bpf_jit_comp.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816
  1. #include <linux/moduleloader.h>
  2. #include <linux/workqueue.h>
  3. #include <linux/netdevice.h>
  4. #include <linux/filter.h>
  5. #include <linux/cache.h>
  6. #include <linux/if_vlan.h>
  7. #include <asm/cacheflush.h>
  8. #include <asm/ptrace.h>
  9. #include "bpf_jit.h"
  10. int bpf_jit_enable __read_mostly;
  11. static inline bool is_simm13(unsigned int value)
  12. {
  13. return value + 0x1000 < 0x2000;
  14. }
  15. static void bpf_flush_icache(void *start_, void *end_)
  16. {
  17. #ifdef CONFIG_SPARC64
  18. /* Cheetah's I-cache is fully coherent. */
  19. if (tlb_type == spitfire) {
  20. unsigned long start = (unsigned long) start_;
  21. unsigned long end = (unsigned long) end_;
  22. start &= ~7UL;
  23. end = (end + 7UL) & ~7UL;
  24. while (start < end) {
  25. flushi(start);
  26. start += 32;
  27. }
  28. }
  29. #endif
  30. }
  31. #define SEEN_DATAREF 1 /* might call external helpers */
  32. #define SEEN_XREG 2 /* ebx is used */
  33. #define SEEN_MEM 4 /* use mem[] for temporary storage */
  34. #define S13(X) ((X) & 0x1fff)
  35. #define IMMED 0x00002000
  36. #define RD(X) ((X) << 25)
  37. #define RS1(X) ((X) << 14)
  38. #define RS2(X) ((X))
  39. #define OP(X) ((X) << 30)
  40. #define OP2(X) ((X) << 22)
  41. #define OP3(X) ((X) << 19)
  42. #define COND(X) ((X) << 25)
  43. #define F1(X) OP(X)
  44. #define F2(X, Y) (OP(X) | OP2(Y))
  45. #define F3(X, Y) (OP(X) | OP3(Y))
  46. #define CONDN COND(0x0)
  47. #define CONDE COND(0x1)
  48. #define CONDLE COND(0x2)
  49. #define CONDL COND(0x3)
  50. #define CONDLEU COND(0x4)
  51. #define CONDCS COND(0x5)
  52. #define CONDNEG COND(0x6)
  53. #define CONDVC COND(0x7)
  54. #define CONDA COND(0x8)
  55. #define CONDNE COND(0x9)
  56. #define CONDG COND(0xa)
  57. #define CONDGE COND(0xb)
  58. #define CONDGU COND(0xc)
  59. #define CONDCC COND(0xd)
  60. #define CONDPOS COND(0xe)
  61. #define CONDVS COND(0xf)
  62. #define CONDGEU CONDCC
  63. #define CONDLU CONDCS
  64. #define WDISP22(X) (((X) >> 2) & 0x3fffff)
  65. #define BA (F2(0, 2) | CONDA)
  66. #define BGU (F2(0, 2) | CONDGU)
  67. #define BLEU (F2(0, 2) | CONDLEU)
  68. #define BGEU (F2(0, 2) | CONDGEU)
  69. #define BLU (F2(0, 2) | CONDLU)
  70. #define BE (F2(0, 2) | CONDE)
  71. #define BNE (F2(0, 2) | CONDNE)
  72. #ifdef CONFIG_SPARC64
  73. #define BE_PTR (F2(0, 1) | CONDE | (2 << 20))
  74. #else
  75. #define BE_PTR BE
  76. #endif
  77. #define SETHI(K, REG) \
  78. (F2(0, 0x4) | RD(REG) | (((K) >> 10) & 0x3fffff))
  79. #define OR_LO(K, REG) \
  80. (F3(2, 0x02) | IMMED | RS1(REG) | ((K) & 0x3ff) | RD(REG))
  81. #define ADD F3(2, 0x00)
  82. #define AND F3(2, 0x01)
  83. #define ANDCC F3(2, 0x11)
  84. #define OR F3(2, 0x02)
  85. #define XOR F3(2, 0x03)
  86. #define SUB F3(2, 0x04)
  87. #define SUBCC F3(2, 0x14)
  88. #define MUL F3(2, 0x0a) /* umul */
  89. #define DIV F3(2, 0x0e) /* udiv */
  90. #define SLL F3(2, 0x25)
  91. #define SRL F3(2, 0x26)
  92. #define JMPL F3(2, 0x38)
  93. #define CALL F1(1)
  94. #define BR F2(0, 0x01)
  95. #define RD_Y F3(2, 0x28)
  96. #define WR_Y F3(2, 0x30)
  97. #define LD32 F3(3, 0x00)
  98. #define LD8 F3(3, 0x01)
  99. #define LD16 F3(3, 0x02)
  100. #define LD64 F3(3, 0x0b)
  101. #define ST32 F3(3, 0x04)
  102. #ifdef CONFIG_SPARC64
  103. #define LDPTR LD64
  104. #define BASE_STACKFRAME 176
  105. #else
  106. #define LDPTR LD32
  107. #define BASE_STACKFRAME 96
  108. #endif
  109. #define LD32I (LD32 | IMMED)
  110. #define LD8I (LD8 | IMMED)
  111. #define LD16I (LD16 | IMMED)
  112. #define LD64I (LD64 | IMMED)
  113. #define LDPTRI (LDPTR | IMMED)
  114. #define ST32I (ST32 | IMMED)
  115. #define emit_nop() \
  116. do { \
  117. *prog++ = SETHI(0, G0); \
  118. } while (0)
  119. #define emit_neg() \
  120. do { /* sub %g0, r_A, r_A */ \
  121. *prog++ = SUB | RS1(G0) | RS2(r_A) | RD(r_A); \
  122. } while (0)
  123. #define emit_reg_move(FROM, TO) \
  124. do { /* or %g0, FROM, TO */ \
  125. *prog++ = OR | RS1(G0) | RS2(FROM) | RD(TO); \
  126. } while (0)
  127. #define emit_clear(REG) \
  128. do { /* or %g0, %g0, REG */ \
  129. *prog++ = OR | RS1(G0) | RS2(G0) | RD(REG); \
  130. } while (0)
  131. #define emit_set_const(K, REG) \
  132. do { /* sethi %hi(K), REG */ \
  133. *prog++ = SETHI(K, REG); \
  134. /* or REG, %lo(K), REG */ \
  135. *prog++ = OR_LO(K, REG); \
  136. } while (0)
  137. /* Emit
  138. *
  139. * OP r_A, r_X, r_A
  140. */
  141. #define emit_alu_X(OPCODE) \
  142. do { \
  143. seen |= SEEN_XREG; \
  144. *prog++ = OPCODE | RS1(r_A) | RS2(r_X) | RD(r_A); \
  145. } while (0)
  146. /* Emit either:
  147. *
  148. * OP r_A, K, r_A
  149. *
  150. * or
  151. *
  152. * sethi %hi(K), r_TMP
  153. * or r_TMP, %lo(K), r_TMP
  154. * OP r_A, r_TMP, r_A
  155. *
  156. * depending upon whether K fits in a signed 13-bit
  157. * immediate instruction field. Emit nothing if K
  158. * is zero.
  159. */
  160. #define emit_alu_K(OPCODE, K) \
  161. do { \
  162. if (K) { \
  163. unsigned int _insn = OPCODE; \
  164. _insn |= RS1(r_A) | RD(r_A); \
  165. if (is_simm13(K)) { \
  166. *prog++ = _insn | IMMED | S13(K); \
  167. } else { \
  168. emit_set_const(K, r_TMP); \
  169. *prog++ = _insn | RS2(r_TMP); \
  170. } \
  171. } \
  172. } while (0)
  173. #define emit_loadimm(K, DEST) \
  174. do { \
  175. if (is_simm13(K)) { \
  176. /* or %g0, K, DEST */ \
  177. *prog++ = OR | IMMED | RS1(G0) | S13(K) | RD(DEST); \
  178. } else { \
  179. emit_set_const(K, DEST); \
  180. } \
  181. } while (0)
  182. #define emit_loadptr(BASE, STRUCT, FIELD, DEST) \
  183. do { unsigned int _off = offsetof(STRUCT, FIELD); \
  184. BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(void *)); \
  185. *prog++ = LDPTRI | RS1(BASE) | S13(_off) | RD(DEST); \
  186. } while (0)
  187. #define emit_load32(BASE, STRUCT, FIELD, DEST) \
  188. do { unsigned int _off = offsetof(STRUCT, FIELD); \
  189. BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(u32)); \
  190. *prog++ = LD32I | RS1(BASE) | S13(_off) | RD(DEST); \
  191. } while (0)
  192. #define emit_load16(BASE, STRUCT, FIELD, DEST) \
  193. do { unsigned int _off = offsetof(STRUCT, FIELD); \
  194. BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(u16)); \
  195. *prog++ = LD16I | RS1(BASE) | S13(_off) | RD(DEST); \
  196. } while (0)
  197. #define __emit_load8(BASE, STRUCT, FIELD, DEST) \
  198. do { unsigned int _off = offsetof(STRUCT, FIELD); \
  199. *prog++ = LD8I | RS1(BASE) | S13(_off) | RD(DEST); \
  200. } while (0)
  201. #define emit_load8(BASE, STRUCT, FIELD, DEST) \
  202. do { BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(u8)); \
  203. __emit_load8(BASE, STRUCT, FIELD, DEST); \
  204. } while (0)
  205. #define emit_ldmem(OFF, DEST) \
  206. do { *prog++ = LD32I | RS1(FP) | S13(-(OFF)) | RD(DEST); \
  207. } while (0)
  208. #define emit_stmem(OFF, SRC) \
  209. do { *prog++ = LD32I | RS1(FP) | S13(-(OFF)) | RD(SRC); \
  210. } while (0)
  211. #ifdef CONFIG_SMP
  212. #ifdef CONFIG_SPARC64
  213. #define emit_load_cpu(REG) \
  214. emit_load16(G6, struct thread_info, cpu, REG)
  215. #else
  216. #define emit_load_cpu(REG) \
  217. emit_load32(G6, struct thread_info, cpu, REG)
  218. #endif
  219. #else
  220. #define emit_load_cpu(REG) emit_clear(REG)
  221. #endif
  222. #define emit_skb_loadptr(FIELD, DEST) \
  223. emit_loadptr(r_SKB, struct sk_buff, FIELD, DEST)
  224. #define emit_skb_load32(FIELD, DEST) \
  225. emit_load32(r_SKB, struct sk_buff, FIELD, DEST)
  226. #define emit_skb_load16(FIELD, DEST) \
  227. emit_load16(r_SKB, struct sk_buff, FIELD, DEST)
  228. #define __emit_skb_load8(FIELD, DEST) \
  229. __emit_load8(r_SKB, struct sk_buff, FIELD, DEST)
  230. #define emit_skb_load8(FIELD, DEST) \
  231. emit_load8(r_SKB, struct sk_buff, FIELD, DEST)
  232. #define emit_jmpl(BASE, IMM_OFF, LREG) \
  233. *prog++ = (JMPL | IMMED | RS1(BASE) | S13(IMM_OFF) | RD(LREG))
  234. #define emit_call(FUNC) \
  235. do { void *_here = image + addrs[i] - 8; \
  236. unsigned int _off = (void *)(FUNC) - _here; \
  237. *prog++ = CALL | (((_off) >> 2) & 0x3fffffff); \
  238. emit_nop(); \
  239. } while (0)
  240. #define emit_branch(BR_OPC, DEST) \
  241. do { unsigned int _here = addrs[i] - 8; \
  242. *prog++ = BR_OPC | WDISP22((DEST) - _here); \
  243. } while (0)
  244. #define emit_branch_off(BR_OPC, OFF) \
  245. do { *prog++ = BR_OPC | WDISP22(OFF); \
  246. } while (0)
  247. #define emit_jump(DEST) emit_branch(BA, DEST)
  248. #define emit_read_y(REG) *prog++ = RD_Y | RD(REG)
  249. #define emit_write_y(REG) *prog++ = WR_Y | IMMED | RS1(REG) | S13(0)
  250. #define emit_cmp(R1, R2) \
  251. *prog++ = (SUBCC | RS1(R1) | RS2(R2) | RD(G0))
  252. #define emit_cmpi(R1, IMM) \
  253. *prog++ = (SUBCC | IMMED | RS1(R1) | S13(IMM) | RD(G0));
  254. #define emit_btst(R1, R2) \
  255. *prog++ = (ANDCC | RS1(R1) | RS2(R2) | RD(G0))
  256. #define emit_btsti(R1, IMM) \
  257. *prog++ = (ANDCC | IMMED | RS1(R1) | S13(IMM) | RD(G0));
  258. #define emit_sub(R1, R2, R3) \
  259. *prog++ = (SUB | RS1(R1) | RS2(R2) | RD(R3))
  260. #define emit_subi(R1, IMM, R3) \
  261. *prog++ = (SUB | IMMED | RS1(R1) | S13(IMM) | RD(R3))
  262. #define emit_add(R1, R2, R3) \
  263. *prog++ = (ADD | RS1(R1) | RS2(R2) | RD(R3))
  264. #define emit_addi(R1, IMM, R3) \
  265. *prog++ = (ADD | IMMED | RS1(R1) | S13(IMM) | RD(R3))
  266. #define emit_and(R1, R2, R3) \
  267. *prog++ = (AND | RS1(R1) | RS2(R2) | RD(R3))
  268. #define emit_andi(R1, IMM, R3) \
  269. *prog++ = (AND | IMMED | RS1(R1) | S13(IMM) | RD(R3))
  270. #define emit_alloc_stack(SZ) \
  271. *prog++ = (SUB | IMMED | RS1(SP) | S13(SZ) | RD(SP))
  272. #define emit_release_stack(SZ) \
  273. *prog++ = (ADD | IMMED | RS1(SP) | S13(SZ) | RD(SP))
  274. /* A note about branch offset calculations. The addrs[] array,
  275. * indexed by BPF instruction, records the address after all the
  276. * sparc instructions emitted for that BPF instruction.
  277. *
  278. * The most common case is to emit a branch at the end of such
  279. * a code sequence. So this would be two instructions, the
  280. * branch and it's delay slot.
  281. *
  282. * Therefore by default the branch emitters calculate the branch
  283. * offset field as:
  284. *
  285. * destination - (addrs[i] - 8)
  286. *
  287. * This "addrs[i] - 8" is the address of the branch itself or
  288. * what "." would be in assembler notation. The "8" part is
  289. * how we take into consideration the branch and it's delay
  290. * slot mentioned above.
  291. *
  292. * Sometimes we need to emit a branch earlier in the code
  293. * sequence. And in these situations we adjust "destination"
  294. * to accomodate this difference. For example, if we needed
  295. * to emit a branch (and it's delay slot) right before the
  296. * final instruction emitted for a BPF opcode, we'd use
  297. * "destination + 4" instead of just plain "destination" above.
  298. *
  299. * This is why you see all of these funny emit_branch() and
  300. * emit_jump() calls with adjusted offsets.
  301. */
  302. void bpf_jit_compile(struct sk_filter *fp)
  303. {
  304. unsigned int cleanup_addr, proglen, oldproglen = 0;
  305. u32 temp[8], *prog, *func, seen = 0, pass;
  306. const struct sock_filter *filter = fp->insns;
  307. int i, flen = fp->len, pc_ret0 = -1;
  308. unsigned int *addrs;
  309. void *image;
  310. if (!bpf_jit_enable)
  311. return;
  312. addrs = kmalloc(flen * sizeof(*addrs), GFP_KERNEL);
  313. if (addrs == NULL)
  314. return;
  315. /* Before first pass, make a rough estimation of addrs[]
  316. * each bpf instruction is translated to less than 64 bytes
  317. */
  318. for (proglen = 0, i = 0; i < flen; i++) {
  319. proglen += 64;
  320. addrs[i] = proglen;
  321. }
  322. cleanup_addr = proglen; /* epilogue address */
  323. image = NULL;
  324. for (pass = 0; pass < 10; pass++) {
  325. u8 seen_or_pass0 = (pass == 0) ? (SEEN_XREG | SEEN_DATAREF | SEEN_MEM) : seen;
  326. /* no prologue/epilogue for trivial filters (RET something) */
  327. proglen = 0;
  328. prog = temp;
  329. /* Prologue */
  330. if (seen_or_pass0) {
  331. if (seen_or_pass0 & SEEN_MEM) {
  332. unsigned int sz = BASE_STACKFRAME;
  333. sz += BPF_MEMWORDS * sizeof(u32);
  334. emit_alloc_stack(sz);
  335. }
  336. /* Make sure we dont leek kernel memory. */
  337. if (seen_or_pass0 & SEEN_XREG)
  338. emit_clear(r_X);
  339. /* If this filter needs to access skb data,
  340. * load %o4 and %o5 with:
  341. * %o4 = skb->len - skb->data_len
  342. * %o5 = skb->data
  343. * And also back up %o7 into r_saved_O7 so we can
  344. * invoke the stubs using 'call'.
  345. */
  346. if (seen_or_pass0 & SEEN_DATAREF) {
  347. emit_load32(r_SKB, struct sk_buff, len, r_HEADLEN);
  348. emit_load32(r_SKB, struct sk_buff, data_len, r_TMP);
  349. emit_sub(r_HEADLEN, r_TMP, r_HEADLEN);
  350. emit_loadptr(r_SKB, struct sk_buff, data, r_SKB_DATA);
  351. }
  352. }
  353. emit_reg_move(O7, r_saved_O7);
  354. switch (filter[0].code) {
  355. case BPF_RET | BPF_K:
  356. case BPF_LD | BPF_W | BPF_LEN:
  357. case BPF_LD | BPF_W | BPF_ABS:
  358. case BPF_LD | BPF_H | BPF_ABS:
  359. case BPF_LD | BPF_B | BPF_ABS:
  360. /* The first instruction sets the A register (or is
  361. * a "RET 'constant'")
  362. */
  363. break;
  364. default:
  365. /* Make sure we dont leak kernel information to the
  366. * user.
  367. */
  368. emit_clear(r_A); /* A = 0 */
  369. }
  370. for (i = 0; i < flen; i++) {
  371. unsigned int K = filter[i].k;
  372. unsigned int t_offset;
  373. unsigned int f_offset;
  374. u32 t_op, f_op;
  375. u16 code = bpf_anc_helper(&filter[i]);
  376. int ilen;
  377. switch (code) {
  378. case BPF_ALU | BPF_ADD | BPF_X: /* A += X; */
  379. emit_alu_X(ADD);
  380. break;
  381. case BPF_ALU | BPF_ADD | BPF_K: /* A += K; */
  382. emit_alu_K(ADD, K);
  383. break;
  384. case BPF_ALU | BPF_SUB | BPF_X: /* A -= X; */
  385. emit_alu_X(SUB);
  386. break;
  387. case BPF_ALU | BPF_SUB | BPF_K: /* A -= K */
  388. emit_alu_K(SUB, K);
  389. break;
  390. case BPF_ALU | BPF_AND | BPF_X: /* A &= X */
  391. emit_alu_X(AND);
  392. break;
  393. case BPF_ALU | BPF_AND | BPF_K: /* A &= K */
  394. emit_alu_K(AND, K);
  395. break;
  396. case BPF_ALU | BPF_OR | BPF_X: /* A |= X */
  397. emit_alu_X(OR);
  398. break;
  399. case BPF_ALU | BPF_OR | BPF_K: /* A |= K */
  400. emit_alu_K(OR, K);
  401. break;
  402. case BPF_ANC | SKF_AD_ALU_XOR_X: /* A ^= X; */
  403. case BPF_ALU | BPF_XOR | BPF_X:
  404. emit_alu_X(XOR);
  405. break;
  406. case BPF_ALU | BPF_XOR | BPF_K: /* A ^= K */
  407. emit_alu_K(XOR, K);
  408. break;
  409. case BPF_ALU | BPF_LSH | BPF_X: /* A <<= X */
  410. emit_alu_X(SLL);
  411. break;
  412. case BPF_ALU | BPF_LSH | BPF_K: /* A <<= K */
  413. emit_alu_K(SLL, K);
  414. break;
  415. case BPF_ALU | BPF_RSH | BPF_X: /* A >>= X */
  416. emit_alu_X(SRL);
  417. break;
  418. case BPF_ALU | BPF_RSH | BPF_K: /* A >>= K */
  419. emit_alu_K(SRL, K);
  420. break;
  421. case BPF_ALU | BPF_MUL | BPF_X: /* A *= X; */
  422. emit_alu_X(MUL);
  423. break;
  424. case BPF_ALU | BPF_MUL | BPF_K: /* A *= K */
  425. emit_alu_K(MUL, K);
  426. break;
  427. case BPF_ALU | BPF_DIV | BPF_K: /* A /= K with K != 0*/
  428. if (K == 1)
  429. break;
  430. emit_write_y(G0);
  431. #ifdef CONFIG_SPARC32
  432. /* The Sparc v8 architecture requires
  433. * three instructions between a %y
  434. * register write and the first use.
  435. */
  436. emit_nop();
  437. emit_nop();
  438. emit_nop();
  439. #endif
  440. emit_alu_K(DIV, K);
  441. break;
  442. case BPF_ALU | BPF_DIV | BPF_X: /* A /= X; */
  443. emit_cmpi(r_X, 0);
  444. if (pc_ret0 > 0) {
  445. t_offset = addrs[pc_ret0 - 1];
  446. #ifdef CONFIG_SPARC32
  447. emit_branch(BE, t_offset + 20);
  448. #else
  449. emit_branch(BE, t_offset + 8);
  450. #endif
  451. emit_nop(); /* delay slot */
  452. } else {
  453. emit_branch_off(BNE, 16);
  454. emit_nop();
  455. #ifdef CONFIG_SPARC32
  456. emit_jump(cleanup_addr + 20);
  457. #else
  458. emit_jump(cleanup_addr + 8);
  459. #endif
  460. emit_clear(r_A);
  461. }
  462. emit_write_y(G0);
  463. #ifdef CONFIG_SPARC32
  464. /* The Sparc v8 architecture requires
  465. * three instructions between a %y
  466. * register write and the first use.
  467. */
  468. emit_nop();
  469. emit_nop();
  470. emit_nop();
  471. #endif
  472. emit_alu_X(DIV);
  473. break;
  474. case BPF_ALU | BPF_NEG:
  475. emit_neg();
  476. break;
  477. case BPF_RET | BPF_K:
  478. if (!K) {
  479. if (pc_ret0 == -1)
  480. pc_ret0 = i;
  481. emit_clear(r_A);
  482. } else {
  483. emit_loadimm(K, r_A);
  484. }
  485. /* Fallthrough */
  486. case BPF_RET | BPF_A:
  487. if (seen_or_pass0) {
  488. if (i != flen - 1) {
  489. emit_jump(cleanup_addr);
  490. emit_nop();
  491. break;
  492. }
  493. if (seen_or_pass0 & SEEN_MEM) {
  494. unsigned int sz = BASE_STACKFRAME;
  495. sz += BPF_MEMWORDS * sizeof(u32);
  496. emit_release_stack(sz);
  497. }
  498. }
  499. /* jmpl %r_saved_O7 + 8, %g0 */
  500. emit_jmpl(r_saved_O7, 8, G0);
  501. emit_reg_move(r_A, O0); /* delay slot */
  502. break;
  503. case BPF_MISC | BPF_TAX:
  504. seen |= SEEN_XREG;
  505. emit_reg_move(r_A, r_X);
  506. break;
  507. case BPF_MISC | BPF_TXA:
  508. seen |= SEEN_XREG;
  509. emit_reg_move(r_X, r_A);
  510. break;
  511. case BPF_ANC | SKF_AD_CPU:
  512. emit_load_cpu(r_A);
  513. break;
  514. case BPF_ANC | SKF_AD_PROTOCOL:
  515. emit_skb_load16(protocol, r_A);
  516. break;
  517. #if 0
  518. /* GCC won't let us take the address of
  519. * a bit field even though we very much
  520. * know what we are doing here.
  521. */
  522. case BPF_ANC | SKF_AD_PKTTYPE:
  523. __emit_skb_load8(pkt_type, r_A);
  524. emit_alu_K(SRL, 5);
  525. break;
  526. #endif
  527. case BPF_ANC | SKF_AD_IFINDEX:
  528. emit_skb_loadptr(dev, r_A);
  529. emit_cmpi(r_A, 0);
  530. emit_branch(BE_PTR, cleanup_addr + 4);
  531. emit_nop();
  532. emit_load32(r_A, struct net_device, ifindex, r_A);
  533. break;
  534. case BPF_ANC | SKF_AD_MARK:
  535. emit_skb_load32(mark, r_A);
  536. break;
  537. case BPF_ANC | SKF_AD_QUEUE:
  538. emit_skb_load16(queue_mapping, r_A);
  539. break;
  540. case BPF_ANC | SKF_AD_HATYPE:
  541. emit_skb_loadptr(dev, r_A);
  542. emit_cmpi(r_A, 0);
  543. emit_branch(BE_PTR, cleanup_addr + 4);
  544. emit_nop();
  545. emit_load16(r_A, struct net_device, type, r_A);
  546. break;
  547. case BPF_ANC | SKF_AD_RXHASH:
  548. emit_skb_load32(hash, r_A);
  549. break;
  550. case BPF_ANC | SKF_AD_VLAN_TAG:
  551. case BPF_ANC | SKF_AD_VLAN_TAG_PRESENT:
  552. emit_skb_load16(vlan_tci, r_A);
  553. if (code == (BPF_ANC | SKF_AD_VLAN_TAG)) {
  554. emit_andi(r_A, VLAN_VID_MASK, r_A);
  555. } else {
  556. emit_loadimm(VLAN_TAG_PRESENT, r_TMP);
  557. emit_and(r_A, r_TMP, r_A);
  558. }
  559. break;
  560. case BPF_LD | BPF_IMM:
  561. emit_loadimm(K, r_A);
  562. break;
  563. case BPF_LDX | BPF_IMM:
  564. emit_loadimm(K, r_X);
  565. break;
  566. case BPF_LD | BPF_MEM:
  567. emit_ldmem(K * 4, r_A);
  568. break;
  569. case BPF_LDX | BPF_MEM:
  570. emit_ldmem(K * 4, r_X);
  571. break;
  572. case BPF_ST:
  573. emit_stmem(K * 4, r_A);
  574. break;
  575. case BPF_STX:
  576. emit_stmem(K * 4, r_X);
  577. break;
  578. #define CHOOSE_LOAD_FUNC(K, func) \
  579. ((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative_offset : func) : func##_positive_offset)
  580. case BPF_LD | BPF_W | BPF_ABS:
  581. func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_word);
  582. common_load: seen |= SEEN_DATAREF;
  583. emit_loadimm(K, r_OFF);
  584. emit_call(func);
  585. break;
  586. case BPF_LD | BPF_H | BPF_ABS:
  587. func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_half);
  588. goto common_load;
  589. case BPF_LD | BPF_B | BPF_ABS:
  590. func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_byte);
  591. goto common_load;
  592. case BPF_LDX | BPF_B | BPF_MSH:
  593. func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_byte_msh);
  594. goto common_load;
  595. case BPF_LD | BPF_W | BPF_IND:
  596. func = bpf_jit_load_word;
  597. common_load_ind: seen |= SEEN_DATAREF | SEEN_XREG;
  598. if (K) {
  599. if (is_simm13(K)) {
  600. emit_addi(r_X, K, r_OFF);
  601. } else {
  602. emit_loadimm(K, r_TMP);
  603. emit_add(r_X, r_TMP, r_OFF);
  604. }
  605. } else {
  606. emit_reg_move(r_X, r_OFF);
  607. }
  608. emit_call(func);
  609. break;
  610. case BPF_LD | BPF_H | BPF_IND:
  611. func = bpf_jit_load_half;
  612. goto common_load_ind;
  613. case BPF_LD | BPF_B | BPF_IND:
  614. func = bpf_jit_load_byte;
  615. goto common_load_ind;
  616. case BPF_JMP | BPF_JA:
  617. emit_jump(addrs[i + K]);
  618. emit_nop();
  619. break;
  620. #define COND_SEL(CODE, TOP, FOP) \
  621. case CODE: \
  622. t_op = TOP; \
  623. f_op = FOP; \
  624. goto cond_branch
  625. COND_SEL(BPF_JMP | BPF_JGT | BPF_K, BGU, BLEU);
  626. COND_SEL(BPF_JMP | BPF_JGE | BPF_K, BGEU, BLU);
  627. COND_SEL(BPF_JMP | BPF_JEQ | BPF_K, BE, BNE);
  628. COND_SEL(BPF_JMP | BPF_JSET | BPF_K, BNE, BE);
  629. COND_SEL(BPF_JMP | BPF_JGT | BPF_X, BGU, BLEU);
  630. COND_SEL(BPF_JMP | BPF_JGE | BPF_X, BGEU, BLU);
  631. COND_SEL(BPF_JMP | BPF_JEQ | BPF_X, BE, BNE);
  632. COND_SEL(BPF_JMP | BPF_JSET | BPF_X, BNE, BE);
  633. cond_branch: f_offset = addrs[i + filter[i].jf];
  634. t_offset = addrs[i + filter[i].jt];
  635. /* same targets, can avoid doing the test :) */
  636. if (filter[i].jt == filter[i].jf) {
  637. emit_jump(t_offset);
  638. emit_nop();
  639. break;
  640. }
  641. switch (code) {
  642. case BPF_JMP | BPF_JGT | BPF_X:
  643. case BPF_JMP | BPF_JGE | BPF_X:
  644. case BPF_JMP | BPF_JEQ | BPF_X:
  645. seen |= SEEN_XREG;
  646. emit_cmp(r_A, r_X);
  647. break;
  648. case BPF_JMP | BPF_JSET | BPF_X:
  649. seen |= SEEN_XREG;
  650. emit_btst(r_A, r_X);
  651. break;
  652. case BPF_JMP | BPF_JEQ | BPF_K:
  653. case BPF_JMP | BPF_JGT | BPF_K:
  654. case BPF_JMP | BPF_JGE | BPF_K:
  655. if (is_simm13(K)) {
  656. emit_cmpi(r_A, K);
  657. } else {
  658. emit_loadimm(K, r_TMP);
  659. emit_cmp(r_A, r_TMP);
  660. }
  661. break;
  662. case BPF_JMP | BPF_JSET | BPF_K:
  663. if (is_simm13(K)) {
  664. emit_btsti(r_A, K);
  665. } else {
  666. emit_loadimm(K, r_TMP);
  667. emit_btst(r_A, r_TMP);
  668. }
  669. break;
  670. }
  671. if (filter[i].jt != 0) {
  672. if (filter[i].jf)
  673. t_offset += 8;
  674. emit_branch(t_op, t_offset);
  675. emit_nop(); /* delay slot */
  676. if (filter[i].jf) {
  677. emit_jump(f_offset);
  678. emit_nop();
  679. }
  680. break;
  681. }
  682. emit_branch(f_op, f_offset);
  683. emit_nop(); /* delay slot */
  684. break;
  685. default:
  686. /* hmm, too complex filter, give up with jit compiler */
  687. goto out;
  688. }
  689. ilen = (void *) prog - (void *) temp;
  690. if (image) {
  691. if (unlikely(proglen + ilen > oldproglen)) {
  692. pr_err("bpb_jit_compile fatal error\n");
  693. kfree(addrs);
  694. module_free(NULL, image);
  695. return;
  696. }
  697. memcpy(image + proglen, temp, ilen);
  698. }
  699. proglen += ilen;
  700. addrs[i] = proglen;
  701. prog = temp;
  702. }
  703. /* last bpf instruction is always a RET :
  704. * use it to give the cleanup instruction(s) addr
  705. */
  706. cleanup_addr = proglen - 8; /* jmpl; mov r_A,%o0; */
  707. if (seen_or_pass0 & SEEN_MEM)
  708. cleanup_addr -= 4; /* add %sp, X, %sp; */
  709. if (image) {
  710. if (proglen != oldproglen)
  711. pr_err("bpb_jit_compile proglen=%u != oldproglen=%u\n",
  712. proglen, oldproglen);
  713. break;
  714. }
  715. if (proglen == oldproglen) {
  716. image = module_alloc(proglen);
  717. if (!image)
  718. goto out;
  719. }
  720. oldproglen = proglen;
  721. }
  722. if (bpf_jit_enable > 1)
  723. bpf_jit_dump(flen, proglen, pass, image);
  724. if (image) {
  725. bpf_flush_icache(image, image + proglen);
  726. fp->bpf_func = (void *)image;
  727. fp->jited = 1;
  728. }
  729. out:
  730. kfree(addrs);
  731. return;
  732. }
  733. void bpf_jit_free(struct sk_filter *fp)
  734. {
  735. if (fp->jited)
  736. module_free(NULL, fp->bpf_func);
  737. kfree(fp);
  738. }