book3s_hv.c 63 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482
  1. /*
  2. * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
  3. * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
  4. *
  5. * Authors:
  6. * Paul Mackerras <paulus@au1.ibm.com>
  7. * Alexander Graf <agraf@suse.de>
  8. * Kevin Wolf <mail@kevin-wolf.de>
  9. *
  10. * Description: KVM functions specific to running on Book 3S
  11. * processors in hypervisor mode (specifically POWER7 and later).
  12. *
  13. * This file is derived from arch/powerpc/kvm/book3s.c,
  14. * by Alexander Graf <agraf@suse.de>.
  15. *
  16. * This program is free software; you can redistribute it and/or modify
  17. * it under the terms of the GNU General Public License, version 2, as
  18. * published by the Free Software Foundation.
  19. */
  20. #include <linux/kvm_host.h>
  21. #include <linux/err.h>
  22. #include <linux/slab.h>
  23. #include <linux/preempt.h>
  24. #include <linux/sched.h>
  25. #include <linux/delay.h>
  26. #include <linux/export.h>
  27. #include <linux/fs.h>
  28. #include <linux/anon_inodes.h>
  29. #include <linux/cpumask.h>
  30. #include <linux/spinlock.h>
  31. #include <linux/page-flags.h>
  32. #include <linux/srcu.h>
  33. #include <linux/miscdevice.h>
  34. #include <asm/reg.h>
  35. #include <asm/cputable.h>
  36. #include <asm/cacheflush.h>
  37. #include <asm/tlbflush.h>
  38. #include <asm/uaccess.h>
  39. #include <asm/io.h>
  40. #include <asm/kvm_ppc.h>
  41. #include <asm/kvm_book3s.h>
  42. #include <asm/mmu_context.h>
  43. #include <asm/lppaca.h>
  44. #include <asm/processor.h>
  45. #include <asm/cputhreads.h>
  46. #include <asm/page.h>
  47. #include <asm/hvcall.h>
  48. #include <asm/switch_to.h>
  49. #include <asm/smp.h>
  50. #include <linux/gfp.h>
  51. #include <linux/vmalloc.h>
  52. #include <linux/highmem.h>
  53. #include <linux/hugetlb.h>
  54. #include <linux/module.h>
  55. #include "book3s.h"
  56. /* #define EXIT_DEBUG */
  57. /* #define EXIT_DEBUG_SIMPLE */
  58. /* #define EXIT_DEBUG_INT */
  59. /* Used to indicate that a guest page fault needs to be handled */
  60. #define RESUME_PAGE_FAULT (RESUME_GUEST | RESUME_FLAG_ARCH1)
  61. /* Used as a "null" value for timebase values */
  62. #define TB_NIL (~(u64)0)
  63. static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
  64. static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
  65. static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
  66. {
  67. int me;
  68. int cpu = vcpu->cpu;
  69. wait_queue_head_t *wqp;
  70. wqp = kvm_arch_vcpu_wq(vcpu);
  71. if (waitqueue_active(wqp)) {
  72. wake_up_interruptible(wqp);
  73. ++vcpu->stat.halt_wakeup;
  74. }
  75. me = get_cpu();
  76. /* CPU points to the first thread of the core */
  77. if (cpu != me && cpu >= 0 && cpu < nr_cpu_ids) {
  78. #ifdef CONFIG_PPC_ICP_NATIVE
  79. int real_cpu = cpu + vcpu->arch.ptid;
  80. if (paca[real_cpu].kvm_hstate.xics_phys)
  81. xics_wake_cpu(real_cpu);
  82. else
  83. #endif
  84. if (cpu_online(cpu))
  85. smp_send_reschedule(cpu);
  86. }
  87. put_cpu();
  88. }
  89. /*
  90. * We use the vcpu_load/put functions to measure stolen time.
  91. * Stolen time is counted as time when either the vcpu is able to
  92. * run as part of a virtual core, but the task running the vcore
  93. * is preempted or sleeping, or when the vcpu needs something done
  94. * in the kernel by the task running the vcpu, but that task is
  95. * preempted or sleeping. Those two things have to be counted
  96. * separately, since one of the vcpu tasks will take on the job
  97. * of running the core, and the other vcpu tasks in the vcore will
  98. * sleep waiting for it to do that, but that sleep shouldn't count
  99. * as stolen time.
  100. *
  101. * Hence we accumulate stolen time when the vcpu can run as part of
  102. * a vcore using vc->stolen_tb, and the stolen time when the vcpu
  103. * needs its task to do other things in the kernel (for example,
  104. * service a page fault) in busy_stolen. We don't accumulate
  105. * stolen time for a vcore when it is inactive, or for a vcpu
  106. * when it is in state RUNNING or NOTREADY. NOTREADY is a bit of
  107. * a misnomer; it means that the vcpu task is not executing in
  108. * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
  109. * the kernel. We don't have any way of dividing up that time
  110. * between time that the vcpu is genuinely stopped, time that
  111. * the task is actively working on behalf of the vcpu, and time
  112. * that the task is preempted, so we don't count any of it as
  113. * stolen.
  114. *
  115. * Updates to busy_stolen are protected by arch.tbacct_lock;
  116. * updates to vc->stolen_tb are protected by the arch.tbacct_lock
  117. * of the vcpu that has taken responsibility for running the vcore
  118. * (i.e. vc->runner). The stolen times are measured in units of
  119. * timebase ticks. (Note that the != TB_NIL checks below are
  120. * purely defensive; they should never fail.)
  121. */
  122. static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
  123. {
  124. struct kvmppc_vcore *vc = vcpu->arch.vcore;
  125. unsigned long flags;
  126. spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
  127. if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE &&
  128. vc->preempt_tb != TB_NIL) {
  129. vc->stolen_tb += mftb() - vc->preempt_tb;
  130. vc->preempt_tb = TB_NIL;
  131. }
  132. if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
  133. vcpu->arch.busy_preempt != TB_NIL) {
  134. vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
  135. vcpu->arch.busy_preempt = TB_NIL;
  136. }
  137. spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
  138. }
  139. static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
  140. {
  141. struct kvmppc_vcore *vc = vcpu->arch.vcore;
  142. unsigned long flags;
  143. spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
  144. if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE)
  145. vc->preempt_tb = mftb();
  146. if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
  147. vcpu->arch.busy_preempt = mftb();
  148. spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
  149. }
  150. static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
  151. {
  152. vcpu->arch.shregs.msr = msr;
  153. kvmppc_end_cede(vcpu);
  154. }
  155. void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
  156. {
  157. vcpu->arch.pvr = pvr;
  158. }
  159. int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
  160. {
  161. unsigned long pcr = 0;
  162. struct kvmppc_vcore *vc = vcpu->arch.vcore;
  163. if (arch_compat) {
  164. if (!cpu_has_feature(CPU_FTR_ARCH_206))
  165. return -EINVAL; /* 970 has no compat mode support */
  166. switch (arch_compat) {
  167. case PVR_ARCH_205:
  168. /*
  169. * If an arch bit is set in PCR, all the defined
  170. * higher-order arch bits also have to be set.
  171. */
  172. pcr = PCR_ARCH_206 | PCR_ARCH_205;
  173. break;
  174. case PVR_ARCH_206:
  175. case PVR_ARCH_206p:
  176. pcr = PCR_ARCH_206;
  177. break;
  178. case PVR_ARCH_207:
  179. break;
  180. default:
  181. return -EINVAL;
  182. }
  183. if (!cpu_has_feature(CPU_FTR_ARCH_207S)) {
  184. /* POWER7 can't emulate POWER8 */
  185. if (!(pcr & PCR_ARCH_206))
  186. return -EINVAL;
  187. pcr &= ~PCR_ARCH_206;
  188. }
  189. }
  190. spin_lock(&vc->lock);
  191. vc->arch_compat = arch_compat;
  192. vc->pcr = pcr;
  193. spin_unlock(&vc->lock);
  194. return 0;
  195. }
  196. void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
  197. {
  198. int r;
  199. pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
  200. pr_err("pc = %.16lx msr = %.16llx trap = %x\n",
  201. vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
  202. for (r = 0; r < 16; ++r)
  203. pr_err("r%2d = %.16lx r%d = %.16lx\n",
  204. r, kvmppc_get_gpr(vcpu, r),
  205. r+16, kvmppc_get_gpr(vcpu, r+16));
  206. pr_err("ctr = %.16lx lr = %.16lx\n",
  207. vcpu->arch.ctr, vcpu->arch.lr);
  208. pr_err("srr0 = %.16llx srr1 = %.16llx\n",
  209. vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
  210. pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
  211. vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
  212. pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
  213. vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
  214. pr_err("cr = %.8x xer = %.16lx dsisr = %.8x\n",
  215. vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
  216. pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
  217. pr_err("fault dar = %.16lx dsisr = %.8x\n",
  218. vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
  219. pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
  220. for (r = 0; r < vcpu->arch.slb_max; ++r)
  221. pr_err(" ESID = %.16llx VSID = %.16llx\n",
  222. vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
  223. pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
  224. vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
  225. vcpu->arch.last_inst);
  226. }
  227. struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
  228. {
  229. int r;
  230. struct kvm_vcpu *v, *ret = NULL;
  231. mutex_lock(&kvm->lock);
  232. kvm_for_each_vcpu(r, v, kvm) {
  233. if (v->vcpu_id == id) {
  234. ret = v;
  235. break;
  236. }
  237. }
  238. mutex_unlock(&kvm->lock);
  239. return ret;
  240. }
  241. static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
  242. {
  243. vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
  244. vpa->yield_count = 1;
  245. }
  246. static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
  247. unsigned long addr, unsigned long len)
  248. {
  249. /* check address is cacheline aligned */
  250. if (addr & (L1_CACHE_BYTES - 1))
  251. return -EINVAL;
  252. spin_lock(&vcpu->arch.vpa_update_lock);
  253. if (v->next_gpa != addr || v->len != len) {
  254. v->next_gpa = addr;
  255. v->len = addr ? len : 0;
  256. v->update_pending = 1;
  257. }
  258. spin_unlock(&vcpu->arch.vpa_update_lock);
  259. return 0;
  260. }
  261. /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
  262. struct reg_vpa {
  263. u32 dummy;
  264. union {
  265. u16 hword;
  266. u32 word;
  267. } length;
  268. };
  269. static int vpa_is_registered(struct kvmppc_vpa *vpap)
  270. {
  271. if (vpap->update_pending)
  272. return vpap->next_gpa != 0;
  273. return vpap->pinned_addr != NULL;
  274. }
  275. static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
  276. unsigned long flags,
  277. unsigned long vcpuid, unsigned long vpa)
  278. {
  279. struct kvm *kvm = vcpu->kvm;
  280. unsigned long len, nb;
  281. void *va;
  282. struct kvm_vcpu *tvcpu;
  283. int err;
  284. int subfunc;
  285. struct kvmppc_vpa *vpap;
  286. tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
  287. if (!tvcpu)
  288. return H_PARAMETER;
  289. subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
  290. if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
  291. subfunc == H_VPA_REG_SLB) {
  292. /* Registering new area - address must be cache-line aligned */
  293. if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
  294. return H_PARAMETER;
  295. /* convert logical addr to kernel addr and read length */
  296. va = kvmppc_pin_guest_page(kvm, vpa, &nb);
  297. if (va == NULL)
  298. return H_PARAMETER;
  299. if (subfunc == H_VPA_REG_VPA)
  300. len = ((struct reg_vpa *)va)->length.hword;
  301. else
  302. len = ((struct reg_vpa *)va)->length.word;
  303. kvmppc_unpin_guest_page(kvm, va, vpa, false);
  304. /* Check length */
  305. if (len > nb || len < sizeof(struct reg_vpa))
  306. return H_PARAMETER;
  307. } else {
  308. vpa = 0;
  309. len = 0;
  310. }
  311. err = H_PARAMETER;
  312. vpap = NULL;
  313. spin_lock(&tvcpu->arch.vpa_update_lock);
  314. switch (subfunc) {
  315. case H_VPA_REG_VPA: /* register VPA */
  316. if (len < sizeof(struct lppaca))
  317. break;
  318. vpap = &tvcpu->arch.vpa;
  319. err = 0;
  320. break;
  321. case H_VPA_REG_DTL: /* register DTL */
  322. if (len < sizeof(struct dtl_entry))
  323. break;
  324. len -= len % sizeof(struct dtl_entry);
  325. /* Check that they have previously registered a VPA */
  326. err = H_RESOURCE;
  327. if (!vpa_is_registered(&tvcpu->arch.vpa))
  328. break;
  329. vpap = &tvcpu->arch.dtl;
  330. err = 0;
  331. break;
  332. case H_VPA_REG_SLB: /* register SLB shadow buffer */
  333. /* Check that they have previously registered a VPA */
  334. err = H_RESOURCE;
  335. if (!vpa_is_registered(&tvcpu->arch.vpa))
  336. break;
  337. vpap = &tvcpu->arch.slb_shadow;
  338. err = 0;
  339. break;
  340. case H_VPA_DEREG_VPA: /* deregister VPA */
  341. /* Check they don't still have a DTL or SLB buf registered */
  342. err = H_RESOURCE;
  343. if (vpa_is_registered(&tvcpu->arch.dtl) ||
  344. vpa_is_registered(&tvcpu->arch.slb_shadow))
  345. break;
  346. vpap = &tvcpu->arch.vpa;
  347. err = 0;
  348. break;
  349. case H_VPA_DEREG_DTL: /* deregister DTL */
  350. vpap = &tvcpu->arch.dtl;
  351. err = 0;
  352. break;
  353. case H_VPA_DEREG_SLB: /* deregister SLB shadow buffer */
  354. vpap = &tvcpu->arch.slb_shadow;
  355. err = 0;
  356. break;
  357. }
  358. if (vpap) {
  359. vpap->next_gpa = vpa;
  360. vpap->len = len;
  361. vpap->update_pending = 1;
  362. }
  363. spin_unlock(&tvcpu->arch.vpa_update_lock);
  364. return err;
  365. }
  366. static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
  367. {
  368. struct kvm *kvm = vcpu->kvm;
  369. void *va;
  370. unsigned long nb;
  371. unsigned long gpa;
  372. /*
  373. * We need to pin the page pointed to by vpap->next_gpa,
  374. * but we can't call kvmppc_pin_guest_page under the lock
  375. * as it does get_user_pages() and down_read(). So we
  376. * have to drop the lock, pin the page, then get the lock
  377. * again and check that a new area didn't get registered
  378. * in the meantime.
  379. */
  380. for (;;) {
  381. gpa = vpap->next_gpa;
  382. spin_unlock(&vcpu->arch.vpa_update_lock);
  383. va = NULL;
  384. nb = 0;
  385. if (gpa)
  386. va = kvmppc_pin_guest_page(kvm, gpa, &nb);
  387. spin_lock(&vcpu->arch.vpa_update_lock);
  388. if (gpa == vpap->next_gpa)
  389. break;
  390. /* sigh... unpin that one and try again */
  391. if (va)
  392. kvmppc_unpin_guest_page(kvm, va, gpa, false);
  393. }
  394. vpap->update_pending = 0;
  395. if (va && nb < vpap->len) {
  396. /*
  397. * If it's now too short, it must be that userspace
  398. * has changed the mappings underlying guest memory,
  399. * so unregister the region.
  400. */
  401. kvmppc_unpin_guest_page(kvm, va, gpa, false);
  402. va = NULL;
  403. }
  404. if (vpap->pinned_addr)
  405. kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
  406. vpap->dirty);
  407. vpap->gpa = gpa;
  408. vpap->pinned_addr = va;
  409. vpap->dirty = false;
  410. if (va)
  411. vpap->pinned_end = va + vpap->len;
  412. }
  413. static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
  414. {
  415. if (!(vcpu->arch.vpa.update_pending ||
  416. vcpu->arch.slb_shadow.update_pending ||
  417. vcpu->arch.dtl.update_pending))
  418. return;
  419. spin_lock(&vcpu->arch.vpa_update_lock);
  420. if (vcpu->arch.vpa.update_pending) {
  421. kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
  422. if (vcpu->arch.vpa.pinned_addr)
  423. init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
  424. }
  425. if (vcpu->arch.dtl.update_pending) {
  426. kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
  427. vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
  428. vcpu->arch.dtl_index = 0;
  429. }
  430. if (vcpu->arch.slb_shadow.update_pending)
  431. kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
  432. spin_unlock(&vcpu->arch.vpa_update_lock);
  433. }
  434. /*
  435. * Return the accumulated stolen time for the vcore up until `now'.
  436. * The caller should hold the vcore lock.
  437. */
  438. static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
  439. {
  440. u64 p;
  441. /*
  442. * If we are the task running the vcore, then since we hold
  443. * the vcore lock, we can't be preempted, so stolen_tb/preempt_tb
  444. * can't be updated, so we don't need the tbacct_lock.
  445. * If the vcore is inactive, it can't become active (since we
  446. * hold the vcore lock), so the vcpu load/put functions won't
  447. * update stolen_tb/preempt_tb, and we don't need tbacct_lock.
  448. */
  449. if (vc->vcore_state != VCORE_INACTIVE &&
  450. vc->runner->arch.run_task != current) {
  451. spin_lock_irq(&vc->runner->arch.tbacct_lock);
  452. p = vc->stolen_tb;
  453. if (vc->preempt_tb != TB_NIL)
  454. p += now - vc->preempt_tb;
  455. spin_unlock_irq(&vc->runner->arch.tbacct_lock);
  456. } else {
  457. p = vc->stolen_tb;
  458. }
  459. return p;
  460. }
  461. static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
  462. struct kvmppc_vcore *vc)
  463. {
  464. struct dtl_entry *dt;
  465. struct lppaca *vpa;
  466. unsigned long stolen;
  467. unsigned long core_stolen;
  468. u64 now;
  469. dt = vcpu->arch.dtl_ptr;
  470. vpa = vcpu->arch.vpa.pinned_addr;
  471. now = mftb();
  472. core_stolen = vcore_stolen_time(vc, now);
  473. stolen = core_stolen - vcpu->arch.stolen_logged;
  474. vcpu->arch.stolen_logged = core_stolen;
  475. spin_lock_irq(&vcpu->arch.tbacct_lock);
  476. stolen += vcpu->arch.busy_stolen;
  477. vcpu->arch.busy_stolen = 0;
  478. spin_unlock_irq(&vcpu->arch.tbacct_lock);
  479. if (!dt || !vpa)
  480. return;
  481. memset(dt, 0, sizeof(struct dtl_entry));
  482. dt->dispatch_reason = 7;
  483. dt->processor_id = vc->pcpu + vcpu->arch.ptid;
  484. dt->timebase = now + vc->tb_offset;
  485. dt->enqueue_to_dispatch_time = stolen;
  486. dt->srr0 = kvmppc_get_pc(vcpu);
  487. dt->srr1 = vcpu->arch.shregs.msr;
  488. ++dt;
  489. if (dt == vcpu->arch.dtl.pinned_end)
  490. dt = vcpu->arch.dtl.pinned_addr;
  491. vcpu->arch.dtl_ptr = dt;
  492. /* order writing *dt vs. writing vpa->dtl_idx */
  493. smp_wmb();
  494. vpa->dtl_idx = ++vcpu->arch.dtl_index;
  495. vcpu->arch.dtl.dirty = true;
  496. }
  497. int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
  498. {
  499. unsigned long req = kvmppc_get_gpr(vcpu, 3);
  500. unsigned long target, ret = H_SUCCESS;
  501. struct kvm_vcpu *tvcpu;
  502. int idx, rc;
  503. switch (req) {
  504. case H_ENTER:
  505. idx = srcu_read_lock(&vcpu->kvm->srcu);
  506. ret = kvmppc_virtmode_h_enter(vcpu, kvmppc_get_gpr(vcpu, 4),
  507. kvmppc_get_gpr(vcpu, 5),
  508. kvmppc_get_gpr(vcpu, 6),
  509. kvmppc_get_gpr(vcpu, 7));
  510. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  511. break;
  512. case H_CEDE:
  513. break;
  514. case H_PROD:
  515. target = kvmppc_get_gpr(vcpu, 4);
  516. tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
  517. if (!tvcpu) {
  518. ret = H_PARAMETER;
  519. break;
  520. }
  521. tvcpu->arch.prodded = 1;
  522. smp_mb();
  523. if (vcpu->arch.ceded) {
  524. if (waitqueue_active(&vcpu->wq)) {
  525. wake_up_interruptible(&vcpu->wq);
  526. vcpu->stat.halt_wakeup++;
  527. }
  528. }
  529. break;
  530. case H_CONFER:
  531. target = kvmppc_get_gpr(vcpu, 4);
  532. if (target == -1)
  533. break;
  534. tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
  535. if (!tvcpu) {
  536. ret = H_PARAMETER;
  537. break;
  538. }
  539. kvm_vcpu_yield_to(tvcpu);
  540. break;
  541. case H_REGISTER_VPA:
  542. ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
  543. kvmppc_get_gpr(vcpu, 5),
  544. kvmppc_get_gpr(vcpu, 6));
  545. break;
  546. case H_RTAS:
  547. if (list_empty(&vcpu->kvm->arch.rtas_tokens))
  548. return RESUME_HOST;
  549. idx = srcu_read_lock(&vcpu->kvm->srcu);
  550. rc = kvmppc_rtas_hcall(vcpu);
  551. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  552. if (rc == -ENOENT)
  553. return RESUME_HOST;
  554. else if (rc == 0)
  555. break;
  556. /* Send the error out to userspace via KVM_RUN */
  557. return rc;
  558. case H_XIRR:
  559. case H_CPPR:
  560. case H_EOI:
  561. case H_IPI:
  562. case H_IPOLL:
  563. case H_XIRR_X:
  564. if (kvmppc_xics_enabled(vcpu)) {
  565. ret = kvmppc_xics_hcall(vcpu, req);
  566. break;
  567. } /* fallthrough */
  568. default:
  569. return RESUME_HOST;
  570. }
  571. kvmppc_set_gpr(vcpu, 3, ret);
  572. vcpu->arch.hcall_needed = 0;
  573. return RESUME_GUEST;
  574. }
  575. static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
  576. struct task_struct *tsk)
  577. {
  578. int r = RESUME_HOST;
  579. vcpu->stat.sum_exits++;
  580. run->exit_reason = KVM_EXIT_UNKNOWN;
  581. run->ready_for_interrupt_injection = 1;
  582. switch (vcpu->arch.trap) {
  583. /* We're good on these - the host merely wanted to get our attention */
  584. case BOOK3S_INTERRUPT_HV_DECREMENTER:
  585. vcpu->stat.dec_exits++;
  586. r = RESUME_GUEST;
  587. break;
  588. case BOOK3S_INTERRUPT_EXTERNAL:
  589. case BOOK3S_INTERRUPT_H_DOORBELL:
  590. vcpu->stat.ext_intr_exits++;
  591. r = RESUME_GUEST;
  592. break;
  593. case BOOK3S_INTERRUPT_PERFMON:
  594. r = RESUME_GUEST;
  595. break;
  596. case BOOK3S_INTERRUPT_MACHINE_CHECK:
  597. /*
  598. * Deliver a machine check interrupt to the guest.
  599. * We have to do this, even if the host has handled the
  600. * machine check, because machine checks use SRR0/1 and
  601. * the interrupt might have trashed guest state in them.
  602. */
  603. kvmppc_book3s_queue_irqprio(vcpu,
  604. BOOK3S_INTERRUPT_MACHINE_CHECK);
  605. r = RESUME_GUEST;
  606. break;
  607. case BOOK3S_INTERRUPT_PROGRAM:
  608. {
  609. ulong flags;
  610. /*
  611. * Normally program interrupts are delivered directly
  612. * to the guest by the hardware, but we can get here
  613. * as a result of a hypervisor emulation interrupt
  614. * (e40) getting turned into a 700 by BML RTAS.
  615. */
  616. flags = vcpu->arch.shregs.msr & 0x1f0000ull;
  617. kvmppc_core_queue_program(vcpu, flags);
  618. r = RESUME_GUEST;
  619. break;
  620. }
  621. case BOOK3S_INTERRUPT_SYSCALL:
  622. {
  623. /* hcall - punt to userspace */
  624. int i;
  625. /* hypercall with MSR_PR has already been handled in rmode,
  626. * and never reaches here.
  627. */
  628. run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
  629. for (i = 0; i < 9; ++i)
  630. run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
  631. run->exit_reason = KVM_EXIT_PAPR_HCALL;
  632. vcpu->arch.hcall_needed = 1;
  633. r = RESUME_HOST;
  634. break;
  635. }
  636. /*
  637. * We get these next two if the guest accesses a page which it thinks
  638. * it has mapped but which is not actually present, either because
  639. * it is for an emulated I/O device or because the corresonding
  640. * host page has been paged out. Any other HDSI/HISI interrupts
  641. * have been handled already.
  642. */
  643. case BOOK3S_INTERRUPT_H_DATA_STORAGE:
  644. r = RESUME_PAGE_FAULT;
  645. break;
  646. case BOOK3S_INTERRUPT_H_INST_STORAGE:
  647. vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
  648. vcpu->arch.fault_dsisr = 0;
  649. r = RESUME_PAGE_FAULT;
  650. break;
  651. /*
  652. * This occurs if the guest executes an illegal instruction.
  653. * We just generate a program interrupt to the guest, since
  654. * we don't emulate any guest instructions at this stage.
  655. */
  656. case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
  657. kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
  658. r = RESUME_GUEST;
  659. break;
  660. /*
  661. * This occurs if the guest (kernel or userspace), does something that
  662. * is prohibited by HFSCR. We just generate a program interrupt to
  663. * the guest.
  664. */
  665. case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
  666. kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
  667. r = RESUME_GUEST;
  668. break;
  669. default:
  670. kvmppc_dump_regs(vcpu);
  671. printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
  672. vcpu->arch.trap, kvmppc_get_pc(vcpu),
  673. vcpu->arch.shregs.msr);
  674. run->hw.hardware_exit_reason = vcpu->arch.trap;
  675. r = RESUME_HOST;
  676. break;
  677. }
  678. return r;
  679. }
  680. static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
  681. struct kvm_sregs *sregs)
  682. {
  683. int i;
  684. memset(sregs, 0, sizeof(struct kvm_sregs));
  685. sregs->pvr = vcpu->arch.pvr;
  686. for (i = 0; i < vcpu->arch.slb_max; i++) {
  687. sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
  688. sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
  689. }
  690. return 0;
  691. }
  692. static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
  693. struct kvm_sregs *sregs)
  694. {
  695. int i, j;
  696. kvmppc_set_pvr_hv(vcpu, sregs->pvr);
  697. j = 0;
  698. for (i = 0; i < vcpu->arch.slb_nr; i++) {
  699. if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
  700. vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
  701. vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
  702. ++j;
  703. }
  704. }
  705. vcpu->arch.slb_max = j;
  706. return 0;
  707. }
  708. static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr)
  709. {
  710. struct kvmppc_vcore *vc = vcpu->arch.vcore;
  711. u64 mask;
  712. spin_lock(&vc->lock);
  713. /*
  714. * If ILE (interrupt little-endian) has changed, update the
  715. * MSR_LE bit in the intr_msr for each vcpu in this vcore.
  716. */
  717. if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
  718. struct kvm *kvm = vcpu->kvm;
  719. struct kvm_vcpu *vcpu;
  720. int i;
  721. mutex_lock(&kvm->lock);
  722. kvm_for_each_vcpu(i, vcpu, kvm) {
  723. if (vcpu->arch.vcore != vc)
  724. continue;
  725. if (new_lpcr & LPCR_ILE)
  726. vcpu->arch.intr_msr |= MSR_LE;
  727. else
  728. vcpu->arch.intr_msr &= ~MSR_LE;
  729. }
  730. mutex_unlock(&kvm->lock);
  731. }
  732. /*
  733. * Userspace can only modify DPFD (default prefetch depth),
  734. * ILE (interrupt little-endian) and TC (translation control).
  735. * On POWER8 userspace can also modify AIL (alt. interrupt loc.)
  736. */
  737. mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
  738. if (cpu_has_feature(CPU_FTR_ARCH_207S))
  739. mask |= LPCR_AIL;
  740. vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
  741. spin_unlock(&vc->lock);
  742. }
  743. static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
  744. union kvmppc_one_reg *val)
  745. {
  746. int r = 0;
  747. long int i;
  748. switch (id) {
  749. case KVM_REG_PPC_HIOR:
  750. *val = get_reg_val(id, 0);
  751. break;
  752. case KVM_REG_PPC_DABR:
  753. *val = get_reg_val(id, vcpu->arch.dabr);
  754. break;
  755. case KVM_REG_PPC_DABRX:
  756. *val = get_reg_val(id, vcpu->arch.dabrx);
  757. break;
  758. case KVM_REG_PPC_DSCR:
  759. *val = get_reg_val(id, vcpu->arch.dscr);
  760. break;
  761. case KVM_REG_PPC_PURR:
  762. *val = get_reg_val(id, vcpu->arch.purr);
  763. break;
  764. case KVM_REG_PPC_SPURR:
  765. *val = get_reg_val(id, vcpu->arch.spurr);
  766. break;
  767. case KVM_REG_PPC_AMR:
  768. *val = get_reg_val(id, vcpu->arch.amr);
  769. break;
  770. case KVM_REG_PPC_UAMOR:
  771. *val = get_reg_val(id, vcpu->arch.uamor);
  772. break;
  773. case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
  774. i = id - KVM_REG_PPC_MMCR0;
  775. *val = get_reg_val(id, vcpu->arch.mmcr[i]);
  776. break;
  777. case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
  778. i = id - KVM_REG_PPC_PMC1;
  779. *val = get_reg_val(id, vcpu->arch.pmc[i]);
  780. break;
  781. case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
  782. i = id - KVM_REG_PPC_SPMC1;
  783. *val = get_reg_val(id, vcpu->arch.spmc[i]);
  784. break;
  785. case KVM_REG_PPC_SIAR:
  786. *val = get_reg_val(id, vcpu->arch.siar);
  787. break;
  788. case KVM_REG_PPC_SDAR:
  789. *val = get_reg_val(id, vcpu->arch.sdar);
  790. break;
  791. case KVM_REG_PPC_SIER:
  792. *val = get_reg_val(id, vcpu->arch.sier);
  793. break;
  794. case KVM_REG_PPC_IAMR:
  795. *val = get_reg_val(id, vcpu->arch.iamr);
  796. break;
  797. case KVM_REG_PPC_PSPB:
  798. *val = get_reg_val(id, vcpu->arch.pspb);
  799. break;
  800. case KVM_REG_PPC_DPDES:
  801. *val = get_reg_val(id, vcpu->arch.vcore->dpdes);
  802. break;
  803. case KVM_REG_PPC_DAWR:
  804. *val = get_reg_val(id, vcpu->arch.dawr);
  805. break;
  806. case KVM_REG_PPC_DAWRX:
  807. *val = get_reg_val(id, vcpu->arch.dawrx);
  808. break;
  809. case KVM_REG_PPC_CIABR:
  810. *val = get_reg_val(id, vcpu->arch.ciabr);
  811. break;
  812. case KVM_REG_PPC_IC:
  813. *val = get_reg_val(id, vcpu->arch.ic);
  814. break;
  815. case KVM_REG_PPC_VTB:
  816. *val = get_reg_val(id, vcpu->arch.vtb);
  817. break;
  818. case KVM_REG_PPC_CSIGR:
  819. *val = get_reg_val(id, vcpu->arch.csigr);
  820. break;
  821. case KVM_REG_PPC_TACR:
  822. *val = get_reg_val(id, vcpu->arch.tacr);
  823. break;
  824. case KVM_REG_PPC_TCSCR:
  825. *val = get_reg_val(id, vcpu->arch.tcscr);
  826. break;
  827. case KVM_REG_PPC_PID:
  828. *val = get_reg_val(id, vcpu->arch.pid);
  829. break;
  830. case KVM_REG_PPC_ACOP:
  831. *val = get_reg_val(id, vcpu->arch.acop);
  832. break;
  833. case KVM_REG_PPC_WORT:
  834. *val = get_reg_val(id, vcpu->arch.wort);
  835. break;
  836. case KVM_REG_PPC_VPA_ADDR:
  837. spin_lock(&vcpu->arch.vpa_update_lock);
  838. *val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
  839. spin_unlock(&vcpu->arch.vpa_update_lock);
  840. break;
  841. case KVM_REG_PPC_VPA_SLB:
  842. spin_lock(&vcpu->arch.vpa_update_lock);
  843. val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
  844. val->vpaval.length = vcpu->arch.slb_shadow.len;
  845. spin_unlock(&vcpu->arch.vpa_update_lock);
  846. break;
  847. case KVM_REG_PPC_VPA_DTL:
  848. spin_lock(&vcpu->arch.vpa_update_lock);
  849. val->vpaval.addr = vcpu->arch.dtl.next_gpa;
  850. val->vpaval.length = vcpu->arch.dtl.len;
  851. spin_unlock(&vcpu->arch.vpa_update_lock);
  852. break;
  853. case KVM_REG_PPC_TB_OFFSET:
  854. *val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
  855. break;
  856. case KVM_REG_PPC_LPCR:
  857. *val = get_reg_val(id, vcpu->arch.vcore->lpcr);
  858. break;
  859. case KVM_REG_PPC_PPR:
  860. *val = get_reg_val(id, vcpu->arch.ppr);
  861. break;
  862. #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
  863. case KVM_REG_PPC_TFHAR:
  864. *val = get_reg_val(id, vcpu->arch.tfhar);
  865. break;
  866. case KVM_REG_PPC_TFIAR:
  867. *val = get_reg_val(id, vcpu->arch.tfiar);
  868. break;
  869. case KVM_REG_PPC_TEXASR:
  870. *val = get_reg_val(id, vcpu->arch.texasr);
  871. break;
  872. case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
  873. i = id - KVM_REG_PPC_TM_GPR0;
  874. *val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
  875. break;
  876. case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
  877. {
  878. int j;
  879. i = id - KVM_REG_PPC_TM_VSR0;
  880. if (i < 32)
  881. for (j = 0; j < TS_FPRWIDTH; j++)
  882. val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
  883. else {
  884. if (cpu_has_feature(CPU_FTR_ALTIVEC))
  885. val->vval = vcpu->arch.vr_tm.vr[i-32];
  886. else
  887. r = -ENXIO;
  888. }
  889. break;
  890. }
  891. case KVM_REG_PPC_TM_CR:
  892. *val = get_reg_val(id, vcpu->arch.cr_tm);
  893. break;
  894. case KVM_REG_PPC_TM_LR:
  895. *val = get_reg_val(id, vcpu->arch.lr_tm);
  896. break;
  897. case KVM_REG_PPC_TM_CTR:
  898. *val = get_reg_val(id, vcpu->arch.ctr_tm);
  899. break;
  900. case KVM_REG_PPC_TM_FPSCR:
  901. *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
  902. break;
  903. case KVM_REG_PPC_TM_AMR:
  904. *val = get_reg_val(id, vcpu->arch.amr_tm);
  905. break;
  906. case KVM_REG_PPC_TM_PPR:
  907. *val = get_reg_val(id, vcpu->arch.ppr_tm);
  908. break;
  909. case KVM_REG_PPC_TM_VRSAVE:
  910. *val = get_reg_val(id, vcpu->arch.vrsave_tm);
  911. break;
  912. case KVM_REG_PPC_TM_VSCR:
  913. if (cpu_has_feature(CPU_FTR_ALTIVEC))
  914. *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
  915. else
  916. r = -ENXIO;
  917. break;
  918. case KVM_REG_PPC_TM_DSCR:
  919. *val = get_reg_val(id, vcpu->arch.dscr_tm);
  920. break;
  921. case KVM_REG_PPC_TM_TAR:
  922. *val = get_reg_val(id, vcpu->arch.tar_tm);
  923. break;
  924. #endif
  925. case KVM_REG_PPC_ARCH_COMPAT:
  926. *val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
  927. break;
  928. default:
  929. r = -EINVAL;
  930. break;
  931. }
  932. return r;
  933. }
  934. static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
  935. union kvmppc_one_reg *val)
  936. {
  937. int r = 0;
  938. long int i;
  939. unsigned long addr, len;
  940. switch (id) {
  941. case KVM_REG_PPC_HIOR:
  942. /* Only allow this to be set to zero */
  943. if (set_reg_val(id, *val))
  944. r = -EINVAL;
  945. break;
  946. case KVM_REG_PPC_DABR:
  947. vcpu->arch.dabr = set_reg_val(id, *val);
  948. break;
  949. case KVM_REG_PPC_DABRX:
  950. vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
  951. break;
  952. case KVM_REG_PPC_DSCR:
  953. vcpu->arch.dscr = set_reg_val(id, *val);
  954. break;
  955. case KVM_REG_PPC_PURR:
  956. vcpu->arch.purr = set_reg_val(id, *val);
  957. break;
  958. case KVM_REG_PPC_SPURR:
  959. vcpu->arch.spurr = set_reg_val(id, *val);
  960. break;
  961. case KVM_REG_PPC_AMR:
  962. vcpu->arch.amr = set_reg_val(id, *val);
  963. break;
  964. case KVM_REG_PPC_UAMOR:
  965. vcpu->arch.uamor = set_reg_val(id, *val);
  966. break;
  967. case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
  968. i = id - KVM_REG_PPC_MMCR0;
  969. vcpu->arch.mmcr[i] = set_reg_val(id, *val);
  970. break;
  971. case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
  972. i = id - KVM_REG_PPC_PMC1;
  973. vcpu->arch.pmc[i] = set_reg_val(id, *val);
  974. break;
  975. case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
  976. i = id - KVM_REG_PPC_SPMC1;
  977. vcpu->arch.spmc[i] = set_reg_val(id, *val);
  978. break;
  979. case KVM_REG_PPC_SIAR:
  980. vcpu->arch.siar = set_reg_val(id, *val);
  981. break;
  982. case KVM_REG_PPC_SDAR:
  983. vcpu->arch.sdar = set_reg_val(id, *val);
  984. break;
  985. case KVM_REG_PPC_SIER:
  986. vcpu->arch.sier = set_reg_val(id, *val);
  987. break;
  988. case KVM_REG_PPC_IAMR:
  989. vcpu->arch.iamr = set_reg_val(id, *val);
  990. break;
  991. case KVM_REG_PPC_PSPB:
  992. vcpu->arch.pspb = set_reg_val(id, *val);
  993. break;
  994. case KVM_REG_PPC_DPDES:
  995. vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
  996. break;
  997. case KVM_REG_PPC_DAWR:
  998. vcpu->arch.dawr = set_reg_val(id, *val);
  999. break;
  1000. case KVM_REG_PPC_DAWRX:
  1001. vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
  1002. break;
  1003. case KVM_REG_PPC_CIABR:
  1004. vcpu->arch.ciabr = set_reg_val(id, *val);
  1005. /* Don't allow setting breakpoints in hypervisor code */
  1006. if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
  1007. vcpu->arch.ciabr &= ~CIABR_PRIV; /* disable */
  1008. break;
  1009. case KVM_REG_PPC_IC:
  1010. vcpu->arch.ic = set_reg_val(id, *val);
  1011. break;
  1012. case KVM_REG_PPC_VTB:
  1013. vcpu->arch.vtb = set_reg_val(id, *val);
  1014. break;
  1015. case KVM_REG_PPC_CSIGR:
  1016. vcpu->arch.csigr = set_reg_val(id, *val);
  1017. break;
  1018. case KVM_REG_PPC_TACR:
  1019. vcpu->arch.tacr = set_reg_val(id, *val);
  1020. break;
  1021. case KVM_REG_PPC_TCSCR:
  1022. vcpu->arch.tcscr = set_reg_val(id, *val);
  1023. break;
  1024. case KVM_REG_PPC_PID:
  1025. vcpu->arch.pid = set_reg_val(id, *val);
  1026. break;
  1027. case KVM_REG_PPC_ACOP:
  1028. vcpu->arch.acop = set_reg_val(id, *val);
  1029. break;
  1030. case KVM_REG_PPC_WORT:
  1031. vcpu->arch.wort = set_reg_val(id, *val);
  1032. break;
  1033. case KVM_REG_PPC_VPA_ADDR:
  1034. addr = set_reg_val(id, *val);
  1035. r = -EINVAL;
  1036. if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
  1037. vcpu->arch.dtl.next_gpa))
  1038. break;
  1039. r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
  1040. break;
  1041. case KVM_REG_PPC_VPA_SLB:
  1042. addr = val->vpaval.addr;
  1043. len = val->vpaval.length;
  1044. r = -EINVAL;
  1045. if (addr && !vcpu->arch.vpa.next_gpa)
  1046. break;
  1047. r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
  1048. break;
  1049. case KVM_REG_PPC_VPA_DTL:
  1050. addr = val->vpaval.addr;
  1051. len = val->vpaval.length;
  1052. r = -EINVAL;
  1053. if (addr && (len < sizeof(struct dtl_entry) ||
  1054. !vcpu->arch.vpa.next_gpa))
  1055. break;
  1056. len -= len % sizeof(struct dtl_entry);
  1057. r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
  1058. break;
  1059. case KVM_REG_PPC_TB_OFFSET:
  1060. /* round up to multiple of 2^24 */
  1061. vcpu->arch.vcore->tb_offset =
  1062. ALIGN(set_reg_val(id, *val), 1UL << 24);
  1063. break;
  1064. case KVM_REG_PPC_LPCR:
  1065. kvmppc_set_lpcr(vcpu, set_reg_val(id, *val));
  1066. break;
  1067. case KVM_REG_PPC_PPR:
  1068. vcpu->arch.ppr = set_reg_val(id, *val);
  1069. break;
  1070. #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
  1071. case KVM_REG_PPC_TFHAR:
  1072. vcpu->arch.tfhar = set_reg_val(id, *val);
  1073. break;
  1074. case KVM_REG_PPC_TFIAR:
  1075. vcpu->arch.tfiar = set_reg_val(id, *val);
  1076. break;
  1077. case KVM_REG_PPC_TEXASR:
  1078. vcpu->arch.texasr = set_reg_val(id, *val);
  1079. break;
  1080. case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
  1081. i = id - KVM_REG_PPC_TM_GPR0;
  1082. vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
  1083. break;
  1084. case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
  1085. {
  1086. int j;
  1087. i = id - KVM_REG_PPC_TM_VSR0;
  1088. if (i < 32)
  1089. for (j = 0; j < TS_FPRWIDTH; j++)
  1090. vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
  1091. else
  1092. if (cpu_has_feature(CPU_FTR_ALTIVEC))
  1093. vcpu->arch.vr_tm.vr[i-32] = val->vval;
  1094. else
  1095. r = -ENXIO;
  1096. break;
  1097. }
  1098. case KVM_REG_PPC_TM_CR:
  1099. vcpu->arch.cr_tm = set_reg_val(id, *val);
  1100. break;
  1101. case KVM_REG_PPC_TM_LR:
  1102. vcpu->arch.lr_tm = set_reg_val(id, *val);
  1103. break;
  1104. case KVM_REG_PPC_TM_CTR:
  1105. vcpu->arch.ctr_tm = set_reg_val(id, *val);
  1106. break;
  1107. case KVM_REG_PPC_TM_FPSCR:
  1108. vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
  1109. break;
  1110. case KVM_REG_PPC_TM_AMR:
  1111. vcpu->arch.amr_tm = set_reg_val(id, *val);
  1112. break;
  1113. case KVM_REG_PPC_TM_PPR:
  1114. vcpu->arch.ppr_tm = set_reg_val(id, *val);
  1115. break;
  1116. case KVM_REG_PPC_TM_VRSAVE:
  1117. vcpu->arch.vrsave_tm = set_reg_val(id, *val);
  1118. break;
  1119. case KVM_REG_PPC_TM_VSCR:
  1120. if (cpu_has_feature(CPU_FTR_ALTIVEC))
  1121. vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
  1122. else
  1123. r = - ENXIO;
  1124. break;
  1125. case KVM_REG_PPC_TM_DSCR:
  1126. vcpu->arch.dscr_tm = set_reg_val(id, *val);
  1127. break;
  1128. case KVM_REG_PPC_TM_TAR:
  1129. vcpu->arch.tar_tm = set_reg_val(id, *val);
  1130. break;
  1131. #endif
  1132. case KVM_REG_PPC_ARCH_COMPAT:
  1133. r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
  1134. break;
  1135. default:
  1136. r = -EINVAL;
  1137. break;
  1138. }
  1139. return r;
  1140. }
  1141. static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm,
  1142. unsigned int id)
  1143. {
  1144. struct kvm_vcpu *vcpu;
  1145. int err = -EINVAL;
  1146. int core;
  1147. struct kvmppc_vcore *vcore;
  1148. core = id / threads_per_subcore;
  1149. if (core >= KVM_MAX_VCORES)
  1150. goto out;
  1151. err = -ENOMEM;
  1152. vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  1153. if (!vcpu)
  1154. goto out;
  1155. err = kvm_vcpu_init(vcpu, kvm, id);
  1156. if (err)
  1157. goto free_vcpu;
  1158. vcpu->arch.shared = &vcpu->arch.shregs;
  1159. #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
  1160. /*
  1161. * The shared struct is never shared on HV,
  1162. * so we can always use host endianness
  1163. */
  1164. #ifdef __BIG_ENDIAN__
  1165. vcpu->arch.shared_big_endian = true;
  1166. #else
  1167. vcpu->arch.shared_big_endian = false;
  1168. #endif
  1169. #endif
  1170. vcpu->arch.mmcr[0] = MMCR0_FC;
  1171. vcpu->arch.ctrl = CTRL_RUNLATCH;
  1172. /* default to host PVR, since we can't spoof it */
  1173. kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
  1174. spin_lock_init(&vcpu->arch.vpa_update_lock);
  1175. spin_lock_init(&vcpu->arch.tbacct_lock);
  1176. vcpu->arch.busy_preempt = TB_NIL;
  1177. vcpu->arch.intr_msr = MSR_SF | MSR_ME;
  1178. kvmppc_mmu_book3s_hv_init(vcpu);
  1179. vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
  1180. init_waitqueue_head(&vcpu->arch.cpu_run);
  1181. mutex_lock(&kvm->lock);
  1182. vcore = kvm->arch.vcores[core];
  1183. if (!vcore) {
  1184. vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
  1185. if (vcore) {
  1186. INIT_LIST_HEAD(&vcore->runnable_threads);
  1187. spin_lock_init(&vcore->lock);
  1188. init_waitqueue_head(&vcore->wq);
  1189. vcore->preempt_tb = TB_NIL;
  1190. vcore->lpcr = kvm->arch.lpcr;
  1191. vcore->first_vcpuid = core * threads_per_subcore;
  1192. vcore->kvm = kvm;
  1193. }
  1194. kvm->arch.vcores[core] = vcore;
  1195. kvm->arch.online_vcores++;
  1196. }
  1197. mutex_unlock(&kvm->lock);
  1198. if (!vcore)
  1199. goto free_vcpu;
  1200. spin_lock(&vcore->lock);
  1201. ++vcore->num_threads;
  1202. spin_unlock(&vcore->lock);
  1203. vcpu->arch.vcore = vcore;
  1204. vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
  1205. vcpu->arch.cpu_type = KVM_CPU_3S_64;
  1206. kvmppc_sanity_check(vcpu);
  1207. return vcpu;
  1208. free_vcpu:
  1209. kmem_cache_free(kvm_vcpu_cache, vcpu);
  1210. out:
  1211. return ERR_PTR(err);
  1212. }
  1213. static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
  1214. {
  1215. if (vpa->pinned_addr)
  1216. kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
  1217. vpa->dirty);
  1218. }
  1219. static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
  1220. {
  1221. spin_lock(&vcpu->arch.vpa_update_lock);
  1222. unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
  1223. unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
  1224. unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
  1225. spin_unlock(&vcpu->arch.vpa_update_lock);
  1226. kvm_vcpu_uninit(vcpu);
  1227. kmem_cache_free(kvm_vcpu_cache, vcpu);
  1228. }
  1229. static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
  1230. {
  1231. /* Indicate we want to get back into the guest */
  1232. return 1;
  1233. }
  1234. static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
  1235. {
  1236. unsigned long dec_nsec, now;
  1237. now = get_tb();
  1238. if (now > vcpu->arch.dec_expires) {
  1239. /* decrementer has already gone negative */
  1240. kvmppc_core_queue_dec(vcpu);
  1241. kvmppc_core_prepare_to_enter(vcpu);
  1242. return;
  1243. }
  1244. dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
  1245. / tb_ticks_per_sec;
  1246. hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec),
  1247. HRTIMER_MODE_REL);
  1248. vcpu->arch.timer_running = 1;
  1249. }
  1250. static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
  1251. {
  1252. vcpu->arch.ceded = 0;
  1253. if (vcpu->arch.timer_running) {
  1254. hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
  1255. vcpu->arch.timer_running = 0;
  1256. }
  1257. }
  1258. extern void __kvmppc_vcore_entry(void);
  1259. static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
  1260. struct kvm_vcpu *vcpu)
  1261. {
  1262. u64 now;
  1263. if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
  1264. return;
  1265. spin_lock_irq(&vcpu->arch.tbacct_lock);
  1266. now = mftb();
  1267. vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
  1268. vcpu->arch.stolen_logged;
  1269. vcpu->arch.busy_preempt = now;
  1270. vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
  1271. spin_unlock_irq(&vcpu->arch.tbacct_lock);
  1272. --vc->n_runnable;
  1273. list_del(&vcpu->arch.run_list);
  1274. }
  1275. static int kvmppc_grab_hwthread(int cpu)
  1276. {
  1277. struct paca_struct *tpaca;
  1278. long timeout = 1000;
  1279. tpaca = &paca[cpu];
  1280. /* Ensure the thread won't go into the kernel if it wakes */
  1281. tpaca->kvm_hstate.hwthread_req = 1;
  1282. tpaca->kvm_hstate.kvm_vcpu = NULL;
  1283. /*
  1284. * If the thread is already executing in the kernel (e.g. handling
  1285. * a stray interrupt), wait for it to get back to nap mode.
  1286. * The smp_mb() is to ensure that our setting of hwthread_req
  1287. * is visible before we look at hwthread_state, so if this
  1288. * races with the code at system_reset_pSeries and the thread
  1289. * misses our setting of hwthread_req, we are sure to see its
  1290. * setting of hwthread_state, and vice versa.
  1291. */
  1292. smp_mb();
  1293. while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
  1294. if (--timeout <= 0) {
  1295. pr_err("KVM: couldn't grab cpu %d\n", cpu);
  1296. return -EBUSY;
  1297. }
  1298. udelay(1);
  1299. }
  1300. return 0;
  1301. }
  1302. static void kvmppc_release_hwthread(int cpu)
  1303. {
  1304. struct paca_struct *tpaca;
  1305. tpaca = &paca[cpu];
  1306. tpaca->kvm_hstate.hwthread_req = 0;
  1307. tpaca->kvm_hstate.kvm_vcpu = NULL;
  1308. }
  1309. static void kvmppc_start_thread(struct kvm_vcpu *vcpu)
  1310. {
  1311. int cpu;
  1312. struct paca_struct *tpaca;
  1313. struct kvmppc_vcore *vc = vcpu->arch.vcore;
  1314. if (vcpu->arch.timer_running) {
  1315. hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
  1316. vcpu->arch.timer_running = 0;
  1317. }
  1318. cpu = vc->pcpu + vcpu->arch.ptid;
  1319. tpaca = &paca[cpu];
  1320. tpaca->kvm_hstate.kvm_vcpu = vcpu;
  1321. tpaca->kvm_hstate.kvm_vcore = vc;
  1322. tpaca->kvm_hstate.ptid = vcpu->arch.ptid;
  1323. vcpu->cpu = vc->pcpu;
  1324. smp_wmb();
  1325. #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
  1326. if (cpu != smp_processor_id()) {
  1327. xics_wake_cpu(cpu);
  1328. if (vcpu->arch.ptid)
  1329. ++vc->n_woken;
  1330. }
  1331. #endif
  1332. }
  1333. static void kvmppc_wait_for_nap(struct kvmppc_vcore *vc)
  1334. {
  1335. int i;
  1336. HMT_low();
  1337. i = 0;
  1338. while (vc->nap_count < vc->n_woken) {
  1339. if (++i >= 1000000) {
  1340. pr_err("kvmppc_wait_for_nap timeout %d %d\n",
  1341. vc->nap_count, vc->n_woken);
  1342. break;
  1343. }
  1344. cpu_relax();
  1345. }
  1346. HMT_medium();
  1347. }
  1348. /*
  1349. * Check that we are on thread 0 and that any other threads in
  1350. * this core are off-line. Then grab the threads so they can't
  1351. * enter the kernel.
  1352. */
  1353. static int on_primary_thread(void)
  1354. {
  1355. int cpu = smp_processor_id();
  1356. int thr;
  1357. /* Are we on a primary subcore? */
  1358. if (cpu_thread_in_subcore(cpu))
  1359. return 0;
  1360. thr = 0;
  1361. while (++thr < threads_per_subcore)
  1362. if (cpu_online(cpu + thr))
  1363. return 0;
  1364. /* Grab all hw threads so they can't go into the kernel */
  1365. for (thr = 1; thr < threads_per_subcore; ++thr) {
  1366. if (kvmppc_grab_hwthread(cpu + thr)) {
  1367. /* Couldn't grab one; let the others go */
  1368. do {
  1369. kvmppc_release_hwthread(cpu + thr);
  1370. } while (--thr > 0);
  1371. return 0;
  1372. }
  1373. }
  1374. return 1;
  1375. }
  1376. /*
  1377. * Run a set of guest threads on a physical core.
  1378. * Called with vc->lock held.
  1379. */
  1380. static void kvmppc_run_core(struct kvmppc_vcore *vc)
  1381. {
  1382. struct kvm_vcpu *vcpu, *vnext;
  1383. long ret;
  1384. u64 now;
  1385. int i, need_vpa_update;
  1386. int srcu_idx;
  1387. struct kvm_vcpu *vcpus_to_update[threads_per_core];
  1388. /* don't start if any threads have a signal pending */
  1389. need_vpa_update = 0;
  1390. list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
  1391. if (signal_pending(vcpu->arch.run_task))
  1392. return;
  1393. if (vcpu->arch.vpa.update_pending ||
  1394. vcpu->arch.slb_shadow.update_pending ||
  1395. vcpu->arch.dtl.update_pending)
  1396. vcpus_to_update[need_vpa_update++] = vcpu;
  1397. }
  1398. /*
  1399. * Initialize *vc, in particular vc->vcore_state, so we can
  1400. * drop the vcore lock if necessary.
  1401. */
  1402. vc->n_woken = 0;
  1403. vc->nap_count = 0;
  1404. vc->entry_exit_count = 0;
  1405. vc->vcore_state = VCORE_STARTING;
  1406. vc->in_guest = 0;
  1407. vc->napping_threads = 0;
  1408. /*
  1409. * Updating any of the vpas requires calling kvmppc_pin_guest_page,
  1410. * which can't be called with any spinlocks held.
  1411. */
  1412. if (need_vpa_update) {
  1413. spin_unlock(&vc->lock);
  1414. for (i = 0; i < need_vpa_update; ++i)
  1415. kvmppc_update_vpas(vcpus_to_update[i]);
  1416. spin_lock(&vc->lock);
  1417. }
  1418. /*
  1419. * Make sure we are running on primary threads, and that secondary
  1420. * threads are offline. Also check if the number of threads in this
  1421. * guest are greater than the current system threads per guest.
  1422. */
  1423. if ((threads_per_core > 1) &&
  1424. ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) {
  1425. list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
  1426. vcpu->arch.ret = -EBUSY;
  1427. goto out;
  1428. }
  1429. vc->pcpu = smp_processor_id();
  1430. list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
  1431. kvmppc_start_thread(vcpu);
  1432. kvmppc_create_dtl_entry(vcpu, vc);
  1433. }
  1434. /* Set this explicitly in case thread 0 doesn't have a vcpu */
  1435. get_paca()->kvm_hstate.kvm_vcore = vc;
  1436. get_paca()->kvm_hstate.ptid = 0;
  1437. vc->vcore_state = VCORE_RUNNING;
  1438. preempt_disable();
  1439. spin_unlock(&vc->lock);
  1440. kvm_guest_enter();
  1441. srcu_idx = srcu_read_lock(&vc->kvm->srcu);
  1442. __kvmppc_vcore_entry();
  1443. spin_lock(&vc->lock);
  1444. /* disable sending of IPIs on virtual external irqs */
  1445. list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
  1446. vcpu->cpu = -1;
  1447. /* wait for secondary threads to finish writing their state to memory */
  1448. if (vc->nap_count < vc->n_woken)
  1449. kvmppc_wait_for_nap(vc);
  1450. for (i = 0; i < threads_per_subcore; ++i)
  1451. kvmppc_release_hwthread(vc->pcpu + i);
  1452. /* prevent other vcpu threads from doing kvmppc_start_thread() now */
  1453. vc->vcore_state = VCORE_EXITING;
  1454. spin_unlock(&vc->lock);
  1455. srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
  1456. /* make sure updates to secondary vcpu structs are visible now */
  1457. smp_mb();
  1458. kvm_guest_exit();
  1459. preempt_enable();
  1460. cond_resched();
  1461. spin_lock(&vc->lock);
  1462. now = get_tb();
  1463. list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
  1464. /* cancel pending dec exception if dec is positive */
  1465. if (now < vcpu->arch.dec_expires &&
  1466. kvmppc_core_pending_dec(vcpu))
  1467. kvmppc_core_dequeue_dec(vcpu);
  1468. ret = RESUME_GUEST;
  1469. if (vcpu->arch.trap)
  1470. ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
  1471. vcpu->arch.run_task);
  1472. vcpu->arch.ret = ret;
  1473. vcpu->arch.trap = 0;
  1474. if (vcpu->arch.ceded) {
  1475. if (!is_kvmppc_resume_guest(ret))
  1476. kvmppc_end_cede(vcpu);
  1477. else
  1478. kvmppc_set_timer(vcpu);
  1479. }
  1480. }
  1481. out:
  1482. vc->vcore_state = VCORE_INACTIVE;
  1483. list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
  1484. arch.run_list) {
  1485. if (!is_kvmppc_resume_guest(vcpu->arch.ret)) {
  1486. kvmppc_remove_runnable(vc, vcpu);
  1487. wake_up(&vcpu->arch.cpu_run);
  1488. }
  1489. }
  1490. }
  1491. /*
  1492. * Wait for some other vcpu thread to execute us, and
  1493. * wake us up when we need to handle something in the host.
  1494. */
  1495. static void kvmppc_wait_for_exec(struct kvm_vcpu *vcpu, int wait_state)
  1496. {
  1497. DEFINE_WAIT(wait);
  1498. prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
  1499. if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE)
  1500. schedule();
  1501. finish_wait(&vcpu->arch.cpu_run, &wait);
  1502. }
  1503. /*
  1504. * All the vcpus in this vcore are idle, so wait for a decrementer
  1505. * or external interrupt to one of the vcpus. vc->lock is held.
  1506. */
  1507. static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
  1508. {
  1509. DEFINE_WAIT(wait);
  1510. prepare_to_wait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
  1511. vc->vcore_state = VCORE_SLEEPING;
  1512. spin_unlock(&vc->lock);
  1513. schedule();
  1514. finish_wait(&vc->wq, &wait);
  1515. spin_lock(&vc->lock);
  1516. vc->vcore_state = VCORE_INACTIVE;
  1517. }
  1518. static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
  1519. {
  1520. int n_ceded;
  1521. struct kvmppc_vcore *vc;
  1522. struct kvm_vcpu *v, *vn;
  1523. kvm_run->exit_reason = 0;
  1524. vcpu->arch.ret = RESUME_GUEST;
  1525. vcpu->arch.trap = 0;
  1526. kvmppc_update_vpas(vcpu);
  1527. /*
  1528. * Synchronize with other threads in this virtual core
  1529. */
  1530. vc = vcpu->arch.vcore;
  1531. spin_lock(&vc->lock);
  1532. vcpu->arch.ceded = 0;
  1533. vcpu->arch.run_task = current;
  1534. vcpu->arch.kvm_run = kvm_run;
  1535. vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
  1536. vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
  1537. vcpu->arch.busy_preempt = TB_NIL;
  1538. list_add_tail(&vcpu->arch.run_list, &vc->runnable_threads);
  1539. ++vc->n_runnable;
  1540. /*
  1541. * This happens the first time this is called for a vcpu.
  1542. * If the vcore is already running, we may be able to start
  1543. * this thread straight away and have it join in.
  1544. */
  1545. if (!signal_pending(current)) {
  1546. if (vc->vcore_state == VCORE_RUNNING &&
  1547. VCORE_EXIT_COUNT(vc) == 0) {
  1548. kvmppc_create_dtl_entry(vcpu, vc);
  1549. kvmppc_start_thread(vcpu);
  1550. } else if (vc->vcore_state == VCORE_SLEEPING) {
  1551. wake_up(&vc->wq);
  1552. }
  1553. }
  1554. while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
  1555. !signal_pending(current)) {
  1556. if (vc->vcore_state != VCORE_INACTIVE) {
  1557. spin_unlock(&vc->lock);
  1558. kvmppc_wait_for_exec(vcpu, TASK_INTERRUPTIBLE);
  1559. spin_lock(&vc->lock);
  1560. continue;
  1561. }
  1562. list_for_each_entry_safe(v, vn, &vc->runnable_threads,
  1563. arch.run_list) {
  1564. kvmppc_core_prepare_to_enter(v);
  1565. if (signal_pending(v->arch.run_task)) {
  1566. kvmppc_remove_runnable(vc, v);
  1567. v->stat.signal_exits++;
  1568. v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
  1569. v->arch.ret = -EINTR;
  1570. wake_up(&v->arch.cpu_run);
  1571. }
  1572. }
  1573. if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
  1574. break;
  1575. vc->runner = vcpu;
  1576. n_ceded = 0;
  1577. list_for_each_entry(v, &vc->runnable_threads, arch.run_list) {
  1578. if (!v->arch.pending_exceptions)
  1579. n_ceded += v->arch.ceded;
  1580. else
  1581. v->arch.ceded = 0;
  1582. }
  1583. if (n_ceded == vc->n_runnable)
  1584. kvmppc_vcore_blocked(vc);
  1585. else
  1586. kvmppc_run_core(vc);
  1587. vc->runner = NULL;
  1588. }
  1589. while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
  1590. (vc->vcore_state == VCORE_RUNNING ||
  1591. vc->vcore_state == VCORE_EXITING)) {
  1592. spin_unlock(&vc->lock);
  1593. kvmppc_wait_for_exec(vcpu, TASK_UNINTERRUPTIBLE);
  1594. spin_lock(&vc->lock);
  1595. }
  1596. if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
  1597. kvmppc_remove_runnable(vc, vcpu);
  1598. vcpu->stat.signal_exits++;
  1599. kvm_run->exit_reason = KVM_EXIT_INTR;
  1600. vcpu->arch.ret = -EINTR;
  1601. }
  1602. if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
  1603. /* Wake up some vcpu to run the core */
  1604. v = list_first_entry(&vc->runnable_threads,
  1605. struct kvm_vcpu, arch.run_list);
  1606. wake_up(&v->arch.cpu_run);
  1607. }
  1608. spin_unlock(&vc->lock);
  1609. return vcpu->arch.ret;
  1610. }
  1611. static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
  1612. {
  1613. int r;
  1614. int srcu_idx;
  1615. if (!vcpu->arch.sane) {
  1616. run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  1617. return -EINVAL;
  1618. }
  1619. kvmppc_core_prepare_to_enter(vcpu);
  1620. /* No need to go into the guest when all we'll do is come back out */
  1621. if (signal_pending(current)) {
  1622. run->exit_reason = KVM_EXIT_INTR;
  1623. return -EINTR;
  1624. }
  1625. atomic_inc(&vcpu->kvm->arch.vcpus_running);
  1626. /* Order vcpus_running vs. rma_setup_done, see kvmppc_alloc_reset_hpt */
  1627. smp_mb();
  1628. /* On the first time here, set up HTAB and VRMA or RMA */
  1629. if (!vcpu->kvm->arch.rma_setup_done) {
  1630. r = kvmppc_hv_setup_htab_rma(vcpu);
  1631. if (r)
  1632. goto out;
  1633. }
  1634. flush_fp_to_thread(current);
  1635. flush_altivec_to_thread(current);
  1636. flush_vsx_to_thread(current);
  1637. vcpu->arch.wqp = &vcpu->arch.vcore->wq;
  1638. vcpu->arch.pgdir = current->mm->pgd;
  1639. vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
  1640. do {
  1641. r = kvmppc_run_vcpu(run, vcpu);
  1642. if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
  1643. !(vcpu->arch.shregs.msr & MSR_PR)) {
  1644. r = kvmppc_pseries_do_hcall(vcpu);
  1645. kvmppc_core_prepare_to_enter(vcpu);
  1646. } else if (r == RESUME_PAGE_FAULT) {
  1647. srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  1648. r = kvmppc_book3s_hv_page_fault(run, vcpu,
  1649. vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
  1650. srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
  1651. }
  1652. } while (is_kvmppc_resume_guest(r));
  1653. out:
  1654. vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
  1655. atomic_dec(&vcpu->kvm->arch.vcpus_running);
  1656. return r;
  1657. }
  1658. /* Work out RMLS (real mode limit selector) field value for a given RMA size.
  1659. Assumes POWER7 or PPC970. */
  1660. static inline int lpcr_rmls(unsigned long rma_size)
  1661. {
  1662. switch (rma_size) {
  1663. case 32ul << 20: /* 32 MB */
  1664. if (cpu_has_feature(CPU_FTR_ARCH_206))
  1665. return 8; /* only supported on POWER7 */
  1666. return -1;
  1667. case 64ul << 20: /* 64 MB */
  1668. return 3;
  1669. case 128ul << 20: /* 128 MB */
  1670. return 7;
  1671. case 256ul << 20: /* 256 MB */
  1672. return 4;
  1673. case 1ul << 30: /* 1 GB */
  1674. return 2;
  1675. case 16ul << 30: /* 16 GB */
  1676. return 1;
  1677. case 256ul << 30: /* 256 GB */
  1678. return 0;
  1679. default:
  1680. return -1;
  1681. }
  1682. }
  1683. static int kvm_rma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1684. {
  1685. struct page *page;
  1686. struct kvm_rma_info *ri = vma->vm_file->private_data;
  1687. if (vmf->pgoff >= kvm_rma_pages)
  1688. return VM_FAULT_SIGBUS;
  1689. page = pfn_to_page(ri->base_pfn + vmf->pgoff);
  1690. get_page(page);
  1691. vmf->page = page;
  1692. return 0;
  1693. }
  1694. static const struct vm_operations_struct kvm_rma_vm_ops = {
  1695. .fault = kvm_rma_fault,
  1696. };
  1697. static int kvm_rma_mmap(struct file *file, struct vm_area_struct *vma)
  1698. {
  1699. vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
  1700. vma->vm_ops = &kvm_rma_vm_ops;
  1701. return 0;
  1702. }
  1703. static int kvm_rma_release(struct inode *inode, struct file *filp)
  1704. {
  1705. struct kvm_rma_info *ri = filp->private_data;
  1706. kvm_release_rma(ri);
  1707. return 0;
  1708. }
  1709. static const struct file_operations kvm_rma_fops = {
  1710. .mmap = kvm_rma_mmap,
  1711. .release = kvm_rma_release,
  1712. };
  1713. static long kvm_vm_ioctl_allocate_rma(struct kvm *kvm,
  1714. struct kvm_allocate_rma *ret)
  1715. {
  1716. long fd;
  1717. struct kvm_rma_info *ri;
  1718. /*
  1719. * Only do this on PPC970 in HV mode
  1720. */
  1721. if (!cpu_has_feature(CPU_FTR_HVMODE) ||
  1722. !cpu_has_feature(CPU_FTR_ARCH_201))
  1723. return -EINVAL;
  1724. if (!kvm_rma_pages)
  1725. return -EINVAL;
  1726. ri = kvm_alloc_rma();
  1727. if (!ri)
  1728. return -ENOMEM;
  1729. fd = anon_inode_getfd("kvm-rma", &kvm_rma_fops, ri, O_RDWR | O_CLOEXEC);
  1730. if (fd < 0)
  1731. kvm_release_rma(ri);
  1732. ret->rma_size = kvm_rma_pages << PAGE_SHIFT;
  1733. return fd;
  1734. }
  1735. static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
  1736. int linux_psize)
  1737. {
  1738. struct mmu_psize_def *def = &mmu_psize_defs[linux_psize];
  1739. if (!def->shift)
  1740. return;
  1741. (*sps)->page_shift = def->shift;
  1742. (*sps)->slb_enc = def->sllp;
  1743. (*sps)->enc[0].page_shift = def->shift;
  1744. /*
  1745. * Only return base page encoding. We don't want to return
  1746. * all the supporting pte_enc, because our H_ENTER doesn't
  1747. * support MPSS yet. Once they do, we can start passing all
  1748. * support pte_enc here
  1749. */
  1750. (*sps)->enc[0].pte_enc = def->penc[linux_psize];
  1751. /*
  1752. * Add 16MB MPSS support if host supports it
  1753. */
  1754. if (linux_psize != MMU_PAGE_16M && def->penc[MMU_PAGE_16M] != -1) {
  1755. (*sps)->enc[1].page_shift = 24;
  1756. (*sps)->enc[1].pte_enc = def->penc[MMU_PAGE_16M];
  1757. }
  1758. (*sps)++;
  1759. }
  1760. static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
  1761. struct kvm_ppc_smmu_info *info)
  1762. {
  1763. struct kvm_ppc_one_seg_page_size *sps;
  1764. info->flags = KVM_PPC_PAGE_SIZES_REAL;
  1765. if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
  1766. info->flags |= KVM_PPC_1T_SEGMENTS;
  1767. info->slb_size = mmu_slb_size;
  1768. /* We only support these sizes for now, and no muti-size segments */
  1769. sps = &info->sps[0];
  1770. kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K);
  1771. kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K);
  1772. kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M);
  1773. return 0;
  1774. }
  1775. /*
  1776. * Get (and clear) the dirty memory log for a memory slot.
  1777. */
  1778. static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
  1779. struct kvm_dirty_log *log)
  1780. {
  1781. struct kvm_memory_slot *memslot;
  1782. int r;
  1783. unsigned long n;
  1784. mutex_lock(&kvm->slots_lock);
  1785. r = -EINVAL;
  1786. if (log->slot >= KVM_USER_MEM_SLOTS)
  1787. goto out;
  1788. memslot = id_to_memslot(kvm->memslots, log->slot);
  1789. r = -ENOENT;
  1790. if (!memslot->dirty_bitmap)
  1791. goto out;
  1792. n = kvm_dirty_bitmap_bytes(memslot);
  1793. memset(memslot->dirty_bitmap, 0, n);
  1794. r = kvmppc_hv_get_dirty_log(kvm, memslot, memslot->dirty_bitmap);
  1795. if (r)
  1796. goto out;
  1797. r = -EFAULT;
  1798. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  1799. goto out;
  1800. r = 0;
  1801. out:
  1802. mutex_unlock(&kvm->slots_lock);
  1803. return r;
  1804. }
  1805. static void unpin_slot(struct kvm_memory_slot *memslot)
  1806. {
  1807. unsigned long *physp;
  1808. unsigned long j, npages, pfn;
  1809. struct page *page;
  1810. physp = memslot->arch.slot_phys;
  1811. npages = memslot->npages;
  1812. if (!physp)
  1813. return;
  1814. for (j = 0; j < npages; j++) {
  1815. if (!(physp[j] & KVMPPC_GOT_PAGE))
  1816. continue;
  1817. pfn = physp[j] >> PAGE_SHIFT;
  1818. page = pfn_to_page(pfn);
  1819. SetPageDirty(page);
  1820. put_page(page);
  1821. }
  1822. }
  1823. static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free,
  1824. struct kvm_memory_slot *dont)
  1825. {
  1826. if (!dont || free->arch.rmap != dont->arch.rmap) {
  1827. vfree(free->arch.rmap);
  1828. free->arch.rmap = NULL;
  1829. }
  1830. if (!dont || free->arch.slot_phys != dont->arch.slot_phys) {
  1831. unpin_slot(free);
  1832. vfree(free->arch.slot_phys);
  1833. free->arch.slot_phys = NULL;
  1834. }
  1835. }
  1836. static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot,
  1837. unsigned long npages)
  1838. {
  1839. slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap));
  1840. if (!slot->arch.rmap)
  1841. return -ENOMEM;
  1842. slot->arch.slot_phys = NULL;
  1843. return 0;
  1844. }
  1845. static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
  1846. struct kvm_memory_slot *memslot,
  1847. struct kvm_userspace_memory_region *mem)
  1848. {
  1849. unsigned long *phys;
  1850. /* Allocate a slot_phys array if needed */
  1851. phys = memslot->arch.slot_phys;
  1852. if (!kvm->arch.using_mmu_notifiers && !phys && memslot->npages) {
  1853. phys = vzalloc(memslot->npages * sizeof(unsigned long));
  1854. if (!phys)
  1855. return -ENOMEM;
  1856. memslot->arch.slot_phys = phys;
  1857. }
  1858. return 0;
  1859. }
  1860. static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
  1861. struct kvm_userspace_memory_region *mem,
  1862. const struct kvm_memory_slot *old)
  1863. {
  1864. unsigned long npages = mem->memory_size >> PAGE_SHIFT;
  1865. struct kvm_memory_slot *memslot;
  1866. if (npages && old->npages) {
  1867. /*
  1868. * If modifying a memslot, reset all the rmap dirty bits.
  1869. * If this is a new memslot, we don't need to do anything
  1870. * since the rmap array starts out as all zeroes,
  1871. * i.e. no pages are dirty.
  1872. */
  1873. memslot = id_to_memslot(kvm->memslots, mem->slot);
  1874. kvmppc_hv_get_dirty_log(kvm, memslot, NULL);
  1875. }
  1876. }
  1877. /*
  1878. * Update LPCR values in kvm->arch and in vcores.
  1879. * Caller must hold kvm->lock.
  1880. */
  1881. void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
  1882. {
  1883. long int i;
  1884. u32 cores_done = 0;
  1885. if ((kvm->arch.lpcr & mask) == lpcr)
  1886. return;
  1887. kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
  1888. for (i = 0; i < KVM_MAX_VCORES; ++i) {
  1889. struct kvmppc_vcore *vc = kvm->arch.vcores[i];
  1890. if (!vc)
  1891. continue;
  1892. spin_lock(&vc->lock);
  1893. vc->lpcr = (vc->lpcr & ~mask) | lpcr;
  1894. spin_unlock(&vc->lock);
  1895. if (++cores_done >= kvm->arch.online_vcores)
  1896. break;
  1897. }
  1898. }
  1899. static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu)
  1900. {
  1901. return;
  1902. }
  1903. static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
  1904. {
  1905. int err = 0;
  1906. struct kvm *kvm = vcpu->kvm;
  1907. struct kvm_rma_info *ri = NULL;
  1908. unsigned long hva;
  1909. struct kvm_memory_slot *memslot;
  1910. struct vm_area_struct *vma;
  1911. unsigned long lpcr = 0, senc;
  1912. unsigned long lpcr_mask = 0;
  1913. unsigned long psize, porder;
  1914. unsigned long rma_size;
  1915. unsigned long rmls;
  1916. unsigned long *physp;
  1917. unsigned long i, npages;
  1918. int srcu_idx;
  1919. mutex_lock(&kvm->lock);
  1920. if (kvm->arch.rma_setup_done)
  1921. goto out; /* another vcpu beat us to it */
  1922. /* Allocate hashed page table (if not done already) and reset it */
  1923. if (!kvm->arch.hpt_virt) {
  1924. err = kvmppc_alloc_hpt(kvm, NULL);
  1925. if (err) {
  1926. pr_err("KVM: Couldn't alloc HPT\n");
  1927. goto out;
  1928. }
  1929. }
  1930. /* Look up the memslot for guest physical address 0 */
  1931. srcu_idx = srcu_read_lock(&kvm->srcu);
  1932. memslot = gfn_to_memslot(kvm, 0);
  1933. /* We must have some memory at 0 by now */
  1934. err = -EINVAL;
  1935. if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
  1936. goto out_srcu;
  1937. /* Look up the VMA for the start of this memory slot */
  1938. hva = memslot->userspace_addr;
  1939. down_read(&current->mm->mmap_sem);
  1940. vma = find_vma(current->mm, hva);
  1941. if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
  1942. goto up_out;
  1943. psize = vma_kernel_pagesize(vma);
  1944. porder = __ilog2(psize);
  1945. /* Is this one of our preallocated RMAs? */
  1946. if (vma->vm_file && vma->vm_file->f_op == &kvm_rma_fops &&
  1947. hva == vma->vm_start)
  1948. ri = vma->vm_file->private_data;
  1949. up_read(&current->mm->mmap_sem);
  1950. if (!ri) {
  1951. /* On POWER7, use VRMA; on PPC970, give up */
  1952. err = -EPERM;
  1953. if (cpu_has_feature(CPU_FTR_ARCH_201)) {
  1954. pr_err("KVM: CPU requires an RMO\n");
  1955. goto out_srcu;
  1956. }
  1957. /* We can handle 4k, 64k or 16M pages in the VRMA */
  1958. err = -EINVAL;
  1959. if (!(psize == 0x1000 || psize == 0x10000 ||
  1960. psize == 0x1000000))
  1961. goto out_srcu;
  1962. /* Update VRMASD field in the LPCR */
  1963. senc = slb_pgsize_encoding(psize);
  1964. kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
  1965. (VRMA_VSID << SLB_VSID_SHIFT_1T);
  1966. lpcr_mask = LPCR_VRMASD;
  1967. /* the -4 is to account for senc values starting at 0x10 */
  1968. lpcr = senc << (LPCR_VRMASD_SH - 4);
  1969. /* Create HPTEs in the hash page table for the VRMA */
  1970. kvmppc_map_vrma(vcpu, memslot, porder);
  1971. } else {
  1972. /* Set up to use an RMO region */
  1973. rma_size = kvm_rma_pages;
  1974. if (rma_size > memslot->npages)
  1975. rma_size = memslot->npages;
  1976. rma_size <<= PAGE_SHIFT;
  1977. rmls = lpcr_rmls(rma_size);
  1978. err = -EINVAL;
  1979. if ((long)rmls < 0) {
  1980. pr_err("KVM: Can't use RMA of 0x%lx bytes\n", rma_size);
  1981. goto out_srcu;
  1982. }
  1983. atomic_inc(&ri->use_count);
  1984. kvm->arch.rma = ri;
  1985. /* Update LPCR and RMOR */
  1986. if (cpu_has_feature(CPU_FTR_ARCH_201)) {
  1987. /* PPC970; insert RMLS value (split field) in HID4 */
  1988. lpcr_mask = (1ul << HID4_RMLS0_SH) |
  1989. (3ul << HID4_RMLS2_SH) | HID4_RMOR;
  1990. lpcr = ((rmls >> 2) << HID4_RMLS0_SH) |
  1991. ((rmls & 3) << HID4_RMLS2_SH);
  1992. /* RMOR is also in HID4 */
  1993. lpcr |= ((ri->base_pfn >> (26 - PAGE_SHIFT)) & 0xffff)
  1994. << HID4_RMOR_SH;
  1995. } else {
  1996. /* POWER7 */
  1997. lpcr_mask = LPCR_VPM0 | LPCR_VRMA_L | LPCR_RMLS;
  1998. lpcr = rmls << LPCR_RMLS_SH;
  1999. kvm->arch.rmor = ri->base_pfn << PAGE_SHIFT;
  2000. }
  2001. pr_info("KVM: Using RMO at %lx size %lx (LPCR = %lx)\n",
  2002. ri->base_pfn << PAGE_SHIFT, rma_size, lpcr);
  2003. /* Initialize phys addrs of pages in RMO */
  2004. npages = kvm_rma_pages;
  2005. porder = __ilog2(npages);
  2006. physp = memslot->arch.slot_phys;
  2007. if (physp) {
  2008. if (npages > memslot->npages)
  2009. npages = memslot->npages;
  2010. spin_lock(&kvm->arch.slot_phys_lock);
  2011. for (i = 0; i < npages; ++i)
  2012. physp[i] = ((ri->base_pfn + i) << PAGE_SHIFT) +
  2013. porder;
  2014. spin_unlock(&kvm->arch.slot_phys_lock);
  2015. }
  2016. }
  2017. kvmppc_update_lpcr(kvm, lpcr, lpcr_mask);
  2018. /* Order updates to kvm->arch.lpcr etc. vs. rma_setup_done */
  2019. smp_wmb();
  2020. kvm->arch.rma_setup_done = 1;
  2021. err = 0;
  2022. out_srcu:
  2023. srcu_read_unlock(&kvm->srcu, srcu_idx);
  2024. out:
  2025. mutex_unlock(&kvm->lock);
  2026. return err;
  2027. up_out:
  2028. up_read(&current->mm->mmap_sem);
  2029. goto out_srcu;
  2030. }
  2031. static int kvmppc_core_init_vm_hv(struct kvm *kvm)
  2032. {
  2033. unsigned long lpcr, lpid;
  2034. /* Allocate the guest's logical partition ID */
  2035. lpid = kvmppc_alloc_lpid();
  2036. if ((long)lpid < 0)
  2037. return -ENOMEM;
  2038. kvm->arch.lpid = lpid;
  2039. /*
  2040. * Since we don't flush the TLB when tearing down a VM,
  2041. * and this lpid might have previously been used,
  2042. * make sure we flush on each core before running the new VM.
  2043. */
  2044. cpumask_setall(&kvm->arch.need_tlb_flush);
  2045. kvm->arch.rma = NULL;
  2046. kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
  2047. if (cpu_has_feature(CPU_FTR_ARCH_201)) {
  2048. /* PPC970; HID4 is effectively the LPCR */
  2049. kvm->arch.host_lpid = 0;
  2050. kvm->arch.host_lpcr = lpcr = mfspr(SPRN_HID4);
  2051. lpcr &= ~((3 << HID4_LPID1_SH) | (0xful << HID4_LPID5_SH));
  2052. lpcr |= ((lpid >> 4) << HID4_LPID1_SH) |
  2053. ((lpid & 0xf) << HID4_LPID5_SH);
  2054. } else {
  2055. /* POWER7; init LPCR for virtual RMA mode */
  2056. kvm->arch.host_lpid = mfspr(SPRN_LPID);
  2057. kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
  2058. lpcr &= LPCR_PECE | LPCR_LPES;
  2059. lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
  2060. LPCR_VPM0 | LPCR_VPM1;
  2061. kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
  2062. (VRMA_VSID << SLB_VSID_SHIFT_1T);
  2063. /* On POWER8 turn on online bit to enable PURR/SPURR */
  2064. if (cpu_has_feature(CPU_FTR_ARCH_207S))
  2065. lpcr |= LPCR_ONL;
  2066. }
  2067. kvm->arch.lpcr = lpcr;
  2068. kvm->arch.using_mmu_notifiers = !!cpu_has_feature(CPU_FTR_ARCH_206);
  2069. spin_lock_init(&kvm->arch.slot_phys_lock);
  2070. /*
  2071. * Track that we now have a HV mode VM active. This blocks secondary
  2072. * CPU threads from coming online.
  2073. */
  2074. kvm_hv_vm_activated();
  2075. return 0;
  2076. }
  2077. static void kvmppc_free_vcores(struct kvm *kvm)
  2078. {
  2079. long int i;
  2080. for (i = 0; i < KVM_MAX_VCORES; ++i)
  2081. kfree(kvm->arch.vcores[i]);
  2082. kvm->arch.online_vcores = 0;
  2083. }
  2084. static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
  2085. {
  2086. kvm_hv_vm_deactivated();
  2087. kvmppc_free_vcores(kvm);
  2088. if (kvm->arch.rma) {
  2089. kvm_release_rma(kvm->arch.rma);
  2090. kvm->arch.rma = NULL;
  2091. }
  2092. kvmppc_free_hpt(kvm);
  2093. }
  2094. /* We don't need to emulate any privileged instructions or dcbz */
  2095. static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
  2096. unsigned int inst, int *advance)
  2097. {
  2098. return EMULATE_FAIL;
  2099. }
  2100. static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
  2101. ulong spr_val)
  2102. {
  2103. return EMULATE_FAIL;
  2104. }
  2105. static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
  2106. ulong *spr_val)
  2107. {
  2108. return EMULATE_FAIL;
  2109. }
  2110. static int kvmppc_core_check_processor_compat_hv(void)
  2111. {
  2112. if (!cpu_has_feature(CPU_FTR_HVMODE))
  2113. return -EIO;
  2114. return 0;
  2115. }
  2116. static long kvm_arch_vm_ioctl_hv(struct file *filp,
  2117. unsigned int ioctl, unsigned long arg)
  2118. {
  2119. struct kvm *kvm __maybe_unused = filp->private_data;
  2120. void __user *argp = (void __user *)arg;
  2121. long r;
  2122. switch (ioctl) {
  2123. case KVM_ALLOCATE_RMA: {
  2124. struct kvm_allocate_rma rma;
  2125. struct kvm *kvm = filp->private_data;
  2126. r = kvm_vm_ioctl_allocate_rma(kvm, &rma);
  2127. if (r >= 0 && copy_to_user(argp, &rma, sizeof(rma)))
  2128. r = -EFAULT;
  2129. break;
  2130. }
  2131. case KVM_PPC_ALLOCATE_HTAB: {
  2132. u32 htab_order;
  2133. r = -EFAULT;
  2134. if (get_user(htab_order, (u32 __user *)argp))
  2135. break;
  2136. r = kvmppc_alloc_reset_hpt(kvm, &htab_order);
  2137. if (r)
  2138. break;
  2139. r = -EFAULT;
  2140. if (put_user(htab_order, (u32 __user *)argp))
  2141. break;
  2142. r = 0;
  2143. break;
  2144. }
  2145. case KVM_PPC_GET_HTAB_FD: {
  2146. struct kvm_get_htab_fd ghf;
  2147. r = -EFAULT;
  2148. if (copy_from_user(&ghf, argp, sizeof(ghf)))
  2149. break;
  2150. r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
  2151. break;
  2152. }
  2153. default:
  2154. r = -ENOTTY;
  2155. }
  2156. return r;
  2157. }
  2158. static struct kvmppc_ops kvm_ops_hv = {
  2159. .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
  2160. .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
  2161. .get_one_reg = kvmppc_get_one_reg_hv,
  2162. .set_one_reg = kvmppc_set_one_reg_hv,
  2163. .vcpu_load = kvmppc_core_vcpu_load_hv,
  2164. .vcpu_put = kvmppc_core_vcpu_put_hv,
  2165. .set_msr = kvmppc_set_msr_hv,
  2166. .vcpu_run = kvmppc_vcpu_run_hv,
  2167. .vcpu_create = kvmppc_core_vcpu_create_hv,
  2168. .vcpu_free = kvmppc_core_vcpu_free_hv,
  2169. .check_requests = kvmppc_core_check_requests_hv,
  2170. .get_dirty_log = kvm_vm_ioctl_get_dirty_log_hv,
  2171. .flush_memslot = kvmppc_core_flush_memslot_hv,
  2172. .prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
  2173. .commit_memory_region = kvmppc_core_commit_memory_region_hv,
  2174. .unmap_hva = kvm_unmap_hva_hv,
  2175. .unmap_hva_range = kvm_unmap_hva_range_hv,
  2176. .age_hva = kvm_age_hva_hv,
  2177. .test_age_hva = kvm_test_age_hva_hv,
  2178. .set_spte_hva = kvm_set_spte_hva_hv,
  2179. .mmu_destroy = kvmppc_mmu_destroy_hv,
  2180. .free_memslot = kvmppc_core_free_memslot_hv,
  2181. .create_memslot = kvmppc_core_create_memslot_hv,
  2182. .init_vm = kvmppc_core_init_vm_hv,
  2183. .destroy_vm = kvmppc_core_destroy_vm_hv,
  2184. .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
  2185. .emulate_op = kvmppc_core_emulate_op_hv,
  2186. .emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
  2187. .emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
  2188. .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
  2189. .arch_vm_ioctl = kvm_arch_vm_ioctl_hv,
  2190. };
  2191. static int kvmppc_book3s_init_hv(void)
  2192. {
  2193. int r;
  2194. /*
  2195. * FIXME!! Do we need to check on all cpus ?
  2196. */
  2197. r = kvmppc_core_check_processor_compat_hv();
  2198. if (r < 0)
  2199. return -ENODEV;
  2200. kvm_ops_hv.owner = THIS_MODULE;
  2201. kvmppc_hv_ops = &kvm_ops_hv;
  2202. r = kvmppc_mmu_hv_init();
  2203. return r;
  2204. }
  2205. static void kvmppc_book3s_exit_hv(void)
  2206. {
  2207. kvmppc_hv_ops = NULL;
  2208. }
  2209. module_init(kvmppc_book3s_init_hv);
  2210. module_exit(kvmppc_book3s_exit_hv);
  2211. MODULE_LICENSE("GPL");
  2212. MODULE_ALIAS_MISCDEV(KVM_MINOR);
  2213. MODULE_ALIAS("devname:kvm");