pm-cps.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716
  1. /*
  2. * Copyright (C) 2014 Imagination Technologies
  3. * Author: Paul Burton <paul.burton@imgtec.com>
  4. *
  5. * This program is free software; you can redistribute it and/or modify it
  6. * under the terms of the GNU General Public License as published by the
  7. * Free Software Foundation; either version 2 of the License, or (at your
  8. * option) any later version.
  9. */
  10. #include <linux/init.h>
  11. #include <linux/percpu.h>
  12. #include <linux/slab.h>
  13. #include <asm/asm-offsets.h>
  14. #include <asm/cacheflush.h>
  15. #include <asm/cacheops.h>
  16. #include <asm/idle.h>
  17. #include <asm/mips-cm.h>
  18. #include <asm/mips-cpc.h>
  19. #include <asm/mipsmtregs.h>
  20. #include <asm/pm.h>
  21. #include <asm/pm-cps.h>
  22. #include <asm/smp-cps.h>
  23. #include <asm/uasm.h>
  24. /*
  25. * cps_nc_entry_fn - type of a generated non-coherent state entry function
  26. * @online: the count of online coupled VPEs
  27. * @nc_ready_count: pointer to a non-coherent mapping of the core ready_count
  28. *
  29. * The code entering & exiting non-coherent states is generated at runtime
  30. * using uasm, in order to ensure that the compiler cannot insert a stray
  31. * memory access at an unfortunate time and to allow the generation of optimal
  32. * core-specific code particularly for cache routines. If coupled_coherence
  33. * is non-zero and this is the entry function for the CPS_PM_NC_WAIT state,
  34. * returns the number of VPEs that were in the wait state at the point this
  35. * VPE left it. Returns garbage if coupled_coherence is zero or this is not
  36. * the entry function for CPS_PM_NC_WAIT.
  37. */
  38. typedef unsigned (*cps_nc_entry_fn)(unsigned online, u32 *nc_ready_count);
  39. /*
  40. * The entry point of the generated non-coherent idle state entry/exit
  41. * functions. Actually per-core rather than per-CPU.
  42. */
  43. static DEFINE_PER_CPU_READ_MOSTLY(cps_nc_entry_fn[CPS_PM_STATE_COUNT],
  44. nc_asm_enter);
  45. /* Bitmap indicating which states are supported by the system */
  46. DECLARE_BITMAP(state_support, CPS_PM_STATE_COUNT);
  47. /*
  48. * Indicates the number of coupled VPEs ready to operate in a non-coherent
  49. * state. Actually per-core rather than per-CPU.
  50. */
  51. static DEFINE_PER_CPU_ALIGNED(u32*, ready_count);
  52. static DEFINE_PER_CPU_ALIGNED(void*, ready_count_alloc);
  53. /* Indicates online CPUs coupled with the current CPU */
  54. static DEFINE_PER_CPU_ALIGNED(cpumask_t, online_coupled);
  55. /*
  56. * Used to synchronize entry to deep idle states. Actually per-core rather
  57. * than per-CPU.
  58. */
  59. static DEFINE_PER_CPU_ALIGNED(atomic_t, pm_barrier);
  60. /* Saved CPU state across the CPS_PM_POWER_GATED state */
  61. DEFINE_PER_CPU_ALIGNED(struct mips_static_suspend_state, cps_cpu_state);
  62. /* A somewhat arbitrary number of labels & relocs for uasm */
  63. static struct uasm_label labels[32] __initdata;
  64. static struct uasm_reloc relocs[32] __initdata;
  65. /* CPU dependant sync types */
  66. static unsigned stype_intervention;
  67. static unsigned stype_memory;
  68. static unsigned stype_ordering;
  69. enum mips_reg {
  70. zero, at, v0, v1, a0, a1, a2, a3,
  71. t0, t1, t2, t3, t4, t5, t6, t7,
  72. s0, s1, s2, s3, s4, s5, s6, s7,
  73. t8, t9, k0, k1, gp, sp, fp, ra,
  74. };
  75. bool cps_pm_support_state(enum cps_pm_state state)
  76. {
  77. return test_bit(state, state_support);
  78. }
  79. static void coupled_barrier(atomic_t *a, unsigned online)
  80. {
  81. /*
  82. * This function is effectively the same as
  83. * cpuidle_coupled_parallel_barrier, which can't be used here since
  84. * there's no cpuidle device.
  85. */
  86. if (!coupled_coherence)
  87. return;
  88. smp_mb__before_atomic();
  89. atomic_inc(a);
  90. while (atomic_read(a) < online)
  91. cpu_relax();
  92. if (atomic_inc_return(a) == online * 2) {
  93. atomic_set(a, 0);
  94. return;
  95. }
  96. while (atomic_read(a) > online)
  97. cpu_relax();
  98. }
  99. int cps_pm_enter_state(enum cps_pm_state state)
  100. {
  101. unsigned cpu = smp_processor_id();
  102. unsigned core = current_cpu_data.core;
  103. unsigned online, left;
  104. cpumask_t *coupled_mask = this_cpu_ptr(&online_coupled);
  105. u32 *core_ready_count, *nc_core_ready_count;
  106. void *nc_addr;
  107. cps_nc_entry_fn entry;
  108. struct core_boot_config *core_cfg;
  109. struct vpe_boot_config *vpe_cfg;
  110. /* Check that there is an entry function for this state */
  111. entry = per_cpu(nc_asm_enter, core)[state];
  112. if (!entry)
  113. return -EINVAL;
  114. /* Calculate which coupled CPUs (VPEs) are online */
  115. #ifdef CONFIG_MIPS_MT
  116. if (cpu_online(cpu)) {
  117. cpumask_and(coupled_mask, cpu_online_mask,
  118. &cpu_sibling_map[cpu]);
  119. online = cpumask_weight(coupled_mask);
  120. cpumask_clear_cpu(cpu, coupled_mask);
  121. } else
  122. #endif
  123. {
  124. cpumask_clear(coupled_mask);
  125. online = 1;
  126. }
  127. /* Setup the VPE to run mips_cps_pm_restore when started again */
  128. if (config_enabled(CONFIG_CPU_PM) && state == CPS_PM_POWER_GATED) {
  129. core_cfg = &mips_cps_core_bootcfg[core];
  130. vpe_cfg = &core_cfg->vpe_config[current_cpu_data.vpe_id];
  131. vpe_cfg->pc = (unsigned long)mips_cps_pm_restore;
  132. vpe_cfg->gp = (unsigned long)current_thread_info();
  133. vpe_cfg->sp = 0;
  134. }
  135. /* Indicate that this CPU might not be coherent */
  136. cpumask_clear_cpu(cpu, &cpu_coherent_mask);
  137. smp_mb__after_atomic();
  138. /* Create a non-coherent mapping of the core ready_count */
  139. core_ready_count = per_cpu(ready_count, core);
  140. nc_addr = kmap_noncoherent(virt_to_page(core_ready_count),
  141. (unsigned long)core_ready_count);
  142. nc_addr += ((unsigned long)core_ready_count & ~PAGE_MASK);
  143. nc_core_ready_count = nc_addr;
  144. /* Ensure ready_count is zero-initialised before the assembly runs */
  145. ACCESS_ONCE(*nc_core_ready_count) = 0;
  146. coupled_barrier(&per_cpu(pm_barrier, core), online);
  147. /* Run the generated entry code */
  148. left = entry(online, nc_core_ready_count);
  149. /* Remove the non-coherent mapping of ready_count */
  150. kunmap_noncoherent();
  151. /* Indicate that this CPU is definitely coherent */
  152. cpumask_set_cpu(cpu, &cpu_coherent_mask);
  153. /*
  154. * If this VPE is the first to leave the non-coherent wait state then
  155. * it needs to wake up any coupled VPEs still running their wait
  156. * instruction so that they return to cpuidle, which can then complete
  157. * coordination between the coupled VPEs & provide the governor with
  158. * a chance to reflect on the length of time the VPEs were in the
  159. * idle state.
  160. */
  161. if (coupled_coherence && (state == CPS_PM_NC_WAIT) && (left == online))
  162. arch_send_call_function_ipi_mask(coupled_mask);
  163. return 0;
  164. }
  165. static void __init cps_gen_cache_routine(u32 **pp, struct uasm_label **pl,
  166. struct uasm_reloc **pr,
  167. const struct cache_desc *cache,
  168. unsigned op, int lbl)
  169. {
  170. unsigned cache_size = cache->ways << cache->waybit;
  171. unsigned i;
  172. const unsigned unroll_lines = 32;
  173. /* If the cache isn't present this function has it easy */
  174. if (cache->flags & MIPS_CACHE_NOT_PRESENT)
  175. return;
  176. /* Load base address */
  177. UASM_i_LA(pp, t0, (long)CKSEG0);
  178. /* Calculate end address */
  179. if (cache_size < 0x8000)
  180. uasm_i_addiu(pp, t1, t0, cache_size);
  181. else
  182. UASM_i_LA(pp, t1, (long)(CKSEG0 + cache_size));
  183. /* Start of cache op loop */
  184. uasm_build_label(pl, *pp, lbl);
  185. /* Generate the cache ops */
  186. for (i = 0; i < unroll_lines; i++)
  187. uasm_i_cache(pp, op, i * cache->linesz, t0);
  188. /* Update the base address */
  189. uasm_i_addiu(pp, t0, t0, unroll_lines * cache->linesz);
  190. /* Loop if we haven't reached the end address yet */
  191. uasm_il_bne(pp, pr, t0, t1, lbl);
  192. uasm_i_nop(pp);
  193. }
  194. static int __init cps_gen_flush_fsb(u32 **pp, struct uasm_label **pl,
  195. struct uasm_reloc **pr,
  196. const struct cpuinfo_mips *cpu_info,
  197. int lbl)
  198. {
  199. unsigned i, fsb_size = 8;
  200. unsigned num_loads = (fsb_size * 3) / 2;
  201. unsigned line_stride = 2;
  202. unsigned line_size = cpu_info->dcache.linesz;
  203. unsigned perf_counter, perf_event;
  204. unsigned revision = cpu_info->processor_id & PRID_REV_MASK;
  205. /*
  206. * Determine whether this CPU requires an FSB flush, and if so which
  207. * performance counter/event reflect stalls due to a full FSB.
  208. */
  209. switch (__get_cpu_type(cpu_info->cputype)) {
  210. case CPU_INTERAPTIV:
  211. perf_counter = 1;
  212. perf_event = 51;
  213. break;
  214. case CPU_PROAPTIV:
  215. /* Newer proAptiv cores don't require this workaround */
  216. if (revision >= PRID_REV_ENCODE_332(1, 1, 0))
  217. return 0;
  218. /* On older ones it's unavailable */
  219. return -1;
  220. /* CPUs which do not require the workaround */
  221. case CPU_P5600:
  222. return 0;
  223. default:
  224. WARN_ONCE(1, "pm-cps: FSB flush unsupported for this CPU\n");
  225. return -1;
  226. }
  227. /*
  228. * Ensure that the fill/store buffer (FSB) is not holding the results
  229. * of a prefetch, since if it is then the CPC sequencer may become
  230. * stuck in the D3 (ClrBus) state whilst entering a low power state.
  231. */
  232. /* Preserve perf counter setup */
  233. uasm_i_mfc0(pp, t2, 25, (perf_counter * 2) + 0); /* PerfCtlN */
  234. uasm_i_mfc0(pp, t3, 25, (perf_counter * 2) + 1); /* PerfCntN */
  235. /* Setup perf counter to count FSB full pipeline stalls */
  236. uasm_i_addiu(pp, t0, zero, (perf_event << 5) | 0xf);
  237. uasm_i_mtc0(pp, t0, 25, (perf_counter * 2) + 0); /* PerfCtlN */
  238. uasm_i_ehb(pp);
  239. uasm_i_mtc0(pp, zero, 25, (perf_counter * 2) + 1); /* PerfCntN */
  240. uasm_i_ehb(pp);
  241. /* Base address for loads */
  242. UASM_i_LA(pp, t0, (long)CKSEG0);
  243. /* Start of clear loop */
  244. uasm_build_label(pl, *pp, lbl);
  245. /* Perform some loads to fill the FSB */
  246. for (i = 0; i < num_loads; i++)
  247. uasm_i_lw(pp, zero, i * line_size * line_stride, t0);
  248. /*
  249. * Invalidate the new D-cache entries so that the cache will need
  250. * refilling (via the FSB) if the loop is executed again.
  251. */
  252. for (i = 0; i < num_loads; i++) {
  253. uasm_i_cache(pp, Hit_Invalidate_D,
  254. i * line_size * line_stride, t0);
  255. uasm_i_cache(pp, Hit_Writeback_Inv_SD,
  256. i * line_size * line_stride, t0);
  257. }
  258. /* Completion barrier */
  259. uasm_i_sync(pp, stype_memory);
  260. uasm_i_ehb(pp);
  261. /* Check whether the pipeline stalled due to the FSB being full */
  262. uasm_i_mfc0(pp, t1, 25, (perf_counter * 2) + 1); /* PerfCntN */
  263. /* Loop if it didn't */
  264. uasm_il_beqz(pp, pr, t1, lbl);
  265. uasm_i_nop(pp);
  266. /* Restore perf counter 1. The count may well now be wrong... */
  267. uasm_i_mtc0(pp, t2, 25, (perf_counter * 2) + 0); /* PerfCtlN */
  268. uasm_i_ehb(pp);
  269. uasm_i_mtc0(pp, t3, 25, (perf_counter * 2) + 1); /* PerfCntN */
  270. uasm_i_ehb(pp);
  271. return 0;
  272. }
  273. static void __init cps_gen_set_top_bit(u32 **pp, struct uasm_label **pl,
  274. struct uasm_reloc **pr,
  275. unsigned r_addr, int lbl)
  276. {
  277. uasm_i_lui(pp, t0, uasm_rel_hi(0x80000000));
  278. uasm_build_label(pl, *pp, lbl);
  279. uasm_i_ll(pp, t1, 0, r_addr);
  280. uasm_i_or(pp, t1, t1, t0);
  281. uasm_i_sc(pp, t1, 0, r_addr);
  282. uasm_il_beqz(pp, pr, t1, lbl);
  283. uasm_i_nop(pp);
  284. }
  285. static void * __init cps_gen_entry_code(unsigned cpu, enum cps_pm_state state)
  286. {
  287. struct uasm_label *l = labels;
  288. struct uasm_reloc *r = relocs;
  289. u32 *buf, *p;
  290. const unsigned r_online = a0;
  291. const unsigned r_nc_count = a1;
  292. const unsigned r_pcohctl = t7;
  293. const unsigned max_instrs = 256;
  294. unsigned cpc_cmd;
  295. int err;
  296. enum {
  297. lbl_incready = 1,
  298. lbl_poll_cont,
  299. lbl_secondary_hang,
  300. lbl_disable_coherence,
  301. lbl_flush_fsb,
  302. lbl_invicache,
  303. lbl_flushdcache,
  304. lbl_hang,
  305. lbl_set_cont,
  306. lbl_secondary_cont,
  307. lbl_decready,
  308. };
  309. /* Allocate a buffer to hold the generated code */
  310. p = buf = kcalloc(max_instrs, sizeof(u32), GFP_KERNEL);
  311. if (!buf)
  312. return NULL;
  313. /* Clear labels & relocs ready for (re)use */
  314. memset(labels, 0, sizeof(labels));
  315. memset(relocs, 0, sizeof(relocs));
  316. if (config_enabled(CONFIG_CPU_PM) && state == CPS_PM_POWER_GATED) {
  317. /*
  318. * Save CPU state. Note the non-standard calling convention
  319. * with the return address placed in v0 to avoid clobbering
  320. * the ra register before it is saved.
  321. */
  322. UASM_i_LA(&p, t0, (long)mips_cps_pm_save);
  323. uasm_i_jalr(&p, v0, t0);
  324. uasm_i_nop(&p);
  325. }
  326. /*
  327. * Load addresses of required CM & CPC registers. This is done early
  328. * because they're needed in both the enable & disable coherence steps
  329. * but in the coupled case the enable step will only run on one VPE.
  330. */
  331. UASM_i_LA(&p, r_pcohctl, (long)addr_gcr_cl_coherence());
  332. if (coupled_coherence) {
  333. /* Increment ready_count */
  334. uasm_i_sync(&p, stype_ordering);
  335. uasm_build_label(&l, p, lbl_incready);
  336. uasm_i_ll(&p, t1, 0, r_nc_count);
  337. uasm_i_addiu(&p, t2, t1, 1);
  338. uasm_i_sc(&p, t2, 0, r_nc_count);
  339. uasm_il_beqz(&p, &r, t2, lbl_incready);
  340. uasm_i_addiu(&p, t1, t1, 1);
  341. /* Ordering barrier */
  342. uasm_i_sync(&p, stype_ordering);
  343. /*
  344. * If this is the last VPE to become ready for non-coherence
  345. * then it should branch below.
  346. */
  347. uasm_il_beq(&p, &r, t1, r_online, lbl_disable_coherence);
  348. uasm_i_nop(&p);
  349. if (state < CPS_PM_POWER_GATED) {
  350. /*
  351. * Otherwise this is not the last VPE to become ready
  352. * for non-coherence. It needs to wait until coherence
  353. * has been disabled before proceeding, which it will do
  354. * by polling for the top bit of ready_count being set.
  355. */
  356. uasm_i_addiu(&p, t1, zero, -1);
  357. uasm_build_label(&l, p, lbl_poll_cont);
  358. uasm_i_lw(&p, t0, 0, r_nc_count);
  359. uasm_il_bltz(&p, &r, t0, lbl_secondary_cont);
  360. uasm_i_ehb(&p);
  361. uasm_i_yield(&p, zero, t1);
  362. uasm_il_b(&p, &r, lbl_poll_cont);
  363. uasm_i_nop(&p);
  364. } else {
  365. /*
  366. * The core will lose power & this VPE will not continue
  367. * so it can simply halt here.
  368. */
  369. uasm_i_addiu(&p, t0, zero, TCHALT_H);
  370. uasm_i_mtc0(&p, t0, 2, 4);
  371. uasm_build_label(&l, p, lbl_secondary_hang);
  372. uasm_il_b(&p, &r, lbl_secondary_hang);
  373. uasm_i_nop(&p);
  374. }
  375. }
  376. /*
  377. * This is the point of no return - this VPE will now proceed to
  378. * disable coherence. At this point we *must* be sure that no other
  379. * VPE within the core will interfere with the L1 dcache.
  380. */
  381. uasm_build_label(&l, p, lbl_disable_coherence);
  382. /* Invalidate the L1 icache */
  383. cps_gen_cache_routine(&p, &l, &r, &cpu_data[cpu].icache,
  384. Index_Invalidate_I, lbl_invicache);
  385. /* Writeback & invalidate the L1 dcache */
  386. cps_gen_cache_routine(&p, &l, &r, &cpu_data[cpu].dcache,
  387. Index_Writeback_Inv_D, lbl_flushdcache);
  388. /* Completion barrier */
  389. uasm_i_sync(&p, stype_memory);
  390. uasm_i_ehb(&p);
  391. /*
  392. * Disable all but self interventions. The load from COHCTL is defined
  393. * by the interAptiv & proAptiv SUMs as ensuring that the operation
  394. * resulting from the preceeding store is complete.
  395. */
  396. uasm_i_addiu(&p, t0, zero, 1 << cpu_data[cpu].core);
  397. uasm_i_sw(&p, t0, 0, r_pcohctl);
  398. uasm_i_lw(&p, t0, 0, r_pcohctl);
  399. /* Sync to ensure previous interventions are complete */
  400. uasm_i_sync(&p, stype_intervention);
  401. uasm_i_ehb(&p);
  402. /* Disable coherence */
  403. uasm_i_sw(&p, zero, 0, r_pcohctl);
  404. uasm_i_lw(&p, t0, 0, r_pcohctl);
  405. if (state >= CPS_PM_CLOCK_GATED) {
  406. err = cps_gen_flush_fsb(&p, &l, &r, &cpu_data[cpu],
  407. lbl_flush_fsb);
  408. if (err)
  409. goto out_err;
  410. /* Determine the CPC command to issue */
  411. switch (state) {
  412. case CPS_PM_CLOCK_GATED:
  413. cpc_cmd = CPC_Cx_CMD_CLOCKOFF;
  414. break;
  415. case CPS_PM_POWER_GATED:
  416. cpc_cmd = CPC_Cx_CMD_PWRDOWN;
  417. break;
  418. default:
  419. BUG();
  420. goto out_err;
  421. }
  422. /* Issue the CPC command */
  423. UASM_i_LA(&p, t0, (long)addr_cpc_cl_cmd());
  424. uasm_i_addiu(&p, t1, zero, cpc_cmd);
  425. uasm_i_sw(&p, t1, 0, t0);
  426. if (state == CPS_PM_POWER_GATED) {
  427. /* If anything goes wrong just hang */
  428. uasm_build_label(&l, p, lbl_hang);
  429. uasm_il_b(&p, &r, lbl_hang);
  430. uasm_i_nop(&p);
  431. /*
  432. * There's no point generating more code, the core is
  433. * powered down & if powered back up will run from the
  434. * reset vector not from here.
  435. */
  436. goto gen_done;
  437. }
  438. /* Completion barrier */
  439. uasm_i_sync(&p, stype_memory);
  440. uasm_i_ehb(&p);
  441. }
  442. if (state == CPS_PM_NC_WAIT) {
  443. /*
  444. * At this point it is safe for all VPEs to proceed with
  445. * execution. This VPE will set the top bit of ready_count
  446. * to indicate to the other VPEs that they may continue.
  447. */
  448. if (coupled_coherence)
  449. cps_gen_set_top_bit(&p, &l, &r, r_nc_count,
  450. lbl_set_cont);
  451. /*
  452. * VPEs which did not disable coherence will continue
  453. * executing, after coherence has been disabled, from this
  454. * point.
  455. */
  456. uasm_build_label(&l, p, lbl_secondary_cont);
  457. /* Now perform our wait */
  458. uasm_i_wait(&p, 0);
  459. }
  460. /*
  461. * Re-enable coherence. Note that for CPS_PM_NC_WAIT all coupled VPEs
  462. * will run this. The first will actually re-enable coherence & the
  463. * rest will just be performing a rather unusual nop.
  464. */
  465. uasm_i_addiu(&p, t0, zero, CM_GCR_Cx_COHERENCE_COHDOMAINEN_MSK);
  466. uasm_i_sw(&p, t0, 0, r_pcohctl);
  467. uasm_i_lw(&p, t0, 0, r_pcohctl);
  468. /* Completion barrier */
  469. uasm_i_sync(&p, stype_memory);
  470. uasm_i_ehb(&p);
  471. if (coupled_coherence && (state == CPS_PM_NC_WAIT)) {
  472. /* Decrement ready_count */
  473. uasm_build_label(&l, p, lbl_decready);
  474. uasm_i_sync(&p, stype_ordering);
  475. uasm_i_ll(&p, t1, 0, r_nc_count);
  476. uasm_i_addiu(&p, t2, t1, -1);
  477. uasm_i_sc(&p, t2, 0, r_nc_count);
  478. uasm_il_beqz(&p, &r, t2, lbl_decready);
  479. uasm_i_andi(&p, v0, t1, (1 << fls(smp_num_siblings)) - 1);
  480. /* Ordering barrier */
  481. uasm_i_sync(&p, stype_ordering);
  482. }
  483. if (coupled_coherence && (state == CPS_PM_CLOCK_GATED)) {
  484. /*
  485. * At this point it is safe for all VPEs to proceed with
  486. * execution. This VPE will set the top bit of ready_count
  487. * to indicate to the other VPEs that they may continue.
  488. */
  489. cps_gen_set_top_bit(&p, &l, &r, r_nc_count, lbl_set_cont);
  490. /*
  491. * This core will be reliant upon another core sending a
  492. * power-up command to the CPC in order to resume operation.
  493. * Thus an arbitrary VPE can't trigger the core leaving the
  494. * idle state and the one that disables coherence might as well
  495. * be the one to re-enable it. The rest will continue from here
  496. * after that has been done.
  497. */
  498. uasm_build_label(&l, p, lbl_secondary_cont);
  499. /* Ordering barrier */
  500. uasm_i_sync(&p, stype_ordering);
  501. }
  502. /* The core is coherent, time to return to C code */
  503. uasm_i_jr(&p, ra);
  504. uasm_i_nop(&p);
  505. gen_done:
  506. /* Ensure the code didn't exceed the resources allocated for it */
  507. BUG_ON((p - buf) > max_instrs);
  508. BUG_ON((l - labels) > ARRAY_SIZE(labels));
  509. BUG_ON((r - relocs) > ARRAY_SIZE(relocs));
  510. /* Patch branch offsets */
  511. uasm_resolve_relocs(relocs, labels);
  512. /* Flush the icache */
  513. local_flush_icache_range((unsigned long)buf, (unsigned long)p);
  514. return buf;
  515. out_err:
  516. kfree(buf);
  517. return NULL;
  518. }
  519. static int __init cps_gen_core_entries(unsigned cpu)
  520. {
  521. enum cps_pm_state state;
  522. unsigned core = cpu_data[cpu].core;
  523. unsigned dlinesz = cpu_data[cpu].dcache.linesz;
  524. void *entry_fn, *core_rc;
  525. for (state = CPS_PM_NC_WAIT; state < CPS_PM_STATE_COUNT; state++) {
  526. if (per_cpu(nc_asm_enter, core)[state])
  527. continue;
  528. if (!test_bit(state, state_support))
  529. continue;
  530. entry_fn = cps_gen_entry_code(cpu, state);
  531. if (!entry_fn) {
  532. pr_err("Failed to generate core %u state %u entry\n",
  533. core, state);
  534. clear_bit(state, state_support);
  535. }
  536. per_cpu(nc_asm_enter, core)[state] = entry_fn;
  537. }
  538. if (!per_cpu(ready_count, core)) {
  539. core_rc = kmalloc(dlinesz * 2, GFP_KERNEL);
  540. if (!core_rc) {
  541. pr_err("Failed allocate core %u ready_count\n", core);
  542. return -ENOMEM;
  543. }
  544. per_cpu(ready_count_alloc, core) = core_rc;
  545. /* Ensure ready_count is aligned to a cacheline boundary */
  546. core_rc += dlinesz - 1;
  547. core_rc = (void *)((unsigned long)core_rc & ~(dlinesz - 1));
  548. per_cpu(ready_count, core) = core_rc;
  549. }
  550. return 0;
  551. }
  552. static int __init cps_pm_init(void)
  553. {
  554. unsigned cpu;
  555. int err;
  556. /* Detect appropriate sync types for the system */
  557. switch (current_cpu_data.cputype) {
  558. case CPU_INTERAPTIV:
  559. case CPU_PROAPTIV:
  560. case CPU_M5150:
  561. case CPU_P5600:
  562. stype_intervention = 0x2;
  563. stype_memory = 0x3;
  564. stype_ordering = 0x10;
  565. break;
  566. default:
  567. pr_warn("Power management is using heavyweight sync 0\n");
  568. }
  569. /* A CM is required for all non-coherent states */
  570. if (!mips_cm_present()) {
  571. pr_warn("pm-cps: no CM, non-coherent states unavailable\n");
  572. goto out;
  573. }
  574. /*
  575. * If interrupts were enabled whilst running a wait instruction on a
  576. * non-coherent core then the VPE may end up processing interrupts
  577. * whilst non-coherent. That would be bad.
  578. */
  579. if (cpu_wait == r4k_wait_irqoff)
  580. set_bit(CPS_PM_NC_WAIT, state_support);
  581. else
  582. pr_warn("pm-cps: non-coherent wait unavailable\n");
  583. /* Detect whether a CPC is present */
  584. if (mips_cpc_present()) {
  585. /* Detect whether clock gating is implemented */
  586. if (read_cpc_cl_stat_conf() & CPC_Cx_STAT_CONF_CLKGAT_IMPL_MSK)
  587. set_bit(CPS_PM_CLOCK_GATED, state_support);
  588. else
  589. pr_warn("pm-cps: CPC does not support clock gating\n");
  590. /* Power gating is available with CPS SMP & any CPC */
  591. if (mips_cps_smp_in_use())
  592. set_bit(CPS_PM_POWER_GATED, state_support);
  593. else
  594. pr_warn("pm-cps: CPS SMP not in use, power gating unavailable\n");
  595. } else {
  596. pr_warn("pm-cps: no CPC, clock & power gating unavailable\n");
  597. }
  598. for_each_present_cpu(cpu) {
  599. err = cps_gen_core_entries(cpu);
  600. if (err)
  601. return err;
  602. }
  603. out:
  604. return 0;
  605. }
  606. arch_initcall(cps_pm_init);