smp.c 9.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439
  1. /*
  2. * This program is free software; you can redistribute it and/or
  3. * modify it under the terms of the GNU General Public License
  4. * as published by the Free Software Foundation; either version 2
  5. * of the License, or (at your option) any later version.
  6. *
  7. * This program is distributed in the hope that it will be useful,
  8. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  9. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  10. * GNU General Public License for more details.
  11. *
  12. * You should have received a copy of the GNU General Public License
  13. * along with this program; if not, write to the Free Software
  14. * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  15. *
  16. * Copyright (C) 2000, 2001 Kanoj Sarcar
  17. * Copyright (C) 2000, 2001 Ralf Baechle
  18. * Copyright (C) 2000, 2001 Silicon Graphics, Inc.
  19. * Copyright (C) 2000, 2001, 2003 Broadcom Corporation
  20. */
  21. #include <linux/cache.h>
  22. #include <linux/delay.h>
  23. #include <linux/init.h>
  24. #include <linux/interrupt.h>
  25. #include <linux/smp.h>
  26. #include <linux/spinlock.h>
  27. #include <linux/threads.h>
  28. #include <linux/module.h>
  29. #include <linux/time.h>
  30. #include <linux/timex.h>
  31. #include <linux/sched.h>
  32. #include <linux/cpumask.h>
  33. #include <linux/cpu.h>
  34. #include <linux/err.h>
  35. #include <linux/ftrace.h>
  36. #include <linux/atomic.h>
  37. #include <asm/cpu.h>
  38. #include <asm/processor.h>
  39. #include <asm/idle.h>
  40. #include <asm/r4k-timer.h>
  41. #include <asm/mmu_context.h>
  42. #include <asm/time.h>
  43. #include <asm/setup.h>
  44. volatile cpumask_t cpu_callin_map; /* Bitmask of started secondaries */
  45. int __cpu_number_map[NR_CPUS]; /* Map physical to logical */
  46. EXPORT_SYMBOL(__cpu_number_map);
  47. int __cpu_logical_map[NR_CPUS]; /* Map logical to physical */
  48. EXPORT_SYMBOL(__cpu_logical_map);
  49. /* Number of TCs (or siblings in Intel speak) per CPU core */
  50. int smp_num_siblings = 1;
  51. EXPORT_SYMBOL(smp_num_siblings);
  52. /* representing the TCs (or siblings in Intel speak) of each logical CPU */
  53. cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
  54. EXPORT_SYMBOL(cpu_sibling_map);
  55. /* representing cpus for which sibling maps can be computed */
  56. static cpumask_t cpu_sibling_setup_map;
  57. cpumask_t cpu_coherent_mask;
  58. static inline void set_cpu_sibling_map(int cpu)
  59. {
  60. int i;
  61. cpu_set(cpu, cpu_sibling_setup_map);
  62. if (smp_num_siblings > 1) {
  63. for_each_cpu_mask(i, cpu_sibling_setup_map) {
  64. if (cpu_data[cpu].core == cpu_data[i].core) {
  65. cpu_set(i, cpu_sibling_map[cpu]);
  66. cpu_set(cpu, cpu_sibling_map[i]);
  67. }
  68. }
  69. } else
  70. cpu_set(cpu, cpu_sibling_map[cpu]);
  71. }
  72. struct plat_smp_ops *mp_ops;
  73. EXPORT_SYMBOL(mp_ops);
  74. void register_smp_ops(struct plat_smp_ops *ops)
  75. {
  76. if (mp_ops)
  77. printk(KERN_WARNING "Overriding previously set SMP ops\n");
  78. mp_ops = ops;
  79. }
  80. /*
  81. * First C code run on the secondary CPUs after being started up by
  82. * the master.
  83. */
  84. asmlinkage void start_secondary(void)
  85. {
  86. unsigned int cpu;
  87. cpu_probe();
  88. cpu_report();
  89. per_cpu_trap_init(false);
  90. mips_clockevent_init();
  91. mp_ops->init_secondary();
  92. /*
  93. * XXX parity protection should be folded in here when it's converted
  94. * to an option instead of something based on .cputype
  95. */
  96. calibrate_delay();
  97. preempt_disable();
  98. cpu = smp_processor_id();
  99. cpu_data[cpu].udelay_val = loops_per_jiffy;
  100. cpu_set(cpu, cpu_coherent_mask);
  101. notify_cpu_starting(cpu);
  102. set_cpu_online(cpu, true);
  103. set_cpu_sibling_map(cpu);
  104. cpu_set(cpu, cpu_callin_map);
  105. synchronise_count_slave(cpu);
  106. /*
  107. * irq will be enabled in ->smp_finish(), enabling it too early
  108. * is dangerous.
  109. */
  110. WARN_ON_ONCE(!irqs_disabled());
  111. mp_ops->smp_finish();
  112. cpu_startup_entry(CPUHP_ONLINE);
  113. }
  114. /*
  115. * Call into both interrupt handlers, as we share the IPI for them
  116. */
  117. void __irq_entry smp_call_function_interrupt(void)
  118. {
  119. irq_enter();
  120. generic_smp_call_function_interrupt();
  121. irq_exit();
  122. }
  123. static void stop_this_cpu(void *dummy)
  124. {
  125. /*
  126. * Remove this CPU:
  127. */
  128. set_cpu_online(smp_processor_id(), false);
  129. for (;;) {
  130. if (cpu_wait)
  131. (*cpu_wait)(); /* Wait if available. */
  132. }
  133. }
  134. void smp_send_stop(void)
  135. {
  136. smp_call_function(stop_this_cpu, NULL, 0);
  137. }
  138. void __init smp_cpus_done(unsigned int max_cpus)
  139. {
  140. }
  141. /* called from main before smp_init() */
  142. void __init smp_prepare_cpus(unsigned int max_cpus)
  143. {
  144. init_new_context(current, &init_mm);
  145. current_thread_info()->cpu = 0;
  146. mp_ops->prepare_cpus(max_cpus);
  147. set_cpu_sibling_map(0);
  148. #ifndef CONFIG_HOTPLUG_CPU
  149. init_cpu_present(cpu_possible_mask);
  150. #endif
  151. cpumask_copy(&cpu_coherent_mask, cpu_possible_mask);
  152. }
  153. /* preload SMP state for boot cpu */
  154. void smp_prepare_boot_cpu(void)
  155. {
  156. set_cpu_possible(0, true);
  157. set_cpu_online(0, true);
  158. cpu_set(0, cpu_callin_map);
  159. }
  160. int __cpu_up(unsigned int cpu, struct task_struct *tidle)
  161. {
  162. mp_ops->boot_secondary(cpu, tidle);
  163. /*
  164. * Trust is futile. We should really have timeouts ...
  165. */
  166. while (!cpu_isset(cpu, cpu_callin_map))
  167. udelay(100);
  168. synchronise_count_master(cpu);
  169. return 0;
  170. }
  171. /* Not really SMP stuff ... */
  172. int setup_profiling_timer(unsigned int multiplier)
  173. {
  174. return 0;
  175. }
  176. static void flush_tlb_all_ipi(void *info)
  177. {
  178. local_flush_tlb_all();
  179. }
  180. void flush_tlb_all(void)
  181. {
  182. on_each_cpu(flush_tlb_all_ipi, NULL, 1);
  183. }
  184. static void flush_tlb_mm_ipi(void *mm)
  185. {
  186. local_flush_tlb_mm((struct mm_struct *)mm);
  187. }
  188. /*
  189. * Special Variant of smp_call_function for use by TLB functions:
  190. *
  191. * o No return value
  192. * o collapses to normal function call on UP kernels
  193. * o collapses to normal function call on systems with a single shared
  194. * primary cache.
  195. */
  196. static inline void smp_on_other_tlbs(void (*func) (void *info), void *info)
  197. {
  198. smp_call_function(func, info, 1);
  199. }
  200. static inline void smp_on_each_tlb(void (*func) (void *info), void *info)
  201. {
  202. preempt_disable();
  203. smp_on_other_tlbs(func, info);
  204. func(info);
  205. preempt_enable();
  206. }
  207. /*
  208. * The following tlb flush calls are invoked when old translations are
  209. * being torn down, or pte attributes are changing. For single threaded
  210. * address spaces, a new context is obtained on the current cpu, and tlb
  211. * context on other cpus are invalidated to force a new context allocation
  212. * at switch_mm time, should the mm ever be used on other cpus. For
  213. * multithreaded address spaces, intercpu interrupts have to be sent.
  214. * Another case where intercpu interrupts are required is when the target
  215. * mm might be active on another cpu (eg debuggers doing the flushes on
  216. * behalf of debugees, kswapd stealing pages from another process etc).
  217. * Kanoj 07/00.
  218. */
  219. void flush_tlb_mm(struct mm_struct *mm)
  220. {
  221. preempt_disable();
  222. if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
  223. smp_on_other_tlbs(flush_tlb_mm_ipi, mm);
  224. } else {
  225. unsigned int cpu;
  226. for_each_online_cpu(cpu) {
  227. if (cpu != smp_processor_id() && cpu_context(cpu, mm))
  228. cpu_context(cpu, mm) = 0;
  229. }
  230. }
  231. local_flush_tlb_mm(mm);
  232. preempt_enable();
  233. }
  234. struct flush_tlb_data {
  235. struct vm_area_struct *vma;
  236. unsigned long addr1;
  237. unsigned long addr2;
  238. };
  239. static void flush_tlb_range_ipi(void *info)
  240. {
  241. struct flush_tlb_data *fd = info;
  242. local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
  243. }
  244. void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
  245. {
  246. struct mm_struct *mm = vma->vm_mm;
  247. preempt_disable();
  248. if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
  249. struct flush_tlb_data fd = {
  250. .vma = vma,
  251. .addr1 = start,
  252. .addr2 = end,
  253. };
  254. smp_on_other_tlbs(flush_tlb_range_ipi, &fd);
  255. } else {
  256. unsigned int cpu;
  257. for_each_online_cpu(cpu) {
  258. if (cpu != smp_processor_id() && cpu_context(cpu, mm))
  259. cpu_context(cpu, mm) = 0;
  260. }
  261. }
  262. local_flush_tlb_range(vma, start, end);
  263. preempt_enable();
  264. }
  265. static void flush_tlb_kernel_range_ipi(void *info)
  266. {
  267. struct flush_tlb_data *fd = info;
  268. local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
  269. }
  270. void flush_tlb_kernel_range(unsigned long start, unsigned long end)
  271. {
  272. struct flush_tlb_data fd = {
  273. .addr1 = start,
  274. .addr2 = end,
  275. };
  276. on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1);
  277. }
  278. static void flush_tlb_page_ipi(void *info)
  279. {
  280. struct flush_tlb_data *fd = info;
  281. local_flush_tlb_page(fd->vma, fd->addr1);
  282. }
  283. void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
  284. {
  285. preempt_disable();
  286. if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) {
  287. struct flush_tlb_data fd = {
  288. .vma = vma,
  289. .addr1 = page,
  290. };
  291. smp_on_other_tlbs(flush_tlb_page_ipi, &fd);
  292. } else {
  293. unsigned int cpu;
  294. for_each_online_cpu(cpu) {
  295. if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm))
  296. cpu_context(cpu, vma->vm_mm) = 0;
  297. }
  298. }
  299. local_flush_tlb_page(vma, page);
  300. preempt_enable();
  301. }
  302. static void flush_tlb_one_ipi(void *info)
  303. {
  304. unsigned long vaddr = (unsigned long) info;
  305. local_flush_tlb_one(vaddr);
  306. }
  307. void flush_tlb_one(unsigned long vaddr)
  308. {
  309. smp_on_each_tlb(flush_tlb_one_ipi, (void *) vaddr);
  310. }
  311. EXPORT_SYMBOL(flush_tlb_page);
  312. EXPORT_SYMBOL(flush_tlb_one);
  313. #if defined(CONFIG_KEXEC)
  314. void (*dump_ipi_function_ptr)(void *) = NULL;
  315. void dump_send_ipi(void (*dump_ipi_callback)(void *))
  316. {
  317. int i;
  318. int cpu = smp_processor_id();
  319. dump_ipi_function_ptr = dump_ipi_callback;
  320. smp_mb();
  321. for_each_online_cpu(i)
  322. if (i != cpu)
  323. mp_ops->send_ipi_single(i, SMP_DUMP);
  324. }
  325. EXPORT_SYMBOL(dump_send_ipi);
  326. #endif
  327. #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
  328. static DEFINE_PER_CPU(atomic_t, tick_broadcast_count);
  329. static DEFINE_PER_CPU(struct call_single_data, tick_broadcast_csd);
  330. void tick_broadcast(const struct cpumask *mask)
  331. {
  332. atomic_t *count;
  333. struct call_single_data *csd;
  334. int cpu;
  335. for_each_cpu(cpu, mask) {
  336. count = &per_cpu(tick_broadcast_count, cpu);
  337. csd = &per_cpu(tick_broadcast_csd, cpu);
  338. if (atomic_inc_return(count) == 1)
  339. smp_call_function_single_async(cpu, csd);
  340. }
  341. }
  342. static void tick_broadcast_callee(void *info)
  343. {
  344. int cpu = smp_processor_id();
  345. tick_receive_broadcast();
  346. atomic_set(&per_cpu(tick_broadcast_count, cpu), 0);
  347. }
  348. static int __init tick_broadcast_init(void)
  349. {
  350. struct call_single_data *csd;
  351. int cpu;
  352. for (cpu = 0; cpu < NR_CPUS; cpu++) {
  353. csd = &per_cpu(tick_broadcast_csd, cpu);
  354. csd->func = tick_broadcast_callee;
  355. }
  356. return 0;
  357. }
  358. early_initcall(tick_broadcast_init);
  359. #endif /* CONFIG_GENERIC_CLOCKEVENTS_BROADCAST */