATURE_FLEXPRIORITY);
  295. clear_cpu_cap(c, X86_FEATURE_EPT);
  296. clear_cpu_cap(c, X86_FEATURE_VPID);
  297. rdmsr(MSR_IA32_VMX_PROCBASED_CTLS, vmx_msr_low, vmx_msr_high);
  298. msr_ctl = vmx_msr_high | vmx_msr_low;
  299. if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW)
  300. set_cpu_cap(c, X86_FEATURE_TPR_SHADOW);
  301. if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_VNMI)
  302. set_cpu_cap(c, X86_FEATURE_VNMI);
  303. if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_2ND_CTLS) {
  304. rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
  305. vmx_msr_low, vmx_msr_high);
  306. msr_ctl2 = vmx_msr_high | vmx_msr_low;
  307. if ((msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_VIRT_APIC) &&
  308. (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW))
  309. set_cpu_cap(c, X86_FEATURE_FLEXPRIORITY);
  310. if (msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_EPT)
  311. set_cpu_cap(c, X86_FEATURE_EPT);
  312. if (msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_VPID)
  313. set_cpu_cap(c, X86_FEATURE_VPID);
  314. }
  315. }
  316. static void init_intel(struct cpuinfo_x86 *c)
  317. {
  318. unsigned int l2 = 0;
  319. early_init_intel(c);
  320. intel_workarounds(c);
  321. /*
  322. * Detect the extended topology information if available. This
  323. * will reinitialise the initial_apicid which will be used
  324. * in init_intel_cacheinfo()
  325. */
  326. detect_extended_topology(c);
  327. if (!cpu_has(c, X86_FEATURE_XTOPOLOGY)) {
  328. /*
  329. * let's use the legacy cpuid vector 0x1 and 0x4 for topology
  330. * detection.
  331. */
  332. c->x86_max_cores = intel_num_cpu_cores(c);
  333. #ifdef CONFIG_X86_32
  334. detect_ht(c);
  335. #endif
  336. }
  337. l2 = init_intel_cacheinfo(c);
  338. if (c->cpuid_level > 9) {
  339. unsigned eax = cpuid_eax(10);
  340. /* Check for version and the number of counters */
  341. if ((eax & 0xff) && (((eax>>8) & 0xff) > 1))
  342. set_cpu_cap(c, X86_FEATURE_ARCH_PERFMON);
  343. }
  344. if (cpu_has_xmm2)
  345. set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC);
  346. if (cpu_has_ds) {
  347. unsigned int l1;
  348. rdmsr(MSR_IA32_MISC_ENABLE, l1, l2);
  349. if (!(l1 & (1<<11)))
  350. set_cpu_cap(c, X86_FEATURE_BTS);
  351. if (!(l1 & (1<<12)))
  352. set_cpu_cap(c, X86_FEATURE_PEBS);
  353. }
  354. if (c->x86 == 6 && cpu_has_clflush &&
  355. (c->x86_model == 29 || c->x86_model == 46 || c->x86_model == 47))
  356. set_cpu_cap(c, X86_FEATURE_CLFLUSH_MONITOR);
  357. #ifdef CONFIG_X86_64
  358. if (c->x86 == 15)
  359. c->x86_cache_alignment = c->x86_clflush_size * 2;
  360. if (c->x86 == 6)
  361. set_cpu_cap(c, X86_FEATURE_REP_GOOD);
  362. #else
  363. /*
  364. * Names for the Pentium II/Celeron processors
  365. * detectable only by also checking the cache size.
  366. * Dixon is NOT a Celeron.
  367. */
  368. if (c->x86 == 6) {
  369. char *p = NULL;
  370. switch (c->x86_model) {
  371. case 5:
  372. if (l2 == 0)
  373. p = "Celeron (Covington)";
  374. else if (l2 == 256)
  375. p = "Mobile Pentium II (Dixon)";
  376. break;
  377. case 6:
  378. if (l2 == 128)
  379. p = "Celeron (Mendocino)";
  380. else if (c->x86_mask == 0 || c->x86_mask == 5)
  381. p = "Celeron-A";
  382. break;
  383. case 8:
  384. if (l2 == 128)
  385. p = "Celeron (Coppermine)";
  386. break;
  387. }
  388. if (p)
  389. strcpy(c->x86_model_id, p);
  390. }
  391. if (c->x86 == 15)
  392. set_cpu_cap(c, X86_FEATURE_P4);
  393. if (c->x86 == 6)
  394. set_cpu_cap(c, X86_FEATURE_P3);
  395. #endif
  396. /* Work around errata */
  397. srat_detect_node(c);
  398. if (cpu_has(c, X86_FEATURE_VMX))
  399. detect_vmx_virtcap(c);
  400. /*
  401. * Initialize MSR_IA32_ENERGY_PERF_BIAS if BIOS did not.
  402. * x86_energy_perf_policy(8) is available to change it at run-time
  403. */
  404. if (cpu_has(c, X86_FEATURE_EPB)) {
  405. u64 epb;
  406. rdmsrl(MSR_IA32_ENERGY_PERF_BIAS, epb);
  407. if ((epb & 0xF) == ENERGY_PERF_BIAS_PERFORMANCE) {
  408. printk_once(KERN_WARNING "ENERGY_PERF_BIAS:"
  409. " Set to 'normal', was 'performance'\n"
  410. "ENERGY_PERF_BIAS: View and update with"
  411. " x86_energy_perf_policy(8)\n");
  412. epb = (epb & ~0xF) | ENERGY_PERF_BIAS_NORMAL;
  413. wrmsrl(MSR_IA32_ENERGY_PERF_BIAS, epb);
  414. }
  415. }
  416. }
  417. #ifdef CONFIG_X86_32
  418. static unsigned int intel_size_cache(struct cpuinfo_x86 *c, unsigned int size)
  419. {
  420. /*
  421. * Intel PIII Tualatin. This comes in two flavours.
  422. * One has 256kb of cache, the other 512. We have no way
  423. * to determine which, so we use a boottime override
  424. * for the 512kb model, and assume 256 otherwise.
  425. */
  426. if ((c->x86 == 6) && (c->x86_model == 11) && (size == 0))
  427. size = 256;
  428. return size;
  429. }
  430. #endif
  431. #define TLB_INST_4K 0x01
  432. #define TLB_INST_4M 0x02
  433. #define TLB_INST_2M_4M 0x03
  434. #define TLB_INST_ALL 0x05
  435. #define TLB_INST_1G 0x06
  436. #define TLB_DATA_4K 0x11
  437. #define TLB_DATA_4M 0x12
  438. #define TLB_DATA_2M_4M 0x13
  439. #define TLB_DATA_4K_4M 0x14
  440. #define TLB_DATA_1G 0x16
  441. #define TLB_DATA0_4K 0x21
  442. #define TLB_DATA0_4M 0x22
  443. #define TLB_DATA0_2M_4M 0x23
  444. #define STLB_4K 0x41
  445. #define STLB_4K_2M 0x42
  446. static const struct _tlb_table intel_tlb_table[] = {
  447. { 0x01, TLB_INST_4K, 32, " TLB_INST 4 KByte pages, 4-way set associative" },
  448. { 0x02, TLB_INST_4M, 2, " TLB_INST 4 MByte pages, full associative" },
  449. { 0x03, TLB_DATA_4K, 64, " TLB_DATA 4 KByte pages, 4-way set associative" },
  450. { 0x04, TLB_DATA_4M, 8, " TLB_DATA 4 MByte pages, 4-way set associative" },
  451. { 0x05, TLB_DATA_4M, 32, " TLB_DATA 4 MByte pages, 4-way set associative" },
  452. { 0x0b, TLB_INST_4M, 4, " TLB_INST 4 MByte pages, 4-way set associative" },
  453. { 0x4f, TLB_INST_4K, 32, " TLB_INST 4 KByte pages */" },
  454. { 0x50, TLB_INST_ALL, 64, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
  455. { 0x51, TLB_INST_ALL, 128, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
  456. { 0x52, TLB_INST_ALL, 256, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
  457. { 0x55, TLB_INST_2M_4M, 7, " TLB_INST 2-MByte or 4-MByte pages, fully associative" },
  458. { 0x56, TLB_DATA0_4M, 16, " TLB_DATA0 4 MByte pages, 4-way set associative" },
  459. { 0x57, TLB_DATA0_4K, 16, " TLB_DATA0 4 KByte pages, 4-way associative" },
  460. { 0x59, TLB_DATA0_4K, 16, " TLB_DATA0 4 KByte pages, fully associative" },
  461. { 0x5a, TLB_DATA0_2M_4M, 32, " TLB_DATA0 2-MByte or 4 MByte pages, 4-way set associative" },
  462. { 0x5b, TLB_DATA_4K_4M, 64, " TLB_DATA 4 KByte and 4 MByte pages" },
  463. { 0x5c, TLB_DATA_4K_4M, 128, " TLB_DATA 4 KByte and 4 MByte pages" },
  464. { 0x5d, TLB_DATA_4K_4M, 256, " TLB_DATA 4 KByte and 4 MByte pages" },
  465. { 0x61, TLB_INST_4K, 48, " TLB_INST 4 KByte pages, full associative" },
  466. { 0x63, TLB_DATA_1G, 4, " TLB_DATA 1 GByte pages, 4-way set associative" },
  467. { 0x76, TLB_INST_2M_4M, 8, " TLB_INST 2-MByte or 4-MByte pages, fully associative" },
  468. { 0xb0, TLB_INST_4K, 128, " TLB_INST 4 KByte pages, 4-way set associative" },
  469. { 0xb1, TLB_INST_2M_4M, 4, " TLB_INST 2M pages, 4-way, 8 entries or 4M pages, 4-way entries" },
  470. { 0xb2, TLB_INST_4K, 64, " TLB_INST 4KByte pages, 4-way set associative" },
  471. { 0xb3, TLB_DATA_4K, 128, " TLB_DATA 4 KByte pages, 4-way set associative" },
  472. { 0xb4, TLB_DATA_4K, 256, " TLB_DATA 4 KByte pages, 4-way associative" },
  473. { 0xb5, TLB_INST_4K, 64, " TLB_INST 4 KByte pages, 8-way set ssociative" },
  474. { 0xb6, TLB_INST_4K, 128, " TLB_INST 4 KByte pages, 8-way set ssociative" },
  475. { 0xba, TLB_DATA_4K, 64, " TLB_DATA 4 KByte pages, 4-way associative" },
  476. { 0xc0, TLB_DATA_4K_4M, 8, " TLB_DATA 4 KByte and 4 MByte pages, 4-way associative" },
  477. { 0xc1, STLB_4K_2M, 1024, " STLB 4 KByte and 2 MByte pages, 8-way associative" },
  478. { 0xc2, TLB_DATA_2M_4M, 16, " DTLB 2 MByte/4MByte pages, 4-way associative" },
  479. { 0xca, STLB_4K, 512, " STLB 4 KByte pages, 4-way associative" },
  480. { 0x00, 0, 0 }
  481. };
  482. static void intel_tlb_lookup(const unsigned char desc)
  483. {
  484. unsigned char k;
  485. if (desc == 0)
  486. return;
  487. /* look up this descriptor in the table */
  488. for (k = 0; intel_tlb_table[k].descriptor != desc && \
  489. intel_tlb_table[k].descriptor != 0; k++)
  490. ;
  491. if (intel_tlb_table[k].tlb_type == 0)
  492. return;
  493. switch (intel_tlb_table[k].tlb_type) {
  494. case STLB_4K:
  495. if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
  496. tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
  497. if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
  498. tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
  499. break;
  500. case STLB_4K_2M:
  501. if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
  502. tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
  503. if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
  504. tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
  505. if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
  506. tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
  507. if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
  508. tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
  509. if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
  510. tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
  511. if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
  512. tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
  513. break;
  514. case TLB_INST_ALL:
  515. if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
  516. tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
  517. if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
  518. tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
  519. if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
  520. tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
  521. break;
  522. case TLB_INST_4K:
  523. if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
  524. tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
  525. break;
  526. case TLB_INST_4M:
  527. if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
  528. tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
  529. break;
  530. case TLB_INST_2M_4M:
  531. if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
  532. tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
  533. if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
  534. tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
  535. break;
  536. case TLB_DATA_4K:
  537. case TLB_DATA0_4K:
  538. if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
  539. tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
  540. break;
  541. case TLB_DATA_4M:
  542. case TLB_DATA0_4M:
  543. if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
  544. tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
  545. break;
  546. case TLB_DATA_2M_4M:
  547. case TLB_DATA0_2M_4M:
  548. if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
  549. tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
  550. if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
  551. tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
  552. break;
  553. case TLB_DATA_4K_4M:
  554. if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
  555. tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
  556. if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
  557. tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
  558. break;
  559. case TLB_DATA_1G:
  560. if (tlb_lld_1g[ENTRIES] < intel_tlb_table[k].entries)
  561. tlb_lld_1g[ENTRIES] = intel_tlb_table[k].entries;
  562. break;
  563. }
  564. }
  565. static void intel_tlb_flushall_shift_set(struct cpuinfo_x86 *c)
  566. {
  567. switch ((c->x86 << 8) + c->x86_model) {
  568. case 0x60f: /* original 65 nm celeron/pentium/core2/xeon, "Merom"/"Conroe" */
  569. case 0x616: /* single-core 65 nm celeron/core2solo "Merom-L"/"Conroe-L" */
  570. case 0x617: /* current 45 nm celeron/core2/xeon "Penryn"/"Wolfdale" */
  571. case 0x61d: /* six-core 45 nm xeon "Dunnington" */
  572. tlb_flushall_shift = -1;
  573. break;
  574. case 0x63a: /* Ivybridge */
  575. tlb_flushall_shift = 2;
  576. break;
  577. case 0x61a: /* 45 nm nehalem, "Bloomfield" */
  578. case 0x61e: /* 45 nm nehalem, "Lynnfield" */
  579. case 0x625: /* 32 nm nehalem, "Clarkdale" */
  580. case 0x62c: /* 32 nm nehalem, "Gulftown" */
  581. case 0x62e: /* 45 nm nehalem-ex, "Beckton" */
  582. case 0x62f: /* 32 nm Xeon E7 */
  583. case 0x62a: /* SandyBridge */
  584. case 0x62d: /* SandyBridge, "Romely-EP" */
  585. default:
  586. tlb_flushall_shift = 6;
  587. }
  588. }
  589. static void intel_detect_tlb(struct cpuinfo_x86 *c)
  590. {
  591. int i, j, n;
  592. unsigned int regs[4];
  593. unsigned char *desc = (unsigned char *)regs;
  594. if (c->cpuid_level < 2)
  595. return;
  596. /* Number of times to iterate */
  597. n = cpuid_eax(2) & 0xFF;
  598. for (i = 0 ; i < n ; i++) {
  599. cpuid(2, &regs[0], &regs[1], &regs[2], &regs[3]);
  600. /* If bit 31 is set, this is an unknown format */
  601. for (j = 0 ; j < 3 ; j++)
  602. if (regs[j] & (1 << 31))
  603. regs[j] = 0;
  604. /* Byte 0 is level count, not a descriptor */
  605. for (j = 1 ; j < 16 ; j++)
  606. intel_tlb_lookup(desc[j]);
  607. }
  608. intel_tlb_flushall_shift_set(c);
  609. }
  610. static const struct cpu_dev intel_cpu_dev = {
  611. .c_vendor = "Intel",
  612. .c_ident = { "GenuineIntel" },
  613. #ifdef CONFIG_X86_32
  614. .legacy_models = {
  615. { .family = 4, .model_names =
  616. {
  617. [0] = "486 DX-25/33",
  618. [1] = "486 DX-50",
  619. [2] = "486 SX",
  620. [3] = "486 DX/2",
  621. [4] = "486 SL",
  622. [5] = "486 SX/2",
  623. [7] = "486 DX/2-WB",
  624. [8] = "486 DX/4",
  625. [9] = "486 DX/4-WB"
  626. }
  627. },
  628. { .family = 5, .model_names =
  629. {
  630. [0] = "Pentium 60/66 A-step",
  631. [1] = "Pentium 60/66",
  632. [2] = "Pentium 75 - 200",
  633. [3] = "OverDrive PODP5V83",
  634. [4] = "Pentium MMX",
  635. [7] = "Mobile Pentium 75 - 200",
  636. [8] = "Mobile Pentium MMX"
  637. }
  638. },
  639. { .family = 6, .model_names =
  640. {
  641. [0] = "Pentium Pro A-step",
  642. [1] = "Pentium Pro",
  643. [3] = "Pentium II (Klamath)",
  644. [4] = "Pentium II (Deschutes)",
  645. [5] = "Pentium II (Deschutes)",
  646. [6] = "Mobile Pentium II",
  647. [7] = "Pentium III (Katmai)",
  648. [8] = "Pentium III (Coppermine)",
  649. [10] = "Pentium III (Cascades)",
  650. [11] = "Pentium III (Tualatin)",
  651. }
  652. },
  653. { .family = 15, .model_names =
  654. {
  655. [0] = "Pentium 4 (Unknown)",
  656. [1] = "Pentium 4 (Willamette)",
  657. [2] = "Pentium 4 (Northwood)",
  658. [4] = "Pentium 4 (Foster)",
  659. [5] = "Pentium 4 (Foster)",
  660. }
  661. },
  662. },
  663. .legacy_cache_size = intel_size_cache,
  664. #endif
  665. .c_detect_tlb = intel_detect_tlb,
  666. .c_early_init = early_init_intel,
  667. .c_init = init_intel,
  668. .c_x86_vendor = X86_VENDOR_INTEL,
  669. };
  670. cpu_dev_register(intel_cpu_dev);