traps.c 53 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173
  1. /*
  2. * This file is subject to the terms and conditions of the GNU General Public
  3. * License. See the file "COPYING" in the main directory of this archive
  4. * for more details.
  5. *
  6. * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
  7. * Copyright (C) 1995, 1996 Paul M. Antoine
  8. * Copyright (C) 1998 Ulf Carlsson
  9. * Copyright (C) 1999 Silicon Graphics, Inc.
  10. * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
  11. * Copyright (C) 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki
  12. * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc. All rights reserved.
  13. * Copyright (C) 2014, Imagination Technologies Ltd.
  14. */
  15. #include <linux/bug.h>
  16. #include <linux/compiler.h>
  17. #include <linux/context_tracking.h>
  18. #include <linux/cpu_pm.h>
  19. #include <linux/kexec.h>
  20. #include <linux/init.h>
  21. #include <linux/kernel.h>
  22. #include <linux/module.h>
  23. #include <linux/mm.h>
  24. #include <linux/sched.h>
  25. #include <linux/smp.h>
  26. #include <linux/spinlock.h>
  27. #include <linux/kallsyms.h>
  28. #include <linux/bootmem.h>
  29. #include <linux/interrupt.h>
  30. #include <linux/ptrace.h>
  31. #include <linux/kgdb.h>
  32. #include <linux/kdebug.h>
  33. #include <linux/kprobes.h>
  34. #include <linux/notifier.h>
  35. #include <linux/kdb.h>
  36. #include <linux/irq.h>
  37. #include <linux/perf_event.h>
  38. #include <asm/bootinfo.h>
  39. #include <asm/branch.h>
  40. #include <asm/break.h>
  41. #include <asm/cop2.h>
  42. #include <asm/cpu.h>
  43. #include <asm/cpu-type.h>
  44. #include <asm/dsp.h>
  45. #include <asm/fpu.h>
  46. #include <asm/fpu_emulator.h>
  47. #include <asm/idle.h>
  48. #include <asm/mipsregs.h>
  49. #include <asm/mipsmtregs.h>
  50. #include <asm/module.h>
  51. #include <asm/msa.h>
  52. #include <asm/pgtable.h>
  53. #include <asm/ptrace.h>
  54. #include <asm/sections.h>
  55. #include <asm/tlbdebug.h>
  56. #include <asm/traps.h>
  57. #include <asm/uaccess.h>
  58. #include <asm/watch.h>
  59. #include <asm/mmu_context.h>
  60. #include <asm/types.h>
  61. #include <asm/stacktrace.h>
  62. #include <asm/uasm.h>
  63. extern void check_wait(void);
  64. extern asmlinkage void rollback_handle_int(void);
  65. extern asmlinkage void handle_int(void);
  66. extern u32 handle_tlbl[];
  67. extern u32 handle_tlbs[];
  68. extern u32 handle_tlbm[];
  69. extern asmlinkage void handle_adel(void);
  70. extern asmlinkage void handle_ades(void);
  71. extern asmlinkage void handle_ibe(void);
  72. extern asmlinkage void handle_dbe(void);
  73. extern asmlinkage void handle_sys(void);
  74. extern asmlinkage void handle_bp(void);
  75. extern asmlinkage void handle_ri(void);
  76. extern asmlinkage void handle_ri_rdhwr_vivt(void);
  77. extern asmlinkage void handle_ri_rdhwr(void);
  78. extern asmlinkage void handle_cpu(void);
  79. extern asmlinkage void handle_ov(void);
  80. extern asmlinkage void handle_tr(void);
  81. extern asmlinkage void handle_msa_fpe(void);
  82. extern asmlinkage void handle_fpe(void);
  83. extern asmlinkage void handle_ftlb(void);
  84. extern asmlinkage void handle_msa(void);
  85. extern asmlinkage void handle_mdmx(void);
  86. extern asmlinkage void handle_watch(void);
  87. extern asmlinkage void handle_mt(void);
  88. extern asmlinkage void handle_dsp(void);
  89. extern asmlinkage void handle_mcheck(void);
  90. extern asmlinkage void handle_reserved(void);
  91. void (*board_be_init)(void);
  92. int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
  93. void (*board_nmi_handler_setup)(void);
  94. void (*board_ejtag_handler_setup)(void);
  95. void (*board_bind_eic_interrupt)(int irq, int regset);
  96. void (*board_ebase_setup)(void);
  97. void(*board_cache_error_setup)(void);
  98. static void show_raw_backtrace(unsigned long reg29)
  99. {
  100. unsigned long *sp = (unsigned long *)(reg29 & ~3);
  101. unsigned long addr;
  102. printk("Call Trace:");
  103. #ifdef CONFIG_KALLSYMS
  104. printk("\n");
  105. #endif
  106. while (!kstack_end(sp)) {
  107. unsigned long __user *p =
  108. (unsigned long __user *)(unsigned long)sp++;
  109. if (__get_user(addr, p)) {
  110. printk(" (Bad stack address)");
  111. break;
  112. }
  113. if (__kernel_text_address(addr))
  114. print_ip_sym(addr);
  115. }
  116. printk("\n");
  117. }
  118. #ifdef CONFIG_KALLSYMS
  119. int raw_show_trace;
  120. static int __init set_raw_show_trace(char *str)
  121. {
  122. raw_show_trace = 1;
  123. return 1;
  124. }
  125. __setup("raw_show_trace", set_raw_show_trace);
  126. #endif
  127. static void show_backtrace(struct task_struct *task, const struct pt_regs *regs)
  128. {
  129. unsigned long sp = regs->regs[29];
  130. unsigned long ra = regs->regs[31];
  131. unsigned long pc = regs->cp0_epc;
  132. if (!task)
  133. task = current;
  134. if (raw_show_trace || !__kernel_text_address(pc)) {
  135. show_raw_backtrace(sp);
  136. return;
  137. }
  138. printk("Call Trace:\n");
  139. do {
  140. print_ip_sym(pc);
  141. pc = unwind_stack(task, &sp, pc, &ra);
  142. } while (pc);
  143. printk("\n");
  144. }
  145. /*
  146. * This routine abuses get_user()/put_user() to reference pointers
  147. * with at least a bit of error checking ...
  148. */
  149. static void show_stacktrace(struct task_struct *task,
  150. const struct pt_regs *regs)
  151. {
  152. const int field = 2 * sizeof(unsigned long);
  153. long stackdata;
  154. int i;
  155. unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
  156. printk("Stack :");
  157. i = 0;
  158. while ((unsigned long) sp & (PAGE_SIZE - 1)) {
  159. if (i && ((i % (64 / field)) == 0))
  160. printk("\n ");
  161. if (i > 39) {
  162. printk(" ...");
  163. break;
  164. }
  165. if (__get_user(stackdata, sp++)) {
  166. printk(" (Bad stack address)");
  167. break;
  168. }
  169. printk(" %0*lx", field, stackdata);
  170. i++;
  171. }
  172. printk("\n");
  173. show_backtrace(task, regs);
  174. }
  175. void show_stack(struct task_struct *task, unsigned long *sp)
  176. {
  177. struct pt_regs regs;
  178. if (sp) {
  179. regs.regs[29] = (unsigned long)sp;
  180. regs.regs[31] = 0;
  181. regs.cp0_epc = 0;
  182. } else {
  183. if (task && task != current) {
  184. regs.regs[29] = task->thread.reg29;
  185. regs.regs[31] = 0;
  186. regs.cp0_epc = task->thread.reg31;
  187. #ifdef CONFIG_KGDB_KDB
  188. } else if (atomic_read(&kgdb_active) != -1 &&
  189. kdb_current_regs) {
  190. memcpy(&regs, kdb_current_regs, sizeof(regs));
  191. #endif /* CONFIG_KGDB_KDB */
  192. } else {
  193. prepare_frametrace(&regs);
  194. }
  195. }
  196. show_stacktrace(task, &regs);
  197. }
  198. static void show_code(unsigned int __user *pc)
  199. {
  200. long i;
  201. unsigned short __user *pc16 = NULL;
  202. printk("\nCode:");
  203. if ((unsigned long)pc & 1)
  204. pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
  205. for(i = -3 ; i < 6 ; i++) {
  206. unsigned int insn;
  207. if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
  208. printk(" (Bad address in epc)\n");
  209. break;
  210. }
  211. printk("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
  212. }
  213. }
  214. static void __show_regs(const struct pt_regs *regs)
  215. {
  216. const int field = 2 * sizeof(unsigned long);
  217. unsigned int cause = regs->cp0_cause;
  218. int i;
  219. show_regs_print_info(KERN_DEFAULT);
  220. /*
  221. * Saved main processor registers
  222. */
  223. for (i = 0; i < 32; ) {
  224. if ((i % 4) == 0)
  225. printk("$%2d :", i);
  226. if (i == 0)
  227. printk(" %0*lx", field, 0UL);
  228. else if (i == 26 || i == 27)
  229. printk(" %*s", field, "");
  230. else
  231. printk(" %0*lx", field, regs->regs[i]);
  232. i++;
  233. if ((i % 4) == 0)
  234. printk("\n");
  235. }
  236. #ifdef CONFIG_CPU_HAS_SMARTMIPS
  237. printk("Acx : %0*lx\n", field, regs->acx);
  238. #endif
  239. printk("Hi : %0*lx\n", field, regs->hi);
  240. printk("Lo : %0*lx\n", field, regs->lo);
  241. /*
  242. * Saved cp0 registers
  243. */
  244. printk("epc : %0*lx %pS\n", field, regs->cp0_epc,
  245. (void *) regs->cp0_epc);
  246. printk(" %s\n", print_tainted());
  247. printk("ra : %0*lx %pS\n", field, regs->regs[31],
  248. (void *) regs->regs[31]);
  249. printk("Status: %08x ", (uint32_t) regs->cp0_status);
  250. if (cpu_has_3kex) {
  251. if (regs->cp0_status & ST0_KUO)
  252. printk("KUo ");
  253. if (regs->cp0_status & ST0_IEO)
  254. printk("IEo ");
  255. if (regs->cp0_status & ST0_KUP)
  256. printk("KUp ");
  257. if (regs->cp0_status & ST0_IEP)
  258. printk("IEp ");
  259. if (regs->cp0_status & ST0_KUC)
  260. printk("KUc ");
  261. if (regs->cp0_status & ST0_IEC)
  262. printk("IEc ");
  263. } else if (cpu_has_4kex) {
  264. if (regs->cp0_status & ST0_KX)
  265. printk("KX ");
  266. if (regs->cp0_status & ST0_SX)
  267. printk("SX ");
  268. if (regs->cp0_status & ST0_UX)
  269. printk("UX ");
  270. switch (regs->cp0_status & ST0_KSU) {
  271. case KSU_USER:
  272. printk("USER ");
  273. break;
  274. case KSU_SUPERVISOR:
  275. printk("SUPERVISOR ");
  276. break;
  277. case KSU_KERNEL:
  278. printk("KERNEL ");
  279. break;
  280. default:
  281. printk("BAD_MODE ");
  282. break;
  283. }
  284. if (regs->cp0_status & ST0_ERL)
  285. printk("ERL ");
  286. if (regs->cp0_status & ST0_EXL)
  287. printk("EXL ");
  288. if (regs->cp0_status & ST0_IE)
  289. printk("IE ");
  290. }
  291. printk("\n");
  292. printk("Cause : %08x\n", cause);
  293. cause = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
  294. if (1 <= cause && cause <= 5)
  295. printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
  296. printk("PrId : %08x (%s)\n", read_c0_prid(),
  297. cpu_name_string());
  298. }
  299. /*
  300. * FIXME: really the generic show_regs should take a const pointer argument.
  301. */
  302. void show_regs(struct pt_regs *regs)
  303. {
  304. __show_regs((struct pt_regs *)regs);
  305. }
  306. void show_registers(struct pt_regs *regs)
  307. {
  308. const int field = 2 * sizeof(unsigned long);
  309. mm_segment_t old_fs = get_fs();
  310. __show_regs(regs);
  311. print_modules();
  312. printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
  313. current->comm, current->pid, current_thread_info(), current,
  314. field, current_thread_info()->tp_value);
  315. if (cpu_has_userlocal) {
  316. unsigned long tls;
  317. tls = read_c0_userlocal();
  318. if (tls != current_thread_info()->tp_value)
  319. printk("*HwTLS: %0*lx\n", field, tls);
  320. }
  321. if (!user_mode(regs))
  322. /* Necessary for getting the correct stack content */
  323. set_fs(KERNEL_DS);
  324. show_stacktrace(current, regs);
  325. show_code((unsigned int __user *) regs->cp0_epc);
  326. printk("\n");
  327. set_fs(old_fs);
  328. }
  329. static int regs_to_trapnr(struct pt_regs *regs)
  330. {
  331. return (regs->cp0_cause >> 2) & 0x1f;
  332. }
  333. static DEFINE_RAW_SPINLOCK(die_lock);
  334. void __noreturn die(const char *str, struct pt_regs *regs)
  335. {
  336. static int die_counter;
  337. int sig = SIGSEGV;
  338. oops_enter();
  339. if (notify_die(DIE_OOPS, str, regs, 0, regs_to_trapnr(regs),
  340. SIGSEGV) == NOTIFY_STOP)
  341. sig = 0;
  342. console_verbose();
  343. raw_spin_lock_irq(&die_lock);
  344. bust_spinlocks(1);
  345. printk("%s[#%d]:\n", str, ++die_counter);
  346. show_registers(regs);
  347. add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
  348. raw_spin_unlock_irq(&die_lock);
  349. oops_exit();
  350. if (in_interrupt())
  351. panic("Fatal exception in interrupt");
  352. if (panic_on_oops) {
  353. printk(KERN_EMERG "Fatal exception: panic in 5 seconds");
  354. ssleep(5);
  355. panic("Fatal exception");
  356. }
  357. if (regs && kexec_should_crash(current))
  358. crash_kexec(regs);
  359. do_exit(sig);
  360. }
  361. extern struct exception_table_entry __start___dbe_table[];
  362. extern struct exception_table_entry __stop___dbe_table[];
  363. __asm__(
  364. " .section __dbe_table, \"a\"\n"
  365. " .previous \n");
  366. /* Given an address, look for it in the exception tables. */
  367. static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
  368. {
  369. const struct exception_table_entry *e;
  370. e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
  371. if (!e)
  372. e = search_module_dbetables(addr);
  373. return e;
  374. }
  375. asmlinkage void do_be(struct pt_regs *regs)
  376. {
  377. const int field = 2 * sizeof(unsigned long);
  378. const struct exception_table_entry *fixup = NULL;
  379. int data = regs->cp0_cause & 4;
  380. int action = MIPS_BE_FATAL;
  381. enum ctx_state prev_state;
  382. prev_state = exception_enter();
  383. /* XXX For now. Fixme, this searches the wrong table ... */
  384. if (data && !user_mode(regs))
  385. fixup = search_dbe_tables(exception_epc(regs));
  386. if (fixup)
  387. action = MIPS_BE_FIXUP;
  388. if (board_be_handler)
  389. action = board_be_handler(regs, fixup != NULL);
  390. switch (action) {
  391. case MIPS_BE_DISCARD:
  392. goto out;
  393. case MIPS_BE_FIXUP:
  394. if (fixup) {
  395. regs->cp0_epc = fixup->nextinsn;
  396. goto out;
  397. }
  398. break;
  399. default:
  400. break;
  401. }
  402. /*
  403. * Assume it would be too dangerous to continue ...
  404. */
  405. printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
  406. data ? "Data" : "Instruction",
  407. field, regs->cp0_epc, field, regs->regs[31]);
  408. if (notify_die(DIE_OOPS, "bus error", regs, 0, regs_to_trapnr(regs),
  409. SIGBUS) == NOTIFY_STOP)
  410. goto out;
  411. die_if_kernel("Oops", regs);
  412. force_sig(SIGBUS, current);
  413. out:
  414. exception_exit(prev_state);
  415. }
  416. /*
  417. * ll/sc, rdhwr, sync emulation
  418. */
  419. #define OPCODE 0xfc000000
  420. #define BASE 0x03e00000
  421. #define RT 0x001f0000
  422. #define OFFSET 0x0000ffff
  423. #define LL 0xc0000000
  424. #define SC 0xe0000000
  425. #define SPEC0 0x00000000
  426. #define SPEC3 0x7c000000
  427. #define RD 0x0000f800
  428. #define FUNC 0x0000003f
  429. #define SYNC 0x0000000f
  430. #define RDHWR 0x0000003b
  431. /* microMIPS definitions */
  432. #define MM_POOL32A_FUNC 0xfc00ffff
  433. #define MM_RDHWR 0x00006b3c
  434. #define MM_RS 0x001f0000
  435. #define MM_RT 0x03e00000
  436. /*
  437. * The ll_bit is cleared by r*_switch.S
  438. */
  439. unsigned int ll_bit;
  440. struct task_struct *ll_task;
  441. static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
  442. {
  443. unsigned long value, __user *vaddr;
  444. long offset;
  445. /*
  446. * analyse the ll instruction that just caused a ri exception
  447. * and put the referenced address to addr.
  448. */
  449. /* sign extend offset */
  450. offset = opcode & OFFSET;
  451. offset <<= 16;
  452. offset >>= 16;
  453. vaddr = (unsigned long __user *)
  454. ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
  455. if ((unsigned long)vaddr & 3)
  456. return SIGBUS;
  457. if (get_user(value, vaddr))
  458. return SIGSEGV;
  459. preempt_disable();
  460. if (ll_task == NULL || ll_task == current) {
  461. ll_bit = 1;
  462. } else {
  463. ll_bit = 0;
  464. }
  465. ll_task = current;
  466. preempt_enable();
  467. regs->regs[(opcode & RT) >> 16] = value;
  468. return 0;
  469. }
  470. static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
  471. {
  472. unsigned long __user *vaddr;
  473. unsigned long reg;
  474. long offset;
  475. /*
  476. * analyse the sc instruction that just caused a ri exception
  477. * and put the referenced address to addr.
  478. */
  479. /* sign extend offset */
  480. offset = opcode & OFFSET;
  481. offset <<= 16;
  482. offset >>= 16;
  483. vaddr = (unsigned long __user *)
  484. ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
  485. reg = (opcode & RT) >> 16;
  486. if ((unsigned long)vaddr & 3)
  487. return SIGBUS;
  488. preempt_disable();
  489. if (ll_bit == 0 || ll_task != current) {
  490. regs->regs[reg] = 0;
  491. preempt_enable();
  492. return 0;
  493. }
  494. preempt_enable();
  495. if (put_user(regs->regs[reg], vaddr))
  496. return SIGSEGV;
  497. regs->regs[reg] = 1;
  498. return 0;
  499. }
  500. /*
  501. * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both
  502. * opcodes are supposed to result in coprocessor unusable exceptions if
  503. * executed on ll/sc-less processors. That's the theory. In practice a
  504. * few processors such as NEC's VR4100 throw reserved instruction exceptions
  505. * instead, so we're doing the emulation thing in both exception handlers.
  506. */
  507. static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
  508. {
  509. if ((opcode & OPCODE) == LL) {
  510. perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
  511. 1, regs, 0);
  512. return simulate_ll(regs, opcode);
  513. }
  514. if ((opcode & OPCODE) == SC) {
  515. perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
  516. 1, regs, 0);
  517. return simulate_sc(regs, opcode);
  518. }
  519. return -1; /* Must be something else ... */
  520. }
  521. /*
  522. * Simulate trapping 'rdhwr' instructions to provide user accessible
  523. * registers not implemented in hardware.
  524. */
  525. static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt)
  526. {
  527. struct thread_info *ti = task_thread_info(current);
  528. perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
  529. 1, regs, 0);
  530. switch (rd) {
  531. case 0: /* CPU number */
  532. regs->regs[rt] = smp_processor_id();
  533. return 0;
  534. case 1: /* SYNCI length */
  535. regs->regs[rt] = min(current_cpu_data.dcache.linesz,
  536. current_cpu_data.icache.linesz);
  537. return 0;
  538. case 2: /* Read count register */
  539. regs->regs[rt] = read_c0_count();
  540. return 0;
  541. case 3: /* Count register resolution */
  542. switch (current_cpu_type()) {
  543. case CPU_20KC:
  544. case CPU_25KF:
  545. regs->regs[rt] = 1;
  546. break;
  547. default:
  548. regs->regs[rt] = 2;
  549. }
  550. return 0;
  551. case 29:
  552. regs->regs[rt] = ti->tp_value;
  553. return 0;
  554. default:
  555. return -1;
  556. }
  557. }
  558. static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode)
  559. {
  560. if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
  561. int rd = (opcode & RD) >> 11;
  562. int rt = (opcode & RT) >> 16;
  563. simulate_rdhwr(regs, rd, rt);
  564. return 0;
  565. }
  566. /* Not ours. */
  567. return -1;
  568. }
  569. static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned short opcode)
  570. {
  571. if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) {
  572. int rd = (opcode & MM_RS) >> 16;
  573. int rt = (opcode & MM_RT) >> 21;
  574. simulate_rdhwr(regs, rd, rt);
  575. return 0;
  576. }
  577. /* Not ours. */
  578. return -1;
  579. }
  580. static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
  581. {
  582. if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
  583. perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
  584. 1, regs, 0);
  585. return 0;
  586. }
  587. return -1; /* Must be something else ... */
  588. }
  589. asmlinkage void do_ov(struct pt_regs *regs)
  590. {
  591. enum ctx_state prev_state;
  592. siginfo_t info;
  593. prev_state = exception_enter();
  594. die_if_kernel("Integer overflow", regs);
  595. info.si_code = FPE_INTOVF;
  596. info.si_signo = SIGFPE;
  597. info.si_errno = 0;
  598. info.si_addr = (void __user *) regs->cp0_epc;
  599. force_sig_info(SIGFPE, &info, current);
  600. exception_exit(prev_state);
  601. }
  602. int process_fpemu_return(int sig, void __user *fault_addr)
  603. {
  604. if (sig == SIGSEGV || sig == SIGBUS) {
  605. struct siginfo si = {0};
  606. si.si_addr = fault_addr;
  607. si.si_signo = sig;
  608. if (sig == SIGSEGV) {
  609. down_read(&current->mm->mmap_sem);
  610. if (find_vma(current->mm, (unsigned long)fault_addr))
  611. si.si_code = SEGV_ACCERR;
  612. else
  613. si.si_code = SEGV_MAPERR;
  614. up_read(&current->mm->mmap_sem);
  615. } else {
  616. si.si_code = BUS_ADRERR;
  617. }
  618. force_sig_info(sig, &si, current);
  619. return 1;
  620. } else if (sig) {
  621. force_sig(sig, current);
  622. return 1;
  623. } else {
  624. return 0;
  625. }
  626. }
  627. /*
  628. * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
  629. */
  630. asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
  631. {
  632. enum ctx_state prev_state;
  633. siginfo_t info = {0};
  634. prev_state = exception_enter();
  635. if (notify_die(DIE_FP, "FP exception", regs, 0, regs_to_trapnr(regs),
  636. SIGFPE) == NOTIFY_STOP)
  637. goto out;
  638. die_if_kernel("FP exception in kernel code", regs);
  639. if (fcr31 & FPU_CSR_UNI_X) {
  640. int sig;
  641. void __user *fault_addr = NULL;
  642. /*
  643. * Unimplemented operation exception. If we've got the full
  644. * software emulator on-board, let's use it...
  645. *
  646. * Force FPU to dump state into task/thread context. We're
  647. * moving a lot of data here for what is probably a single
  648. * instruction, but the alternative is to pre-decode the FP
  649. * register operands before invoking the emulator, which seems
  650. * a bit extreme for what should be an infrequent event.
  651. */
  652. /* Ensure 'resume' not overwrite saved fp context again. */
  653. lose_fpu(1);
  654. /* Run the emulator */
  655. sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
  656. &fault_addr);
  657. /*
  658. * We can't allow the emulated instruction to leave any of
  659. * the cause bit set in $fcr31.
  660. */
  661. current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
  662. /* Restore the hardware register state */
  663. own_fpu(1); /* Using the FPU again. */
  664. /* If something went wrong, signal */
  665. process_fpemu_return(sig, fault_addr);
  666. goto out;
  667. } else if (fcr31 & FPU_CSR_INV_X)
  668. info.si_code = FPE_FLTINV;
  669. else if (fcr31 & FPU_CSR_DIV_X)
  670. info.si_code = FPE_FLTDIV;
  671. else if (fcr31 & FPU_CSR_OVF_X)
  672. info.si_code = FPE_FLTOVF;
  673. else if (fcr31 & FPU_CSR_UDF_X)
  674. info.si_code = FPE_FLTUND;
  675. else if (fcr31 & FPU_CSR_INE_X)
  676. info.si_code = FPE_FLTRES;
  677. else
  678. info.si_code = __SI_FAULT;
  679. info.si_signo = SIGFPE;
  680. info.si_errno = 0;
  681. info.si_addr = (void __user *) regs->cp0_epc;
  682. force_sig_info(SIGFPE, &info, current);
  683. out:
  684. exception_exit(prev_state);
  685. }
  686. static void do_trap_or_bp(struct pt_regs *regs, unsigned int code,
  687. const char *str)
  688. {
  689. siginfo_t info;
  690. char b[40];
  691. #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
  692. if (kgdb_ll_trap(DIE_TRAP, str, regs, code, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
  693. return;
  694. #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
  695. if (notify_die(DIE_TRAP, str, regs, code, regs_to_trapnr(regs),
  696. SIGTRAP) == NOTIFY_STOP)
  697. return;
  698. /*
  699. * A short test says that IRIX 5.3 sends SIGTRAP for all trap
  700. * insns, even for trap and break codes that indicate arithmetic
  701. * failures. Weird ...
  702. * But should we continue the brokenness??? --macro
  703. */
  704. switch (code) {
  705. case BRK_OVERFLOW:
  706. case BRK_DIVZERO:
  707. scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
  708. die_if_kernel(b, regs);
  709. if (code == BRK_DIVZERO)
  710. info.si_code = FPE_INTDIV;
  711. else
  712. info.si_code = FPE_INTOVF;
  713. info.si_signo = SIGFPE;
  714. info.si_errno = 0;
  715. info.si_addr = (void __user *) regs->cp0_epc;
  716. force_sig_info(SIGFPE, &info, current);
  717. break;
  718. case BRK_BUG:
  719. die_if_kernel("Kernel bug detected", regs);
  720. force_sig(SIGTRAP, current);
  721. break;
  722. case BRK_MEMU:
  723. /*
  724. * Address errors may be deliberately induced by the FPU
  725. * emulator to retake control of the CPU after executing the
  726. * instruction in the delay slot of an emulated branch.
  727. *
  728. * Terminate if exception was recognized as a delay slot return
  729. * otherwise handle as normal.
  730. */
  731. if (do_dsemulret(regs))
  732. return;
  733. die_if_kernel("Math emu break/trap", regs);
  734. force_sig(SIGTRAP, current);
  735. break;
  736. default:
  737. scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
  738. die_if_kernel(b, regs);
  739. force_sig(SIGTRAP, current);
  740. }
  741. }
  742. asmlinkage void do_bp(struct pt_regs *regs)
  743. {
  744. unsigned int opcode, bcode;
  745. enum ctx_state prev_state;
  746. unsigned long epc;
  747. u16 instr[2];
  748. mm_segment_t seg;
  749. seg = get_fs();
  750. if (!user_mode(regs))
  751. set_fs(KERNEL_DS);
  752. prev_state = exception_enter();
  753. if (get_isa16_mode(regs->cp0_epc)) {
  754. /* Calculate EPC. */
  755. epc = exception_epc(regs);
  756. if (cpu_has_mmips) {
  757. if ((__get_user(instr[0], (u16 __user *)msk_isa16_mode(epc)) ||
  758. (__get_user(instr[1], (u16 __user *)msk_isa16_mode(epc + 2)))))
  759. goto out_sigsegv;
  760. opcode = (instr[0] << 16) | instr[1];
  761. } else {
  762. /* MIPS16e mode */
  763. if (__get_user(instr[0],
  764. (u16 __user *)msk_isa16_mode(epc)))
  765. goto out_sigsegv;
  766. bcode = (instr[0] >> 6) & 0x3f;
  767. do_trap_or_bp(regs, bcode, "Break");
  768. goto out;
  769. }
  770. } else {
  771. if (__get_user(opcode,
  772. (unsigned int __user *) exception_epc(regs)))
  773. goto out_sigsegv;
  774. }
  775. /*
  776. * There is the ancient bug in the MIPS assemblers that the break
  777. * code starts left to bit 16 instead to bit 6 in the opcode.
  778. * Gas is bug-compatible, but not always, grrr...
  779. * We handle both cases with a simple heuristics. --macro
  780. */
  781. bcode = ((opcode >> 6) & ((1 << 20) - 1));
  782. if (bcode >= (1 << 10))
  783. bcode >>= 10;
  784. /*
  785. * notify the kprobe handlers, if instruction is likely to
  786. * pertain to them.
  787. */
  788. switch (bcode) {
  789. case BRK_KPROBE_BP:
  790. if (notify_die(DIE_BREAK, "debug", regs, bcode,
  791. regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
  792. goto out;
  793. else
  794. break;
  795. case BRK_KPROBE_SSTEPBP:
  796. if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode,
  797. regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
  798. goto out;
  799. else
  800. break;
  801. default:
  802. break;
  803. }
  804. do_trap_or_bp(regs, bcode, "Break");
  805. out:
  806. set_fs(seg);
  807. exception_exit(prev_state);
  808. return;
  809. out_sigsegv:
  810. force_sig(SIGSEGV, current);
  811. goto out;
  812. }
  813. asmlinkage void do_tr(struct pt_regs *regs)
  814. {
  815. u32 opcode, tcode = 0;
  816. enum ctx_state prev_state;
  817. u16 instr[2];
  818. mm_segment_t seg;
  819. unsigned long epc = msk_isa16_mode(exception_epc(regs));
  820. seg = get_fs();
  821. if (!user_mode(regs))
  822. set_fs(get_ds());
  823. prev_state = exception_enter();
  824. if (get_isa16_mode(regs->cp0_epc)) {
  825. if (__get_user(instr[0], (u16 __user *)(epc + 0)) ||
  826. __get_user(instr[1], (u16 __user *)(epc + 2)))
  827. goto out_sigsegv;
  828. opcode = (instr[0] << 16) | instr[1];
  829. /* Immediate versions don't provide a code. */
  830. if (!(opcode & OPCODE))
  831. tcode = (opcode >> 12) & ((1 << 4) - 1);
  832. } else {
  833. if (__get_user(opcode, (u32 __user *)epc))
  834. goto out_sigsegv;
  835. /* Immediate versions don't provide a code. */
  836. if (!(opcode & OPCODE))
  837. tcode = (opcode >> 6) & ((1 << 10) - 1);
  838. }
  839. do_trap_or_bp(regs, tcode, "Trap");
  840. out:
  841. set_fs(seg);
  842. exception_exit(prev_state);
  843. return;
  844. out_sigsegv:
  845. force_sig(SIGSEGV, current);
  846. goto out;
  847. }
  848. asmlinkage void do_ri(struct pt_regs *regs)
  849. {
  850. unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
  851. unsigned long old_epc = regs->cp0_epc;
  852. unsigned long old31 = regs->regs[31];
  853. enum ctx_state prev_state;
  854. unsigned int opcode = 0;
  855. int status = -1;
  856. prev_state = exception_enter();
  857. if (notify_die(DIE_RI, "RI Fault", regs, 0, regs_to_trapnr(regs),
  858. SIGILL) == NOTIFY_STOP)
  859. goto out;
  860. die_if_kernel("Reserved instruction in kernel code", regs);
  861. if (unlikely(compute_return_epc(regs) < 0))
  862. goto out;
  863. if (get_isa16_mode(regs->cp0_epc)) {
  864. unsigned short mmop[2] = { 0 };
  865. if (unlikely(get_user(mmop[0], epc) < 0))
  866. status = SIGSEGV;
  867. if (unlikely(get_user(mmop[1], epc) < 0))
  868. status = SIGSEGV;
  869. opcode = (mmop[0] << 16) | mmop[1];
  870. if (status < 0)
  871. status = simulate_rdhwr_mm(regs, opcode);
  872. } else {
  873. if (unlikely(get_user(opcode, epc) < 0))
  874. status = SIGSEGV;
  875. if (!cpu_has_llsc && status < 0)
  876. status = simulate_llsc(regs, opcode);
  877. if (status < 0)
  878. status = simulate_rdhwr_normal(regs, opcode);
  879. if (status < 0)
  880. status = simulate_sync(regs, opcode);
  881. }
  882. if (status < 0)
  883. status = SIGILL;
  884. if (unlikely(status > 0)) {
  885. regs->cp0_epc = old_epc; /* Undo skip-over. */
  886. regs->regs[31] = old31;
  887. force_sig(status, current);
  888. }
  889. out:
  890. exception_exit(prev_state);
  891. }
  892. /*
  893. * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
  894. * emulated more than some threshold number of instructions, force migration to
  895. * a "CPU" that has FP support.
  896. */
  897. static void mt_ase_fp_affinity(void)
  898. {
  899. #ifdef CONFIG_MIPS_MT_FPAFF
  900. if (mt_fpemul_threshold > 0 &&
  901. ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
  902. /*
  903. * If there's no FPU present, or if the application has already
  904. * restricted the allowed set to exclude any CPUs with FPUs,
  905. * we'll skip the procedure.
  906. */
  907. if (cpus_intersects(current->cpus_allowed, mt_fpu_cpumask)) {
  908. cpumask_t tmask;
  909. current->thread.user_cpus_allowed
  910. = current->cpus_allowed;
  911. cpus_and(tmask, current->cpus_allowed,
  912. mt_fpu_cpumask);
  913. set_cpus_allowed_ptr(current, &tmask);
  914. set_thread_flag(TIF_FPUBOUND);
  915. }
  916. }
  917. #endif /* CONFIG_MIPS_MT_FPAFF */
  918. }
  919. /*
  920. * No lock; only written during early bootup by CPU 0.
  921. */
  922. static RAW_NOTIFIER_HEAD(cu2_chain);
  923. int __ref register_cu2_notifier(struct notifier_block *nb)
  924. {
  925. return raw_notifier_chain_register(&cu2_chain, nb);
  926. }
  927. int cu2_notifier_call_chain(unsigned long val, void *v)
  928. {
  929. return raw_notifier_call_chain(&cu2_chain, val, v);
  930. }
  931. static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
  932. void *data)
  933. {
  934. struct pt_regs *regs = data;
  935. die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
  936. "instruction", regs);
  937. force_sig(SIGILL, current);
  938. return NOTIFY_OK;
  939. }
  940. static int enable_restore_fp_context(int msa)
  941. {
  942. int err, was_fpu_owner;
  943. if (!used_math()) {
  944. /* First time FP context user. */
  945. err = init_fpu();
  946. if (msa && !err)
  947. enable_msa();
  948. if (!err)
  949. set_used_math();
  950. return err;
  951. }
  952. /*
  953. * This task has formerly used the FP context.
  954. *
  955. * If this thread has no live MSA vector context then we can simply
  956. * restore the scalar FP context. If it has live MSA vector context
  957. * (that is, it has or may have used MSA since last performing a
  958. * function call) then we'll need to restore the vector context. This
  959. * applies even if we're currently only executing a scalar FP
  960. * instruction. This is because if we were to later execute an MSA
  961. * instruction then we'd either have to:
  962. *
  963. * - Restore the vector context & clobber any registers modified by
  964. * scalar FP instructions between now & then.
  965. *
  966. * or
  967. *
  968. * - Not restore the vector context & lose the most significant bits
  969. * of all vector registers.
  970. *
  971. * Neither of those options is acceptable. We cannot restore the least
  972. * significant bits of the registers now & only restore the most
  973. * significant bits later because the most significant bits of any
  974. * vector registers whose aliased FP register is modified now will have
  975. * been zeroed. We'd have no way to know that when restoring the vector
  976. * context & thus may load an outdated value for the most significant
  977. * bits of a vector register.
  978. */
  979. if (!msa && !thread_msa_context_live())
  980. return own_fpu(1);
  981. /*
  982. * This task is using or has previously used MSA. Thus we require
  983. * that Status.FR == 1.
  984. */
  985. was_fpu_owner = is_fpu_owner();
  986. err = own_fpu(0);
  987. if (err)
  988. return err;
  989. enable_msa();
  990. write_msa_csr(current->thread.fpu.msacsr);
  991. set_thread_flag(TIF_USEDMSA);
  992. /*
  993. * If this is the first time that the task is using MSA and it has
  994. * previously used scalar FP in this time slice then we already nave
  995. * FP context which we shouldn't clobber.
  996. */
  997. if (!test_and_set_thread_flag(TIF_MSA_CTX_LIVE) && was_fpu_owner)
  998. return 0;
  999. /* We need to restore the vector context. */
  1000. restore_msa(current);
  1001. return 0;
  1002. }
  1003. asmlinkage void do_cpu(struct pt_regs *regs)
  1004. {
  1005. enum ctx_state prev_state;
  1006. unsigned int __user *epc;
  1007. unsigned long old_epc, old31;
  1008. unsigned int opcode;
  1009. unsigned int cpid;
  1010. int status, err;
  1011. unsigned long __maybe_unused flags;
  1012. prev_state = exception_enter();
  1013. cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
  1014. if (cpid != 2)
  1015. die_if_kernel("do_cpu invoked from kernel context!", regs);
  1016. switch (cpid) {
  1017. case 0:
  1018. epc = (unsigned int __user *)exception_epc(regs);
  1019. old_epc = regs->cp0_epc;
  1020. old31 = regs->regs[31];
  1021. opcode = 0;
  1022. status = -1;
  1023. if (unlikely(compute_return_epc(regs) < 0))
  1024. goto out;
  1025. if (get_isa16_mode(regs->cp0_epc)) {
  1026. unsigned short mmop[2] = { 0 };
  1027. if (unlikely(get_user(mmop[0], epc) < 0))
  1028. status = SIGSEGV;
  1029. if (unlikely(get_user(mmop[1], epc) < 0))
  1030. status = SIGSEGV;
  1031. opcode = (mmop[0] << 16) | mmop[1];
  1032. if (status < 0)
  1033. status = simulate_rdhwr_mm(regs, opcode);
  1034. } else {
  1035. if (unlikely(get_user(opcode, epc) < 0))
  1036. status = SIGSEGV;
  1037. if (!cpu_has_llsc && status < 0)
  1038. status = simulate_llsc(regs, opcode);
  1039. if (status < 0)
  1040. status = simulate_rdhwr_normal(regs, opcode);
  1041. }
  1042. if (status < 0)
  1043. status = SIGILL;
  1044. if (unlikely(status > 0)) {
  1045. regs->cp0_epc = old_epc; /* Undo skip-over. */
  1046. regs->regs[31] = old31;
  1047. force_sig(status, current);
  1048. }
  1049. goto out;
  1050. case 3:
  1051. /*
  1052. * Old (MIPS I and MIPS II) processors will set this code
  1053. * for COP1X opcode instructions that replaced the original
  1054. * COP3 space. We don't limit COP1 space instructions in
  1055. * the emulator according to the CPU ISA, so we want to
  1056. * treat COP1X instructions consistently regardless of which
  1057. * code the CPU chose. Therefore we redirect this trap to
  1058. * the FP emulator too.
  1059. *
  1060. * Then some newer FPU-less processors use this code
  1061. * erroneously too, so they are covered by this choice
  1062. * as well.
  1063. */
  1064. if (raw_cpu_has_fpu)
  1065. break;
  1066. /* Fall through. */
  1067. case 1:
  1068. err = enable_restore_fp_context(0);
  1069. if (!raw_cpu_has_fpu || err) {
  1070. int sig;
  1071. void __user *fault_addr = NULL;
  1072. sig = fpu_emulator_cop1Handler(regs,
  1073. &current->thread.fpu,
  1074. 0, &fault_addr);
  1075. if (!process_fpemu_return(sig, fault_addr) && !err)
  1076. mt_ase_fp_affinity();
  1077. }
  1078. goto out;
  1079. case 2:
  1080. raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
  1081. goto out;
  1082. }
  1083. force_sig(SIGILL, current);
  1084. out:
  1085. exception_exit(prev_state);
  1086. }
  1087. asmlinkage void do_msa_fpe(struct pt_regs *regs)
  1088. {
  1089. enum ctx_state prev_state;
  1090. prev_state = exception_enter();
  1091. die_if_kernel("do_msa_fpe invoked from kernel context!", regs);
  1092. force_sig(SIGFPE, current);
  1093. exception_exit(prev_state);
  1094. }
  1095. asmlinkage void do_msa(struct pt_regs *regs)
  1096. {
  1097. enum ctx_state prev_state;
  1098. int err;
  1099. prev_state = exception_enter();
  1100. if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) {
  1101. force_sig(SIGILL, current);
  1102. goto out;
  1103. }
  1104. die_if_kernel("do_msa invoked from kernel context!", regs);
  1105. err = enable_restore_fp_context(1);
  1106. if (err)
  1107. force_sig(SIGILL, current);
  1108. out:
  1109. exception_exit(prev_state);
  1110. }
  1111. asmlinkage void do_mdmx(struct pt_regs *regs)
  1112. {
  1113. enum ctx_state prev_state;
  1114. prev_state = exception_enter();
  1115. force_sig(SIGILL, current);
  1116. exception_exit(prev_state);
  1117. }
  1118. /*
  1119. * Called with interrupts disabled.
  1120. */
  1121. asmlinkage void do_watch(struct pt_regs *regs)
  1122. {
  1123. enum ctx_state prev_state;
  1124. u32 cause;
  1125. prev_state = exception_enter();
  1126. /*
  1127. * Clear WP (bit 22) bit of cause register so we don't loop
  1128. * forever.
  1129. */
  1130. cause = read_c0_cause();
  1131. cause &= ~(1 << 22);
  1132. write_c0_cause(cause);
  1133. /*
  1134. * If the current thread has the watch registers loaded, save
  1135. * their values and send SIGTRAP. Otherwise another thread
  1136. * left the registers set, clear them and continue.
  1137. */
  1138. if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
  1139. mips_read_watch_registers();
  1140. local_irq_enable();
  1141. force_sig(SIGTRAP, current);
  1142. } else {
  1143. mips_clear_watch_registers();
  1144. local_irq_enable();
  1145. }
  1146. exception_exit(prev_state);
  1147. }
  1148. asmlinkage void do_mcheck(struct pt_regs *regs)
  1149. {
  1150. const int field = 2 * sizeof(unsigned long);
  1151. int multi_match = regs->cp0_status & ST0_TS;
  1152. enum ctx_state prev_state;
  1153. prev_state = exception_enter();
  1154. show_regs(regs);
  1155. if (multi_match) {
  1156. printk("Index : %0x\n", read_c0_index());
  1157. printk("Pagemask: %0x\n", read_c0_pagemask());
  1158. printk("EntryHi : %0*lx\n", field, read_c0_entryhi());
  1159. printk("EntryLo0: %0*lx\n", field, read_c0_entrylo0());
  1160. printk("EntryLo1: %0*lx\n", field, read_c0_entrylo1());
  1161. printk("\n");
  1162. dump_tlb_all();
  1163. }
  1164. show_code((unsigned int __user *) regs->cp0_epc);
  1165. /*
  1166. * Some chips may have other causes of machine check (e.g. SB1
  1167. * graduation timer)
  1168. */
  1169. panic("Caught Machine Check exception - %scaused by multiple "
  1170. "matching entries in the TLB.",
  1171. (multi_match) ? "" : "not ");
  1172. }
  1173. asmlinkage void do_mt(struct pt_regs *regs)
  1174. {
  1175. int subcode;
  1176. subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
  1177. >> VPECONTROL_EXCPT_SHIFT;
  1178. switch (subcode) {
  1179. case 0:
  1180. printk(KERN_DEBUG "Thread Underflow\n");
  1181. break;
  1182. case 1:
  1183. printk(KERN_DEBUG "Thread Overflow\n");
  1184. break;
  1185. case 2:
  1186. printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
  1187. break;
  1188. case 3:
  1189. printk(KERN_DEBUG "Gating Storage Exception\n");
  1190. break;
  1191. case 4:
  1192. printk(KERN_DEBUG "YIELD Scheduler Exception\n");
  1193. break;
  1194. case 5:
  1195. printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
  1196. break;
  1197. default:
  1198. printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
  1199. subcode);
  1200. break;
  1201. }
  1202. die_if_kernel("MIPS MT Thread exception in kernel", regs);
  1203. force_sig(SIGILL, current);
  1204. }
  1205. asmlinkage void do_dsp(struct pt_regs *regs)
  1206. {
  1207. if (cpu_has_dsp)
  1208. panic("Unexpected DSP exception");
  1209. force_sig(SIGILL, current);
  1210. }
  1211. asmlinkage void do_reserved(struct pt_regs *regs)
  1212. {
  1213. /*
  1214. * Game over - no way to handle this if it ever occurs. Most probably
  1215. * caused by a new unknown cpu type or after another deadly
  1216. * hard/software error.
  1217. */
  1218. show_regs(regs);
  1219. panic("Caught reserved exception %ld - should not happen.",
  1220. (regs->cp0_cause & 0x7f) >> 2);
  1221. }
  1222. static int __initdata l1parity = 1;
  1223. static int __init nol1parity(char *s)
  1224. {
  1225. l1parity = 0;
  1226. return 1;
  1227. }
  1228. __setup("nol1par", nol1parity);
  1229. static int __initdata l2parity = 1;
  1230. static int __init nol2parity(char *s)
  1231. {
  1232. l2parity = 0;
  1233. return 1;
  1234. }
  1235. __setup("nol2par", nol2parity);
  1236. /*
  1237. * Some MIPS CPUs can enable/disable for cache parity detection, but do
  1238. * it different ways.
  1239. */
  1240. static inline void parity_protection_init(void)
  1241. {
  1242. switch (current_cpu_type()) {
  1243. case CPU_24K:
  1244. case CPU_34K:
  1245. case CPU_74K:
  1246. case CPU_1004K:
  1247. case CPU_1074K:
  1248. case CPU_INTERAPTIV:
  1249. case CPU_PROAPTIV:
  1250. case CPU_P5600:
  1251. {
  1252. #define ERRCTL_PE 0x80000000
  1253. #define ERRCTL_L2P 0x00800000
  1254. unsigned long errctl;
  1255. unsigned int l1parity_present, l2parity_present;
  1256. errctl = read_c0_ecc();
  1257. errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
  1258. /* probe L1 parity support */
  1259. write_c0_ecc(errctl | ERRCTL_PE);
  1260. back_to_back_c0_hazard();
  1261. l1parity_present = (read_c0_ecc() & ERRCTL_PE);
  1262. /* probe L2 parity support */
  1263. write_c0_ecc(errctl|ERRCTL_L2P);
  1264. back_to_back_c0_hazard();
  1265. l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
  1266. if (l1parity_present && l2parity_present) {
  1267. if (l1parity)
  1268. errctl |= ERRCTL_PE;
  1269. if (l1parity ^ l2parity)
  1270. errctl |= ERRCTL_L2P;
  1271. } else if (l1parity_present) {
  1272. if (l1parity)
  1273. errctl |= ERRCTL_PE;
  1274. } else if (l2parity_present) {
  1275. if (l2parity)
  1276. errctl |= ERRCTL_L2P;
  1277. } else {
  1278. /* No parity available */
  1279. }
  1280. printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
  1281. write_c0_ecc(errctl);
  1282. back_to_back_c0_hazard();
  1283. errctl = read_c0_ecc();
  1284. printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
  1285. if (l1parity_present)
  1286. printk(KERN_INFO "Cache parity protection %sabled\n",
  1287. (errctl & ERRCTL_PE) ? "en" : "dis");
  1288. if (l2parity_present) {
  1289. if (l1parity_present && l1parity)
  1290. errctl ^= ERRCTL_L2P;
  1291. printk(KERN_INFO "L2 cache parity protection %sabled\n",
  1292. (errctl & ERRCTL_L2P) ? "en" : "dis");
  1293. }
  1294. }
  1295. break;
  1296. case CPU_5KC:
  1297. case CPU_5KE:
  1298. case CPU_LOONGSON1:
  1299. write_c0_ecc(0x80000000);
  1300. back_to_back_c0_hazard();
  1301. /* Set the PE bit (bit 31) in the c0_errctl register. */
  1302. printk(KERN_INFO "Cache parity protection %sabled\n",
  1303. (read_c0_ecc() & 0x80000000) ? "en" : "dis");
  1304. break;
  1305. case CPU_20KC:
  1306. case CPU_25KF:
  1307. /* Clear the DE bit (bit 16) in the c0_status register. */
  1308. printk(KERN_INFO "Enable cache parity protection for "
  1309. "MIPS 20KC/25KF CPUs.\n");
  1310. clear_c0_status(ST0_DE);
  1311. break;
  1312. default:
  1313. break;
  1314. }
  1315. }
  1316. asmlinkage void cache_parity_error(void)
  1317. {
  1318. const int field = 2 * sizeof(unsigned long);
  1319. unsigned int reg_val;
  1320. /* For the moment, report the problem and hang. */
  1321. printk("Cache error exception:\n");
  1322. printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
  1323. reg_val = read_c0_cacheerr();
  1324. printk("c0_cacheerr == %08x\n", reg_val);
  1325. printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
  1326. reg_val & (1<<30) ? "secondary" : "primary",
  1327. reg_val & (1<<31) ? "data" : "insn");
  1328. if (cpu_has_mips_r2 &&
  1329. ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
  1330. pr_err("Error bits: %s%s%s%s%s%s%s%s\n",
  1331. reg_val & (1<<29) ? "ED " : "",
  1332. reg_val & (1<<28) ? "ET " : "",
  1333. reg_val & (1<<27) ? "ES " : "",
  1334. reg_val & (1<<26) ? "EE " : "",
  1335. reg_val & (1<<25) ? "EB " : "",
  1336. reg_val & (1<<24) ? "EI " : "",
  1337. reg_val & (1<<23) ? "E1 " : "",
  1338. reg_val & (1<<22) ? "E0 " : "");
  1339. } else {
  1340. pr_err("Error bits: %s%s%s%s%s%s%s\n",
  1341. reg_val & (1<<29) ? "ED " : "",
  1342. reg_val & (1<<28) ? "ET " : "",
  1343. reg_val & (1<<26) ? "EE " : "",
  1344. reg_val & (1<<25) ? "EB " : "",
  1345. reg_val & (1<<24) ? "EI " : "",
  1346. reg_val & (1<<23) ? "E1 " : "",
  1347. reg_val & (1<<22) ? "E0 " : "");
  1348. }
  1349. printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
  1350. #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
  1351. if (reg_val & (1<<22))
  1352. printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
  1353. if (reg_val & (1<<23))
  1354. printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
  1355. #endif
  1356. panic("Can't handle the cache error!");
  1357. }
  1358. asmlinkage void do_ftlb(void)
  1359. {
  1360. const int field = 2 * sizeof(unsigned long);
  1361. unsigned int reg_val;
  1362. /* For the moment, report the problem and hang. */
  1363. if (cpu_has_mips_r2 &&
  1364. ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
  1365. pr_err("FTLB error exception, cp0_ecc=0x%08x:\n",
  1366. read_c0_ecc());
  1367. pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
  1368. reg_val = read_c0_cacheerr();
  1369. pr_err("c0_cacheerr == %08x\n", reg_val);
  1370. if ((reg_val & 0xc0000000) == 0xc0000000) {
  1371. pr_err("Decoded c0_cacheerr: FTLB parity error\n");
  1372. } else {
  1373. pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
  1374. reg_val & (1<<30) ? "secondary" : "primary",
  1375. reg_val & (1<<31) ? "data" : "insn");
  1376. }
  1377. } else {
  1378. pr_err("FTLB error exception\n");
  1379. }
  1380. /* Just print the cacheerr bits for now */
  1381. cache_parity_error();
  1382. }
  1383. /*
  1384. * SDBBP EJTAG debug exception handler.
  1385. * We skip the instruction and return to the next instruction.
  1386. */
  1387. void ejtag_exception_handler(struct pt_regs *regs)
  1388. {
  1389. const int field = 2 * sizeof(unsigned long);
  1390. unsigned long depc, old_epc, old_ra;
  1391. unsigned int debug;
  1392. printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
  1393. depc = read_c0_depc();
  1394. debug = read_c0_debug();
  1395. printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
  1396. if (debug & 0x80000000) {
  1397. /*
  1398. * In branch delay slot.
  1399. * We cheat a little bit here and use EPC to calculate the
  1400. * debug return address (DEPC). EPC is restored after the
  1401. * calculation.
  1402. */
  1403. old_epc = regs->cp0_epc;
  1404. old_ra = regs->regs[31];
  1405. regs->cp0_epc = depc;
  1406. compute_return_epc(regs);
  1407. depc = regs->cp0_epc;
  1408. regs->cp0_epc = old_epc;
  1409. regs->regs[31] = old_ra;
  1410. } else
  1411. depc += 4;
  1412. write_c0_depc(depc);
  1413. #if 0
  1414. printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
  1415. write_c0_debug(debug | 0x100);
  1416. #endif
  1417. }
  1418. /*
  1419. * NMI exception handler.
  1420. * No lock; only written during early bootup by CPU 0.
  1421. */
  1422. static RAW_NOTIFIER_HEAD(nmi_chain);
  1423. int register_nmi_notifier(struct notifier_block *nb)
  1424. {
  1425. return raw_notifier_chain_register(&nmi_chain, nb);
  1426. }
  1427. void __noreturn nmi_exception_handler(struct pt_regs *regs)
  1428. {
  1429. char str[100];
  1430. raw_notifier_call_chain(&nmi_chain, 0, regs);
  1431. bust_spinlocks(1);
  1432. snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n",
  1433. smp_processor_id(), regs->cp0_epc);
  1434. regs->cp0_epc = read_c0_errorepc();
  1435. die(str, regs);
  1436. }
  1437. #define VECTORSPACING 0x100 /* for EI/VI mode */
  1438. unsigned long ebase;
  1439. unsigned long exception_handlers[32];
  1440. unsigned long vi_handlers[64];
  1441. void __init *set_except_vector(int n, void *addr)
  1442. {
  1443. unsigned long handler = (unsigned long) addr;
  1444. unsigned long old_handler;
  1445. #ifdef CONFIG_CPU_MICROMIPS
  1446. /*
  1447. * Only the TLB handlers are cache aligned with an even
  1448. * address. All other handlers are on an odd address and
  1449. * require no modification. Otherwise, MIPS32 mode will
  1450. * be entered when handling any TLB exceptions. That
  1451. * would be bad...since we must stay in microMIPS mode.
  1452. */
  1453. if (!(handler & 0x1))
  1454. handler |= 1;
  1455. #endif
  1456. old_handler = xchg(&exception_handlers[n], handler);
  1457. if (n == 0 && cpu_has_divec) {
  1458. #ifdef CONFIG_CPU_MICROMIPS
  1459. unsigned long jump_mask = ~((1 << 27) - 1);
  1460. #else
  1461. unsigned long jump_mask = ~((1 << 28) - 1);
  1462. #endif
  1463. u32 *buf = (u32 *)(ebase + 0x200);
  1464. unsigned int k0 = 26;
  1465. if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
  1466. uasm_i_j(&buf, handler & ~jump_mask);
  1467. uasm_i_nop(&buf);
  1468. } else {
  1469. UASM_i_LA(&buf, k0, handler);
  1470. uasm_i_jr(&buf, k0);
  1471. uasm_i_nop(&buf);
  1472. }
  1473. local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
  1474. }
  1475. return (void *)old_handler;
  1476. }
  1477. static void do_default_vi(void)
  1478. {
  1479. show_regs(get_irq_regs());
  1480. panic("Caught unexpected vectored interrupt.");
  1481. }
  1482. static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
  1483. {
  1484. unsigned long handler;
  1485. unsigned long old_handler = vi_handlers[n];
  1486. int srssets = current_cpu_data.srsets;
  1487. u16 *h;
  1488. unsigned char *b;
  1489. BUG_ON(!cpu_has_veic && !cpu_has_vint);
  1490. if (addr == NULL) {
  1491. handler = (unsigned long) do_default_vi;
  1492. srs = 0;
  1493. } else
  1494. handler = (unsigned long) addr;
  1495. vi_handlers[n] = handler;
  1496. b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
  1497. if (srs >= srssets)
  1498. panic("Shadow register set %d not supported", srs);
  1499. if (cpu_has_veic) {
  1500. if (board_bind_eic_interrupt)
  1501. board_bind_eic_interrupt(n, srs);
  1502. } else if (cpu_has_vint) {
  1503. /* SRSMap is only defined if shadow sets are implemented */
  1504. if (srssets > 1)
  1505. change_c0_srsmap(0xf << n*4, srs << n*4);
  1506. }
  1507. if (srs == 0) {
  1508. /*
  1509. * If no shadow set is selected then use the default handler
  1510. * that does normal register saving and standard interrupt exit
  1511. */
  1512. extern char except_vec_vi, except_vec_vi_lui;
  1513. extern char except_vec_vi_ori, except_vec_vi_end;
  1514. extern char rollback_except_vec_vi;
  1515. char *vec_start = using_rollback_handler() ?
  1516. &rollback_except_vec_vi : &except_vec_vi;
  1517. #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
  1518. const int lui_offset = &except_vec_vi_lui - vec_start + 2;
  1519. const int ori_offset = &except_vec_vi_ori - vec_start + 2;
  1520. #else
  1521. const int lui_offset = &except_vec_vi_lui - vec_start;
  1522. const int ori_offset = &except_vec_vi_ori - vec_start;
  1523. #endif
  1524. const int handler_len = &except_vec_vi_end - vec_start;
  1525. if (handler_len > VECTORSPACING) {
  1526. /*
  1527. * Sigh... panicing won't help as the console
  1528. * is probably not configured :(
  1529. */
  1530. panic("VECTORSPACING too small");
  1531. }
  1532. set_handler(((unsigned long)b - ebase), vec_start,
  1533. #ifdef CONFIG_CPU_MICROMIPS
  1534. (handler_len - 1));
  1535. #else
  1536. handler_len);
  1537. #endif
  1538. h = (u16 *)(b + lui_offset);
  1539. *h = (handler >> 16) & 0xffff;
  1540. h = (u16 *)(b + ori_offset);
  1541. *h = (handler & 0xffff);
  1542. local_flush_icache_range((unsigned long)b,
  1543. (unsigned long)(b+handler_len));
  1544. }
  1545. else {
  1546. /*
  1547. * In other cases jump directly to the interrupt handler. It
  1548. * is the handler's responsibility to save registers if required
  1549. * (eg hi/lo) and return from the exception using "eret".
  1550. */
  1551. u32 insn;
  1552. h = (u16 *)b;
  1553. /* j handler */
  1554. #ifdef CONFIG_CPU_MICROMIPS
  1555. insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1);
  1556. #else
  1557. insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2);
  1558. #endif
  1559. h[0] = (insn >> 16) & 0xffff;
  1560. h[1] = insn & 0xffff;
  1561. h[2] = 0;
  1562. h[3] = 0;
  1563. local_flush_icache_range((unsigned long)b,
  1564. (unsigned long)(b+8));
  1565. }
  1566. return (void *)old_handler;
  1567. }
  1568. void *set_vi_handler(int n, vi_handler_t addr)
  1569. {
  1570. return set_vi_srs_handler(n, addr, 0);
  1571. }
  1572. extern void tlb_init(void);
  1573. /*
  1574. * Timer interrupt
  1575. */
  1576. int cp0_compare_irq;
  1577. EXPORT_SYMBOL_GPL(cp0_compare_irq);
  1578. int cp0_compare_irq_shift;
  1579. /*
  1580. * Performance counter IRQ or -1 if shared with timer
  1581. */
  1582. int cp0_perfcount_irq;
  1583. EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
  1584. static int noulri;
  1585. static int __init ulri_disable(char *s)
  1586. {
  1587. pr_info("Disabling ulri\n");
  1588. noulri = 1;
  1589. return 1;
  1590. }
  1591. __setup("noulri", ulri_disable);
  1592. /* configure STATUS register */
  1593. static void configure_status(void)
  1594. {
  1595. /*
  1596. * Disable coprocessors and select 32-bit or 64-bit addressing
  1597. * and the 16/32 or 32/32 FPR register model. Reset the BEV
  1598. * flag that some firmware may have left set and the TS bit (for
  1599. * IP27). Set XX for ISA IV code to work.
  1600. */
  1601. unsigned int status_set = ST0_CU0;
  1602. #ifdef CONFIG_64BIT
  1603. status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
  1604. #endif
  1605. if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV)
  1606. status_set |= ST0_XX;
  1607. if (cpu_has_dsp)
  1608. status_set |= ST0_MX;
  1609. change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
  1610. status_set);
  1611. }
  1612. /* configure HWRENA register */
  1613. static void configure_hwrena(void)
  1614. {
  1615. unsigned int hwrena = cpu_hwrena_impl_bits;
  1616. if (cpu_has_mips_r2)
  1617. hwrena |= 0x0000000f;
  1618. if (!noulri && cpu_has_userlocal)
  1619. hwrena |= (1 << 29);
  1620. if (hwrena)
  1621. write_c0_hwrena(hwrena);
  1622. }
  1623. static void configure_exception_vector(void)
  1624. {
  1625. if (cpu_has_veic || cpu_has_vint) {
  1626. unsigned long sr = set_c0_status(ST0_BEV);
  1627. write_c0_ebase(ebase);
  1628. write_c0_status(sr);
  1629. /* Setting vector spacing enables EI/VI mode */
  1630. change_c0_intctl(0x3e0, VECTORSPACING);
  1631. }
  1632. if (cpu_has_divec) {
  1633. if (cpu_has_mipsmt) {
  1634. unsigned int vpflags = dvpe();
  1635. set_c0_cause(CAUSEF_IV);
  1636. evpe(vpflags);
  1637. } else
  1638. set_c0_cause(CAUSEF_IV);
  1639. }
  1640. }
  1641. void per_cpu_trap_init(bool is_boot_cpu)
  1642. {
  1643. unsigned int cpu = smp_processor_id();
  1644. configure_status();
  1645. configure_hwrena();
  1646. configure_exception_vector();
  1647. /*
  1648. * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
  1649. *
  1650. * o read IntCtl.IPTI to determine the timer interrupt
  1651. * o read IntCtl.IPPCI to determine the performance counter interrupt
  1652. */
  1653. if (cpu_has_mips_r2) {
  1654. cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
  1655. cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
  1656. cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
  1657. if (cp0_perfcount_irq == cp0_compare_irq)
  1658. cp0_perfcount_irq = -1;
  1659. } else {
  1660. cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
  1661. cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
  1662. cp0_perfcount_irq = -1;
  1663. }
  1664. if (!cpu_data[cpu].asid_cache)
  1665. cpu_data[cpu].asid_cache = ASID_FIRST_VERSION;
  1666. atomic_inc(&init_mm.mm_count);
  1667. current->active_mm = &init_mm;
  1668. BUG_ON(current->mm);
  1669. enter_lazy_tlb(&init_mm, current);
  1670. /* Boot CPU's cache setup in setup_arch(). */
  1671. if (!is_boot_cpu)
  1672. cpu_cache_init();
  1673. tlb_init();
  1674. TLBMISS_HANDLER_SETUP();
  1675. }
  1676. /* Install CPU exception handler */
  1677. void set_handler(unsigned long offset, void *addr, unsigned long size)
  1678. {
  1679. #ifdef CONFIG_CPU_MICROMIPS
  1680. memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size);
  1681. #else
  1682. memcpy((void *)(ebase + offset), addr, size);
  1683. #endif
  1684. local_flush_icache_range(ebase + offset, ebase + offset + size);
  1685. }
  1686. static char panic_null_cerr[] =
  1687. "Trying to set NULL cache error exception handler";
  1688. /*
  1689. * Install uncached CPU exception handler.
  1690. * This is suitable only for the cache error exception which is the only
  1691. * exception handler that is being run uncached.
  1692. */
  1693. void set_uncached_handler(unsigned long offset, void *addr,
  1694. unsigned long size)
  1695. {
  1696. unsigned long uncached_ebase = CKSEG1ADDR(ebase);
  1697. if (!addr)
  1698. panic(panic_null_cerr);
  1699. memcpy((void *)(uncached_ebase + offset), addr, size);
  1700. }
  1701. static int __initdata rdhwr_noopt;
  1702. static int __init set_rdhwr_noopt(char *str)
  1703. {
  1704. rdhwr_noopt = 1;
  1705. return 1;
  1706. }
  1707. __setup("rdhwr_noopt", set_rdhwr_noopt);
  1708. void __init trap_init(void)
  1709. {
  1710. extern char except_vec3_generic;
  1711. extern char except_vec4;
  1712. extern char except_vec3_r4000;
  1713. unsigned long i;
  1714. check_wait();
  1715. #if defined(CONFIG_KGDB)
  1716. if (kgdb_early_setup)
  1717. return; /* Already done */
  1718. #endif
  1719. if (cpu_has_veic || cpu_has_vint) {
  1720. unsigned long size = 0x200 + VECTORSPACING*64;
  1721. ebase = (unsigned long)
  1722. __alloc_bootmem(size, 1 << fls(size), 0);
  1723. } else {
  1724. #ifdef CONFIG_KVM_GUEST
  1725. #define KVM_GUEST_KSEG0 0x40000000
  1726. ebase = KVM_GUEST_KSEG0;
  1727. #else
  1728. ebase = CKSEG0;
  1729. #endif
  1730. if (cpu_has_mips_r2)
  1731. ebase += (read_c0_ebase() & 0x3ffff000);
  1732. }
  1733. if (cpu_has_mmips) {
  1734. unsigned int config3 = read_c0_config3();
  1735. if (IS_ENABLED(CONFIG_CPU_MICROMIPS))
  1736. write_c0_config3(config3 | MIPS_CONF3_ISA_OE);
  1737. else
  1738. write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE);
  1739. }
  1740. if (board_ebase_setup)
  1741. board_ebase_setup();
  1742. per_cpu_trap_init(true);
  1743. /*
  1744. * Copy the generic exception handlers to their final destination.
  1745. * This will be overriden later as suitable for a particular
  1746. * configuration.
  1747. */
  1748. set_handler(0x180, &except_vec3_generic, 0x80);
  1749. /*
  1750. * Setup default vectors
  1751. */
  1752. for (i = 0; i <= 31; i++)
  1753. set_except_vector(i, handle_reserved);
  1754. /*
  1755. * Copy the EJTAG debug exception vector handler code to it's final
  1756. * destination.
  1757. */
  1758. if (cpu_has_ejtag && board_ejtag_handler_setup)
  1759. board_ejtag_handler_setup();
  1760. /*
  1761. * Only some CPUs have the watch exceptions.
  1762. */
  1763. if (cpu_has_watch)
  1764. set_except_vector(23, handle_watch);
  1765. /*
  1766. * Initialise interrupt handlers
  1767. */
  1768. if (cpu_has_veic || cpu_has_vint) {
  1769. int nvec = cpu_has_veic ? 64 : 8;
  1770. for (i = 0; i < nvec; i++)
  1771. set_vi_handler(i, NULL);
  1772. }
  1773. else if (cpu_has_divec)
  1774. set_handler(0x200, &except_vec4, 0x8);
  1775. /*
  1776. * Some CPUs can enable/disable for cache parity detection, but does
  1777. * it different ways.
  1778. */
  1779. parity_protection_init();
  1780. /*
  1781. * The Data Bus Errors / Instruction Bus Errors are signaled
  1782. * by external hardware. Therefore these two exceptions
  1783. * may have board specific handlers.
  1784. */
  1785. if (board_be_init)
  1786. board_be_init();
  1787. set_except_vector(0, using_rollback_handler() ? rollback_handle_int
  1788. : handle_int);
  1789. set_except_vector(1, handle_tlbm);
  1790. set_except_vector(2, handle_tlbl);
  1791. set_except_vector(3, handle_tlbs);
  1792. set_except_vector(4, handle_adel);
  1793. set_except_vector(5, handle_ades);
  1794. set_except_vector(6, handle_ibe);
  1795. set_except_vector(7, handle_dbe);
  1796. set_except_vector(8, handle_sys);
  1797. set_except_vector(9, handle_bp);
  1798. set_except_vector(10, rdhwr_noopt ? handle_ri :
  1799. (cpu_has_vtag_icache ?
  1800. handle_ri_rdhwr_vivt : handle_ri_rdhwr));
  1801. set_except_vector(11, handle_cpu);
  1802. set_except_vector(12, handle_ov);
  1803. set_except_vector(13, handle_tr);
  1804. set_except_vector(14, handle_msa_fpe);
  1805. if (current_cpu_type() == CPU_R6000 ||
  1806. current_cpu_type() == CPU_R6000A) {
  1807. /*
  1808. * The R6000 is the only R-series CPU that features a machine
  1809. * check exception (similar to the R4000 cache error) and
  1810. * unaligned ldc1/sdc1 exception. The handlers have not been
  1811. * written yet. Well, anyway there is no R6000 machine on the
  1812. * current list of targets for Linux/MIPS.
  1813. * (Duh, crap, there is someone with a triple R6k machine)
  1814. */
  1815. //set_except_vector(14, handle_mc);
  1816. //set_except_vector(15, handle_ndc);
  1817. }
  1818. if (board_nmi_handler_setup)
  1819. board_nmi_handler_setup();
  1820. if (cpu_has_fpu && !cpu_has_nofpuex)
  1821. set_except_vector(15, handle_fpe);
  1822. set_except_vector(16, handle_ftlb);
  1823. set_except_vector(21, handle_msa);
  1824. set_except_vector(22, handle_mdmx);
  1825. if (cpu_has_mcheck)
  1826. set_except_vector(24, handle_mcheck);
  1827. if (cpu_has_mipsmt)
  1828. set_except_vector(25, handle_mt);
  1829. set_except_vector(26, handle_dsp);
  1830. if (board_cache_error_setup)
  1831. board_cache_error_setup();
  1832. if (cpu_has_vce)
  1833. /* Special exception: R4[04]00 uses also the divec space. */
  1834. set_handler(0x180, &except_vec3_r4000, 0x100);
  1835. else if (cpu_has_4kex)
  1836. set_handler(0x180, &except_vec3_generic, 0x80);
  1837. else
  1838. set_handler(0x080, &except_vec3_generic, 0x80);
  1839. local_flush_icache_range(ebase, ebase + 0x400);
  1840. sort_extable(__start___dbe_table, __stop___dbe_table);
  1841. cu2_notifier(default_cu2_call, 0x80000000); /* Run last */
  1842. }
  1843. static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd,
  1844. void *v)
  1845. {
  1846. switch (cmd) {
  1847. case CPU_PM_ENTER_FAILED:
  1848. case CPU_PM_EXIT:
  1849. configure_status();
  1850. configure_hwrena();
  1851. configure_exception_vector();
  1852. /* Restore register with CPU number for TLB handlers */
  1853. TLBMISS_HANDLER_RESTORE();
  1854. break;
  1855. }
  1856. return NOTIFY_OK;
  1857. }
  1858. static struct notifier_block trap_pm_notifier_block = {
  1859. .notifier_call = trap_pm_notifier,
  1860. };
  1861. static int __init trap_pm_init(void)
  1862. {
  1863. return cpu_pm_register_notifier(&trap_pm_notifier_block);
  1864. }
  1865. arch_initcall(trap_pm_init);