pgtable.h 50 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739
  1. /*
  2. * S390 version
  3. * Copyright IBM Corp. 1999, 2000
  4. * Author(s): Hartmut Penner (hp@de.ibm.com)
  5. * Ulrich Weigand (weigand@de.ibm.com)
  6. * Martin Schwidefsky (schwidefsky@de.ibm.com)
  7. *
  8. * Derived from "include/asm-i386/pgtable.h"
  9. */
  10. #ifndef _ASM_S390_PGTABLE_H
  11. #define _ASM_S390_PGTABLE_H
  12. /*
  13. * The Linux memory management assumes a three-level page table setup. For
  14. * s390 31 bit we "fold" the mid level into the top-level page table, so
  15. * that we physically have the same two-level page table as the s390 mmu
  16. * expects in 31 bit mode. For s390 64 bit we use three of the five levels
  17. * the hardware provides (region first and region second tables are not
  18. * used).
  19. *
  20. * The "pgd_xxx()" functions are trivial for a folded two-level
  21. * setup: the pgd is never bad, and a pmd always exists (as it's folded
  22. * into the pgd entry)
  23. *
  24. * This file contains the functions and defines necessary to modify and use
  25. * the S390 page table tree.
  26. */
  27. #ifndef __ASSEMBLY__
  28. #include <linux/sched.h>
  29. #include <linux/mm_types.h>
  30. #include <linux/page-flags.h>
  31. #include <asm/bug.h>
  32. #include <asm/page.h>
  33. extern pgd_t swapper_pg_dir[] __attribute__ ((aligned (4096)));
  34. extern void paging_init(void);
  35. extern void vmem_map_init(void);
  36. /*
  37. * The S390 doesn't have any external MMU info: the kernel page
  38. * tables contain all the necessary information.
  39. */
  40. #define update_mmu_cache(vma, address, ptep) do { } while (0)
  41. #define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
  42. /*
  43. * ZERO_PAGE is a global shared page that is always zero; used
  44. * for zero-mapped memory areas etc..
  45. */
  46. extern unsigned long empty_zero_page;
  47. extern unsigned long zero_page_mask;
  48. #define ZERO_PAGE(vaddr) \
  49. (virt_to_page((void *)(empty_zero_page + \
  50. (((unsigned long)(vaddr)) &zero_page_mask))))
  51. #define __HAVE_COLOR_ZERO_PAGE
  52. /* TODO: s390 cannot support io_remap_pfn_range... */
  53. #endif /* !__ASSEMBLY__ */
  54. /*
  55. * PMD_SHIFT determines the size of the area a second-level page
  56. * table can map
  57. * PGDIR_SHIFT determines what a third-level page table entry can map
  58. */
  59. #ifndef CONFIG_64BIT
  60. # define PMD_SHIFT 20
  61. # define PUD_SHIFT 20
  62. # define PGDIR_SHIFT 20
  63. #else /* CONFIG_64BIT */
  64. # define PMD_SHIFT 20
  65. # define PUD_SHIFT 31
  66. # define PGDIR_SHIFT 42
  67. #endif /* CONFIG_64BIT */
  68. #define PMD_SIZE (1UL << PMD_SHIFT)
  69. #define PMD_MASK (~(PMD_SIZE-1))
  70. #define PUD_SIZE (1UL << PUD_SHIFT)
  71. #define PUD_MASK (~(PUD_SIZE-1))
  72. #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
  73. #define PGDIR_MASK (~(PGDIR_SIZE-1))
  74. /*
  75. * entries per page directory level: the S390 is two-level, so
  76. * we don't really have any PMD directory physically.
  77. * for S390 segment-table entries are combined to one PGD
  78. * that leads to 1024 pte per pgd
  79. */
  80. #define PTRS_PER_PTE 256
  81. #ifndef CONFIG_64BIT
  82. #define PTRS_PER_PMD 1
  83. #define PTRS_PER_PUD 1
  84. #else /* CONFIG_64BIT */
  85. #define PTRS_PER_PMD 2048
  86. #define PTRS_PER_PUD 2048
  87. #endif /* CONFIG_64BIT */
  88. #define PTRS_PER_PGD 2048
  89. #define FIRST_USER_ADDRESS 0
  90. #define pte_ERROR(e) \
  91. printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
  92. #define pmd_ERROR(e) \
  93. printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
  94. #define pud_ERROR(e) \
  95. printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
  96. #define pgd_ERROR(e) \
  97. printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
  98. #ifndef __ASSEMBLY__
  99. /*
  100. * The vmalloc and module area will always be on the topmost area of the kernel
  101. * mapping. We reserve 96MB (31bit) / 128GB (64bit) for vmalloc and modules.
  102. * On 64 bit kernels we have a 2GB area at the top of the vmalloc area where
  103. * modules will reside. That makes sure that inter module branches always
  104. * happen without trampolines and in addition the placement within a 2GB frame
  105. * is branch prediction unit friendly.
  106. */
  107. extern unsigned long VMALLOC_START;
  108. extern unsigned long VMALLOC_END;
  109. extern struct page *vmemmap;
  110. #define VMEM_MAX_PHYS ((unsigned long) vmemmap)
  111. #ifdef CONFIG_64BIT
  112. extern unsigned long MODULES_VADDR;
  113. extern unsigned long MODULES_END;
  114. #define MODULES_VADDR MODULES_VADDR
  115. #define MODULES_END MODULES_END
  116. #define MODULES_LEN (1UL << 31)
  117. #endif
  118. /*
  119. * A 31 bit pagetable entry of S390 has following format:
  120. * | PFRA | | OS |
  121. * 0 0IP0
  122. * 00000000001111111111222222222233
  123. * 01234567890123456789012345678901
  124. *
  125. * I Page-Invalid Bit: Page is not available for address-translation
  126. * P Page-Protection Bit: Store access not possible for page
  127. *
  128. * A 31 bit segmenttable entry of S390 has following format:
  129. * | P-table origin | |PTL
  130. * 0 IC
  131. * 00000000001111111111222222222233
  132. * 01234567890123456789012345678901
  133. *
  134. * I Segment-Invalid Bit: Segment is not available for address-translation
  135. * C Common-Segment Bit: Segment is not private (PoP 3-30)
  136. * PTL Page-Table-Length: Page-table length (PTL+1*16 entries -> up to 256)
  137. *
  138. * The 31 bit segmenttable origin of S390 has following format:
  139. *
  140. * |S-table origin | | STL |
  141. * X **GPS
  142. * 00000000001111111111222222222233
  143. * 01234567890123456789012345678901
  144. *
  145. * X Space-Switch event:
  146. * G Segment-Invalid Bit: *
  147. * P Private-Space Bit: Segment is not private (PoP 3-30)
  148. * S Storage-Alteration:
  149. * STL Segment-Table-Length: Segment-table length (STL+1*16 entries -> up to 2048)
  150. *
  151. * A 64 bit pagetable entry of S390 has following format:
  152. * | PFRA |0IPC| OS |
  153. * 0000000000111111111122222222223333333333444444444455555555556666
  154. * 0123456789012345678901234567890123456789012345678901234567890123
  155. *
  156. * I Page-Invalid Bit: Page is not available for address-translation
  157. * P Page-Protection Bit: Store access not possible for page
  158. * C Change-bit override: HW is not required to set change bit
  159. *
  160. * A 64 bit segmenttable entry of S390 has following format:
  161. * | P-table origin | TT
  162. * 0000000000111111111122222222223333333333444444444455555555556666
  163. * 0123456789012345678901234567890123456789012345678901234567890123
  164. *
  165. * I Segment-Invalid Bit: Segment is not available for address-translation
  166. * C Common-Segment Bit: Segment is not private (PoP 3-30)
  167. * P Page-Protection Bit: Store access not possible for page
  168. * TT Type 00
  169. *
  170. * A 64 bit region table entry of S390 has following format:
  171. * | S-table origin | TF TTTL
  172. * 0000000000111111111122222222223333333333444444444455555555556666
  173. * 0123456789012345678901234567890123456789012345678901234567890123
  174. *
  175. * I Segment-Invalid Bit: Segment is not available for address-translation
  176. * TT Type 01
  177. * TF
  178. * TL Table length
  179. *
  180. * The 64 bit regiontable origin of S390 has following format:
  181. * | region table origon | DTTL
  182. * 0000000000111111111122222222223333333333444444444455555555556666
  183. * 0123456789012345678901234567890123456789012345678901234567890123
  184. *
  185. * X Space-Switch event:
  186. * G Segment-Invalid Bit:
  187. * P Private-Space Bit:
  188. * S Storage-Alteration:
  189. * R Real space
  190. * TL Table-Length:
  191. *
  192. * A storage key has the following format:
  193. * | ACC |F|R|C|0|
  194. * 0 3 4 5 6 7
  195. * ACC: access key
  196. * F : fetch protection bit
  197. * R : referenced bit
  198. * C : changed bit
  199. */
  200. /* Hardware bits in the page table entry */
  201. #define _PAGE_CO 0x100 /* HW Change-bit override */
  202. #define _PAGE_PROTECT 0x200 /* HW read-only bit */
  203. #define _PAGE_INVALID 0x400 /* HW invalid bit */
  204. #define _PAGE_LARGE 0x800 /* Bit to mark a large pte */
  205. /* Software bits in the page table entry */
  206. #define _PAGE_PRESENT 0x001 /* SW pte present bit */
  207. #define _PAGE_TYPE 0x002 /* SW pte type bit */
  208. #define _PAGE_YOUNG 0x004 /* SW pte young bit */
  209. #define _PAGE_DIRTY 0x008 /* SW pte dirty bit */
  210. #define _PAGE_READ 0x010 /* SW pte read bit */
  211. #define _PAGE_WRITE 0x020 /* SW pte write bit */
  212. #define _PAGE_SPECIAL 0x040 /* SW associated with special page */
  213. #define _PAGE_UNUSED 0x080 /* SW bit for pgste usage state */
  214. #define __HAVE_ARCH_PTE_SPECIAL
  215. /* Set of bits not changed in pte_modify */
  216. #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_SPECIAL | _PAGE_CO | \
  217. _PAGE_DIRTY | _PAGE_YOUNG)
  218. /*
  219. * handle_pte_fault uses pte_present, pte_none and pte_file to find out the
  220. * pte type WITHOUT holding the page table lock. The _PAGE_PRESENT bit
  221. * is used to distinguish present from not-present ptes. It is changed only
  222. * with the page table lock held.
  223. *
  224. * The following table gives the different possible bit combinations for
  225. * the pte hardware and software bits in the last 12 bits of a pte:
  226. *
  227. * 842100000000
  228. * 000084210000
  229. * 000000008421
  230. * .IR...wrdytp
  231. * empty .10...000000
  232. * swap .10...xxxx10
  233. * file .11...xxxxx0
  234. * prot-none, clean, old .11...000001
  235. * prot-none, clean, young .11...000101
  236. * prot-none, dirty, old .10...001001
  237. * prot-none, dirty, young .10...001101
  238. * read-only, clean, old .11...010001
  239. * read-only, clean, young .01...010101
  240. * read-only, dirty, old .11...011001
  241. * read-only, dirty, young .01...011101
  242. * read-write, clean, old .11...110001
  243. * read-write, clean, young .01...110101
  244. * read-write, dirty, old .10...111001
  245. * read-write, dirty, young .00...111101
  246. *
  247. * pte_present is true for the bit pattern .xx...xxxxx1, (pte & 0x001) == 0x001
  248. * pte_none is true for the bit pattern .10...xxxx00, (pte & 0x603) == 0x400
  249. * pte_file is true for the bit pattern .11...xxxxx0, (pte & 0x601) == 0x600
  250. * pte_swap is true for the bit pattern .10...xxxx10, (pte & 0x603) == 0x402
  251. */
  252. #ifndef CONFIG_64BIT
  253. /* Bits in the segment table address-space-control-element */
  254. #define _ASCE_SPACE_SWITCH 0x80000000UL /* space switch event */
  255. #define _ASCE_ORIGIN_MASK 0x7ffff000UL /* segment table origin */
  256. #define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
  257. #define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
  258. #define _ASCE_TABLE_LENGTH 0x7f /* 128 x 64 entries = 8k */
  259. /* Bits in the segment table entry */
  260. #define _SEGMENT_ENTRY_BITS 0x7fffffffUL /* Valid segment table bits */
  261. #define _SEGMENT_ENTRY_ORIGIN 0x7fffffc0UL /* page table origin */
  262. #define _SEGMENT_ENTRY_PROTECT 0x200 /* page protection bit */
  263. #define _SEGMENT_ENTRY_INVALID 0x20 /* invalid segment table entry */
  264. #define _SEGMENT_ENTRY_COMMON 0x10 /* common segment bit */
  265. #define _SEGMENT_ENTRY_PTL 0x0f /* page table length */
  266. #define _SEGMENT_ENTRY_NONE _SEGMENT_ENTRY_PROTECT
  267. #define _SEGMENT_ENTRY (_SEGMENT_ENTRY_PTL)
  268. #define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INVALID)
  269. /*
  270. * Segment table entry encoding (I = invalid, R = read-only bit):
  271. * ..R...I.....
  272. * prot-none ..1...1.....
  273. * read-only ..1...0.....
  274. * read-write ..0...0.....
  275. * empty ..0...1.....
  276. */
  277. /* Page status table bits for virtualization */
  278. #define PGSTE_ACC_BITS 0xf0000000UL
  279. #define PGSTE_FP_BIT 0x08000000UL
  280. #define PGSTE_PCL_BIT 0x00800000UL
  281. #define PGSTE_HR_BIT 0x00400000UL
  282. #define PGSTE_HC_BIT 0x00200000UL
  283. #define PGSTE_GR_BIT 0x00040000UL
  284. #define PGSTE_GC_BIT 0x00020000UL
  285. #define PGSTE_UC_BIT 0x00008000UL /* user dirty (migration) */
  286. #define PGSTE_IN_BIT 0x00004000UL /* IPTE notify bit */
  287. #else /* CONFIG_64BIT */
  288. /* Bits in the segment/region table address-space-control-element */
  289. #define _ASCE_ORIGIN ~0xfffUL/* segment table origin */
  290. #define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
  291. #define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
  292. #define _ASCE_SPACE_SWITCH 0x40 /* space switch event */
  293. #define _ASCE_REAL_SPACE 0x20 /* real space control */
  294. #define _ASCE_TYPE_MASK 0x0c /* asce table type mask */
  295. #define _ASCE_TYPE_REGION1 0x0c /* region first table type */
  296. #define _ASCE_TYPE_REGION2 0x08 /* region second table type */
  297. #define _ASCE_TYPE_REGION3 0x04 /* region third table type */
  298. #define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */
  299. #define _ASCE_TABLE_LENGTH 0x03 /* region table length */
  300. /* Bits in the region table entry */
  301. #define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */
  302. #define _REGION_ENTRY_PROTECT 0x200 /* region protection bit */
  303. #define _REGION_ENTRY_INVALID 0x20 /* invalid region table entry */
  304. #define _REGION_ENTRY_TYPE_MASK 0x0c /* region/segment table type mask */
  305. #define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */
  306. #define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */
  307. #define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */
  308. #define _REGION_ENTRY_LENGTH 0x03 /* region third length */
  309. #define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
  310. #define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
  311. #define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
  312. #define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
  313. #define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
  314. #define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
  315. #define _REGION3_ENTRY_LARGE 0x400 /* RTTE-format control, large page */
  316. #define _REGION3_ENTRY_RO 0x200 /* page protection bit */
  317. #define _REGION3_ENTRY_CO 0x100 /* change-recording override */
  318. /* Bits in the segment table entry */
  319. #define _SEGMENT_ENTRY_BITS 0xfffffffffffffe33UL
  320. #define _SEGMENT_ENTRY_BITS_LARGE 0xfffffffffff1ff33UL
  321. #define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address */
  322. #define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* segment table origin */
  323. #define _SEGMENT_ENTRY_PROTECT 0x200 /* page protection bit */
  324. #define _SEGMENT_ENTRY_INVALID 0x20 /* invalid segment table entry */
  325. #define _SEGMENT_ENTRY (0)
  326. #define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INVALID)
  327. #define _SEGMENT_ENTRY_LARGE 0x400 /* STE-format control, large page */
  328. #define _SEGMENT_ENTRY_CO 0x100 /* change-recording override */
  329. #define _SEGMENT_ENTRY_SPLIT 0x001 /* THP splitting bit */
  330. #define _SEGMENT_ENTRY_YOUNG 0x002 /* SW segment young bit */
  331. #define _SEGMENT_ENTRY_NONE _SEGMENT_ENTRY_YOUNG
  332. /*
  333. * Segment table entry encoding (R = read-only, I = invalid, y = young bit):
  334. * ..R...I...y.
  335. * prot-none, old ..0...1...1.
  336. * prot-none, young ..1...1...1.
  337. * read-only, old ..1...1...0.
  338. * read-only, young ..1...0...1.
  339. * read-write, old ..0...1...0.
  340. * read-write, young ..0...0...1.
  341. * The segment table origin is used to distinguish empty (origin==0) from
  342. * read-write, old segment table entries (origin!=0)
  343. */
  344. #define _SEGMENT_ENTRY_SPLIT_BIT 0 /* THP splitting bit number */
  345. /* Set of bits not changed in pmd_modify */
  346. #define _SEGMENT_CHG_MASK (_SEGMENT_ENTRY_ORIGIN | _SEGMENT_ENTRY_LARGE \
  347. | _SEGMENT_ENTRY_SPLIT | _SEGMENT_ENTRY_CO)
  348. /* Page status table bits for virtualization */
  349. #define PGSTE_ACC_BITS 0xf000000000000000UL
  350. #define PGSTE_FP_BIT 0x0800000000000000UL
  351. #define PGSTE_PCL_BIT 0x0080000000000000UL
  352. #define PGSTE_HR_BIT 0x0040000000000000UL
  353. #define PGSTE_HC_BIT 0x0020000000000000UL
  354. #define PGSTE_GR_BIT 0x0004000000000000UL
  355. #define PGSTE_GC_BIT 0x0002000000000000UL
  356. #define PGSTE_UC_BIT 0x0000800000000000UL /* user dirty (migration) */
  357. #define PGSTE_IN_BIT 0x0000400000000000UL /* IPTE notify bit */
  358. #endif /* CONFIG_64BIT */
  359. /* Guest Page State used for virtualization */
  360. #define _PGSTE_GPS_ZERO 0x0000000080000000UL
  361. #define _PGSTE_GPS_USAGE_MASK 0x0000000003000000UL
  362. #define _PGSTE_GPS_USAGE_STABLE 0x0000000000000000UL
  363. #define _PGSTE_GPS_USAGE_UNUSED 0x0000000001000000UL
  364. /*
  365. * A user page table pointer has the space-switch-event bit, the
  366. * private-space-control bit and the storage-alteration-event-control
  367. * bit set. A kernel page table pointer doesn't need them.
  368. */
  369. #define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
  370. _ASCE_ALT_EVENT)
  371. /*
  372. * Page protection definitions.
  373. */
  374. #define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_INVALID)
  375. #define PAGE_READ __pgprot(_PAGE_PRESENT | _PAGE_READ | \
  376. _PAGE_INVALID | _PAGE_PROTECT)
  377. #define PAGE_WRITE __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
  378. _PAGE_INVALID | _PAGE_PROTECT)
  379. #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
  380. _PAGE_YOUNG | _PAGE_DIRTY)
  381. #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
  382. _PAGE_YOUNG | _PAGE_DIRTY)
  383. #define PAGE_KERNEL_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
  384. _PAGE_PROTECT)
  385. /*
  386. * On s390 the page table entry has an invalid bit and a read-only bit.
  387. * Read permission implies execute permission and write permission
  388. * implies read permission.
  389. */
  390. /*xwr*/
  391. #define __P000 PAGE_NONE
  392. #define __P001 PAGE_READ
  393. #define __P010 PAGE_READ
  394. #define __P011 PAGE_READ
  395. #define __P100 PAGE_READ
  396. #define __P101 PAGE_READ
  397. #define __P110 PAGE_READ
  398. #define __P111 PAGE_READ
  399. #define __S000 PAGE_NONE
  400. #define __S001 PAGE_READ
  401. #define __S010 PAGE_WRITE
  402. #define __S011 PAGE_WRITE
  403. #define __S100 PAGE_READ
  404. #define __S101 PAGE_READ
  405. #define __S110 PAGE_WRITE
  406. #define __S111 PAGE_WRITE
  407. /*
  408. * Segment entry (large page) protection definitions.
  409. */
  410. #define SEGMENT_NONE __pgprot(_SEGMENT_ENTRY_INVALID | \
  411. _SEGMENT_ENTRY_NONE)
  412. #define SEGMENT_READ __pgprot(_SEGMENT_ENTRY_INVALID | \
  413. _SEGMENT_ENTRY_PROTECT)
  414. #define SEGMENT_WRITE __pgprot(_SEGMENT_ENTRY_INVALID)
  415. static inline int mm_has_pgste(struct mm_struct *mm)
  416. {
  417. #ifdef CONFIG_PGSTE
  418. if (unlikely(mm->context.has_pgste))
  419. return 1;
  420. #endif
  421. return 0;
  422. }
  423. static inline int mm_use_skey(struct mm_struct *mm)
  424. {
  425. #ifdef CONFIG_PGSTE
  426. if (mm->context.use_skey)
  427. return 1;
  428. #endif
  429. return 0;
  430. }
  431. /*
  432. * pgd/pmd/pte query functions
  433. */
  434. #ifndef CONFIG_64BIT
  435. static inline int pgd_present(pgd_t pgd) { return 1; }
  436. static inline int pgd_none(pgd_t pgd) { return 0; }
  437. static inline int pgd_bad(pgd_t pgd) { return 0; }
  438. static inline int pud_present(pud_t pud) { return 1; }
  439. static inline int pud_none(pud_t pud) { return 0; }
  440. static inline int pud_large(pud_t pud) { return 0; }
  441. static inline int pud_bad(pud_t pud) { return 0; }
  442. #else /* CONFIG_64BIT */
  443. static inline int pgd_present(pgd_t pgd)
  444. {
  445. if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
  446. return 1;
  447. return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
  448. }
  449. static inline int pgd_none(pgd_t pgd)
  450. {
  451. if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
  452. return 0;
  453. return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL;
  454. }
  455. static inline int pgd_bad(pgd_t pgd)
  456. {
  457. /*
  458. * With dynamic page table levels the pgd can be a region table
  459. * entry or a segment table entry. Check for the bit that are
  460. * invalid for either table entry.
  461. */
  462. unsigned long mask =
  463. ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INVALID &
  464. ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
  465. return (pgd_val(pgd) & mask) != 0;
  466. }
  467. static inline int pud_present(pud_t pud)
  468. {
  469. if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
  470. return 1;
  471. return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
  472. }
  473. static inline int pud_none(pud_t pud)
  474. {
  475. if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
  476. return 0;
  477. return (pud_val(pud) & _REGION_ENTRY_INVALID) != 0UL;
  478. }
  479. static inline int pud_large(pud_t pud)
  480. {
  481. if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
  482. return 0;
  483. return !!(pud_val(pud) & _REGION3_ENTRY_LARGE);
  484. }
  485. static inline int pud_bad(pud_t pud)
  486. {
  487. /*
  488. * With dynamic page table levels the pud can be a region table
  489. * entry or a segment table entry. Check for the bit that are
  490. * invalid for either table entry.
  491. */
  492. unsigned long mask =
  493. ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INVALID &
  494. ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
  495. return (pud_val(pud) & mask) != 0;
  496. }
  497. #endif /* CONFIG_64BIT */
  498. static inline int pmd_present(pmd_t pmd)
  499. {
  500. return pmd_val(pmd) != _SEGMENT_ENTRY_INVALID;
  501. }
  502. static inline int pmd_none(pmd_t pmd)
  503. {
  504. return pmd_val(pmd) == _SEGMENT_ENTRY_INVALID;
  505. }
  506. static inline int pmd_large(pmd_t pmd)
  507. {
  508. #ifdef CONFIG_64BIT
  509. return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0;
  510. #else
  511. return 0;
  512. #endif
  513. }
  514. static inline int pmd_prot_none(pmd_t pmd)
  515. {
  516. return (pmd_val(pmd) & _SEGMENT_ENTRY_INVALID) &&
  517. (pmd_val(pmd) & _SEGMENT_ENTRY_NONE);
  518. }
  519. static inline int pmd_bad(pmd_t pmd)
  520. {
  521. #ifdef CONFIG_64BIT
  522. if (pmd_large(pmd))
  523. return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS_LARGE) != 0;
  524. #endif
  525. return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0;
  526. }
  527. #define __HAVE_ARCH_PMDP_SPLITTING_FLUSH
  528. extern void pmdp_splitting_flush(struct vm_area_struct *vma,
  529. unsigned long addr, pmd_t *pmdp);
  530. #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
  531. extern int pmdp_set_access_flags(struct vm_area_struct *vma,
  532. unsigned long address, pmd_t *pmdp,
  533. pmd_t entry, int dirty);
  534. #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
  535. extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
  536. unsigned long address, pmd_t *pmdp);
  537. #define __HAVE_ARCH_PMD_WRITE
  538. static inline int pmd_write(pmd_t pmd)
  539. {
  540. if (pmd_prot_none(pmd))
  541. return 0;
  542. return (pmd_val(pmd) & _SEGMENT_ENTRY_PROTECT) == 0;
  543. }
  544. static inline int pmd_young(pmd_t pmd)
  545. {
  546. int young = 0;
  547. #ifdef CONFIG_64BIT
  548. if (pmd_prot_none(pmd))
  549. young = (pmd_val(pmd) & _SEGMENT_ENTRY_PROTECT) != 0;
  550. else
  551. young = (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0;
  552. #endif
  553. return young;
  554. }
  555. static inline int pte_present(pte_t pte)
  556. {
  557. /* Bit pattern: (pte & 0x001) == 0x001 */
  558. return (pte_val(pte) & _PAGE_PRESENT) != 0;
  559. }
  560. static inline int pte_none(pte_t pte)
  561. {
  562. /* Bit pattern: pte == 0x400 */
  563. return pte_val(pte) == _PAGE_INVALID;
  564. }
  565. static inline int pte_swap(pte_t pte)
  566. {
  567. /* Bit pattern: (pte & 0x603) == 0x402 */
  568. return (pte_val(pte) & (_PAGE_INVALID | _PAGE_PROTECT |
  569. _PAGE_TYPE | _PAGE_PRESENT))
  570. == (_PAGE_INVALID | _PAGE_TYPE);
  571. }
  572. static inline int pte_file(pte_t pte)
  573. {
  574. /* Bit pattern: (pte & 0x601) == 0x600 */
  575. return (pte_val(pte) & (_PAGE_INVALID | _PAGE_PROTECT | _PAGE_PRESENT))
  576. == (_PAGE_INVALID | _PAGE_PROTECT);
  577. }
  578. static inline int pte_special(pte_t pte)
  579. {
  580. return (pte_val(pte) & _PAGE_SPECIAL);
  581. }
  582. #define __HAVE_ARCH_PTE_SAME
  583. static inline int pte_same(pte_t a, pte_t b)
  584. {
  585. return pte_val(a) == pte_val(b);
  586. }
  587. static inline pgste_t pgste_get_lock(pte_t *ptep)
  588. {
  589. unsigned long new = 0;
  590. #ifdef CONFIG_PGSTE
  591. unsigned long old;
  592. preempt_disable();
  593. asm(
  594. " lg %0,%2\n"
  595. "0: lgr %1,%0\n"
  596. " nihh %0,0xff7f\n" /* clear PCL bit in old */
  597. " oihh %1,0x0080\n" /* set PCL bit in new */
  598. " csg %0,%1,%2\n"
  599. " jl 0b\n"
  600. : "=&d" (old), "=&d" (new), "=Q" (ptep[PTRS_PER_PTE])
  601. : "Q" (ptep[PTRS_PER_PTE]) : "cc", "memory");
  602. #endif
  603. return __pgste(new);
  604. }
  605. static inline void pgste_set_unlock(pte_t *ptep, pgste_t pgste)
  606. {
  607. #ifdef CONFIG_PGSTE
  608. asm(
  609. " nihh %1,0xff7f\n" /* clear PCL bit */
  610. " stg %1,%0\n"
  611. : "=Q" (ptep[PTRS_PER_PTE])
  612. : "d" (pgste_val(pgste)), "Q" (ptep[PTRS_PER_PTE])
  613. : "cc", "memory");
  614. preempt_enable();
  615. #endif
  616. }
  617. static inline pgste_t pgste_get(pte_t *ptep)
  618. {
  619. unsigned long pgste = 0;
  620. #ifdef CONFIG_PGSTE
  621. pgste = *(unsigned long *)(ptep + PTRS_PER_PTE);
  622. #endif
  623. return __pgste(pgste);
  624. }
  625. static inline void pgste_set(pte_t *ptep, pgste_t pgste)
  626. {
  627. #ifdef CONFIG_PGSTE
  628. *(pgste_t *)(ptep + PTRS_PER_PTE) = pgste;
  629. #endif
  630. }
  631. static inline pgste_t pgste_update_all(pte_t *ptep, pgste_t pgste,
  632. struct mm_struct *mm)
  633. {
  634. #ifdef CONFIG_PGSTE
  635. unsigned long address, bits, skey;
  636. if (!mm_use_skey(mm) || pte_val(*ptep) & _PAGE_INVALID)
  637. return pgste;
  638. address = pte_val(*ptep) & PAGE_MASK;
  639. skey = (unsigned long) page_get_storage_key(address);
  640. bits = skey & (_PAGE_CHANGED | _PAGE_REFERENCED);
  641. /* Transfer page changed & referenced bit to guest bits in pgste */
  642. pgste_val(pgste) |= bits << 48; /* GR bit & GC bit */
  643. /* Copy page access key and fetch protection bit to pgste */
  644. pgste_val(pgste) &= ~(PGSTE_ACC_BITS | PGSTE_FP_BIT);
  645. pgste_val(pgste) |= (skey & (_PAGE_ACC_BITS | _PAGE_FP_BIT)) << 56;
  646. #endif
  647. return pgste;
  648. }
  649. static inline void pgste_set_key(pte_t *ptep, pgste_t pgste, pte_t entry,
  650. struct mm_struct *mm)
  651. {
  652. #ifdef CONFIG_PGSTE
  653. unsigned long address;
  654. unsigned long nkey;
  655. if (!mm_use_skey(mm) || pte_val(entry) & _PAGE_INVALID)
  656. return;
  657. VM_BUG_ON(!(pte_val(*ptep) & _PAGE_INVALID));
  658. address = pte_val(entry) & PAGE_MASK;
  659. /*
  660. * Set page access key and fetch protection bit from pgste.
  661. * The guest C/R information is still in the PGSTE, set real
  662. * key C/R to 0.
  663. */
  664. nkey = (pgste_val(pgste) & (PGSTE_ACC_BITS | PGSTE_FP_BIT)) >> 56;
  665. nkey |= (pgste_val(pgste) & (PGSTE_GR_BIT | PGSTE_GC_BIT)) >> 48;
  666. page_set_storage_key(address, nkey, 0);
  667. #endif
  668. }
  669. static inline pgste_t pgste_set_pte(pte_t *ptep, pgste_t pgste, pte_t entry)
  670. {
  671. if ((pte_val(entry) & _PAGE_PRESENT) &&
  672. (pte_val(entry) & _PAGE_WRITE) &&
  673. !(pte_val(entry) & _PAGE_INVALID)) {
  674. if (!MACHINE_HAS_ESOP) {
  675. /*
  676. * Without enhanced suppression-on-protection force
  677. * the dirty bit on for all writable ptes.
  678. */
  679. pte_val(entry) |= _PAGE_DIRTY;
  680. pte_val(entry) &= ~_PAGE_PROTECT;
  681. }
  682. if (!(pte_val(entry) & _PAGE_PROTECT))
  683. /* This pte allows write access, set user-dirty */
  684. pgste_val(pgste) |= PGSTE_UC_BIT;
  685. }
  686. *ptep = entry;
  687. return pgste;
  688. }
  689. /**
  690. * struct gmap_struct - guest address space
  691. * @mm: pointer to the parent mm_struct
  692. * @table: pointer to the page directory
  693. * @asce: address space control element for gmap page table
  694. * @crst_list: list of all crst tables used in the guest address space
  695. * @pfault_enabled: defines if pfaults are applicable for the guest
  696. */
  697. struct gmap {
  698. struct list_head list;
  699. struct mm_struct *mm;
  700. unsigned long *table;
  701. unsigned long asce;
  702. void *private;
  703. struct list_head crst_list;
  704. bool pfault_enabled;
  705. };
  706. /**
  707. * struct gmap_rmap - reverse mapping for segment table entries
  708. * @gmap: pointer to the gmap_struct
  709. * @entry: pointer to a segment table entry
  710. * @vmaddr: virtual address in the guest address space
  711. */
  712. struct gmap_rmap {
  713. struct list_head list;
  714. struct gmap *gmap;
  715. unsigned long *entry;
  716. unsigned long vmaddr;
  717. };
  718. /**
  719. * struct gmap_pgtable - gmap information attached to a page table
  720. * @vmaddr: address of the 1MB segment in the process virtual memory
  721. * @mapper: list of segment table entries mapping a page table
  722. */
  723. struct gmap_pgtable {
  724. unsigned long vmaddr;
  725. struct list_head mapper;
  726. };
  727. /**
  728. * struct gmap_notifier - notify function block for page invalidation
  729. * @notifier_call: address of callback function
  730. */
  731. struct gmap_notifier {
  732. struct list_head list;
  733. void (*notifier_call)(struct gmap *gmap, unsigned long address);
  734. };
  735. struct gmap *gmap_alloc(struct mm_struct *mm);
  736. void gmap_free(struct gmap *gmap);
  737. void gmap_enable(struct gmap *gmap);
  738. void gmap_disable(struct gmap *gmap);
  739. int gmap_map_segment(struct gmap *gmap, unsigned long from,
  740. unsigned long to, unsigned long len);
  741. int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len);
  742. unsigned long __gmap_translate(unsigned long address, struct gmap *);
  743. unsigned long gmap_translate(unsigned long address, struct gmap *);
  744. unsigned long __gmap_fault(unsigned long address, struct gmap *);
  745. unsigned long gmap_fault(unsigned long address, struct gmap *);
  746. void gmap_discard(unsigned long from, unsigned long to, struct gmap *);
  747. void __gmap_zap(unsigned long address, struct gmap *);
  748. bool gmap_test_and_clear_dirty(unsigned long address, struct gmap *);
  749. void gmap_register_ipte_notifier(struct gmap_notifier *);
  750. void gmap_unregister_ipte_notifier(struct gmap_notifier *);
  751. int gmap_ipte_notify(struct gmap *, unsigned long start, unsigned long len);
  752. void gmap_do_ipte_notify(struct mm_struct *, pte_t *);
  753. static inline pgste_t pgste_ipte_notify(struct mm_struct *mm,
  754. pte_t *ptep, pgste_t pgste)
  755. {
  756. #ifdef CONFIG_PGSTE
  757. if (pgste_val(pgste) & PGSTE_IN_BIT) {
  758. pgste_val(pgste) &= ~PGSTE_IN_BIT;
  759. gmap_do_ipte_notify(mm, ptep);
  760. }
  761. #endif
  762. return pgste;
  763. }
  764. /*
  765. * Certain architectures need to do special things when PTEs
  766. * within a page table are directly modified. Thus, the following
  767. * hook is made available.
  768. */
  769. static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
  770. pte_t *ptep, pte_t entry)
  771. {
  772. pgste_t pgste;
  773. if (mm_has_pgste(mm)) {
  774. pgste = pgste_get_lock(ptep);
  775. pgste_val(pgste) &= ~_PGSTE_GPS_ZERO;
  776. pgste_set_key(ptep, pgste, entry, mm);
  777. pgste = pgste_set_pte(ptep, pgste, entry);
  778. pgste_set_unlock(ptep, pgste);
  779. } else {
  780. if (!(pte_val(entry) & _PAGE_INVALID) && MACHINE_HAS_EDAT1)
  781. pte_val(entry) |= _PAGE_CO;
  782. *ptep = entry;
  783. }
  784. }
  785. /*
  786. * query functions pte_write/pte_dirty/pte_young only work if
  787. * pte_present() is true. Undefined behaviour if not..
  788. */
  789. static inline int pte_write(pte_t pte)
  790. {
  791. return (pte_val(pte) & _PAGE_WRITE) != 0;
  792. }
  793. static inline int pte_dirty(pte_t pte)
  794. {
  795. return (pte_val(pte) & _PAGE_DIRTY) != 0;
  796. }
  797. static inline int pte_young(pte_t pte)
  798. {
  799. return (pte_val(pte) & _PAGE_YOUNG) != 0;
  800. }
  801. #define __HAVE_ARCH_PTE_UNUSED
  802. static inline int pte_unused(pte_t pte)
  803. {
  804. return pte_val(pte) & _PAGE_UNUSED;
  805. }
  806. /*
  807. * pgd/pmd/pte modification functions
  808. */
  809. static inline void pgd_clear(pgd_t *pgd)
  810. {
  811. #ifdef CONFIG_64BIT
  812. if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
  813. pgd_val(*pgd) = _REGION2_ENTRY_EMPTY;
  814. #endif
  815. }
  816. static inline void pud_clear(pud_t *pud)
  817. {
  818. #ifdef CONFIG_64BIT
  819. if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
  820. pud_val(*pud) = _REGION3_ENTRY_EMPTY;
  821. #endif
  822. }
  823. static inline void pmd_clear(pmd_t *pmdp)
  824. {
  825. pmd_val(*pmdp) = _SEGMENT_ENTRY_INVALID;
  826. }
  827. static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
  828. {
  829. pte_val(*ptep) = _PAGE_INVALID;
  830. }
  831. /*
  832. * The following pte modification functions only work if
  833. * pte_present() is true. Undefined behaviour if not..
  834. */
  835. static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
  836. {
  837. pte_val(pte) &= _PAGE_CHG_MASK;
  838. pte_val(pte) |= pgprot_val(newprot);
  839. /*
  840. * newprot for PAGE_NONE, PAGE_READ and PAGE_WRITE has the
  841. * invalid bit set, clear it again for readable, young pages
  842. */
  843. if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ))
  844. pte_val(pte) &= ~_PAGE_INVALID;
  845. /*
  846. * newprot for PAGE_READ and PAGE_WRITE has the page protection
  847. * bit set, clear it again for writable, dirty pages
  848. */
  849. if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE))
  850. pte_val(pte) &= ~_PAGE_PROTECT;
  851. return pte;
  852. }
  853. static inline pte_t pte_wrprotect(pte_t pte)
  854. {
  855. pte_val(pte) &= ~_PAGE_WRITE;
  856. pte_val(pte) |= _PAGE_PROTECT;
  857. return pte;
  858. }
  859. static inline pte_t pte_mkwrite(pte_t pte)
  860. {
  861. pte_val(pte) |= _PAGE_WRITE;
  862. if (pte_val(pte) & _PAGE_DIRTY)
  863. pte_val(pte) &= ~_PAGE_PROTECT;
  864. return pte;
  865. }
  866. static inline pte_t pte_mkclean(pte_t pte)
  867. {
  868. pte_val(pte) &= ~_PAGE_DIRTY;
  869. pte_val(pte) |= _PAGE_PROTECT;
  870. return pte;
  871. }
  872. static inline pte_t pte_mkdirty(pte_t pte)
  873. {
  874. pte_val(pte) |= _PAGE_DIRTY;
  875. if (pte_val(pte) & _PAGE_WRITE)
  876. pte_val(pte) &= ~_PAGE_PROTECT;
  877. return pte;
  878. }
  879. static inline pte_t pte_mkold(pte_t pte)
  880. {
  881. pte_val(pte) &= ~_PAGE_YOUNG;
  882. pte_val(pte) |= _PAGE_INVALID;
  883. return pte;
  884. }
  885. static inline pte_t pte_mkyoung(pte_t pte)
  886. {
  887. pte_val(pte) |= _PAGE_YOUNG;
  888. if (pte_val(pte) & _PAGE_READ)
  889. pte_val(pte) &= ~_PAGE_INVALID;
  890. return pte;
  891. }
  892. static inline pte_t pte_mkspecial(pte_t pte)
  893. {
  894. pte_val(pte) |= _PAGE_SPECIAL;
  895. return pte;
  896. }
  897. #ifdef CONFIG_HUGETLB_PAGE
  898. static inline pte_t pte_mkhuge(pte_t pte)
  899. {
  900. pte_val(pte) |= _PAGE_LARGE;
  901. return pte;
  902. }
  903. #endif
  904. static inline void __ptep_ipte(unsigned long address, pte_t *ptep)
  905. {
  906. unsigned long pto = (unsigned long) ptep;
  907. #ifndef CONFIG_64BIT
  908. /* pto in ESA mode must point to the start of the segment table */
  909. pto &= 0x7ffffc00;
  910. #endif
  911. /* Invalidation + global TLB flush for the pte */
  912. asm volatile(
  913. " ipte %2,%3"
  914. : "=m" (*ptep) : "m" (*ptep), "a" (pto), "a" (address));
  915. }
  916. static inline void __ptep_ipte_local(unsigned long address, pte_t *ptep)
  917. {
  918. unsigned long pto = (unsigned long) ptep;
  919. #ifndef CONFIG_64BIT
  920. /* pto in ESA mode must point to the start of the segment table */
  921. pto &= 0x7ffffc00;
  922. #endif
  923. /* Invalidation + local TLB flush for the pte */
  924. asm volatile(
  925. " .insn rrf,0xb2210000,%2,%3,0,1"
  926. : "=m" (*ptep) : "m" (*ptep), "a" (pto), "a" (address));
  927. }
  928. static inline void ptep_flush_direct(struct mm_struct *mm,
  929. unsigned long address, pte_t *ptep)
  930. {
  931. int active, count;
  932. if (pte_val(*ptep) & _PAGE_INVALID)
  933. return;
  934. active = (mm == current->active_mm) ? 1 : 0;
  935. count = atomic_add_return(0x10000, &mm->context.attach_count);
  936. if (MACHINE_HAS_TLB_LC && (count & 0xffff) <= active &&
  937. cpumask_equal(mm_cpumask(mm), cpumask_of(smp_processor_id())))
  938. __ptep_ipte_local(address, ptep);
  939. else
  940. __ptep_ipte(address, ptep);
  941. atomic_sub(0x10000, &mm->context.attach_count);
  942. }
  943. static inline void ptep_flush_lazy(struct mm_struct *mm,
  944. unsigned long address, pte_t *ptep)
  945. {
  946. int active, count;
  947. if (pte_val(*ptep) & _PAGE_INVALID)
  948. return;
  949. active = (mm == current->active_mm) ? 1 : 0;
  950. count = atomic_add_return(0x10000, &mm->context.attach_count);
  951. if ((count & 0xffff) <= active) {
  952. pte_val(*ptep) |= _PAGE_INVALID;
  953. mm->context.flush_mm = 1;
  954. } else
  955. __ptep_ipte(address, ptep);
  956. atomic_sub(0x10000, &mm->context.attach_count);
  957. }
  958. /*
  959. * Get (and clear) the user dirty bit for a pte.
  960. */
  961. static inline int ptep_test_and_clear_user_dirty(struct mm_struct *mm,
  962. unsigned long addr,
  963. pte_t *ptep)
  964. {
  965. pgste_t pgste;
  966. pte_t pte;
  967. int dirty;
  968. if (!mm_has_pgste(mm))
  969. return 0;
  970. pgste = pgste_get_lock(ptep);
  971. dirty = !!(pgste_val(pgste) & PGSTE_UC_BIT);
  972. pgste_val(pgste) &= ~PGSTE_UC_BIT;
  973. pte = *ptep;
  974. if (dirty && (pte_val(pte) & _PAGE_PRESENT)) {
  975. pgste = pgste_ipte_notify(mm, ptep, pgste);
  976. __ptep_ipte(addr, ptep);
  977. if (MACHINE_HAS_ESOP || !(pte_val(pte) & _PAGE_WRITE))
  978. pte_val(pte) |= _PAGE_PROTECT;
  979. else
  980. pte_val(pte) |= _PAGE_INVALID;
  981. *ptep = pte;
  982. }
  983. pgste_set_unlock(ptep, pgste);
  984. return dirty;
  985. }
  986. #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
  987. static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
  988. unsigned long addr, pte_t *ptep)
  989. {
  990. pgste_t pgste;
  991. pte_t pte;
  992. int young;
  993. if (mm_has_pgste(vma->vm_mm)) {
  994. pgste = pgste_get_lock(ptep);
  995. pgste = pgste_ipte_notify(vma->vm_mm, ptep, pgste);
  996. }
  997. pte = *ptep;
  998. ptep_flush_direct(vma->vm_mm, addr, ptep);
  999. young = pte_young(pte);
  1000. pte = pte_mkold(pte);
  1001. if (mm_has_pgste(vma->vm_mm)) {
  1002. pgste = pgste_set_pte(ptep, pgste, pte);
  1003. pgste_set_unlock(ptep, pgste);
  1004. } else
  1005. *ptep = pte;
  1006. return young;
  1007. }
  1008. #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
  1009. static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
  1010. unsigned long address, pte_t *ptep)
  1011. {
  1012. return ptep_test_and_clear_young(vma, address, ptep);
  1013. }
  1014. /*
  1015. * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
  1016. * both clear the TLB for the unmapped pte. The reason is that
  1017. * ptep_get_and_clear is used in common code (e.g. change_pte_range)
  1018. * to modify an active pte. The sequence is
  1019. * 1) ptep_get_and_clear
  1020. * 2) set_pte_at
  1021. * 3) flush_tlb_range
  1022. * On s390 the tlb needs to get flushed with the modification of the pte
  1023. * if the pte is active. The only way how this can be implemented is to
  1024. * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
  1025. * is a nop.
  1026. */
  1027. #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
  1028. static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
  1029. unsigned long address, pte_t *ptep)
  1030. {
  1031. pgste_t pgste;
  1032. pte_t pte;
  1033. if (mm_has_pgste(mm)) {
  1034. pgste = pgste_get_lock(ptep);
  1035. pgste = pgste_ipte_notify(mm, ptep, pgste);
  1036. }
  1037. pte = *ptep;
  1038. ptep_flush_lazy(mm, address, ptep);
  1039. pte_val(*ptep) = _PAGE_INVALID;
  1040. if (mm_has_pgste(mm)) {
  1041. pgste = pgste_update_all(&pte, pgste, mm);
  1042. pgste_set_unlock(ptep, pgste);
  1043. }
  1044. return pte;
  1045. }
  1046. #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
  1047. static inline pte_t ptep_modify_prot_start(struct mm_struct *mm,
  1048. unsigned long address,
  1049. pte_t *ptep)
  1050. {
  1051. pgste_t pgste;
  1052. pte_t pte;
  1053. if (mm_has_pgste(mm)) {
  1054. pgste = pgste_get_lock(ptep);
  1055. pgste_ipte_notify(mm, ptep, pgste);
  1056. }
  1057. pte = *ptep;
  1058. ptep_flush_lazy(mm, address, ptep);
  1059. if (mm_has_pgste(mm)) {
  1060. pgste = pgste_update_all(&pte, pgste, mm);
  1061. pgste_set(ptep, pgste);
  1062. }
  1063. return pte;
  1064. }
  1065. static inline void ptep_modify_prot_commit(struct mm_struct *mm,
  1066. unsigned long address,
  1067. pte_t *ptep, pte_t pte)
  1068. {
  1069. pgste_t pgste;
  1070. if (mm_has_pgste(mm)) {
  1071. pgste = pgste_get(ptep);
  1072. pgste_set_key(ptep, pgste, pte, mm);
  1073. pgste = pgste_set_pte(ptep, pgste, pte);
  1074. pgste_set_unlock(ptep, pgste);
  1075. } else
  1076. *ptep = pte;
  1077. }
  1078. #define __HAVE_ARCH_PTEP_CLEAR_FLUSH
  1079. static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
  1080. unsigned long address, pte_t *ptep)
  1081. {
  1082. pgste_t pgste;
  1083. pte_t pte;
  1084. if (mm_has_pgste(vma->vm_mm)) {
  1085. pgste = pgste_get_lock(ptep);
  1086. pgste = pgste_ipte_notify(vma->vm_mm, ptep, pgste);
  1087. }
  1088. pte = *ptep;
  1089. ptep_flush_direct(vma->vm_mm, address, ptep);
  1090. pte_val(*ptep) = _PAGE_INVALID;
  1091. if (mm_has_pgste(vma->vm_mm)) {
  1092. if ((pgste_val(pgste) & _PGSTE_GPS_USAGE_MASK) ==
  1093. _PGSTE_GPS_USAGE_UNUSED)
  1094. pte_val(pte) |= _PAGE_UNUSED;
  1095. pgste = pgste_update_all(&pte, pgste, vma->vm_mm);
  1096. pgste_set_unlock(ptep, pgste);
  1097. }
  1098. return pte;
  1099. }
  1100. /*
  1101. * The batched pte unmap code uses ptep_get_and_clear_full to clear the
  1102. * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
  1103. * tlbs of an mm if it can guarantee that the ptes of the mm_struct
  1104. * cannot be accessed while the batched unmap is running. In this case
  1105. * full==1 and a simple pte_clear is enough. See tlb.h.
  1106. */
  1107. #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
  1108. static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
  1109. unsigned long address,
  1110. pte_t *ptep, int full)
  1111. {
  1112. pgste_t pgste;
  1113. pte_t pte;
  1114. if (!full && mm_has_pgste(mm)) {
  1115. pgste = pgste_get_lock(ptep);
  1116. pgste = pgste_ipte_notify(mm, ptep, pgste);
  1117. }
  1118. pte = *ptep;
  1119. if (!full)
  1120. ptep_flush_lazy(mm, address, ptep);
  1121. pte_val(*ptep) = _PAGE_INVALID;
  1122. if (!full && mm_has_pgste(mm)) {
  1123. pgste = pgste_update_all(&pte, pgste, mm);
  1124. pgste_set_unlock(ptep, pgste);
  1125. }
  1126. return pte;
  1127. }
  1128. #define __HAVE_ARCH_PTEP_SET_WRPROTECT
  1129. static inline pte_t ptep_set_wrprotect(struct mm_struct *mm,
  1130. unsigned long address, pte_t *ptep)
  1131. {
  1132. pgste_t pgste;
  1133. pte_t pte = *ptep;
  1134. if (pte_write(pte)) {
  1135. if (mm_has_pgste(mm)) {
  1136. pgste = pgste_get_lock(ptep);
  1137. pgste = pgste_ipte_notify(mm, ptep, pgste);
  1138. }
  1139. ptep_flush_lazy(mm, address, ptep);
  1140. pte = pte_wrprotect(pte);
  1141. if (mm_has_pgste(mm)) {
  1142. pgste = pgste_set_pte(ptep, pgste, pte);
  1143. pgste_set_unlock(ptep, pgste);
  1144. } else
  1145. *ptep = pte;
  1146. }
  1147. return pte;
  1148. }
  1149. #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
  1150. static inline int ptep_set_access_flags(struct vm_area_struct *vma,
  1151. unsigned long address, pte_t *ptep,
  1152. pte_t entry, int dirty)
  1153. {
  1154. pgste_t pgste;
  1155. if (pte_same(*ptep, entry))
  1156. return 0;
  1157. if (mm_has_pgste(vma->vm_mm)) {
  1158. pgste = pgste_get_lock(ptep);
  1159. pgste = pgste_ipte_notify(vma->vm_mm, ptep, pgste);
  1160. }
  1161. ptep_flush_direct(vma->vm_mm, address, ptep);
  1162. if (mm_has_pgste(vma->vm_mm)) {
  1163. pgste = pgste_set_pte(ptep, pgste, entry);
  1164. pgste_set_unlock(ptep, pgste);
  1165. } else
  1166. *ptep = entry;
  1167. return 1;
  1168. }
  1169. /*
  1170. * Conversion functions: convert a page and protection to a page entry,
  1171. * and a page entry and page directory to the page they refer to.
  1172. */
  1173. static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
  1174. {
  1175. pte_t __pte;
  1176. pte_val(__pte) = physpage + pgprot_val(pgprot);
  1177. return pte_mkyoung(__pte);
  1178. }
  1179. static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
  1180. {
  1181. unsigned long physpage = page_to_phys(page);
  1182. pte_t __pte = mk_pte_phys(physpage, pgprot);
  1183. if (pte_write(__pte) && PageDirty(page))
  1184. __pte = pte_mkdirty(__pte);
  1185. return __pte;
  1186. }
  1187. #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
  1188. #define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
  1189. #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
  1190. #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
  1191. #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
  1192. #define pgd_offset_k(address) pgd_offset(&init_mm, address)
  1193. #ifndef CONFIG_64BIT
  1194. #define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
  1195. #define pud_deref(pmd) ({ BUG(); 0UL; })
  1196. #define pgd_deref(pmd) ({ BUG(); 0UL; })
  1197. #define pud_offset(pgd, address) ((pud_t *) pgd)
  1198. #define pmd_offset(pud, address) ((pmd_t *) pud + pmd_index(address))
  1199. #else /* CONFIG_64BIT */
  1200. #define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
  1201. #define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN)
  1202. #define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN)
  1203. static inline pud_t *pud_offset(pgd_t *pgd, unsigned long address)
  1204. {
  1205. pud_t *pud = (pud_t *) pgd;
  1206. if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
  1207. pud = (pud_t *) pgd_deref(*pgd);
  1208. return pud + pud_index(address);
  1209. }
  1210. static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
  1211. {
  1212. pmd_t *pmd = (pmd_t *) pud;
  1213. if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
  1214. pmd = (pmd_t *) pud_deref(*pud);
  1215. return pmd + pmd_index(address);
  1216. }
  1217. #endif /* CONFIG_64BIT */
  1218. #define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
  1219. #define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
  1220. #define pte_page(x) pfn_to_page(pte_pfn(x))
  1221. #define pmd_page(pmd) pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)
  1222. /* Find an entry in the lowest level page table.. */
  1223. #define pte_offset(pmd, addr) ((pte_t *) pmd_deref(*(pmd)) + pte_index(addr))
  1224. #define pte_offset_kernel(pmd, address) pte_offset(pmd,address)
  1225. #define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
  1226. #define pte_unmap(pte) do { } while (0)
  1227. #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
  1228. static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
  1229. {
  1230. /*
  1231. * pgprot is PAGE_NONE, PAGE_READ, or PAGE_WRITE (see __Pxxx / __Sxxx)
  1232. * Convert to segment table entry format.
  1233. */
  1234. if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
  1235. return pgprot_val(SEGMENT_NONE);
  1236. if (pgprot_val(pgprot) == pgprot_val(PAGE_READ))
  1237. return pgprot_val(SEGMENT_READ);
  1238. return pgprot_val(SEGMENT_WRITE);
  1239. }
  1240. static inline pmd_t pmd_mkyoung(pmd_t pmd)
  1241. {
  1242. #ifdef CONFIG_64BIT
  1243. if (pmd_prot_none(pmd)) {
  1244. pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
  1245. } else {
  1246. pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
  1247. pmd_val(pmd) &= ~_SEGMENT_ENTRY_INVALID;
  1248. }
  1249. #endif
  1250. return pmd;
  1251. }
  1252. static inline pmd_t pmd_mkold(pmd_t pmd)
  1253. {
  1254. #ifdef CONFIG_64BIT
  1255. if (pmd_prot_none(pmd)) {
  1256. pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
  1257. } else {
  1258. pmd_val(pmd) &= ~_SEGMENT_ENTRY_YOUNG;
  1259. pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
  1260. }
  1261. #endif
  1262. return pmd;
  1263. }
  1264. static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
  1265. {
  1266. int young;
  1267. young = pmd_young(pmd);
  1268. pmd_val(pmd) &= _SEGMENT_CHG_MASK;
  1269. pmd_val(pmd) |= massage_pgprot_pmd(newprot);
  1270. if (young)
  1271. pmd = pmd_mkyoung(pmd);
  1272. return pmd;
  1273. }
  1274. static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
  1275. {
  1276. pmd_t __pmd;
  1277. pmd_val(__pmd) = physpage + massage_pgprot_pmd(pgprot);
  1278. return pmd_mkyoung(__pmd);
  1279. }
  1280. static inline pmd_t pmd_mkwrite(pmd_t pmd)
  1281. {
  1282. /* Do not clobber PROT_NONE segments! */
  1283. if (!pmd_prot_none(pmd))
  1284. pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
  1285. return pmd;
  1286. }
  1287. #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
  1288. static inline void __pmdp_csp(pmd_t *pmdp)
  1289. {
  1290. register unsigned long reg2 asm("2") = pmd_val(*pmdp);
  1291. register unsigned long reg3 asm("3") = pmd_val(*pmdp) |
  1292. _SEGMENT_ENTRY_INVALID;
  1293. register unsigned long reg4 asm("4") = ((unsigned long) pmdp) + 5;
  1294. asm volatile(
  1295. " csp %1,%3"
  1296. : "=m" (*pmdp)
  1297. : "d" (reg2), "d" (reg3), "d" (reg4), "m" (*pmdp) : "cc");
  1298. }
  1299. static inline void __pmdp_idte(unsigned long address, pmd_t *pmdp)
  1300. {
  1301. unsigned long sto;
  1302. sto = (unsigned long) pmdp - pmd_index(address) * sizeof(pmd_t);
  1303. asm volatile(
  1304. " .insn rrf,0xb98e0000,%2,%3,0,0"
  1305. : "=m" (*pmdp)
  1306. : "m" (*pmdp), "a" (sto), "a" ((address & HPAGE_MASK))
  1307. : "cc" );
  1308. }
  1309. static inline void __pmdp_idte_local(unsigned long address, pmd_t *pmdp)
  1310. {
  1311. unsigned long sto;
  1312. sto = (unsigned long) pmdp - pmd_index(address) * sizeof(pmd_t);
  1313. asm volatile(
  1314. " .insn rrf,0xb98e0000,%2,%3,0,1"
  1315. : "=m" (*pmdp)
  1316. : "m" (*pmdp), "a" (sto), "a" ((address & HPAGE_MASK))
  1317. : "cc" );
  1318. }
  1319. static inline void pmdp_flush_direct(struct mm_struct *mm,
  1320. unsigned long address, pmd_t *pmdp)
  1321. {
  1322. int active, count;
  1323. if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID)
  1324. return;
  1325. if (!MACHINE_HAS_IDTE) {
  1326. __pmdp_csp(pmdp);
  1327. return;
  1328. }
  1329. active = (mm == current->active_mm) ? 1 : 0;
  1330. count = atomic_add_return(0x10000, &mm->context.attach_count);
  1331. if (MACHINE_HAS_TLB_LC && (count & 0xffff) <= active &&
  1332. cpumask_equal(mm_cpumask(mm), cpumask_of(smp_processor_id())))
  1333. __pmdp_idte_local(address, pmdp);
  1334. else
  1335. __pmdp_idte(address, pmdp);
  1336. atomic_sub(0x10000, &mm->context.attach_count);
  1337. }
  1338. static inline void pmdp_flush_lazy(struct mm_struct *mm,
  1339. unsigned long address, pmd_t *pmdp)
  1340. {
  1341. int active, count;
  1342. if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID)
  1343. return;
  1344. active = (mm == current->active_mm) ? 1 : 0;
  1345. count = atomic_add_return(0x10000, &mm->context.attach_count);
  1346. if ((count & 0xffff) <= active) {
  1347. pmd_val(*pmdp) |= _SEGMENT_ENTRY_INVALID;
  1348. mm->context.flush_mm = 1;
  1349. } else if (MACHINE_HAS_IDTE)
  1350. __pmdp_idte(address, pmdp);
  1351. else
  1352. __pmdp_csp(pmdp);
  1353. atomic_sub(0x10000, &mm->context.attach_count);
  1354. }
  1355. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  1356. #define __HAVE_ARCH_PGTABLE_DEPOSIT
  1357. extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
  1358. pgtable_t pgtable);
  1359. #define __HAVE_ARCH_PGTABLE_WITHDRAW
  1360. extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
  1361. static inline int pmd_trans_splitting(pmd_t pmd)
  1362. {
  1363. return pmd_val(pmd) & _SEGMENT_ENTRY_SPLIT;
  1364. }
  1365. static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
  1366. pmd_t *pmdp, pmd_t entry)
  1367. {
  1368. if (!(pmd_val(entry) & _SEGMENT_ENTRY_INVALID) && MACHINE_HAS_EDAT1)
  1369. pmd_val(entry) |= _SEGMENT_ENTRY_CO;
  1370. *pmdp = entry;
  1371. }
  1372. static inline pmd_t pmd_mkhuge(pmd_t pmd)
  1373. {
  1374. pmd_val(pmd) |= _SEGMENT_ENTRY_LARGE;
  1375. return pmd;
  1376. }
  1377. static inline pmd_t pmd_wrprotect(pmd_t pmd)
  1378. {
  1379. /* Do not clobber PROT_NONE segments! */
  1380. if (!pmd_prot_none(pmd))
  1381. pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
  1382. return pmd;
  1383. }
  1384. static inline pmd_t pmd_mkdirty(pmd_t pmd)
  1385. {
  1386. /* No dirty bit in the segment table entry. */
  1387. return pmd;
  1388. }
  1389. #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
  1390. static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
  1391. unsigned long address, pmd_t *pmdp)
  1392. {
  1393. pmd_t pmd;
  1394. pmd = *pmdp;
  1395. pmdp_flush_direct(vma->vm_mm, address, pmdp);
  1396. *pmdp = pmd_mkold(pmd);
  1397. return pmd_young(pmd);
  1398. }
  1399. #define __HAVE_ARCH_PMDP_GET_AND_CLEAR
  1400. static inline pmd_t pmdp_get_and_clear(struct mm_struct *mm,
  1401. unsigned long address, pmd_t *pmdp)
  1402. {
  1403. pmd_t pmd = *pmdp;
  1404. pmdp_flush_direct(mm, address, pmdp);
  1405. pmd_clear(pmdp);
  1406. return pmd;
  1407. }
  1408. #define __HAVE_ARCH_PMDP_CLEAR_FLUSH
  1409. static inline pmd_t pmdp_clear_flush(struct vm_area_struct *vma,
  1410. unsigned long address, pmd_t *pmdp)
  1411. {
  1412. return pmdp_get_and_clear(vma->vm_mm, address, pmdp);
  1413. }
  1414. #define __HAVE_ARCH_PMDP_INVALIDATE
  1415. static inline void pmdp_invalidate(struct vm_area_struct *vma,
  1416. unsigned long address, pmd_t *pmdp)
  1417. {
  1418. pmdp_flush_direct(vma->vm_mm, address, pmdp);
  1419. }
  1420. #define __HAVE_ARCH_PMDP_SET_WRPROTECT
  1421. static inline void pmdp_set_wrprotect(struct mm_struct *mm,
  1422. unsigned long address, pmd_t *pmdp)
  1423. {
  1424. pmd_t pmd = *pmdp;
  1425. if (pmd_write(pmd)) {
  1426. pmdp_flush_direct(mm, address, pmdp);
  1427. set_pmd_at(mm, address, pmdp, pmd_wrprotect(pmd));
  1428. }
  1429. }
  1430. #define pfn_pmd(pfn, pgprot) mk_pmd_phys(__pa((pfn) << PAGE_SHIFT), (pgprot))
  1431. #define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot))
  1432. static inline int pmd_trans_huge(pmd_t pmd)
  1433. {
  1434. return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE;
  1435. }
  1436. static inline int has_transparent_hugepage(void)
  1437. {
  1438. return MACHINE_HAS_HPAGE ? 1 : 0;
  1439. }
  1440. static inline unsigned long pmd_pfn(pmd_t pmd)
  1441. {
  1442. return pmd_val(pmd) >> PAGE_SHIFT;
  1443. }
  1444. #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
  1445. /*
  1446. * 31 bit swap entry format:
  1447. * A page-table entry has some bits we have to treat in a special way.
  1448. * Bits 0, 20 and bit 23 have to be zero, otherwise an specification
  1449. * exception will occur instead of a page translation exception. The
  1450. * specifiation exception has the bad habit not to store necessary
  1451. * information in the lowcore.
  1452. * Bits 21, 22, 30 and 31 are used to indicate the page type.
  1453. * A swap pte is indicated by bit pattern (pte & 0x603) == 0x402
  1454. * This leaves the bits 1-19 and bits 24-29 to store type and offset.
  1455. * We use the 5 bits from 25-29 for the type and the 20 bits from 1-19
  1456. * plus 24 for the offset.
  1457. * 0| offset |0110|o|type |00|
  1458. * 0 0000000001111111111 2222 2 22222 33
  1459. * 0 1234567890123456789 0123 4 56789 01
  1460. *
  1461. * 64 bit swap entry format:
  1462. * A page-table entry has some bits we have to treat in a special way.
  1463. * Bits 52 and bit 55 have to be zero, otherwise an specification
  1464. * exception will occur instead of a page translation exception. The
  1465. * specifiation exception has the bad habit not to store necessary
  1466. * information in the lowcore.
  1467. * Bits 53, 54, 62 and 63 are used to indicate the page type.
  1468. * A swap pte is indicated by bit pattern (pte & 0x603) == 0x402
  1469. * This leaves the bits 0-51 and bits 56-61 to store type and offset.
  1470. * We use the 5 bits from 57-61 for the type and the 53 bits from 0-51
  1471. * plus 56 for the offset.
  1472. * | offset |0110|o|type |00|
  1473. * 0000000000111111111122222222223333333333444444444455 5555 5 55566 66
  1474. * 0123456789012345678901234567890123456789012345678901 2345 6 78901 23
  1475. */
  1476. #ifndef CONFIG_64BIT
  1477. #define __SWP_OFFSET_MASK (~0UL >> 12)
  1478. #else
  1479. #define __SWP_OFFSET_MASK (~0UL >> 11)
  1480. #endif
  1481. static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
  1482. {
  1483. pte_t pte;
  1484. offset &= __SWP_OFFSET_MASK;
  1485. pte_val(pte) = _PAGE_INVALID | _PAGE_TYPE | ((type & 0x1f) << 2) |
  1486. ((offset & 1UL) << 7) | ((offset & ~1UL) << 11);
  1487. return pte;
  1488. }
  1489. #define __swp_type(entry) (((entry).val >> 2) & 0x1f)
  1490. #define __swp_offset(entry) (((entry).val >> 11) | (((entry).val >> 7) & 1))
  1491. #define __swp_entry(type,offset) ((swp_entry_t) { pte_val(mk_swap_pte((type),(offset))) })
  1492. #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
  1493. #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
  1494. #ifndef CONFIG_64BIT
  1495. # define PTE_FILE_MAX_BITS 26
  1496. #else /* CONFIG_64BIT */
  1497. # define PTE_FILE_MAX_BITS 59
  1498. #endif /* CONFIG_64BIT */
  1499. #define pte_to_pgoff(__pte) \
  1500. ((((__pte).pte >> 12) << 7) + (((__pte).pte >> 1) & 0x7f))
  1501. #define pgoff_to_pte(__off) \
  1502. ((pte_t) { ((((__off) & 0x7f) << 1) + (((__off) >> 7) << 12)) \
  1503. | _PAGE_INVALID | _PAGE_PROTECT })
  1504. #endif /* !__ASSEMBLY__ */
  1505. #define kern_addr_valid(addr) (1)
  1506. extern int vmem_add_mapping(unsigned long start, unsigned long size);
  1507. extern int vmem_remove_mapping(unsigned long start, unsigned long size);
  1508. extern int s390_enable_sie(void);
  1509. extern void s390_enable_skey(void);
  1510. /*
  1511. * No page table caches to initialise
  1512. */
  1513. static inline void pgtable_cache_init(void) { }
  1514. static inline void check_pgt_cache(void) { }
  1515. #include <asm-generic/pgtable.h>
  1516. #endif /* _S390_PAGE_H */