time.c 27 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082
  1. /*
  2. * Common time routines among all ppc machines.
  3. *
  4. * Written by Cort Dougan (cort@cs.nmt.edu) to merge
  5. * Paul Mackerras' version and mine for PReP and Pmac.
  6. * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
  7. * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
  8. *
  9. * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
  10. * to make clock more stable (2.4.0-test5). The only thing
  11. * that this code assumes is that the timebases have been synchronized
  12. * by firmware on SMP and are never stopped (never do sleep
  13. * on SMP then, nap and doze are OK).
  14. *
  15. * Speeded up do_gettimeofday by getting rid of references to
  16. * xtime (which required locks for consistency). (mikejc@us.ibm.com)
  17. *
  18. * TODO (not necessarily in this file):
  19. * - improve precision and reproducibility of timebase frequency
  20. * measurement at boot time.
  21. * - for astronomical applications: add a new function to get
  22. * non ambiguous timestamps even around leap seconds. This needs
  23. * a new timestamp format and a good name.
  24. *
  25. * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
  26. * "A Kernel Model for Precision Timekeeping" by Dave Mills
  27. *
  28. * This program is free software; you can redistribute it and/or
  29. * modify it under the terms of the GNU General Public License
  30. * as published by the Free Software Foundation; either version
  31. * 2 of the License, or (at your option) any later version.
  32. */
  33. #include <linux/errno.h>
  34. #include <linux/export.h>
  35. #include <linux/sched.h>
  36. #include <linux/kernel.h>
  37. #include <linux/param.h>
  38. #include <linux/string.h>
  39. #include <linux/mm.h>
  40. #include <linux/interrupt.h>
  41. #include <linux/timex.h>
  42. #include <linux/kernel_stat.h>
  43. #include <linux/time.h>
  44. #include <linux/clockchips.h>
  45. #include <linux/init.h>
  46. #include <linux/profile.h>
  47. #include <linux/cpu.h>
  48. #include <linux/security.h>
  49. #include <linux/percpu.h>
  50. #include <linux/rtc.h>
  51. #include <linux/jiffies.h>
  52. #include <linux/posix-timers.h>
  53. #include <linux/irq.h>
  54. #include <linux/delay.h>
  55. #include <linux/irq_work.h>
  56. #include <asm/trace.h>
  57. #include <asm/io.h>
  58. #include <asm/processor.h>
  59. #include <asm/nvram.h>
  60. #include <asm/cache.h>
  61. #include <asm/machdep.h>
  62. #include <asm/uaccess.h>
  63. #include <asm/time.h>
  64. #include <asm/prom.h>
  65. #include <asm/irq.h>
  66. #include <asm/div64.h>
  67. #include <asm/smp.h>
  68. #include <asm/vdso_datapage.h>
  69. #include <asm/firmware.h>
  70. #include <asm/cputime.h>
  71. /* powerpc clocksource/clockevent code */
  72. #include <linux/clockchips.h>
  73. #include <linux/timekeeper_internal.h>
  74. static cycle_t rtc_read(struct clocksource *);
  75. static struct clocksource clocksource_rtc = {
  76. .name = "rtc",
  77. .rating = 400,
  78. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  79. .mask = CLOCKSOURCE_MASK(64),
  80. .read = rtc_read,
  81. };
  82. static cycle_t timebase_read(struct clocksource *);
  83. static struct clocksource clocksource_timebase = {
  84. .name = "timebase",
  85. .rating = 400,
  86. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  87. .mask = CLOCKSOURCE_MASK(64),
  88. .read = timebase_read,
  89. };
  90. #define DECREMENTER_MAX 0x7fffffff
  91. static int decrementer_set_next_event(unsigned long evt,
  92. struct clock_event_device *dev);
  93. static void decrementer_set_mode(enum clock_event_mode mode,
  94. struct clock_event_device *dev);
  95. struct clock_event_device decrementer_clockevent = {
  96. .name = "decrementer",
  97. .rating = 200,
  98. .irq = 0,
  99. .set_next_event = decrementer_set_next_event,
  100. .set_mode = decrementer_set_mode,
  101. .features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_C3STOP,
  102. };
  103. EXPORT_SYMBOL(decrementer_clockevent);
  104. DEFINE_PER_CPU(u64, decrementers_next_tb);
  105. static DEFINE_PER_CPU(struct clock_event_device, decrementers);
  106. #define XSEC_PER_SEC (1024*1024)
  107. #ifdef CONFIG_PPC64
  108. #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC)
  109. #else
  110. /* compute ((xsec << 12) * max) >> 32 */
  111. #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max)
  112. #endif
  113. unsigned long tb_ticks_per_jiffy;
  114. unsigned long tb_ticks_per_usec = 100; /* sane default */
  115. EXPORT_SYMBOL(tb_ticks_per_usec);
  116. unsigned long tb_ticks_per_sec;
  117. EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */
  118. DEFINE_SPINLOCK(rtc_lock);
  119. EXPORT_SYMBOL_GPL(rtc_lock);
  120. static u64 tb_to_ns_scale __read_mostly;
  121. static unsigned tb_to_ns_shift __read_mostly;
  122. static u64 boot_tb __read_mostly;
  123. extern struct timezone sys_tz;
  124. static long timezone_offset;
  125. unsigned long ppc_proc_freq;
  126. EXPORT_SYMBOL_GPL(ppc_proc_freq);
  127. unsigned long ppc_tb_freq;
  128. EXPORT_SYMBOL_GPL(ppc_tb_freq);
  129. #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
  130. /*
  131. * Factors for converting from cputime_t (timebase ticks) to
  132. * jiffies, microseconds, seconds, and clock_t (1/USER_HZ seconds).
  133. * These are all stored as 0.64 fixed-point binary fractions.
  134. */
  135. u64 __cputime_jiffies_factor;
  136. EXPORT_SYMBOL(__cputime_jiffies_factor);
  137. u64 __cputime_usec_factor;
  138. EXPORT_SYMBOL(__cputime_usec_factor);
  139. u64 __cputime_sec_factor;
  140. EXPORT_SYMBOL(__cputime_sec_factor);
  141. u64 __cputime_clockt_factor;
  142. EXPORT_SYMBOL(__cputime_clockt_factor);
  143. DEFINE_PER_CPU(unsigned long, cputime_last_delta);
  144. DEFINE_PER_CPU(unsigned long, cputime_scaled_last_delta);
  145. cputime_t cputime_one_jiffy;
  146. void (*dtl_consumer)(struct dtl_entry *, u64);
  147. static void calc_cputime_factors(void)
  148. {
  149. struct div_result res;
  150. div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
  151. __cputime_jiffies_factor = res.result_low;
  152. div128_by_32(1000000, 0, tb_ticks_per_sec, &res);
  153. __cputime_usec_factor = res.result_low;
  154. div128_by_32(1, 0, tb_ticks_per_sec, &res);
  155. __cputime_sec_factor = res.result_low;
  156. div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
  157. __cputime_clockt_factor = res.result_low;
  158. }
  159. /*
  160. * Read the SPURR on systems that have it, otherwise the PURR,
  161. * or if that doesn't exist return the timebase value passed in.
  162. */
  163. static u64 read_spurr(u64 tb)
  164. {
  165. if (cpu_has_feature(CPU_FTR_SPURR))
  166. return mfspr(SPRN_SPURR);
  167. if (cpu_has_feature(CPU_FTR_PURR))
  168. return mfspr(SPRN_PURR);
  169. return tb;
  170. }
  171. #ifdef CONFIG_PPC_SPLPAR
  172. /*
  173. * Scan the dispatch trace log and count up the stolen time.
  174. * Should be called with interrupts disabled.
  175. */
  176. static u64 scan_dispatch_log(u64 stop_tb)
  177. {
  178. u64 i = local_paca->dtl_ridx;
  179. struct dtl_entry *dtl = local_paca->dtl_curr;
  180. struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
  181. struct lppaca *vpa = local_paca->lppaca_ptr;
  182. u64 tb_delta;
  183. u64 stolen = 0;
  184. u64 dtb;
  185. if (!dtl)
  186. return 0;
  187. if (i == be64_to_cpu(vpa->dtl_idx))
  188. return 0;
  189. while (i < be64_to_cpu(vpa->dtl_idx)) {
  190. dtb = be64_to_cpu(dtl->timebase);
  191. tb_delta = be32_to_cpu(dtl->enqueue_to_dispatch_time) +
  192. be32_to_cpu(dtl->ready_to_enqueue_time);
  193. barrier();
  194. if (i + N_DISPATCH_LOG < be64_to_cpu(vpa->dtl_idx)) {
  195. /* buffer has overflowed */
  196. i = be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG;
  197. dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
  198. continue;
  199. }
  200. if (dtb > stop_tb)
  201. break;
  202. if (dtl_consumer)
  203. dtl_consumer(dtl, i);
  204. stolen += tb_delta;
  205. ++i;
  206. ++dtl;
  207. if (dtl == dtl_end)
  208. dtl = local_paca->dispatch_log;
  209. }
  210. local_paca->dtl_ridx = i;
  211. local_paca->dtl_curr = dtl;
  212. return stolen;
  213. }
  214. /*
  215. * Accumulate stolen time by scanning the dispatch trace log.
  216. * Called on entry from user mode.
  217. */
  218. void accumulate_stolen_time(void)
  219. {
  220. u64 sst, ust;
  221. u8 save_soft_enabled = local_paca->soft_enabled;
  222. /* We are called early in the exception entry, before
  223. * soft/hard_enabled are sync'ed to the expected state
  224. * for the exception. We are hard disabled but the PACA
  225. * needs to reflect that so various debug stuff doesn't
  226. * complain
  227. */
  228. local_paca->soft_enabled = 0;
  229. sst = scan_dispatch_log(local_paca->starttime_user);
  230. ust = scan_dispatch_log(local_paca->starttime);
  231. local_paca->system_time -= sst;
  232. local_paca->user_time -= ust;
  233. local_paca->stolen_time += ust + sst;
  234. local_paca->soft_enabled = save_soft_enabled;
  235. }
  236. static inline u64 calculate_stolen_time(u64 stop_tb)
  237. {
  238. u64 stolen = 0;
  239. if (get_paca()->dtl_ridx != be64_to_cpu(get_lppaca()->dtl_idx)) {
  240. stolen = scan_dispatch_log(stop_tb);
  241. get_paca()->system_time -= stolen;
  242. }
  243. stolen += get_paca()->stolen_time;
  244. get_paca()->stolen_time = 0;
  245. return stolen;
  246. }
  247. #else /* CONFIG_PPC_SPLPAR */
  248. static inline u64 calculate_stolen_time(u64 stop_tb)
  249. {
  250. return 0;
  251. }
  252. #endif /* CONFIG_PPC_SPLPAR */
  253. /*
  254. * Account time for a transition between system, hard irq
  255. * or soft irq state.
  256. */
  257. static u64 vtime_delta(struct task_struct *tsk,
  258. u64 *sys_scaled, u64 *stolen)
  259. {
  260. u64 now, nowscaled, deltascaled;
  261. u64 udelta, delta, user_scaled;
  262. WARN_ON_ONCE(!irqs_disabled());
  263. now = mftb();
  264. nowscaled = read_spurr(now);
  265. get_paca()->system_time += now - get_paca()->starttime;
  266. get_paca()->starttime = now;
  267. deltascaled = nowscaled - get_paca()->startspurr;
  268. get_paca()->startspurr = nowscaled;
  269. *stolen = calculate_stolen_time(now);
  270. delta = get_paca()->system_time;
  271. get_paca()->system_time = 0;
  272. udelta = get_paca()->user_time - get_paca()->utime_sspurr;
  273. get_paca()->utime_sspurr = get_paca()->user_time;
  274. /*
  275. * Because we don't read the SPURR on every kernel entry/exit,
  276. * deltascaled includes both user and system SPURR ticks.
  277. * Apportion these ticks to system SPURR ticks and user
  278. * SPURR ticks in the same ratio as the system time (delta)
  279. * and user time (udelta) values obtained from the timebase
  280. * over the same interval. The system ticks get accounted here;
  281. * the user ticks get saved up in paca->user_time_scaled to be
  282. * used by account_process_tick.
  283. */
  284. *sys_scaled = delta;
  285. user_scaled = udelta;
  286. if (deltascaled != delta + udelta) {
  287. if (udelta) {
  288. *sys_scaled = deltascaled * delta / (delta + udelta);
  289. user_scaled = deltascaled - *sys_scaled;
  290. } else {
  291. *sys_scaled = deltascaled;
  292. }
  293. }
  294. get_paca()->user_time_scaled += user_scaled;
  295. return delta;
  296. }
  297. void vtime_account_system(struct task_struct *tsk)
  298. {
  299. u64 delta, sys_scaled, stolen;
  300. delta = vtime_delta(tsk, &sys_scaled, &stolen);
  301. account_system_time(tsk, 0, delta, sys_scaled);
  302. if (stolen)
  303. account_steal_time(stolen);
  304. }
  305. EXPORT_SYMBOL_GPL(vtime_account_system);
  306. void vtime_account_idle(struct task_struct *tsk)
  307. {
  308. u64 delta, sys_scaled, stolen;
  309. delta = vtime_delta(tsk, &sys_scaled, &stolen);
  310. account_idle_time(delta + stolen);
  311. }
  312. /*
  313. * Transfer the user time accumulated in the paca
  314. * by the exception entry and exit code to the generic
  315. * process user time records.
  316. * Must be called with interrupts disabled.
  317. * Assumes that vtime_account_system/idle() has been called
  318. * recently (i.e. since the last entry from usermode) so that
  319. * get_paca()->user_time_scaled is up to date.
  320. */
  321. void vtime_account_user(struct task_struct *tsk)
  322. {
  323. cputime_t utime, utimescaled;
  324. utime = get_paca()->user_time;
  325. utimescaled = get_paca()->user_time_scaled;
  326. get_paca()->user_time = 0;
  327. get_paca()->user_time_scaled = 0;
  328. get_paca()->utime_sspurr = 0;
  329. account_user_time(tsk, utime, utimescaled);
  330. }
  331. #else /* ! CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
  332. #define calc_cputime_factors()
  333. #endif
  334. void __delay(unsigned long loops)
  335. {
  336. unsigned long start;
  337. int diff;
  338. if (__USE_RTC()) {
  339. start = get_rtcl();
  340. do {
  341. /* the RTCL register wraps at 1000000000 */
  342. diff = get_rtcl() - start;
  343. if (diff < 0)
  344. diff += 1000000000;
  345. } while (diff < loops);
  346. } else {
  347. start = get_tbl();
  348. while (get_tbl() - start < loops)
  349. HMT_low();
  350. HMT_medium();
  351. }
  352. }
  353. EXPORT_SYMBOL(__delay);
  354. void udelay(unsigned long usecs)
  355. {
  356. __delay(tb_ticks_per_usec * usecs);
  357. }
  358. EXPORT_SYMBOL(udelay);
  359. #ifdef CONFIG_SMP
  360. unsigned long profile_pc(struct pt_regs *regs)
  361. {
  362. unsigned long pc = instruction_pointer(regs);
  363. if (in_lock_functions(pc))
  364. return regs->link;
  365. return pc;
  366. }
  367. EXPORT_SYMBOL(profile_pc);
  368. #endif
  369. #ifdef CONFIG_IRQ_WORK
  370. /*
  371. * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable...
  372. */
  373. #ifdef CONFIG_PPC64
  374. static inline unsigned long test_irq_work_pending(void)
  375. {
  376. unsigned long x;
  377. asm volatile("lbz %0,%1(13)"
  378. : "=r" (x)
  379. : "i" (offsetof(struct paca_struct, irq_work_pending)));
  380. return x;
  381. }
  382. static inline void set_irq_work_pending_flag(void)
  383. {
  384. asm volatile("stb %0,%1(13)" : :
  385. "r" (1),
  386. "i" (offsetof(struct paca_struct, irq_work_pending)));
  387. }
  388. static inline void clear_irq_work_pending(void)
  389. {
  390. asm volatile("stb %0,%1(13)" : :
  391. "r" (0),
  392. "i" (offsetof(struct paca_struct, irq_work_pending)));
  393. }
  394. #else /* 32-bit */
  395. DEFINE_PER_CPU(u8, irq_work_pending);
  396. #define set_irq_work_pending_flag() __get_cpu_var(irq_work_pending) = 1
  397. #define test_irq_work_pending() __get_cpu_var(irq_work_pending)
  398. #define clear_irq_work_pending() __get_cpu_var(irq_work_pending) = 0
  399. #endif /* 32 vs 64 bit */
  400. void arch_irq_work_raise(void)
  401. {
  402. preempt_disable();
  403. set_irq_work_pending_flag();
  404. set_dec(1);
  405. preempt_enable();
  406. }
  407. #else /* CONFIG_IRQ_WORK */
  408. #define test_irq_work_pending() 0
  409. #define clear_irq_work_pending()
  410. #endif /* CONFIG_IRQ_WORK */
  411. void __timer_interrupt(void)
  412. {
  413. struct pt_regs *regs = get_irq_regs();
  414. u64 *next_tb = &__get_cpu_var(decrementers_next_tb);
  415. struct clock_event_device *evt = &__get_cpu_var(decrementers);
  416. u64 now;
  417. trace_timer_interrupt_entry(regs);
  418. if (test_irq_work_pending()) {
  419. clear_irq_work_pending();
  420. irq_work_run();
  421. }
  422. now = get_tb_or_rtc();
  423. if (now >= *next_tb) {
  424. *next_tb = ~(u64)0;
  425. if (evt->event_handler)
  426. evt->event_handler(evt);
  427. __get_cpu_var(irq_stat).timer_irqs_event++;
  428. } else {
  429. now = *next_tb - now;
  430. if (now <= DECREMENTER_MAX)
  431. set_dec((int)now);
  432. /* We may have raced with new irq work */
  433. if (test_irq_work_pending())
  434. set_dec(1);
  435. __get_cpu_var(irq_stat).timer_irqs_others++;
  436. }
  437. #ifdef CONFIG_PPC64
  438. /* collect purr register values often, for accurate calculations */
  439. if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
  440. struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
  441. cu->current_tb = mfspr(SPRN_PURR);
  442. }
  443. #endif
  444. trace_timer_interrupt_exit(regs);
  445. }
  446. /*
  447. * timer_interrupt - gets called when the decrementer overflows,
  448. * with interrupts disabled.
  449. */
  450. void timer_interrupt(struct pt_regs * regs)
  451. {
  452. struct pt_regs *old_regs;
  453. u64 *next_tb = &__get_cpu_var(decrementers_next_tb);
  454. /* Ensure a positive value is written to the decrementer, or else
  455. * some CPUs will continue to take decrementer exceptions.
  456. */
  457. set_dec(DECREMENTER_MAX);
  458. /* Some implementations of hotplug will get timer interrupts while
  459. * offline, just ignore these and we also need to set
  460. * decrementers_next_tb as MAX to make sure __check_irq_replay
  461. * don't replay timer interrupt when return, otherwise we'll trap
  462. * here infinitely :(
  463. */
  464. if (!cpu_online(smp_processor_id())) {
  465. *next_tb = ~(u64)0;
  466. return;
  467. }
  468. /* Conditionally hard-enable interrupts now that the DEC has been
  469. * bumped to its maximum value
  470. */
  471. may_hard_irq_enable();
  472. #if defined(CONFIG_PPC32) && defined(CONFIG_PPC_PMAC)
  473. if (atomic_read(&ppc_n_lost_interrupts) != 0)
  474. do_IRQ(regs);
  475. #endif
  476. old_regs = set_irq_regs(regs);
  477. irq_enter();
  478. __timer_interrupt();
  479. irq_exit();
  480. set_irq_regs(old_regs);
  481. }
  482. /*
  483. * Hypervisor decrementer interrupts shouldn't occur but are sometimes
  484. * left pending on exit from a KVM guest. We don't need to do anything
  485. * to clear them, as they are edge-triggered.
  486. */
  487. void hdec_interrupt(struct pt_regs *regs)
  488. {
  489. }
  490. #ifdef CONFIG_SUSPEND
  491. static void generic_suspend_disable_irqs(void)
  492. {
  493. /* Disable the decrementer, so that it doesn't interfere
  494. * with suspending.
  495. */
  496. set_dec(DECREMENTER_MAX);
  497. local_irq_disable();
  498. set_dec(DECREMENTER_MAX);
  499. }
  500. static void generic_suspend_enable_irqs(void)
  501. {
  502. local_irq_enable();
  503. }
  504. /* Overrides the weak version in kernel/power/main.c */
  505. void arch_suspend_disable_irqs(void)
  506. {
  507. if (ppc_md.suspend_disable_irqs)
  508. ppc_md.suspend_disable_irqs();
  509. generic_suspend_disable_irqs();
  510. }
  511. /* Overrides the weak version in kernel/power/main.c */
  512. void arch_suspend_enable_irqs(void)
  513. {
  514. generic_suspend_enable_irqs();
  515. if (ppc_md.suspend_enable_irqs)
  516. ppc_md.suspend_enable_irqs();
  517. }
  518. #endif
  519. /*
  520. * Scheduler clock - returns current time in nanosec units.
  521. *
  522. * Note: mulhdu(a, b) (multiply high double unsigned) returns
  523. * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
  524. * are 64-bit unsigned numbers.
  525. */
  526. unsigned long long sched_clock(void)
  527. {
  528. if (__USE_RTC())
  529. return get_rtc();
  530. return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
  531. }
  532. static int __init get_freq(char *name, int cells, unsigned long *val)
  533. {
  534. struct device_node *cpu;
  535. const __be32 *fp;
  536. int found = 0;
  537. /* The cpu node should have timebase and clock frequency properties */
  538. cpu = of_find_node_by_type(NULL, "cpu");
  539. if (cpu) {
  540. fp = of_get_property(cpu, name, NULL);
  541. if (fp) {
  542. found = 1;
  543. *val = of_read_ulong(fp, cells);
  544. }
  545. of_node_put(cpu);
  546. }
  547. return found;
  548. }
  549. void start_cpu_decrementer(void)
  550. {
  551. #if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
  552. /* Clear any pending timer interrupts */
  553. mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
  554. /* Enable decrementer interrupt */
  555. mtspr(SPRN_TCR, TCR_DIE);
  556. #endif /* defined(CONFIG_BOOKE) || defined(CONFIG_40x) */
  557. }
  558. void __init generic_calibrate_decr(void)
  559. {
  560. ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */
  561. if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
  562. !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
  563. printk(KERN_ERR "WARNING: Estimating decrementer frequency "
  564. "(not found)\n");
  565. }
  566. ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */
  567. if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
  568. !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
  569. printk(KERN_ERR "WARNING: Estimating processor frequency "
  570. "(not found)\n");
  571. }
  572. }
  573. int update_persistent_clock(struct timespec now)
  574. {
  575. struct rtc_time tm;
  576. if (!ppc_md.set_rtc_time)
  577. return -ENODEV;
  578. to_tm(now.tv_sec + 1 + timezone_offset, &tm);
  579. tm.tm_year -= 1900;
  580. tm.tm_mon -= 1;
  581. return ppc_md.set_rtc_time(&tm);
  582. }
  583. static void __read_persistent_clock(struct timespec *ts)
  584. {
  585. struct rtc_time tm;
  586. static int first = 1;
  587. ts->tv_nsec = 0;
  588. /* XXX this is a litle fragile but will work okay in the short term */
  589. if (first) {
  590. first = 0;
  591. if (ppc_md.time_init)
  592. timezone_offset = ppc_md.time_init();
  593. /* get_boot_time() isn't guaranteed to be safe to call late */
  594. if (ppc_md.get_boot_time) {
  595. ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
  596. return;
  597. }
  598. }
  599. if (!ppc_md.get_rtc_time) {
  600. ts->tv_sec = 0;
  601. return;
  602. }
  603. ppc_md.get_rtc_time(&tm);
  604. ts->tv_sec = mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
  605. tm.tm_hour, tm.tm_min, tm.tm_sec);
  606. }
  607. void read_persistent_clock(struct timespec *ts)
  608. {
  609. __read_persistent_clock(ts);
  610. /* Sanitize it in case real time clock is set below EPOCH */
  611. if (ts->tv_sec < 0) {
  612. ts->tv_sec = 0;
  613. ts->tv_nsec = 0;
  614. }
  615. }
  616. /* clocksource code */
  617. static cycle_t rtc_read(struct clocksource *cs)
  618. {
  619. return (cycle_t)get_rtc();
  620. }
  621. static cycle_t timebase_read(struct clocksource *cs)
  622. {
  623. return (cycle_t)get_tb();
  624. }
  625. void update_vsyscall_old(struct timespec *wall_time, struct timespec *wtm,
  626. struct clocksource *clock, u32 mult)
  627. {
  628. u64 new_tb_to_xs, new_stamp_xsec;
  629. u32 frac_sec;
  630. if (clock != &clocksource_timebase)
  631. return;
  632. /* Make userspace gettimeofday spin until we're done. */
  633. ++vdso_data->tb_update_count;
  634. smp_mb();
  635. /* 19342813113834067 ~= 2^(20+64) / 1e9 */
  636. new_tb_to_xs = (u64) mult * (19342813113834067ULL >> clock->shift);
  637. new_stamp_xsec = (u64) wall_time->tv_nsec * XSEC_PER_SEC;
  638. do_div(new_stamp_xsec, 1000000000);
  639. new_stamp_xsec += (u64) wall_time->tv_sec * XSEC_PER_SEC;
  640. BUG_ON(wall_time->tv_nsec >= NSEC_PER_SEC);
  641. /* this is tv_nsec / 1e9 as a 0.32 fraction */
  642. frac_sec = ((u64) wall_time->tv_nsec * 18446744073ULL) >> 32;
  643. /*
  644. * tb_update_count is used to allow the userspace gettimeofday code
  645. * to assure itself that it sees a consistent view of the tb_to_xs and
  646. * stamp_xsec variables. It reads the tb_update_count, then reads
  647. * tb_to_xs and stamp_xsec and then reads tb_update_count again. If
  648. * the two values of tb_update_count match and are even then the
  649. * tb_to_xs and stamp_xsec values are consistent. If not, then it
  650. * loops back and reads them again until this criteria is met.
  651. * We expect the caller to have done the first increment of
  652. * vdso_data->tb_update_count already.
  653. */
  654. vdso_data->tb_orig_stamp = clock->cycle_last;
  655. vdso_data->stamp_xsec = new_stamp_xsec;
  656. vdso_data->tb_to_xs = new_tb_to_xs;
  657. vdso_data->wtom_clock_sec = wtm->tv_sec;
  658. vdso_data->wtom_clock_nsec = wtm->tv_nsec;
  659. vdso_data->stamp_xtime = *wall_time;
  660. vdso_data->stamp_sec_fraction = frac_sec;
  661. smp_wmb();
  662. ++(vdso_data->tb_update_count);
  663. }
  664. void update_vsyscall_tz(void)
  665. {
  666. vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
  667. vdso_data->tz_dsttime = sys_tz.tz_dsttime;
  668. }
  669. static void __init clocksource_init(void)
  670. {
  671. struct clocksource *clock;
  672. if (__USE_RTC())
  673. clock = &clocksource_rtc;
  674. else
  675. clock = &clocksource_timebase;
  676. if (clocksource_register_hz(clock, tb_ticks_per_sec)) {
  677. printk(KERN_ERR "clocksource: %s is already registered\n",
  678. clock->name);
  679. return;
  680. }
  681. printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
  682. clock->name, clock->mult, clock->shift);
  683. }
  684. static int decrementer_set_next_event(unsigned long evt,
  685. struct clock_event_device *dev)
  686. {
  687. __get_cpu_var(decrementers_next_tb) = get_tb_or_rtc() + evt;
  688. set_dec(evt);
  689. /* We may have raced with new irq work */
  690. if (test_irq_work_pending())
  691. set_dec(1);
  692. return 0;
  693. }
  694. static void decrementer_set_mode(enum clock_event_mode mode,
  695. struct clock_event_device *dev)
  696. {
  697. if (mode != CLOCK_EVT_MODE_ONESHOT)
  698. decrementer_set_next_event(DECREMENTER_MAX, dev);
  699. }
  700. /* Interrupt handler for the timer broadcast IPI */
  701. void tick_broadcast_ipi_handler(void)
  702. {
  703. u64 *next_tb = &__get_cpu_var(decrementers_next_tb);
  704. *next_tb = get_tb_or_rtc();
  705. __timer_interrupt();
  706. }
  707. static void register_decrementer_clockevent(int cpu)
  708. {
  709. struct clock_event_device *dec = &per_cpu(decrementers, cpu);
  710. *dec = decrementer_clockevent;
  711. dec->cpumask = cpumask_of(cpu);
  712. printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
  713. dec->name, dec->mult, dec->shift, cpu);
  714. clockevents_register_device(dec);
  715. }
  716. static void __init init_decrementer_clockevent(void)
  717. {
  718. int cpu = smp_processor_id();
  719. clockevents_calc_mult_shift(&decrementer_clockevent, ppc_tb_freq, 4);
  720. decrementer_clockevent.max_delta_ns =
  721. clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent);
  722. decrementer_clockevent.min_delta_ns =
  723. clockevent_delta2ns(2, &decrementer_clockevent);
  724. register_decrementer_clockevent(cpu);
  725. }
  726. void secondary_cpu_time_init(void)
  727. {
  728. /* Start the decrementer on CPUs that have manual control
  729. * such as BookE
  730. */
  731. start_cpu_decrementer();
  732. /* FIME: Should make unrelatred change to move snapshot_timebase
  733. * call here ! */
  734. register_decrementer_clockevent(smp_processor_id());
  735. }
  736. /* This function is only called on the boot processor */
  737. void __init time_init(void)
  738. {
  739. struct div_result res;
  740. u64 scale;
  741. unsigned shift;
  742. if (__USE_RTC()) {
  743. /* 601 processor: dec counts down by 128 every 128ns */
  744. ppc_tb_freq = 1000000000;
  745. } else {
  746. /* Normal PowerPC with timebase register */
  747. ppc_md.calibrate_decr();
  748. printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
  749. ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
  750. printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n",
  751. ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
  752. }
  753. tb_ticks_per_jiffy = ppc_tb_freq / HZ;
  754. tb_ticks_per_sec = ppc_tb_freq;
  755. tb_ticks_per_usec = ppc_tb_freq / 1000000;
  756. calc_cputime_factors();
  757. setup_cputime_one_jiffy();
  758. /*
  759. * Compute scale factor for sched_clock.
  760. * The calibrate_decr() function has set tb_ticks_per_sec,
  761. * which is the timebase frequency.
  762. * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
  763. * the 128-bit result as a 64.64 fixed-point number.
  764. * We then shift that number right until it is less than 1.0,
  765. * giving us the scale factor and shift count to use in
  766. * sched_clock().
  767. */
  768. div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
  769. scale = res.result_low;
  770. for (shift = 0; res.result_high != 0; ++shift) {
  771. scale = (scale >> 1) | (res.result_high << 63);
  772. res.result_high >>= 1;
  773. }
  774. tb_to_ns_scale = scale;
  775. tb_to_ns_shift = shift;
  776. /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
  777. boot_tb = get_tb_or_rtc();
  778. /* If platform provided a timezone (pmac), we correct the time */
  779. if (timezone_offset) {
  780. sys_tz.tz_minuteswest = -timezone_offset / 60;
  781. sys_tz.tz_dsttime = 0;
  782. }
  783. vdso_data->tb_update_count = 0;
  784. vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
  785. /* Start the decrementer on CPUs that have manual control
  786. * such as BookE
  787. */
  788. start_cpu_decrementer();
  789. /* Register the clocksource */
  790. clocksource_init();
  791. init_decrementer_clockevent();
  792. tick_setup_hrtimer_broadcast();
  793. }
  794. #define FEBRUARY 2
  795. #define STARTOFTIME 1970
  796. #define SECDAY 86400L
  797. #define SECYR (SECDAY * 365)
  798. #define leapyear(year) ((year) % 4 == 0 && \
  799. ((year) % 100 != 0 || (year) % 400 == 0))
  800. #define days_in_year(a) (leapyear(a) ? 366 : 365)
  801. #define days_in_month(a) (month_days[(a) - 1])
  802. static int month_days[12] = {
  803. 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
  804. };
  805. /*
  806. * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
  807. */
  808. void GregorianDay(struct rtc_time * tm)
  809. {
  810. int leapsToDate;
  811. int lastYear;
  812. int day;
  813. int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
  814. lastYear = tm->tm_year - 1;
  815. /*
  816. * Number of leap corrections to apply up to end of last year
  817. */
  818. leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
  819. /*
  820. * This year is a leap year if it is divisible by 4 except when it is
  821. * divisible by 100 unless it is divisible by 400
  822. *
  823. * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
  824. */
  825. day = tm->tm_mon > 2 && leapyear(tm->tm_year);
  826. day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
  827. tm->tm_mday;
  828. tm->tm_wday = day % 7;
  829. }
  830. void to_tm(int tim, struct rtc_time * tm)
  831. {
  832. register int i;
  833. register long hms, day;
  834. day = tim / SECDAY;
  835. hms = tim % SECDAY;
  836. /* Hours, minutes, seconds are easy */
  837. tm->tm_hour = hms / 3600;
  838. tm->tm_min = (hms % 3600) / 60;
  839. tm->tm_sec = (hms % 3600) % 60;
  840. /* Number of years in days */
  841. for (i = STARTOFTIME; day >= days_in_year(i); i++)
  842. day -= days_in_year(i);
  843. tm->tm_year = i;
  844. /* Number of months in days left */
  845. if (leapyear(tm->tm_year))
  846. days_in_month(FEBRUARY) = 29;
  847. for (i = 1; day >= days_in_month(i); i++)
  848. day -= days_in_month(i);
  849. days_in_month(FEBRUARY) = 28;
  850. tm->tm_mon = i;
  851. /* Days are what is left over (+1) from all that. */
  852. tm->tm_mday = day + 1;
  853. /*
  854. * Determine the day of week
  855. */
  856. GregorianDay(tm);
  857. }
  858. /*
  859. * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
  860. * result.
  861. */
  862. void div128_by_32(u64 dividend_high, u64 dividend_low,
  863. unsigned divisor, struct div_result *dr)
  864. {
  865. unsigned long a, b, c, d;
  866. unsigned long w, x, y, z;
  867. u64 ra, rb, rc;
  868. a = dividend_high >> 32;
  869. b = dividend_high & 0xffffffff;
  870. c = dividend_low >> 32;
  871. d = dividend_low & 0xffffffff;
  872. w = a / divisor;
  873. ra = ((u64)(a - (w * divisor)) << 32) + b;
  874. rb = ((u64) do_div(ra, divisor) << 32) + c;
  875. x = ra;
  876. rc = ((u64) do_div(rb, divisor) << 32) + d;
  877. y = rb;
  878. do_div(rc, divisor);
  879. z = rc;
  880. dr->result_high = ((u64)w << 32) + x;
  881. dr->result_low = ((u64)y << 32) + z;
  882. }
  883. /* We don't need to calibrate delay, we use the CPU timebase for that */
  884. void calibrate_delay(void)
  885. {
  886. /* Some generic code (such as spinlock debug) use loops_per_jiffy
  887. * as the number of __delay(1) in a jiffy, so make it so
  888. */
  889. loops_per_jiffy = tb_ticks_per_jiffy;
  890. }
  891. static int __init rtc_init(void)
  892. {
  893. struct platform_device *pdev;
  894. if (!ppc_md.get_rtc_time)
  895. return -ENODEV;
  896. pdev = platform_device_register_simple("rtc-generic", -1, NULL, 0);
  897. return PTR_ERR_OR_ZERO(pdev);
  898. }
  899. module_init(rtc_init);