kvm_mips.c 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227
  1. /*
  2. * This file is subject to the terms and conditions of the GNU General Public
  3. * License. See the file "COPYING" in the main directory of this archive
  4. * for more details.
  5. *
  6. * KVM/MIPS: MIPS specific KVM APIs
  7. *
  8. * Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved.
  9. * Authors: Sanjay Lal <sanjayl@kymasys.com>
  10. */
  11. #include <linux/errno.h>
  12. #include <linux/err.h>
  13. #include <linux/module.h>
  14. #include <linux/vmalloc.h>
  15. #include <linux/fs.h>
  16. #include <linux/bootmem.h>
  17. #include <asm/page.h>
  18. #include <asm/cacheflush.h>
  19. #include <asm/mmu_context.h>
  20. #include <linux/kvm_host.h>
  21. #include "kvm_mips_int.h"
  22. #include "kvm_mips_comm.h"
  23. #define CREATE_TRACE_POINTS
  24. #include "trace.h"
  25. #ifndef VECTORSPACING
  26. #define VECTORSPACING 0x100 /* for EI/VI mode */
  27. #endif
  28. #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
  29. struct kvm_stats_debugfs_item debugfs_entries[] = {
  30. { "wait", VCPU_STAT(wait_exits) },
  31. { "cache", VCPU_STAT(cache_exits) },
  32. { "signal", VCPU_STAT(signal_exits) },
  33. { "interrupt", VCPU_STAT(int_exits) },
  34. { "cop_unsuable", VCPU_STAT(cop_unusable_exits) },
  35. { "tlbmod", VCPU_STAT(tlbmod_exits) },
  36. { "tlbmiss_ld", VCPU_STAT(tlbmiss_ld_exits) },
  37. { "tlbmiss_st", VCPU_STAT(tlbmiss_st_exits) },
  38. { "addrerr_st", VCPU_STAT(addrerr_st_exits) },
  39. { "addrerr_ld", VCPU_STAT(addrerr_ld_exits) },
  40. { "syscall", VCPU_STAT(syscall_exits) },
  41. { "resvd_inst", VCPU_STAT(resvd_inst_exits) },
  42. { "break_inst", VCPU_STAT(break_inst_exits) },
  43. { "flush_dcache", VCPU_STAT(flush_dcache_exits) },
  44. { "halt_wakeup", VCPU_STAT(halt_wakeup) },
  45. {NULL}
  46. };
  47. static int kvm_mips_reset_vcpu(struct kvm_vcpu *vcpu)
  48. {
  49. int i;
  50. for_each_possible_cpu(i) {
  51. vcpu->arch.guest_kernel_asid[i] = 0;
  52. vcpu->arch.guest_user_asid[i] = 0;
  53. }
  54. return 0;
  55. }
  56. /* XXXKYMA: We are simulatoring a processor that has the WII bit set in Config7, so we
  57. * are "runnable" if interrupts are pending
  58. */
  59. int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  60. {
  61. return !!(vcpu->arch.pending_exceptions);
  62. }
  63. int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
  64. {
  65. return 1;
  66. }
  67. int kvm_arch_hardware_enable(void *garbage)
  68. {
  69. return 0;
  70. }
  71. void kvm_arch_hardware_disable(void *garbage)
  72. {
  73. }
  74. int kvm_arch_hardware_setup(void)
  75. {
  76. return 0;
  77. }
  78. void kvm_arch_hardware_unsetup(void)
  79. {
  80. }
  81. void kvm_arch_check_processor_compat(void *rtn)
  82. {
  83. int *r = (int *)rtn;
  84. *r = 0;
  85. return;
  86. }
  87. static void kvm_mips_init_tlbs(struct kvm *kvm)
  88. {
  89. unsigned long wired;
  90. /* Add a wired entry to the TLB, it is used to map the commpage to the Guest kernel */
  91. wired = read_c0_wired();
  92. write_c0_wired(wired + 1);
  93. mtc0_tlbw_hazard();
  94. kvm->arch.commpage_tlb = wired;
  95. kvm_debug("[%d] commpage TLB: %d\n", smp_processor_id(),
  96. kvm->arch.commpage_tlb);
  97. }
  98. static void kvm_mips_init_vm_percpu(void *arg)
  99. {
  100. struct kvm *kvm = (struct kvm *)arg;
  101. kvm_mips_init_tlbs(kvm);
  102. kvm_mips_callbacks->vm_init(kvm);
  103. }
  104. int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
  105. {
  106. if (atomic_inc_return(&kvm_mips_instance) == 1) {
  107. kvm_debug("%s: 1st KVM instance, setup host TLB parameters\n",
  108. __func__);
  109. on_each_cpu(kvm_mips_init_vm_percpu, kvm, 1);
  110. }
  111. return 0;
  112. }
  113. void kvm_mips_free_vcpus(struct kvm *kvm)
  114. {
  115. unsigned int i;
  116. struct kvm_vcpu *vcpu;
  117. /* Put the pages we reserved for the guest pmap */
  118. for (i = 0; i < kvm->arch.guest_pmap_npages; i++) {
  119. if (kvm->arch.guest_pmap[i] != KVM_INVALID_PAGE)
  120. kvm_mips_release_pfn_clean(kvm->arch.guest_pmap[i]);
  121. }
  122. kfree(kvm->arch.guest_pmap);
  123. kvm_for_each_vcpu(i, vcpu, kvm) {
  124. kvm_arch_vcpu_free(vcpu);
  125. }
  126. mutex_lock(&kvm->lock);
  127. for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
  128. kvm->vcpus[i] = NULL;
  129. atomic_set(&kvm->online_vcpus, 0);
  130. mutex_unlock(&kvm->lock);
  131. }
  132. void kvm_arch_sync_events(struct kvm *kvm)
  133. {
  134. }
  135. static void kvm_mips_uninit_tlbs(void *arg)
  136. {
  137. /* Restore wired count */
  138. write_c0_wired(0);
  139. mtc0_tlbw_hazard();
  140. /* Clear out all the TLBs */
  141. kvm_local_flush_tlb_all();
  142. }
  143. void kvm_arch_destroy_vm(struct kvm *kvm)
  144. {
  145. kvm_mips_free_vcpus(kvm);
  146. /* If this is the last instance, restore wired count */
  147. if (atomic_dec_return(&kvm_mips_instance) == 0) {
  148. kvm_debug("%s: last KVM instance, restoring TLB parameters\n",
  149. __func__);
  150. on_each_cpu(kvm_mips_uninit_tlbs, NULL, 1);
  151. }
  152. }
  153. long
  154. kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
  155. {
  156. return -ENOIOCTLCMD;
  157. }
  158. void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
  159. struct kvm_memory_slot *dont)
  160. {
  161. }
  162. int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
  163. unsigned long npages)
  164. {
  165. return 0;
  166. }
  167. void kvm_arch_memslots_updated(struct kvm *kvm)
  168. {
  169. }
  170. int kvm_arch_prepare_memory_region(struct kvm *kvm,
  171. struct kvm_memory_slot *memslot,
  172. struct kvm_userspace_memory_region *mem,
  173. enum kvm_mr_change change)
  174. {
  175. return 0;
  176. }
  177. void kvm_arch_commit_memory_region(struct kvm *kvm,
  178. struct kvm_userspace_memory_region *mem,
  179. const struct kvm_memory_slot *old,
  180. enum kvm_mr_change change)
  181. {
  182. unsigned long npages = 0;
  183. int i, err = 0;
  184. kvm_debug("%s: kvm: %p slot: %d, GPA: %llx, size: %llx, QVA: %llx\n",
  185. __func__, kvm, mem->slot, mem->guest_phys_addr,
  186. mem->memory_size, mem->userspace_addr);
  187. /* Setup Guest PMAP table */
  188. if (!kvm->arch.guest_pmap) {
  189. if (mem->slot == 0)
  190. npages = mem->memory_size >> PAGE_SHIFT;
  191. if (npages) {
  192. kvm->arch.guest_pmap_npages = npages;
  193. kvm->arch.guest_pmap =
  194. kzalloc(npages * sizeof(unsigned long), GFP_KERNEL);
  195. if (!kvm->arch.guest_pmap) {
  196. kvm_err("Failed to allocate guest PMAP");
  197. err = -ENOMEM;
  198. goto out;
  199. }
  200. kvm_debug("Allocated space for Guest PMAP Table (%ld pages) @ %p\n",
  201. npages, kvm->arch.guest_pmap);
  202. /* Now setup the page table */
  203. for (i = 0; i < npages; i++) {
  204. kvm->arch.guest_pmap[i] = KVM_INVALID_PAGE;
  205. }
  206. }
  207. }
  208. out:
  209. return;
  210. }
  211. void kvm_arch_flush_shadow_all(struct kvm *kvm)
  212. {
  213. }
  214. void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
  215. struct kvm_memory_slot *slot)
  216. {
  217. }
  218. void kvm_arch_flush_shadow(struct kvm *kvm)
  219. {
  220. }
  221. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
  222. {
  223. extern char mips32_exception[], mips32_exceptionEnd[];
  224. extern char mips32_GuestException[], mips32_GuestExceptionEnd[];
  225. int err, size, offset;
  226. void *gebase;
  227. int i;
  228. struct kvm_vcpu *vcpu = kzalloc(sizeof(struct kvm_vcpu), GFP_KERNEL);
  229. if (!vcpu) {
  230. err = -ENOMEM;
  231. goto out;
  232. }
  233. err = kvm_vcpu_init(vcpu, kvm, id);
  234. if (err)
  235. goto out_free_cpu;
  236. kvm_debug("kvm @ %p: create cpu %d at %p\n", kvm, id, vcpu);
  237. /* Allocate space for host mode exception handlers that handle
  238. * guest mode exits
  239. */
  240. if (cpu_has_veic || cpu_has_vint) {
  241. size = 0x200 + VECTORSPACING * 64;
  242. } else {
  243. size = 0x4000;
  244. }
  245. /* Save Linux EBASE */
  246. vcpu->arch.host_ebase = (void *)read_c0_ebase();
  247. gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);
  248. if (!gebase) {
  249. err = -ENOMEM;
  250. goto out_free_cpu;
  251. }
  252. kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
  253. ALIGN(size, PAGE_SIZE), gebase);
  254. /* Save new ebase */
  255. vcpu->arch.guest_ebase = gebase;
  256. /* Copy L1 Guest Exception handler to correct offset */
  257. /* TLB Refill, EXL = 0 */
  258. memcpy(gebase, mips32_exception,
  259. mips32_exceptionEnd - mips32_exception);
  260. /* General Exception Entry point */
  261. memcpy(gebase + 0x180, mips32_exception,
  262. mips32_exceptionEnd - mips32_exception);
  263. /* For vectored interrupts poke the exception code @ all offsets 0-7 */
  264. for (i = 0; i < 8; i++) {
  265. kvm_debug("L1 Vectored handler @ %p\n",
  266. gebase + 0x200 + (i * VECTORSPACING));
  267. memcpy(gebase + 0x200 + (i * VECTORSPACING), mips32_exception,
  268. mips32_exceptionEnd - mips32_exception);
  269. }
  270. /* General handler, relocate to unmapped space for sanity's sake */
  271. offset = 0x2000;
  272. kvm_debug("Installing KVM Exception handlers @ %p, %#x bytes\n",
  273. gebase + offset,
  274. mips32_GuestExceptionEnd - mips32_GuestException);
  275. memcpy(gebase + offset, mips32_GuestException,
  276. mips32_GuestExceptionEnd - mips32_GuestException);
  277. /* Invalidate the icache for these ranges */
  278. local_flush_icache_range((unsigned long)gebase,
  279. (unsigned long)gebase + ALIGN(size, PAGE_SIZE));
  280. /* Allocate comm page for guest kernel, a TLB will be reserved for mapping GVA @ 0xFFFF8000 to this page */
  281. vcpu->arch.kseg0_commpage = kzalloc(PAGE_SIZE << 1, GFP_KERNEL);
  282. if (!vcpu->arch.kseg0_commpage) {
  283. err = -ENOMEM;
  284. goto out_free_gebase;
  285. }
  286. kvm_debug("Allocated COMM page @ %p\n", vcpu->arch.kseg0_commpage);
  287. kvm_mips_commpage_init(vcpu);
  288. /* Init */
  289. vcpu->arch.last_sched_cpu = -1;
  290. /* Start off the timer */
  291. kvm_mips_init_count(vcpu);
  292. return vcpu;
  293. out_free_gebase:
  294. kfree(gebase);
  295. out_free_cpu:
  296. kfree(vcpu);
  297. out:
  298. return ERR_PTR(err);
  299. }
  300. void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
  301. {
  302. hrtimer_cancel(&vcpu->arch.comparecount_timer);
  303. kvm_vcpu_uninit(vcpu);
  304. kvm_mips_dump_stats(vcpu);
  305. kfree(vcpu->arch.guest_ebase);
  306. kfree(vcpu->arch.kseg0_commpage);
  307. kfree(vcpu);
  308. }
  309. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  310. {
  311. kvm_arch_vcpu_free(vcpu);
  312. }
  313. int
  314. kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
  315. struct kvm_guest_debug *dbg)
  316. {
  317. return -ENOIOCTLCMD;
  318. }
  319. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
  320. {
  321. int r = 0;
  322. sigset_t sigsaved;
  323. if (vcpu->sigset_active)
  324. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  325. if (vcpu->mmio_needed) {
  326. if (!vcpu->mmio_is_write)
  327. kvm_mips_complete_mmio_load(vcpu, run);
  328. vcpu->mmio_needed = 0;
  329. }
  330. local_irq_disable();
  331. /* Check if we have any exceptions/interrupts pending */
  332. kvm_mips_deliver_interrupts(vcpu,
  333. kvm_read_c0_guest_cause(vcpu->arch.cop0));
  334. kvm_guest_enter();
  335. r = __kvm_mips_vcpu_run(run, vcpu);
  336. kvm_guest_exit();
  337. local_irq_enable();
  338. if (vcpu->sigset_active)
  339. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  340. return r;
  341. }
  342. int
  343. kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_mips_interrupt *irq)
  344. {
  345. int intr = (int)irq->irq;
  346. struct kvm_vcpu *dvcpu = NULL;
  347. if (intr == 3 || intr == -3 || intr == 4 || intr == -4)
  348. kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
  349. (int)intr);
  350. if (irq->cpu == -1)
  351. dvcpu = vcpu;
  352. else
  353. dvcpu = vcpu->kvm->vcpus[irq->cpu];
  354. if (intr == 2 || intr == 3 || intr == 4) {
  355. kvm_mips_callbacks->queue_io_int(dvcpu, irq);
  356. } else if (intr == -2 || intr == -3 || intr == -4) {
  357. kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
  358. } else {
  359. kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
  360. irq->cpu, irq->irq);
  361. return -EINVAL;
  362. }
  363. dvcpu->arch.wait = 0;
  364. if (waitqueue_active(&dvcpu->wq)) {
  365. wake_up_interruptible(&dvcpu->wq);
  366. }
  367. return 0;
  368. }
  369. int
  370. kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
  371. struct kvm_mp_state *mp_state)
  372. {
  373. return -ENOIOCTLCMD;
  374. }
  375. int
  376. kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
  377. struct kvm_mp_state *mp_state)
  378. {
  379. return -ENOIOCTLCMD;
  380. }
  381. static u64 kvm_mips_get_one_regs[] = {
  382. KVM_REG_MIPS_R0,
  383. KVM_REG_MIPS_R1,
  384. KVM_REG_MIPS_R2,
  385. KVM_REG_MIPS_R3,
  386. KVM_REG_MIPS_R4,
  387. KVM_REG_MIPS_R5,
  388. KVM_REG_MIPS_R6,
  389. KVM_REG_MIPS_R7,
  390. KVM_REG_MIPS_R8,
  391. KVM_REG_MIPS_R9,
  392. KVM_REG_MIPS_R10,
  393. KVM_REG_MIPS_R11,
  394. KVM_REG_MIPS_R12,
  395. KVM_REG_MIPS_R13,
  396. KVM_REG_MIPS_R14,
  397. KVM_REG_MIPS_R15,
  398. KVM_REG_MIPS_R16,
  399. KVM_REG_MIPS_R17,
  400. KVM_REG_MIPS_R18,
  401. KVM_REG_MIPS_R19,
  402. KVM_REG_MIPS_R20,
  403. KVM_REG_MIPS_R21,
  404. KVM_REG_MIPS_R22,
  405. KVM_REG_MIPS_R23,
  406. KVM_REG_MIPS_R24,
  407. KVM_REG_MIPS_R25,
  408. KVM_REG_MIPS_R26,
  409. KVM_REG_MIPS_R27,
  410. KVM_REG_MIPS_R28,
  411. KVM_REG_MIPS_R29,
  412. KVM_REG_MIPS_R30,
  413. KVM_REG_MIPS_R31,
  414. KVM_REG_MIPS_HI,
  415. KVM_REG_MIPS_LO,
  416. KVM_REG_MIPS_PC,
  417. KVM_REG_MIPS_CP0_INDEX,
  418. KVM_REG_MIPS_CP0_CONTEXT,
  419. KVM_REG_MIPS_CP0_USERLOCAL,
  420. KVM_REG_MIPS_CP0_PAGEMASK,
  421. KVM_REG_MIPS_CP0_WIRED,
  422. KVM_REG_MIPS_CP0_HWRENA,
  423. KVM_REG_MIPS_CP0_BADVADDR,
  424. KVM_REG_MIPS_CP0_COUNT,
  425. KVM_REG_MIPS_CP0_ENTRYHI,
  426. KVM_REG_MIPS_CP0_COMPARE,
  427. KVM_REG_MIPS_CP0_STATUS,
  428. KVM_REG_MIPS_CP0_CAUSE,
  429. KVM_REG_MIPS_CP0_EPC,
  430. KVM_REG_MIPS_CP0_CONFIG,
  431. KVM_REG_MIPS_CP0_CONFIG1,
  432. KVM_REG_MIPS_CP0_CONFIG2,
  433. KVM_REG_MIPS_CP0_CONFIG3,
  434. KVM_REG_MIPS_CP0_CONFIG7,
  435. KVM_REG_MIPS_CP0_ERROREPC,
  436. KVM_REG_MIPS_COUNT_CTL,
  437. KVM_REG_MIPS_COUNT_RESUME,
  438. KVM_REG_MIPS_COUNT_HZ,
  439. };
  440. static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
  441. const struct kvm_one_reg *reg)
  442. {
  443. struct mips_coproc *cop0 = vcpu->arch.cop0;
  444. int ret;
  445. s64 v;
  446. switch (reg->id) {
  447. case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
  448. v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
  449. break;
  450. case KVM_REG_MIPS_HI:
  451. v = (long)vcpu->arch.hi;
  452. break;
  453. case KVM_REG_MIPS_LO:
  454. v = (long)vcpu->arch.lo;
  455. break;
  456. case KVM_REG_MIPS_PC:
  457. v = (long)vcpu->arch.pc;
  458. break;
  459. case KVM_REG_MIPS_CP0_INDEX:
  460. v = (long)kvm_read_c0_guest_index(cop0);
  461. break;
  462. case KVM_REG_MIPS_CP0_CONTEXT:
  463. v = (long)kvm_read_c0_guest_context(cop0);
  464. break;
  465. case KVM_REG_MIPS_CP0_USERLOCAL:
  466. v = (long)kvm_read_c0_guest_userlocal(cop0);
  467. break;
  468. case KVM_REG_MIPS_CP0_PAGEMASK:
  469. v = (long)kvm_read_c0_guest_pagemask(cop0);
  470. break;
  471. case KVM_REG_MIPS_CP0_WIRED:
  472. v = (long)kvm_read_c0_guest_wired(cop0);
  473. break;
  474. case KVM_REG_MIPS_CP0_HWRENA:
  475. v = (long)kvm_read_c0_guest_hwrena(cop0);
  476. break;
  477. case KVM_REG_MIPS_CP0_BADVADDR:
  478. v = (long)kvm_read_c0_guest_badvaddr(cop0);
  479. break;
  480. case KVM_REG_MIPS_CP0_ENTRYHI:
  481. v = (long)kvm_read_c0_guest_entryhi(cop0);
  482. break;
  483. case KVM_REG_MIPS_CP0_COMPARE:
  484. v = (long)kvm_read_c0_guest_compare(cop0);
  485. break;
  486. case KVM_REG_MIPS_CP0_STATUS:
  487. v = (long)kvm_read_c0_guest_status(cop0);
  488. break;
  489. case KVM_REG_MIPS_CP0_CAUSE:
  490. v = (long)kvm_read_c0_guest_cause(cop0);
  491. break;
  492. case KVM_REG_MIPS_CP0_EPC:
  493. v = (long)kvm_read_c0_guest_epc(cop0);
  494. break;
  495. case KVM_REG_MIPS_CP0_ERROREPC:
  496. v = (long)kvm_read_c0_guest_errorepc(cop0);
  497. break;
  498. case KVM_REG_MIPS_CP0_CONFIG:
  499. v = (long)kvm_read_c0_guest_config(cop0);
  500. break;
  501. case KVM_REG_MIPS_CP0_CONFIG1:
  502. v = (long)kvm_read_c0_guest_config1(cop0);
  503. break;
  504. case KVM_REG_MIPS_CP0_CONFIG2:
  505. v = (long)kvm_read_c0_guest_config2(cop0);
  506. break;
  507. case KVM_REG_MIPS_CP0_CONFIG3:
  508. v = (long)kvm_read_c0_guest_config3(cop0);
  509. break;
  510. case KVM_REG_MIPS_CP0_CONFIG7:
  511. v = (long)kvm_read_c0_guest_config7(cop0);
  512. break;
  513. /* registers to be handled specially */
  514. case KVM_REG_MIPS_CP0_COUNT:
  515. case KVM_REG_MIPS_COUNT_CTL:
  516. case KVM_REG_MIPS_COUNT_RESUME:
  517. case KVM_REG_MIPS_COUNT_HZ:
  518. ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v);
  519. if (ret)
  520. return ret;
  521. break;
  522. default:
  523. return -EINVAL;
  524. }
  525. if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
  526. u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
  527. return put_user(v, uaddr64);
  528. } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
  529. u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
  530. u32 v32 = (u32)v;
  531. return put_user(v32, uaddr32);
  532. } else {
  533. return -EINVAL;
  534. }
  535. }
  536. static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
  537. const struct kvm_one_reg *reg)
  538. {
  539. struct mips_coproc *cop0 = vcpu->arch.cop0;
  540. u64 v;
  541. if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
  542. u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
  543. if (get_user(v, uaddr64) != 0)
  544. return -EFAULT;
  545. } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
  546. u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
  547. s32 v32;
  548. if (get_user(v32, uaddr32) != 0)
  549. return -EFAULT;
  550. v = (s64)v32;
  551. } else {
  552. return -EINVAL;
  553. }
  554. switch (reg->id) {
  555. case KVM_REG_MIPS_R0:
  556. /* Silently ignore requests to set $0 */
  557. break;
  558. case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
  559. vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
  560. break;
  561. case KVM_REG_MIPS_HI:
  562. vcpu->arch.hi = v;
  563. break;
  564. case KVM_REG_MIPS_LO:
  565. vcpu->arch.lo = v;
  566. break;
  567. case KVM_REG_MIPS_PC:
  568. vcpu->arch.pc = v;
  569. break;
  570. case KVM_REG_MIPS_CP0_INDEX:
  571. kvm_write_c0_guest_index(cop0, v);
  572. break;
  573. case KVM_REG_MIPS_CP0_CONTEXT:
  574. kvm_write_c0_guest_context(cop0, v);
  575. break;
  576. case KVM_REG_MIPS_CP0_USERLOCAL:
  577. kvm_write_c0_guest_userlocal(cop0, v);
  578. break;
  579. case KVM_REG_MIPS_CP0_PAGEMASK:
  580. kvm_write_c0_guest_pagemask(cop0, v);
  581. break;
  582. case KVM_REG_MIPS_CP0_WIRED:
  583. kvm_write_c0_guest_wired(cop0, v);
  584. break;
  585. case KVM_REG_MIPS_CP0_HWRENA:
  586. kvm_write_c0_guest_hwrena(cop0, v);
  587. break;
  588. case KVM_REG_MIPS_CP0_BADVADDR:
  589. kvm_write_c0_guest_badvaddr(cop0, v);
  590. break;
  591. case KVM_REG_MIPS_CP0_ENTRYHI:
  592. kvm_write_c0_guest_entryhi(cop0, v);
  593. break;
  594. case KVM_REG_MIPS_CP0_STATUS:
  595. kvm_write_c0_guest_status(cop0, v);
  596. break;
  597. case KVM_REG_MIPS_CP0_EPC:
  598. kvm_write_c0_guest_epc(cop0, v);
  599. break;
  600. case KVM_REG_MIPS_CP0_ERROREPC:
  601. kvm_write_c0_guest_errorepc(cop0, v);
  602. break;
  603. /* registers to be handled specially */
  604. case KVM_REG_MIPS_CP0_COUNT:
  605. case KVM_REG_MIPS_CP0_COMPARE:
  606. case KVM_REG_MIPS_CP0_CAUSE:
  607. case KVM_REG_MIPS_COUNT_CTL:
  608. case KVM_REG_MIPS_COUNT_RESUME:
  609. case KVM_REG_MIPS_COUNT_HZ:
  610. return kvm_mips_callbacks->set_one_reg(vcpu, reg, v);
  611. default:
  612. return -EINVAL;
  613. }
  614. return 0;
  615. }
  616. long
  617. kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
  618. {
  619. struct kvm_vcpu *vcpu = filp->private_data;
  620. void __user *argp = (void __user *)arg;
  621. long r;
  622. switch (ioctl) {
  623. case KVM_SET_ONE_REG:
  624. case KVM_GET_ONE_REG: {
  625. struct kvm_one_reg reg;
  626. if (copy_from_user(&reg, argp, sizeof(reg)))
  627. return -EFAULT;
  628. if (ioctl == KVM_SET_ONE_REG)
  629. return kvm_mips_set_reg(vcpu, &reg);
  630. else
  631. return kvm_mips_get_reg(vcpu, &reg);
  632. }
  633. case KVM_GET_REG_LIST: {
  634. struct kvm_reg_list __user *user_list = argp;
  635. u64 __user *reg_dest;
  636. struct kvm_reg_list reg_list;
  637. unsigned n;
  638. if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
  639. return -EFAULT;
  640. n = reg_list.n;
  641. reg_list.n = ARRAY_SIZE(kvm_mips_get_one_regs);
  642. if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
  643. return -EFAULT;
  644. if (n < reg_list.n)
  645. return -E2BIG;
  646. reg_dest = user_list->reg;
  647. if (copy_to_user(reg_dest, kvm_mips_get_one_regs,
  648. sizeof(kvm_mips_get_one_regs)))
  649. return -EFAULT;
  650. return 0;
  651. }
  652. case KVM_NMI:
  653. /* Treat the NMI as a CPU reset */
  654. r = kvm_mips_reset_vcpu(vcpu);
  655. break;
  656. case KVM_INTERRUPT:
  657. {
  658. struct kvm_mips_interrupt irq;
  659. r = -EFAULT;
  660. if (copy_from_user(&irq, argp, sizeof(irq)))
  661. goto out;
  662. kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
  663. irq.irq);
  664. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  665. break;
  666. }
  667. default:
  668. r = -ENOIOCTLCMD;
  669. }
  670. out:
  671. return r;
  672. }
  673. /*
  674. * Get (and clear) the dirty memory log for a memory slot.
  675. */
  676. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
  677. {
  678. struct kvm_memory_slot *memslot;
  679. unsigned long ga, ga_end;
  680. int is_dirty = 0;
  681. int r;
  682. unsigned long n;
  683. mutex_lock(&kvm->slots_lock);
  684. r = kvm_get_dirty_log(kvm, log, &is_dirty);
  685. if (r)
  686. goto out;
  687. /* If nothing is dirty, don't bother messing with page tables. */
  688. if (is_dirty) {
  689. memslot = &kvm->memslots->memslots[log->slot];
  690. ga = memslot->base_gfn << PAGE_SHIFT;
  691. ga_end = ga + (memslot->npages << PAGE_SHIFT);
  692. printk("%s: dirty, ga: %#lx, ga_end %#lx\n", __func__, ga,
  693. ga_end);
  694. n = kvm_dirty_bitmap_bytes(memslot);
  695. memset(memslot->dirty_bitmap, 0, n);
  696. }
  697. r = 0;
  698. out:
  699. mutex_unlock(&kvm->slots_lock);
  700. return r;
  701. }
  702. long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
  703. {
  704. long r;
  705. switch (ioctl) {
  706. default:
  707. r = -ENOIOCTLCMD;
  708. }
  709. return r;
  710. }
  711. int kvm_arch_init(void *opaque)
  712. {
  713. int ret;
  714. if (kvm_mips_callbacks) {
  715. kvm_err("kvm: module already exists\n");
  716. return -EEXIST;
  717. }
  718. ret = kvm_mips_emulation_init(&kvm_mips_callbacks);
  719. return ret;
  720. }
  721. void kvm_arch_exit(void)
  722. {
  723. kvm_mips_callbacks = NULL;
  724. }
  725. int
  726. kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
  727. {
  728. return -ENOIOCTLCMD;
  729. }
  730. int
  731. kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
  732. {
  733. return -ENOIOCTLCMD;
  734. }
  735. int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
  736. {
  737. return 0;
  738. }
  739. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  740. {
  741. return -ENOIOCTLCMD;
  742. }
  743. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  744. {
  745. return -ENOIOCTLCMD;
  746. }
  747. int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
  748. {
  749. return VM_FAULT_SIGBUS;
  750. }
  751. int kvm_dev_ioctl_check_extension(long ext)
  752. {
  753. int r;
  754. switch (ext) {
  755. case KVM_CAP_ONE_REG:
  756. r = 1;
  757. break;
  758. case KVM_CAP_COALESCED_MMIO:
  759. r = KVM_COALESCED_MMIO_PAGE_OFFSET;
  760. break;
  761. default:
  762. r = 0;
  763. break;
  764. }
  765. return r;
  766. }
  767. int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
  768. {
  769. return kvm_mips_pending_timer(vcpu);
  770. }
  771. int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
  772. {
  773. int i;
  774. struct mips_coproc *cop0;
  775. if (!vcpu)
  776. return -1;
  777. printk("VCPU Register Dump:\n");
  778. printk("\tpc = 0x%08lx\n", vcpu->arch.pc);
  779. printk("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);
  780. for (i = 0; i < 32; i += 4) {
  781. printk("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
  782. vcpu->arch.gprs[i],
  783. vcpu->arch.gprs[i + 1],
  784. vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
  785. }
  786. printk("\thi: 0x%08lx\n", vcpu->arch.hi);
  787. printk("\tlo: 0x%08lx\n", vcpu->arch.lo);
  788. cop0 = vcpu->arch.cop0;
  789. printk("\tStatus: 0x%08lx, Cause: 0x%08lx\n",
  790. kvm_read_c0_guest_status(cop0), kvm_read_c0_guest_cause(cop0));
  791. printk("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));
  792. return 0;
  793. }
  794. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  795. {
  796. int i;
  797. for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
  798. vcpu->arch.gprs[i] = regs->gpr[i];
  799. vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
  800. vcpu->arch.hi = regs->hi;
  801. vcpu->arch.lo = regs->lo;
  802. vcpu->arch.pc = regs->pc;
  803. return 0;
  804. }
  805. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  806. {
  807. int i;
  808. for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
  809. regs->gpr[i] = vcpu->arch.gprs[i];
  810. regs->hi = vcpu->arch.hi;
  811. regs->lo = vcpu->arch.lo;
  812. regs->pc = vcpu->arch.pc;
  813. return 0;
  814. }
  815. static void kvm_mips_comparecount_func(unsigned long data)
  816. {
  817. struct kvm_vcpu *vcpu = (struct kvm_vcpu *)data;
  818. kvm_mips_callbacks->queue_timer_int(vcpu);
  819. vcpu->arch.wait = 0;
  820. if (waitqueue_active(&vcpu->wq)) {
  821. wake_up_interruptible(&vcpu->wq);
  822. }
  823. }
  824. /*
  825. * low level hrtimer wake routine.
  826. */
  827. static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
  828. {
  829. struct kvm_vcpu *vcpu;
  830. vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
  831. kvm_mips_comparecount_func((unsigned long) vcpu);
  832. return kvm_mips_count_timeout(vcpu);
  833. }
  834. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  835. {
  836. kvm_mips_callbacks->vcpu_init(vcpu);
  837. hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
  838. HRTIMER_MODE_REL);
  839. vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
  840. return 0;
  841. }
  842. void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
  843. {
  844. return;
  845. }
  846. int
  847. kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, struct kvm_translation *tr)
  848. {
  849. return 0;
  850. }
  851. /* Initial guest state */
  852. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  853. {
  854. return kvm_mips_callbacks->vcpu_setup(vcpu);
  855. }
  856. static
  857. void kvm_mips_set_c0_status(void)
  858. {
  859. uint32_t status = read_c0_status();
  860. if (cpu_has_fpu)
  861. status |= (ST0_CU1);
  862. if (cpu_has_dsp)
  863. status |= (ST0_MX);
  864. write_c0_status(status);
  865. ehb();
  866. }
  867. /*
  868. * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
  869. */
  870. int kvm_mips_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
  871. {
  872. uint32_t cause = vcpu->arch.host_cp0_cause;
  873. uint32_t exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
  874. uint32_t __user *opc = (uint32_t __user *) vcpu->arch.pc;
  875. unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
  876. enum emulation_result er = EMULATE_DONE;
  877. int ret = RESUME_GUEST;
  878. /* Set a default exit reason */
  879. run->exit_reason = KVM_EXIT_UNKNOWN;
  880. run->ready_for_interrupt_injection = 1;
  881. /* Set the appropriate status bits based on host CPU features, before we hit the scheduler */
  882. kvm_mips_set_c0_status();
  883. local_irq_enable();
  884. kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
  885. cause, opc, run, vcpu);
  886. /* Do a privilege check, if in UM most of these exit conditions end up
  887. * causing an exception to be delivered to the Guest Kernel
  888. */
  889. er = kvm_mips_check_privilege(cause, opc, run, vcpu);
  890. if (er == EMULATE_PRIV_FAIL) {
  891. goto skip_emul;
  892. } else if (er == EMULATE_FAIL) {
  893. run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  894. ret = RESUME_HOST;
  895. goto skip_emul;
  896. }
  897. switch (exccode) {
  898. case T_INT:
  899. kvm_debug("[%d]T_INT @ %p\n", vcpu->vcpu_id, opc);
  900. ++vcpu->stat.int_exits;
  901. trace_kvm_exit(vcpu, INT_EXITS);
  902. if (need_resched()) {
  903. cond_resched();
  904. }
  905. ret = RESUME_GUEST;
  906. break;
  907. case T_COP_UNUSABLE:
  908. kvm_debug("T_COP_UNUSABLE: @ PC: %p\n", opc);
  909. ++vcpu->stat.cop_unusable_exits;
  910. trace_kvm_exit(vcpu, COP_UNUSABLE_EXITS);
  911. ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
  912. /* XXXKYMA: Might need to return to user space */
  913. if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN) {
  914. ret = RESUME_HOST;
  915. }
  916. break;
  917. case T_TLB_MOD:
  918. ++vcpu->stat.tlbmod_exits;
  919. trace_kvm_exit(vcpu, TLBMOD_EXITS);
  920. ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
  921. break;
  922. case T_TLB_ST_MISS:
  923. kvm_debug
  924. ("TLB ST fault: cause %#x, status %#lx, PC: %p, BadVaddr: %#lx\n",
  925. cause, kvm_read_c0_guest_status(vcpu->arch.cop0), opc,
  926. badvaddr);
  927. ++vcpu->stat.tlbmiss_st_exits;
  928. trace_kvm_exit(vcpu, TLBMISS_ST_EXITS);
  929. ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
  930. break;
  931. case T_TLB_LD_MISS:
  932. kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
  933. cause, opc, badvaddr);
  934. ++vcpu->stat.tlbmiss_ld_exits;
  935. trace_kvm_exit(vcpu, TLBMISS_LD_EXITS);
  936. ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
  937. break;
  938. case T_ADDR_ERR_ST:
  939. ++vcpu->stat.addrerr_st_exits;
  940. trace_kvm_exit(vcpu, ADDRERR_ST_EXITS);
  941. ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
  942. break;
  943. case T_ADDR_ERR_LD:
  944. ++vcpu->stat.addrerr_ld_exits;
  945. trace_kvm_exit(vcpu, ADDRERR_LD_EXITS);
  946. ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
  947. break;
  948. case T_SYSCALL:
  949. ++vcpu->stat.syscall_exits;
  950. trace_kvm_exit(vcpu, SYSCALL_EXITS);
  951. ret = kvm_mips_callbacks->handle_syscall(vcpu);
  952. break;
  953. case T_RES_INST:
  954. ++vcpu->stat.resvd_inst_exits;
  955. trace_kvm_exit(vcpu, RESVD_INST_EXITS);
  956. ret = kvm_mips_callbacks->handle_res_inst(vcpu);
  957. break;
  958. case T_BREAK:
  959. ++vcpu->stat.break_inst_exits;
  960. trace_kvm_exit(vcpu, BREAK_INST_EXITS);
  961. ret = kvm_mips_callbacks->handle_break(vcpu);
  962. break;
  963. default:
  964. kvm_err
  965. ("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x BadVaddr: %#lx Status: %#lx\n",
  966. exccode, opc, kvm_get_inst(opc, vcpu), badvaddr,
  967. kvm_read_c0_guest_status(vcpu->arch.cop0));
  968. kvm_arch_vcpu_dump_regs(vcpu);
  969. run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  970. ret = RESUME_HOST;
  971. break;
  972. }
  973. skip_emul:
  974. local_irq_disable();
  975. if (er == EMULATE_DONE && !(ret & RESUME_HOST))
  976. kvm_mips_deliver_interrupts(vcpu, cause);
  977. if (!(ret & RESUME_HOST)) {
  978. /* Only check for signals if not already exiting to userspace */
  979. if (signal_pending(current)) {
  980. run->exit_reason = KVM_EXIT_INTR;
  981. ret = (-EINTR << 2) | RESUME_HOST;
  982. ++vcpu->stat.signal_exits;
  983. trace_kvm_exit(vcpu, SIGNAL_EXITS);
  984. }
  985. }
  986. return ret;
  987. }
  988. int __init kvm_mips_init(void)
  989. {
  990. int ret;
  991. ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
  992. if (ret)
  993. return ret;
  994. /* On MIPS, kernel modules are executed from "mapped space", which requires TLBs.
  995. * The TLB handling code is statically linked with the rest of the kernel (kvm_tlb.c)
  996. * to avoid the possibility of double faulting. The issue is that the TLB code
  997. * references routines that are part of the the KVM module,
  998. * which are only available once the module is loaded.
  999. */
  1000. kvm_mips_gfn_to_pfn = gfn_to_pfn;
  1001. kvm_mips_release_pfn_clean = kvm_release_pfn_clean;
  1002. kvm_mips_is_error_pfn = is_error_pfn;
  1003. pr_info("KVM/MIPS Initialized\n");
  1004. return 0;
  1005. }
  1006. void __exit kvm_mips_exit(void)
  1007. {
  1008. kvm_exit();
  1009. kvm_mips_gfn_to_pfn = NULL;
  1010. kvm_mips_release_pfn_clean = NULL;
  1011. kvm_mips_is_error_pfn = NULL;
  1012. pr_info("KVM/MIPS unloaded\n");
  1013. }
  1014. module_init(kvm_mips_init);
  1015. module_exit(kvm_mips_exit);
  1016. EXPORT_TRACEPOINT_SYMBOL(kvm_exit);