kvm-ia64.c 44 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972
  1. /*
  2. * kvm_ia64.c: Basic KVM support On Itanium series processors
  3. *
  4. *
  5. * Copyright (C) 2007, Intel Corporation.
  6. * Xiantao Zhang (xiantao.zhang@intel.com)
  7. *
  8. * This program is free software; you can redistribute it and/or modify it
  9. * under the terms and conditions of the GNU General Public License,
  10. * version 2, as published by the Free Software Foundation.
  11. *
  12. * This program is distributed in the hope it will be useful, but WITHOUT
  13. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  14. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  15. * more details.
  16. *
  17. * You should have received a copy of the GNU General Public License along with
  18. * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
  19. * Place - Suite 330, Boston, MA 02111-1307 USA.
  20. *
  21. */
  22. #include <linux/module.h>
  23. #include <linux/errno.h>
  24. #include <linux/percpu.h>
  25. #include <linux/fs.h>
  26. #include <linux/slab.h>
  27. #include <linux/smp.h>
  28. #include <linux/kvm_host.h>
  29. #include <linux/kvm.h>
  30. #include <linux/bitops.h>
  31. #include <linux/hrtimer.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/iommu.h>
  34. #include <linux/intel-iommu.h>
  35. #include <linux/pci.h>
  36. #include <asm/pgtable.h>
  37. #include <asm/gcc_intrin.h>
  38. #include <asm/pal.h>
  39. #include <asm/cacheflush.h>
  40. #include <asm/div64.h>
  41. #include <asm/tlb.h>
  42. #include <asm/elf.h>
  43. #include <asm/sn/addrs.h>
  44. #include <asm/sn/clksupport.h>
  45. #include <asm/sn/shub_mmr.h>
  46. #include "misc.h"
  47. #include "vti.h"
  48. #include "iodev.h"
  49. #include "ioapic.h"
  50. #include "lapic.h"
  51. #include "irq.h"
  52. static unsigned long kvm_vmm_base;
  53. static unsigned long kvm_vsa_base;
  54. static unsigned long kvm_vm_buffer;
  55. static unsigned long kvm_vm_buffer_size;
  56. unsigned long kvm_vmm_gp;
  57. static long vp_env_info;
  58. static struct kvm_vmm_info *kvm_vmm_info;
  59. static DEFINE_PER_CPU(struct kvm_vcpu *, last_vcpu);
  60. struct kvm_stats_debugfs_item debugfs_entries[] = {
  61. { NULL }
  62. };
  63. static unsigned long kvm_get_itc(struct kvm_vcpu *vcpu)
  64. {
  65. #if defined(CONFIG_IA64_SGI_SN2) || defined(CONFIG_IA64_GENERIC)
  66. if (vcpu->kvm->arch.is_sn2)
  67. return rtc_time();
  68. else
  69. #endif
  70. return ia64_getreg(_IA64_REG_AR_ITC);
  71. }
  72. static void kvm_flush_icache(unsigned long start, unsigned long len)
  73. {
  74. int l;
  75. for (l = 0; l < (len + 32); l += 32)
  76. ia64_fc((void *)(start + l));
  77. ia64_sync_i();
  78. ia64_srlz_i();
  79. }
  80. static void kvm_flush_tlb_all(void)
  81. {
  82. unsigned long i, j, count0, count1, stride0, stride1, addr;
  83. long flags;
  84. addr = local_cpu_data->ptce_base;
  85. count0 = local_cpu_data->ptce_count[0];
  86. count1 = local_cpu_data->ptce_count[1];
  87. stride0 = local_cpu_data->ptce_stride[0];
  88. stride1 = local_cpu_data->ptce_stride[1];
  89. local_irq_save(flags);
  90. for (i = 0; i < count0; ++i) {
  91. for (j = 0; j < count1; ++j) {
  92. ia64_ptce(addr);
  93. addr += stride1;
  94. }
  95. addr += stride0;
  96. }
  97. local_irq_restore(flags);
  98. ia64_srlz_i(); /* srlz.i implies srlz.d */
  99. }
  100. long ia64_pal_vp_create(u64 *vpd, u64 *host_iva, u64 *opt_handler)
  101. {
  102. struct ia64_pal_retval iprv;
  103. PAL_CALL_STK(iprv, PAL_VP_CREATE, (u64)vpd, (u64)host_iva,
  104. (u64)opt_handler);
  105. return iprv.status;
  106. }
  107. static DEFINE_SPINLOCK(vp_lock);
  108. int kvm_arch_hardware_enable(void *garbage)
  109. {
  110. long status;
  111. long tmp_base;
  112. unsigned long pte;
  113. unsigned long saved_psr;
  114. int slot;
  115. pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base), PAGE_KERNEL));
  116. local_irq_save(saved_psr);
  117. slot = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
  118. local_irq_restore(saved_psr);
  119. if (slot < 0)
  120. return -EINVAL;
  121. spin_lock(&vp_lock);
  122. status = ia64_pal_vp_init_env(kvm_vsa_base ?
  123. VP_INIT_ENV : VP_INIT_ENV_INITALIZE,
  124. __pa(kvm_vm_buffer), KVM_VM_BUFFER_BASE, &tmp_base);
  125. if (status != 0) {
  126. spin_unlock(&vp_lock);
  127. printk(KERN_WARNING"kvm: Failed to Enable VT Support!!!!\n");
  128. return -EINVAL;
  129. }
  130. if (!kvm_vsa_base) {
  131. kvm_vsa_base = tmp_base;
  132. printk(KERN_INFO"kvm: kvm_vsa_base:0x%lx\n", kvm_vsa_base);
  133. }
  134. spin_unlock(&vp_lock);
  135. ia64_ptr_entry(0x3, slot);
  136. return 0;
  137. }
  138. void kvm_arch_hardware_disable(void *garbage)
  139. {
  140. long status;
  141. int slot;
  142. unsigned long pte;
  143. unsigned long saved_psr;
  144. unsigned long host_iva = ia64_getreg(_IA64_REG_CR_IVA);
  145. pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base),
  146. PAGE_KERNEL));
  147. local_irq_save(saved_psr);
  148. slot = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
  149. local_irq_restore(saved_psr);
  150. if (slot < 0)
  151. return;
  152. status = ia64_pal_vp_exit_env(host_iva);
  153. if (status)
  154. printk(KERN_DEBUG"kvm: Failed to disable VT support! :%ld\n",
  155. status);
  156. ia64_ptr_entry(0x3, slot);
  157. }
  158. void kvm_arch_check_processor_compat(void *rtn)
  159. {
  160. *(int *)rtn = 0;
  161. }
  162. int kvm_dev_ioctl_check_extension(long ext)
  163. {
  164. int r;
  165. switch (ext) {
  166. case KVM_CAP_IRQCHIP:
  167. case KVM_CAP_MP_STATE:
  168. case KVM_CAP_IRQ_INJECT_STATUS:
  169. case KVM_CAP_IOAPIC_POLARITY_IGNORED:
  170. r = 1;
  171. break;
  172. case KVM_CAP_COALESCED_MMIO:
  173. r = KVM_COALESCED_MMIO_PAGE_OFFSET;
  174. break;
  175. #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
  176. case KVM_CAP_IOMMU:
  177. r = iommu_present(&pci_bus_type);
  178. break;
  179. #endif
  180. default:
  181. r = 0;
  182. }
  183. return r;
  184. }
  185. static int handle_vm_error(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  186. {
  187. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  188. kvm_run->hw.hardware_exit_reason = 1;
  189. return 0;
  190. }
  191. static int handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  192. {
  193. struct kvm_mmio_req *p;
  194. struct kvm_io_device *mmio_dev;
  195. int r;
  196. p = kvm_get_vcpu_ioreq(vcpu);
  197. if ((p->addr & PAGE_MASK) == IOAPIC_DEFAULT_BASE_ADDRESS)
  198. goto mmio;
  199. vcpu->mmio_needed = 1;
  200. vcpu->mmio_fragments[0].gpa = kvm_run->mmio.phys_addr = p->addr;
  201. vcpu->mmio_fragments[0].len = kvm_run->mmio.len = p->size;
  202. vcpu->mmio_is_write = kvm_run->mmio.is_write = !p->dir;
  203. if (vcpu->mmio_is_write)
  204. memcpy(vcpu->arch.mmio_data, &p->data, p->size);
  205. memcpy(kvm_run->mmio.data, &p->data, p->size);
  206. kvm_run->exit_reason = KVM_EXIT_MMIO;
  207. return 0;
  208. mmio:
  209. if (p->dir)
  210. r = kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, p->addr,
  211. p->size, &p->data);
  212. else
  213. r = kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, p->addr,
  214. p->size, &p->data);
  215. if (r)
  216. printk(KERN_ERR"kvm: No iodevice found! addr:%lx\n", p->addr);
  217. p->state = STATE_IORESP_READY;
  218. return 1;
  219. }
  220. static int handle_pal_call(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  221. {
  222. struct exit_ctl_data *p;
  223. p = kvm_get_exit_data(vcpu);
  224. if (p->exit_reason == EXIT_REASON_PAL_CALL)
  225. return kvm_pal_emul(vcpu, kvm_run);
  226. else {
  227. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  228. kvm_run->hw.hardware_exit_reason = 2;
  229. return 0;
  230. }
  231. }
  232. static int handle_sal_call(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  233. {
  234. struct exit_ctl_data *p;
  235. p = kvm_get_exit_data(vcpu);
  236. if (p->exit_reason == EXIT_REASON_SAL_CALL) {
  237. kvm_sal_emul(vcpu);
  238. return 1;
  239. } else {
  240. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  241. kvm_run->hw.hardware_exit_reason = 3;
  242. return 0;
  243. }
  244. }
  245. static int __apic_accept_irq(struct kvm_vcpu *vcpu, uint64_t vector)
  246. {
  247. struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
  248. if (!test_and_set_bit(vector, &vpd->irr[0])) {
  249. vcpu->arch.irq_new_pending = 1;
  250. kvm_vcpu_kick(vcpu);
  251. return 1;
  252. }
  253. return 0;
  254. }
  255. /*
  256. * offset: address offset to IPI space.
  257. * value: deliver value.
  258. */
  259. static void vcpu_deliver_ipi(struct kvm_vcpu *vcpu, uint64_t dm,
  260. uint64_t vector)
  261. {
  262. switch (dm) {
  263. case SAPIC_FIXED:
  264. break;
  265. case SAPIC_NMI:
  266. vector = 2;
  267. break;
  268. case SAPIC_EXTINT:
  269. vector = 0;
  270. break;
  271. case SAPIC_INIT:
  272. case SAPIC_PMI:
  273. default:
  274. printk(KERN_ERR"kvm: Unimplemented Deliver reserved IPI!\n");
  275. return;
  276. }
  277. __apic_accept_irq(vcpu, vector);
  278. }
  279. static struct kvm_vcpu *lid_to_vcpu(struct kvm *kvm, unsigned long id,
  280. unsigned long eid)
  281. {
  282. union ia64_lid lid;
  283. int i;
  284. struct kvm_vcpu *vcpu;
  285. kvm_for_each_vcpu(i, vcpu, kvm) {
  286. lid.val = VCPU_LID(vcpu);
  287. if (lid.id == id && lid.eid == eid)
  288. return vcpu;
  289. }
  290. return NULL;
  291. }
  292. static int handle_ipi(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  293. {
  294. struct exit_ctl_data *p = kvm_get_exit_data(vcpu);
  295. struct kvm_vcpu *target_vcpu;
  296. struct kvm_pt_regs *regs;
  297. union ia64_ipi_a addr = p->u.ipi_data.addr;
  298. union ia64_ipi_d data = p->u.ipi_data.data;
  299. target_vcpu = lid_to_vcpu(vcpu->kvm, addr.id, addr.eid);
  300. if (!target_vcpu)
  301. return handle_vm_error(vcpu, kvm_run);
  302. if (!target_vcpu->arch.launched) {
  303. regs = vcpu_regs(target_vcpu);
  304. regs->cr_iip = vcpu->kvm->arch.rdv_sal_data.boot_ip;
  305. regs->r1 = vcpu->kvm->arch.rdv_sal_data.boot_gp;
  306. target_vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  307. if (waitqueue_active(&target_vcpu->wq))
  308. wake_up_interruptible(&target_vcpu->wq);
  309. } else {
  310. vcpu_deliver_ipi(target_vcpu, data.dm, data.vector);
  311. if (target_vcpu != vcpu)
  312. kvm_vcpu_kick(target_vcpu);
  313. }
  314. return 1;
  315. }
  316. struct call_data {
  317. struct kvm_ptc_g ptc_g_data;
  318. struct kvm_vcpu *vcpu;
  319. };
  320. static void vcpu_global_purge(void *info)
  321. {
  322. struct call_data *p = (struct call_data *)info;
  323. struct kvm_vcpu *vcpu = p->vcpu;
  324. if (test_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  325. return;
  326. set_bit(KVM_REQ_PTC_G, &vcpu->requests);
  327. if (vcpu->arch.ptc_g_count < MAX_PTC_G_NUM) {
  328. vcpu->arch.ptc_g_data[vcpu->arch.ptc_g_count++] =
  329. p->ptc_g_data;
  330. } else {
  331. clear_bit(KVM_REQ_PTC_G, &vcpu->requests);
  332. vcpu->arch.ptc_g_count = 0;
  333. set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests);
  334. }
  335. }
  336. static int handle_global_purge(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  337. {
  338. struct exit_ctl_data *p = kvm_get_exit_data(vcpu);
  339. struct kvm *kvm = vcpu->kvm;
  340. struct call_data call_data;
  341. int i;
  342. struct kvm_vcpu *vcpui;
  343. call_data.ptc_g_data = p->u.ptc_g_data;
  344. kvm_for_each_vcpu(i, vcpui, kvm) {
  345. if (vcpui->arch.mp_state == KVM_MP_STATE_UNINITIALIZED ||
  346. vcpu == vcpui)
  347. continue;
  348. if (waitqueue_active(&vcpui->wq))
  349. wake_up_interruptible(&vcpui->wq);
  350. if (vcpui->cpu != -1) {
  351. call_data.vcpu = vcpui;
  352. smp_call_function_single(vcpui->cpu,
  353. vcpu_global_purge, &call_data, 1);
  354. } else
  355. printk(KERN_WARNING"kvm: Uninit vcpu received ipi!\n");
  356. }
  357. return 1;
  358. }
  359. static int handle_switch_rr6(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  360. {
  361. return 1;
  362. }
  363. static int kvm_sn2_setup_mappings(struct kvm_vcpu *vcpu)
  364. {
  365. unsigned long pte, rtc_phys_addr, map_addr;
  366. int slot;
  367. map_addr = KVM_VMM_BASE + (1UL << KVM_VMM_SHIFT);
  368. rtc_phys_addr = LOCAL_MMR_OFFSET | SH_RTC;
  369. pte = pte_val(mk_pte_phys(rtc_phys_addr, PAGE_KERNEL_UC));
  370. slot = ia64_itr_entry(0x3, map_addr, pte, PAGE_SHIFT);
  371. vcpu->arch.sn_rtc_tr_slot = slot;
  372. if (slot < 0) {
  373. printk(KERN_ERR "Mayday mayday! RTC mapping failed!\n");
  374. slot = 0;
  375. }
  376. return slot;
  377. }
  378. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  379. {
  380. ktime_t kt;
  381. long itc_diff;
  382. unsigned long vcpu_now_itc;
  383. unsigned long expires;
  384. struct hrtimer *p_ht = &vcpu->arch.hlt_timer;
  385. unsigned long cyc_per_usec = local_cpu_data->cyc_per_usec;
  386. struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
  387. if (irqchip_in_kernel(vcpu->kvm)) {
  388. vcpu_now_itc = kvm_get_itc(vcpu) + vcpu->arch.itc_offset;
  389. if (time_after(vcpu_now_itc, vpd->itm)) {
  390. vcpu->arch.timer_check = 1;
  391. return 1;
  392. }
  393. itc_diff = vpd->itm - vcpu_now_itc;
  394. if (itc_diff < 0)
  395. itc_diff = -itc_diff;
  396. expires = div64_u64(itc_diff, cyc_per_usec);
  397. kt = ktime_set(0, 1000 * expires);
  398. vcpu->arch.ht_active = 1;
  399. hrtimer_start(p_ht, kt, HRTIMER_MODE_ABS);
  400. vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
  401. kvm_vcpu_block(vcpu);
  402. hrtimer_cancel(p_ht);
  403. vcpu->arch.ht_active = 0;
  404. if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests) ||
  405. kvm_cpu_has_pending_timer(vcpu))
  406. if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
  407. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  408. if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE)
  409. return -EINTR;
  410. return 1;
  411. } else {
  412. printk(KERN_ERR"kvm: Unsupported userspace halt!");
  413. return 0;
  414. }
  415. }
  416. static int handle_vm_shutdown(struct kvm_vcpu *vcpu,
  417. struct kvm_run *kvm_run)
  418. {
  419. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  420. return 0;
  421. }
  422. static int handle_external_interrupt(struct kvm_vcpu *vcpu,
  423. struct kvm_run *kvm_run)
  424. {
  425. return 1;
  426. }
  427. static int handle_vcpu_debug(struct kvm_vcpu *vcpu,
  428. struct kvm_run *kvm_run)
  429. {
  430. printk("VMM: %s", vcpu->arch.log_buf);
  431. return 1;
  432. }
  433. static int (*kvm_vti_exit_handlers[])(struct kvm_vcpu *vcpu,
  434. struct kvm_run *kvm_run) = {
  435. [EXIT_REASON_VM_PANIC] = handle_vm_error,
  436. [EXIT_REASON_MMIO_INSTRUCTION] = handle_mmio,
  437. [EXIT_REASON_PAL_CALL] = handle_pal_call,
  438. [EXIT_REASON_SAL_CALL] = handle_sal_call,
  439. [EXIT_REASON_SWITCH_RR6] = handle_switch_rr6,
  440. [EXIT_REASON_VM_DESTROY] = handle_vm_shutdown,
  441. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  442. [EXIT_REASON_IPI] = handle_ipi,
  443. [EXIT_REASON_PTC_G] = handle_global_purge,
  444. [EXIT_REASON_DEBUG] = handle_vcpu_debug,
  445. };
  446. static const int kvm_vti_max_exit_handlers =
  447. sizeof(kvm_vti_exit_handlers)/sizeof(*kvm_vti_exit_handlers);
  448. static uint32_t kvm_get_exit_reason(struct kvm_vcpu *vcpu)
  449. {
  450. struct exit_ctl_data *p_exit_data;
  451. p_exit_data = kvm_get_exit_data(vcpu);
  452. return p_exit_data->exit_reason;
  453. }
  454. /*
  455. * The guest has exited. See if we can fix it or if we need userspace
  456. * assistance.
  457. */
  458. static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
  459. {
  460. u32 exit_reason = kvm_get_exit_reason(vcpu);
  461. vcpu->arch.last_exit = exit_reason;
  462. if (exit_reason < kvm_vti_max_exit_handlers
  463. && kvm_vti_exit_handlers[exit_reason])
  464. return kvm_vti_exit_handlers[exit_reason](vcpu, kvm_run);
  465. else {
  466. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  467. kvm_run->hw.hardware_exit_reason = exit_reason;
  468. }
  469. return 0;
  470. }
  471. static inline void vti_set_rr6(unsigned long rr6)
  472. {
  473. ia64_set_rr(RR6, rr6);
  474. ia64_srlz_i();
  475. }
  476. static int kvm_insert_vmm_mapping(struct kvm_vcpu *vcpu)
  477. {
  478. unsigned long pte;
  479. struct kvm *kvm = vcpu->kvm;
  480. int r;
  481. /*Insert a pair of tr to map vmm*/
  482. pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base), PAGE_KERNEL));
  483. r = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
  484. if (r < 0)
  485. goto out;
  486. vcpu->arch.vmm_tr_slot = r;
  487. /*Insert a pairt of tr to map data of vm*/
  488. pte = pte_val(mk_pte_phys(__pa(kvm->arch.vm_base), PAGE_KERNEL));
  489. r = ia64_itr_entry(0x3, KVM_VM_DATA_BASE,
  490. pte, KVM_VM_DATA_SHIFT);
  491. if (r < 0)
  492. goto out;
  493. vcpu->arch.vm_tr_slot = r;
  494. #if defined(CONFIG_IA64_SGI_SN2) || defined(CONFIG_IA64_GENERIC)
  495. if (kvm->arch.is_sn2) {
  496. r = kvm_sn2_setup_mappings(vcpu);
  497. if (r < 0)
  498. goto out;
  499. }
  500. #endif
  501. r = 0;
  502. out:
  503. return r;
  504. }
  505. static void kvm_purge_vmm_mapping(struct kvm_vcpu *vcpu)
  506. {
  507. struct kvm *kvm = vcpu->kvm;
  508. ia64_ptr_entry(0x3, vcpu->arch.vmm_tr_slot);
  509. ia64_ptr_entry(0x3, vcpu->arch.vm_tr_slot);
  510. #if defined(CONFIG_IA64_SGI_SN2) || defined(CONFIG_IA64_GENERIC)
  511. if (kvm->arch.is_sn2)
  512. ia64_ptr_entry(0x3, vcpu->arch.sn_rtc_tr_slot);
  513. #endif
  514. }
  515. static int kvm_vcpu_pre_transition(struct kvm_vcpu *vcpu)
  516. {
  517. unsigned long psr;
  518. int r;
  519. int cpu = smp_processor_id();
  520. if (vcpu->arch.last_run_cpu != cpu ||
  521. per_cpu(last_vcpu, cpu) != vcpu) {
  522. per_cpu(last_vcpu, cpu) = vcpu;
  523. vcpu->arch.last_run_cpu = cpu;
  524. kvm_flush_tlb_all();
  525. }
  526. vcpu->arch.host_rr6 = ia64_get_rr(RR6);
  527. vti_set_rr6(vcpu->arch.vmm_rr);
  528. local_irq_save(psr);
  529. r = kvm_insert_vmm_mapping(vcpu);
  530. local_irq_restore(psr);
  531. return r;
  532. }
  533. static void kvm_vcpu_post_transition(struct kvm_vcpu *vcpu)
  534. {
  535. kvm_purge_vmm_mapping(vcpu);
  536. vti_set_rr6(vcpu->arch.host_rr6);
  537. }
  538. static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  539. {
  540. union context *host_ctx, *guest_ctx;
  541. int r, idx;
  542. idx = srcu_read_lock(&vcpu->kvm->srcu);
  543. again:
  544. if (signal_pending(current)) {
  545. r = -EINTR;
  546. kvm_run->exit_reason = KVM_EXIT_INTR;
  547. goto out;
  548. }
  549. preempt_disable();
  550. local_irq_disable();
  551. /*Get host and guest context with guest address space.*/
  552. host_ctx = kvm_get_host_context(vcpu);
  553. guest_ctx = kvm_get_guest_context(vcpu);
  554. clear_bit(KVM_REQ_KICK, &vcpu->requests);
  555. r = kvm_vcpu_pre_transition(vcpu);
  556. if (r < 0)
  557. goto vcpu_run_fail;
  558. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  559. vcpu->mode = IN_GUEST_MODE;
  560. kvm_guest_enter();
  561. /*
  562. * Transition to the guest
  563. */
  564. kvm_vmm_info->tramp_entry(host_ctx, guest_ctx);
  565. kvm_vcpu_post_transition(vcpu);
  566. vcpu->arch.launched = 1;
  567. set_bit(KVM_REQ_KICK, &vcpu->requests);
  568. local_irq_enable();
  569. /*
  570. * We must have an instruction between local_irq_enable() and
  571. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  572. * the interrupt shadow. The stat.exits increment will do nicely.
  573. * But we need to prevent reordering, hence this barrier():
  574. */
  575. barrier();
  576. kvm_guest_exit();
  577. vcpu->mode = OUTSIDE_GUEST_MODE;
  578. preempt_enable();
  579. idx = srcu_read_lock(&vcpu->kvm->srcu);
  580. r = kvm_handle_exit(kvm_run, vcpu);
  581. if (r > 0) {
  582. if (!need_resched())
  583. goto again;
  584. }
  585. out:
  586. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  587. if (r > 0) {
  588. cond_resched();
  589. idx = srcu_read_lock(&vcpu->kvm->srcu);
  590. goto again;
  591. }
  592. return r;
  593. vcpu_run_fail:
  594. local_irq_enable();
  595. preempt_enable();
  596. kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  597. goto out;
  598. }
  599. static void kvm_set_mmio_data(struct kvm_vcpu *vcpu)
  600. {
  601. struct kvm_mmio_req *p = kvm_get_vcpu_ioreq(vcpu);
  602. if (!vcpu->mmio_is_write)
  603. memcpy(&p->data, vcpu->arch.mmio_data, 8);
  604. p->state = STATE_IORESP_READY;
  605. }
  606. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  607. {
  608. int r;
  609. sigset_t sigsaved;
  610. if (vcpu->sigset_active)
  611. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  612. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
  613. kvm_vcpu_block(vcpu);
  614. clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
  615. r = -EAGAIN;
  616. goto out;
  617. }
  618. if (vcpu->mmio_needed) {
  619. memcpy(vcpu->arch.mmio_data, kvm_run->mmio.data, 8);
  620. kvm_set_mmio_data(vcpu);
  621. vcpu->mmio_read_completed = 1;
  622. vcpu->mmio_needed = 0;
  623. }
  624. r = __vcpu_run(vcpu, kvm_run);
  625. out:
  626. if (vcpu->sigset_active)
  627. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  628. return r;
  629. }
  630. struct kvm *kvm_arch_alloc_vm(void)
  631. {
  632. struct kvm *kvm;
  633. uint64_t vm_base;
  634. BUG_ON(sizeof(struct kvm) > KVM_VM_STRUCT_SIZE);
  635. vm_base = __get_free_pages(GFP_KERNEL, get_order(KVM_VM_DATA_SIZE));
  636. if (!vm_base)
  637. return NULL;
  638. memset((void *)vm_base, 0, KVM_VM_DATA_SIZE);
  639. kvm = (struct kvm *)(vm_base +
  640. offsetof(struct kvm_vm_data, kvm_vm_struct));
  641. kvm->arch.vm_base = vm_base;
  642. printk(KERN_DEBUG"kvm: vm's data area:0x%lx\n", vm_base);
  643. return kvm;
  644. }
  645. struct kvm_ia64_io_range {
  646. unsigned long start;
  647. unsigned long size;
  648. unsigned long type;
  649. };
  650. static const struct kvm_ia64_io_range io_ranges[] = {
  651. {VGA_IO_START, VGA_IO_SIZE, GPFN_FRAME_BUFFER},
  652. {MMIO_START, MMIO_SIZE, GPFN_LOW_MMIO},
  653. {LEGACY_IO_START, LEGACY_IO_SIZE, GPFN_LEGACY_IO},
  654. {IO_SAPIC_START, IO_SAPIC_SIZE, GPFN_IOSAPIC},
  655. {PIB_START, PIB_SIZE, GPFN_PIB},
  656. };
  657. static void kvm_build_io_pmt(struct kvm *kvm)
  658. {
  659. unsigned long i, j;
  660. /* Mark I/O ranges */
  661. for (i = 0; i < (sizeof(io_ranges) / sizeof(struct kvm_io_range));
  662. i++) {
  663. for (j = io_ranges[i].start;
  664. j < io_ranges[i].start + io_ranges[i].size;
  665. j += PAGE_SIZE)
  666. kvm_set_pmt_entry(kvm, j >> PAGE_SHIFT,
  667. io_ranges[i].type, 0);
  668. }
  669. }
  670. /*Use unused rids to virtualize guest rid.*/
  671. #define GUEST_PHYSICAL_RR0 0x1739
  672. #define GUEST_PHYSICAL_RR4 0x2739
  673. #define VMM_INIT_RR 0x1660
  674. int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
  675. {
  676. BUG_ON(!kvm);
  677. if (type)
  678. return -EINVAL;
  679. kvm->arch.is_sn2 = ia64_platform_is("sn2");
  680. kvm->arch.metaphysical_rr0 = GUEST_PHYSICAL_RR0;
  681. kvm->arch.metaphysical_rr4 = GUEST_PHYSICAL_RR4;
  682. kvm->arch.vmm_init_rr = VMM_INIT_RR;
  683. /*
  684. *Fill P2M entries for MMIO/IO ranges
  685. */
  686. kvm_build_io_pmt(kvm);
  687. INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
  688. /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
  689. set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
  690. return 0;
  691. }
  692. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm,
  693. struct kvm_irqchip *chip)
  694. {
  695. int r;
  696. r = 0;
  697. switch (chip->chip_id) {
  698. case KVM_IRQCHIP_IOAPIC:
  699. r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
  700. break;
  701. default:
  702. r = -EINVAL;
  703. break;
  704. }
  705. return r;
  706. }
  707. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  708. {
  709. int r;
  710. r = 0;
  711. switch (chip->chip_id) {
  712. case KVM_IRQCHIP_IOAPIC:
  713. r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
  714. break;
  715. default:
  716. r = -EINVAL;
  717. break;
  718. }
  719. return r;
  720. }
  721. #define RESTORE_REGS(_x) vcpu->arch._x = regs->_x
  722. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  723. {
  724. struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
  725. int i;
  726. for (i = 0; i < 16; i++) {
  727. vpd->vgr[i] = regs->vpd.vgr[i];
  728. vpd->vbgr[i] = regs->vpd.vbgr[i];
  729. }
  730. for (i = 0; i < 128; i++)
  731. vpd->vcr[i] = regs->vpd.vcr[i];
  732. vpd->vhpi = regs->vpd.vhpi;
  733. vpd->vnat = regs->vpd.vnat;
  734. vpd->vbnat = regs->vpd.vbnat;
  735. vpd->vpsr = regs->vpd.vpsr;
  736. vpd->vpr = regs->vpd.vpr;
  737. memcpy(&vcpu->arch.guest, &regs->saved_guest, sizeof(union context));
  738. RESTORE_REGS(mp_state);
  739. RESTORE_REGS(vmm_rr);
  740. memcpy(vcpu->arch.itrs, regs->itrs, sizeof(struct thash_data) * NITRS);
  741. memcpy(vcpu->arch.dtrs, regs->dtrs, sizeof(struct thash_data) * NDTRS);
  742. RESTORE_REGS(itr_regions);
  743. RESTORE_REGS(dtr_regions);
  744. RESTORE_REGS(tc_regions);
  745. RESTORE_REGS(irq_check);
  746. RESTORE_REGS(itc_check);
  747. RESTORE_REGS(timer_check);
  748. RESTORE_REGS(timer_pending);
  749. RESTORE_REGS(last_itc);
  750. for (i = 0; i < 8; i++) {
  751. vcpu->arch.vrr[i] = regs->vrr[i];
  752. vcpu->arch.ibr[i] = regs->ibr[i];
  753. vcpu->arch.dbr[i] = regs->dbr[i];
  754. }
  755. for (i = 0; i < 4; i++)
  756. vcpu->arch.insvc[i] = regs->insvc[i];
  757. RESTORE_REGS(xtp);
  758. RESTORE_REGS(metaphysical_rr0);
  759. RESTORE_REGS(metaphysical_rr4);
  760. RESTORE_REGS(metaphysical_saved_rr0);
  761. RESTORE_REGS(metaphysical_saved_rr4);
  762. RESTORE_REGS(fp_psr);
  763. RESTORE_REGS(saved_gp);
  764. vcpu->arch.irq_new_pending = 1;
  765. vcpu->arch.itc_offset = regs->saved_itc - kvm_get_itc(vcpu);
  766. set_bit(KVM_REQ_RESUME, &vcpu->requests);
  767. return 0;
  768. }
  769. int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
  770. bool line_status)
  771. {
  772. if (!irqchip_in_kernel(kvm))
  773. return -ENXIO;
  774. irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
  775. irq_event->irq, irq_event->level,
  776. line_status);
  777. return 0;
  778. }
  779. long kvm_arch_vm_ioctl(struct file *filp,
  780. unsigned int ioctl, unsigned long arg)
  781. {
  782. struct kvm *kvm = filp->private_data;
  783. void __user *argp = (void __user *)arg;
  784. int r = -ENOTTY;
  785. switch (ioctl) {
  786. case KVM_CREATE_IRQCHIP:
  787. r = -EFAULT;
  788. r = kvm_ioapic_init(kvm);
  789. if (r)
  790. goto out;
  791. r = kvm_setup_default_irq_routing(kvm);
  792. if (r) {
  793. mutex_lock(&kvm->slots_lock);
  794. kvm_ioapic_destroy(kvm);
  795. mutex_unlock(&kvm->slots_lock);
  796. goto out;
  797. }
  798. break;
  799. case KVM_GET_IRQCHIP: {
  800. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  801. struct kvm_irqchip chip;
  802. r = -EFAULT;
  803. if (copy_from_user(&chip, argp, sizeof chip))
  804. goto out;
  805. r = -ENXIO;
  806. if (!irqchip_in_kernel(kvm))
  807. goto out;
  808. r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
  809. if (r)
  810. goto out;
  811. r = -EFAULT;
  812. if (copy_to_user(argp, &chip, sizeof chip))
  813. goto out;
  814. r = 0;
  815. break;
  816. }
  817. case KVM_SET_IRQCHIP: {
  818. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  819. struct kvm_irqchip chip;
  820. r = -EFAULT;
  821. if (copy_from_user(&chip, argp, sizeof chip))
  822. goto out;
  823. r = -ENXIO;
  824. if (!irqchip_in_kernel(kvm))
  825. goto out;
  826. r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
  827. if (r)
  828. goto out;
  829. r = 0;
  830. break;
  831. }
  832. default:
  833. ;
  834. }
  835. out:
  836. return r;
  837. }
  838. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  839. struct kvm_sregs *sregs)
  840. {
  841. return -EINVAL;
  842. }
  843. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  844. struct kvm_sregs *sregs)
  845. {
  846. return -EINVAL;
  847. }
  848. int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  849. struct kvm_translation *tr)
  850. {
  851. return -EINVAL;
  852. }
  853. static int kvm_alloc_vmm_area(void)
  854. {
  855. if (!kvm_vmm_base && (kvm_vm_buffer_size < KVM_VM_BUFFER_SIZE)) {
  856. kvm_vmm_base = __get_free_pages(GFP_KERNEL,
  857. get_order(KVM_VMM_SIZE));
  858. if (!kvm_vmm_base)
  859. return -ENOMEM;
  860. memset((void *)kvm_vmm_base, 0, KVM_VMM_SIZE);
  861. kvm_vm_buffer = kvm_vmm_base + VMM_SIZE;
  862. printk(KERN_DEBUG"kvm:VMM's Base Addr:0x%lx, vm_buffer:0x%lx\n",
  863. kvm_vmm_base, kvm_vm_buffer);
  864. }
  865. return 0;
  866. }
  867. static void kvm_free_vmm_area(void)
  868. {
  869. if (kvm_vmm_base) {
  870. /*Zero this area before free to avoid bits leak!!*/
  871. memset((void *)kvm_vmm_base, 0, KVM_VMM_SIZE);
  872. free_pages(kvm_vmm_base, get_order(KVM_VMM_SIZE));
  873. kvm_vmm_base = 0;
  874. kvm_vm_buffer = 0;
  875. kvm_vsa_base = 0;
  876. }
  877. }
  878. static int vti_init_vpd(struct kvm_vcpu *vcpu)
  879. {
  880. int i;
  881. union cpuid3_t cpuid3;
  882. struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
  883. if (IS_ERR(vpd))
  884. return PTR_ERR(vpd);
  885. /* CPUID init */
  886. for (i = 0; i < 5; i++)
  887. vpd->vcpuid[i] = ia64_get_cpuid(i);
  888. /* Limit the CPUID number to 5 */
  889. cpuid3.value = vpd->vcpuid[3];
  890. cpuid3.number = 4; /* 5 - 1 */
  891. vpd->vcpuid[3] = cpuid3.value;
  892. /*Set vac and vdc fields*/
  893. vpd->vac.a_from_int_cr = 1;
  894. vpd->vac.a_to_int_cr = 1;
  895. vpd->vac.a_from_psr = 1;
  896. vpd->vac.a_from_cpuid = 1;
  897. vpd->vac.a_cover = 1;
  898. vpd->vac.a_bsw = 1;
  899. vpd->vac.a_int = 1;
  900. vpd->vdc.d_vmsw = 1;
  901. /*Set virtual buffer*/
  902. vpd->virt_env_vaddr = KVM_VM_BUFFER_BASE;
  903. return 0;
  904. }
  905. static int vti_create_vp(struct kvm_vcpu *vcpu)
  906. {
  907. long ret;
  908. struct vpd *vpd = vcpu->arch.vpd;
  909. unsigned long vmm_ivt;
  910. vmm_ivt = kvm_vmm_info->vmm_ivt;
  911. printk(KERN_DEBUG "kvm: vcpu:%p,ivt: 0x%lx\n", vcpu, vmm_ivt);
  912. ret = ia64_pal_vp_create((u64 *)vpd, (u64 *)vmm_ivt, 0);
  913. if (ret) {
  914. printk(KERN_ERR"kvm: ia64_pal_vp_create failed!\n");
  915. return -EINVAL;
  916. }
  917. return 0;
  918. }
  919. static void init_ptce_info(struct kvm_vcpu *vcpu)
  920. {
  921. ia64_ptce_info_t ptce = {0};
  922. ia64_get_ptce(&ptce);
  923. vcpu->arch.ptce_base = ptce.base;
  924. vcpu->arch.ptce_count[0] = ptce.count[0];
  925. vcpu->arch.ptce_count[1] = ptce.count[1];
  926. vcpu->arch.ptce_stride[0] = ptce.stride[0];
  927. vcpu->arch.ptce_stride[1] = ptce.stride[1];
  928. }
  929. static void kvm_migrate_hlt_timer(struct kvm_vcpu *vcpu)
  930. {
  931. struct hrtimer *p_ht = &vcpu->arch.hlt_timer;
  932. if (hrtimer_cancel(p_ht))
  933. hrtimer_start_expires(p_ht, HRTIMER_MODE_ABS);
  934. }
  935. static enum hrtimer_restart hlt_timer_fn(struct hrtimer *data)
  936. {
  937. struct kvm_vcpu *vcpu;
  938. wait_queue_head_t *q;
  939. vcpu = container_of(data, struct kvm_vcpu, arch.hlt_timer);
  940. q = &vcpu->wq;
  941. if (vcpu->arch.mp_state != KVM_MP_STATE_HALTED)
  942. goto out;
  943. if (waitqueue_active(q))
  944. wake_up_interruptible(q);
  945. out:
  946. vcpu->arch.timer_fired = 1;
  947. vcpu->arch.timer_check = 1;
  948. return HRTIMER_NORESTART;
  949. }
  950. #define PALE_RESET_ENTRY 0x80000000ffffffb0UL
  951. bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
  952. {
  953. return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
  954. }
  955. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  956. {
  957. struct kvm_vcpu *v;
  958. int r;
  959. int i;
  960. long itc_offset;
  961. struct kvm *kvm = vcpu->kvm;
  962. struct kvm_pt_regs *regs = vcpu_regs(vcpu);
  963. union context *p_ctx = &vcpu->arch.guest;
  964. struct kvm_vcpu *vmm_vcpu = to_guest(vcpu->kvm, vcpu);
  965. /*Init vcpu context for first run.*/
  966. if (IS_ERR(vmm_vcpu))
  967. return PTR_ERR(vmm_vcpu);
  968. if (kvm_vcpu_is_bsp(vcpu)) {
  969. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  970. /*Set entry address for first run.*/
  971. regs->cr_iip = PALE_RESET_ENTRY;
  972. /*Initialize itc offset for vcpus*/
  973. itc_offset = 0UL - kvm_get_itc(vcpu);
  974. for (i = 0; i < KVM_MAX_VCPUS; i++) {
  975. v = (struct kvm_vcpu *)((char *)vcpu +
  976. sizeof(struct kvm_vcpu_data) * i);
  977. v->arch.itc_offset = itc_offset;
  978. v->arch.last_itc = 0;
  979. }
  980. } else
  981. vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
  982. r = -ENOMEM;
  983. vcpu->arch.apic = kzalloc(sizeof(struct kvm_lapic), GFP_KERNEL);
  984. if (!vcpu->arch.apic)
  985. goto out;
  986. vcpu->arch.apic->vcpu = vcpu;
  987. p_ctx->gr[1] = 0;
  988. p_ctx->gr[12] = (unsigned long)((char *)vmm_vcpu + KVM_STK_OFFSET);
  989. p_ctx->gr[13] = (unsigned long)vmm_vcpu;
  990. p_ctx->psr = 0x1008522000UL;
  991. p_ctx->ar[40] = FPSR_DEFAULT; /*fpsr*/
  992. p_ctx->caller_unat = 0;
  993. p_ctx->pr = 0x0;
  994. p_ctx->ar[36] = 0x0; /*unat*/
  995. p_ctx->ar[19] = 0x0; /*rnat*/
  996. p_ctx->ar[18] = (unsigned long)vmm_vcpu +
  997. ((sizeof(struct kvm_vcpu)+15) & ~15);
  998. p_ctx->ar[64] = 0x0; /*pfs*/
  999. p_ctx->cr[0] = 0x7e04UL;
  1000. p_ctx->cr[2] = (unsigned long)kvm_vmm_info->vmm_ivt;
  1001. p_ctx->cr[8] = 0x3c;
  1002. /*Initialize region register*/
  1003. p_ctx->rr[0] = 0x30;
  1004. p_ctx->rr[1] = 0x30;
  1005. p_ctx->rr[2] = 0x30;
  1006. p_ctx->rr[3] = 0x30;
  1007. p_ctx->rr[4] = 0x30;
  1008. p_ctx->rr[5] = 0x30;
  1009. p_ctx->rr[7] = 0x30;
  1010. /*Initialize branch register 0*/
  1011. p_ctx->br[0] = *(unsigned long *)kvm_vmm_info->vmm_entry;
  1012. vcpu->arch.vmm_rr = kvm->arch.vmm_init_rr;
  1013. vcpu->arch.metaphysical_rr0 = kvm->arch.metaphysical_rr0;
  1014. vcpu->arch.metaphysical_rr4 = kvm->arch.metaphysical_rr4;
  1015. hrtimer_init(&vcpu->arch.hlt_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
  1016. vcpu->arch.hlt_timer.function = hlt_timer_fn;
  1017. vcpu->arch.last_run_cpu = -1;
  1018. vcpu->arch.vpd = (struct vpd *)VPD_BASE(vcpu->vcpu_id);
  1019. vcpu->arch.vsa_base = kvm_vsa_base;
  1020. vcpu->arch.__gp = kvm_vmm_gp;
  1021. vcpu->arch.dirty_log_lock_pa = __pa(&kvm->arch.dirty_log_lock);
  1022. vcpu->arch.vhpt.hash = (struct thash_data *)VHPT_BASE(vcpu->vcpu_id);
  1023. vcpu->arch.vtlb.hash = (struct thash_data *)VTLB_BASE(vcpu->vcpu_id);
  1024. init_ptce_info(vcpu);
  1025. r = 0;
  1026. out:
  1027. return r;
  1028. }
  1029. static int vti_vcpu_setup(struct kvm_vcpu *vcpu, int id)
  1030. {
  1031. unsigned long psr;
  1032. int r;
  1033. local_irq_save(psr);
  1034. r = kvm_insert_vmm_mapping(vcpu);
  1035. local_irq_restore(psr);
  1036. if (r)
  1037. goto fail;
  1038. r = kvm_vcpu_init(vcpu, vcpu->kvm, id);
  1039. if (r)
  1040. goto fail;
  1041. r = vti_init_vpd(vcpu);
  1042. if (r) {
  1043. printk(KERN_DEBUG"kvm: vpd init error!!\n");
  1044. goto uninit;
  1045. }
  1046. r = vti_create_vp(vcpu);
  1047. if (r)
  1048. goto uninit;
  1049. kvm_purge_vmm_mapping(vcpu);
  1050. return 0;
  1051. uninit:
  1052. kvm_vcpu_uninit(vcpu);
  1053. fail:
  1054. return r;
  1055. }
  1056. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
  1057. unsigned int id)
  1058. {
  1059. struct kvm_vcpu *vcpu;
  1060. unsigned long vm_base = kvm->arch.vm_base;
  1061. int r;
  1062. int cpu;
  1063. BUG_ON(sizeof(struct kvm_vcpu) > VCPU_STRUCT_SIZE/2);
  1064. r = -EINVAL;
  1065. if (id >= KVM_MAX_VCPUS) {
  1066. printk(KERN_ERR"kvm: Can't configure vcpus > %ld",
  1067. KVM_MAX_VCPUS);
  1068. goto fail;
  1069. }
  1070. r = -ENOMEM;
  1071. if (!vm_base) {
  1072. printk(KERN_ERR"kvm: Create vcpu[%d] error!\n", id);
  1073. goto fail;
  1074. }
  1075. vcpu = (struct kvm_vcpu *)(vm_base + offsetof(struct kvm_vm_data,
  1076. vcpu_data[id].vcpu_struct));
  1077. vcpu->kvm = kvm;
  1078. cpu = get_cpu();
  1079. r = vti_vcpu_setup(vcpu, id);
  1080. put_cpu();
  1081. if (r) {
  1082. printk(KERN_DEBUG"kvm: vcpu_setup error!!\n");
  1083. goto fail;
  1084. }
  1085. return vcpu;
  1086. fail:
  1087. return ERR_PTR(r);
  1088. }
  1089. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  1090. {
  1091. return 0;
  1092. }
  1093. int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
  1094. {
  1095. return 0;
  1096. }
  1097. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  1098. {
  1099. return -EINVAL;
  1100. }
  1101. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  1102. {
  1103. return -EINVAL;
  1104. }
  1105. int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
  1106. struct kvm_guest_debug *dbg)
  1107. {
  1108. return -EINVAL;
  1109. }
  1110. void kvm_arch_free_vm(struct kvm *kvm)
  1111. {
  1112. unsigned long vm_base = kvm->arch.vm_base;
  1113. if (vm_base) {
  1114. memset((void *)vm_base, 0, KVM_VM_DATA_SIZE);
  1115. free_pages(vm_base, get_order(KVM_VM_DATA_SIZE));
  1116. }
  1117. }
  1118. static void kvm_release_vm_pages(struct kvm *kvm)
  1119. {
  1120. struct kvm_memslots *slots;
  1121. struct kvm_memory_slot *memslot;
  1122. int j;
  1123. slots = kvm_memslots(kvm);
  1124. kvm_for_each_memslot(memslot, slots) {
  1125. for (j = 0; j < memslot->npages; j++) {
  1126. if (memslot->rmap[j])
  1127. put_page((struct page *)memslot->rmap[j]);
  1128. }
  1129. }
  1130. }
  1131. void kvm_arch_sync_events(struct kvm *kvm)
  1132. {
  1133. }
  1134. void kvm_arch_destroy_vm(struct kvm *kvm)
  1135. {
  1136. kvm_iommu_unmap_guest(kvm);
  1137. kvm_free_all_assigned_devices(kvm);
  1138. kfree(kvm->arch.vioapic);
  1139. kvm_release_vm_pages(kvm);
  1140. }
  1141. void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
  1142. {
  1143. }
  1144. void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  1145. {
  1146. if (cpu != vcpu->cpu) {
  1147. vcpu->cpu = cpu;
  1148. if (vcpu->arch.ht_active)
  1149. kvm_migrate_hlt_timer(vcpu);
  1150. }
  1151. }
  1152. #define SAVE_REGS(_x) regs->_x = vcpu->arch._x
  1153. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  1154. {
  1155. struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
  1156. int i;
  1157. vcpu_load(vcpu);
  1158. for (i = 0; i < 16; i++) {
  1159. regs->vpd.vgr[i] = vpd->vgr[i];
  1160. regs->vpd.vbgr[i] = vpd->vbgr[i];
  1161. }
  1162. for (i = 0; i < 128; i++)
  1163. regs->vpd.vcr[i] = vpd->vcr[i];
  1164. regs->vpd.vhpi = vpd->vhpi;
  1165. regs->vpd.vnat = vpd->vnat;
  1166. regs->vpd.vbnat = vpd->vbnat;
  1167. regs->vpd.vpsr = vpd->vpsr;
  1168. regs->vpd.vpr = vpd->vpr;
  1169. memcpy(&regs->saved_guest, &vcpu->arch.guest, sizeof(union context));
  1170. SAVE_REGS(mp_state);
  1171. SAVE_REGS(vmm_rr);
  1172. memcpy(regs->itrs, vcpu->arch.itrs, sizeof(struct thash_data) * NITRS);
  1173. memcpy(regs->dtrs, vcpu->arch.dtrs, sizeof(struct thash_data) * NDTRS);
  1174. SAVE_REGS(itr_regions);
  1175. SAVE_REGS(dtr_regions);
  1176. SAVE_REGS(tc_regions);
  1177. SAVE_REGS(irq_check);
  1178. SAVE_REGS(itc_check);
  1179. SAVE_REGS(timer_check);
  1180. SAVE_REGS(timer_pending);
  1181. SAVE_REGS(last_itc);
  1182. for (i = 0; i < 8; i++) {
  1183. regs->vrr[i] = vcpu->arch.vrr[i];
  1184. regs->ibr[i] = vcpu->arch.ibr[i];
  1185. regs->dbr[i] = vcpu->arch.dbr[i];
  1186. }
  1187. for (i = 0; i < 4; i++)
  1188. regs->insvc[i] = vcpu->arch.insvc[i];
  1189. regs->saved_itc = vcpu->arch.itc_offset + kvm_get_itc(vcpu);
  1190. SAVE_REGS(xtp);
  1191. SAVE_REGS(metaphysical_rr0);
  1192. SAVE_REGS(metaphysical_rr4);
  1193. SAVE_REGS(metaphysical_saved_rr0);
  1194. SAVE_REGS(metaphysical_saved_rr4);
  1195. SAVE_REGS(fp_psr);
  1196. SAVE_REGS(saved_gp);
  1197. vcpu_put(vcpu);
  1198. return 0;
  1199. }
  1200. int kvm_arch_vcpu_ioctl_get_stack(struct kvm_vcpu *vcpu,
  1201. struct kvm_ia64_vcpu_stack *stack)
  1202. {
  1203. memcpy(stack, vcpu, sizeof(struct kvm_ia64_vcpu_stack));
  1204. return 0;
  1205. }
  1206. int kvm_arch_vcpu_ioctl_set_stack(struct kvm_vcpu *vcpu,
  1207. struct kvm_ia64_vcpu_stack *stack)
  1208. {
  1209. memcpy(vcpu + 1, &stack->stack[0] + sizeof(struct kvm_vcpu),
  1210. sizeof(struct kvm_ia64_vcpu_stack) - sizeof(struct kvm_vcpu));
  1211. vcpu->arch.exit_data = ((struct kvm_vcpu *)stack)->arch.exit_data;
  1212. return 0;
  1213. }
  1214. void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
  1215. {
  1216. hrtimer_cancel(&vcpu->arch.hlt_timer);
  1217. kfree(vcpu->arch.apic);
  1218. }
  1219. long kvm_arch_vcpu_ioctl(struct file *filp,
  1220. unsigned int ioctl, unsigned long arg)
  1221. {
  1222. struct kvm_vcpu *vcpu = filp->private_data;
  1223. void __user *argp = (void __user *)arg;
  1224. struct kvm_ia64_vcpu_stack *stack = NULL;
  1225. long r;
  1226. switch (ioctl) {
  1227. case KVM_IA64_VCPU_GET_STACK: {
  1228. struct kvm_ia64_vcpu_stack __user *user_stack;
  1229. void __user *first_p = argp;
  1230. r = -EFAULT;
  1231. if (copy_from_user(&user_stack, first_p, sizeof(void *)))
  1232. goto out;
  1233. if (!access_ok(VERIFY_WRITE, user_stack,
  1234. sizeof(struct kvm_ia64_vcpu_stack))) {
  1235. printk(KERN_INFO "KVM_IA64_VCPU_GET_STACK: "
  1236. "Illegal user destination address for stack\n");
  1237. goto out;
  1238. }
  1239. stack = kzalloc(sizeof(struct kvm_ia64_vcpu_stack), GFP_KERNEL);
  1240. if (!stack) {
  1241. r = -ENOMEM;
  1242. goto out;
  1243. }
  1244. r = kvm_arch_vcpu_ioctl_get_stack(vcpu, stack);
  1245. if (r)
  1246. goto out;
  1247. if (copy_to_user(user_stack, stack,
  1248. sizeof(struct kvm_ia64_vcpu_stack))) {
  1249. r = -EFAULT;
  1250. goto out;
  1251. }
  1252. break;
  1253. }
  1254. case KVM_IA64_VCPU_SET_STACK: {
  1255. struct kvm_ia64_vcpu_stack __user *user_stack;
  1256. void __user *first_p = argp;
  1257. r = -EFAULT;
  1258. if (copy_from_user(&user_stack, first_p, sizeof(void *)))
  1259. goto out;
  1260. if (!access_ok(VERIFY_READ, user_stack,
  1261. sizeof(struct kvm_ia64_vcpu_stack))) {
  1262. printk(KERN_INFO "KVM_IA64_VCPU_SET_STACK: "
  1263. "Illegal user address for stack\n");
  1264. goto out;
  1265. }
  1266. stack = kmalloc(sizeof(struct kvm_ia64_vcpu_stack), GFP_KERNEL);
  1267. if (!stack) {
  1268. r = -ENOMEM;
  1269. goto out;
  1270. }
  1271. if (copy_from_user(stack, user_stack,
  1272. sizeof(struct kvm_ia64_vcpu_stack)))
  1273. goto out;
  1274. r = kvm_arch_vcpu_ioctl_set_stack(vcpu, stack);
  1275. break;
  1276. }
  1277. default:
  1278. r = -EINVAL;
  1279. }
  1280. out:
  1281. kfree(stack);
  1282. return r;
  1283. }
  1284. int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
  1285. {
  1286. return VM_FAULT_SIGBUS;
  1287. }
  1288. void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
  1289. struct kvm_memory_slot *dont)
  1290. {
  1291. }
  1292. int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
  1293. unsigned long npages)
  1294. {
  1295. return 0;
  1296. }
  1297. void kvm_arch_memslots_updated(struct kvm *kvm)
  1298. {
  1299. }
  1300. int kvm_arch_prepare_memory_region(struct kvm *kvm,
  1301. struct kvm_memory_slot *memslot,
  1302. struct kvm_userspace_memory_region *mem,
  1303. enum kvm_mr_change change)
  1304. {
  1305. unsigned long i;
  1306. unsigned long pfn;
  1307. int npages = memslot->npages;
  1308. unsigned long base_gfn = memslot->base_gfn;
  1309. if (base_gfn + npages > (KVM_MAX_MEM_SIZE >> PAGE_SHIFT))
  1310. return -ENOMEM;
  1311. for (i = 0; i < npages; i++) {
  1312. pfn = gfn_to_pfn(kvm, base_gfn + i);
  1313. if (!kvm_is_mmio_pfn(pfn)) {
  1314. kvm_set_pmt_entry(kvm, base_gfn + i,
  1315. pfn << PAGE_SHIFT,
  1316. _PAGE_AR_RWX | _PAGE_MA_WB);
  1317. memslot->rmap[i] = (unsigned long)pfn_to_page(pfn);
  1318. } else {
  1319. kvm_set_pmt_entry(kvm, base_gfn + i,
  1320. GPFN_PHYS_MMIO | (pfn << PAGE_SHIFT),
  1321. _PAGE_MA_UC);
  1322. memslot->rmap[i] = 0;
  1323. }
  1324. }
  1325. return 0;
  1326. }
  1327. void kvm_arch_commit_memory_region(struct kvm *kvm,
  1328. struct kvm_userspace_memory_region *mem,
  1329. const struct kvm_memory_slot *old,
  1330. enum kvm_mr_change change)
  1331. {
  1332. return;
  1333. }
  1334. void kvm_arch_flush_shadow_all(struct kvm *kvm)
  1335. {
  1336. kvm_flush_remote_tlbs(kvm);
  1337. }
  1338. void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
  1339. struct kvm_memory_slot *slot)
  1340. {
  1341. kvm_arch_flush_shadow_all();
  1342. }
  1343. long kvm_arch_dev_ioctl(struct file *filp,
  1344. unsigned int ioctl, unsigned long arg)
  1345. {
  1346. return -EINVAL;
  1347. }
  1348. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  1349. {
  1350. kvm_vcpu_uninit(vcpu);
  1351. }
  1352. static int vti_cpu_has_kvm_support(void)
  1353. {
  1354. long avail = 1, status = 1, control = 1;
  1355. long ret;
  1356. ret = ia64_pal_proc_get_features(&avail, &status, &control, 0);
  1357. if (ret)
  1358. goto out;
  1359. if (!(avail & PAL_PROC_VM_BIT))
  1360. goto out;
  1361. printk(KERN_DEBUG"kvm: Hardware Supports VT\n");
  1362. ret = ia64_pal_vp_env_info(&kvm_vm_buffer_size, &vp_env_info);
  1363. if (ret)
  1364. goto out;
  1365. printk(KERN_DEBUG"kvm: VM Buffer Size:0x%lx\n", kvm_vm_buffer_size);
  1366. if (!(vp_env_info & VP_OPCODE)) {
  1367. printk(KERN_WARNING"kvm: No opcode ability on hardware, "
  1368. "vm_env_info:0x%lx\n", vp_env_info);
  1369. }
  1370. return 1;
  1371. out:
  1372. return 0;
  1373. }
  1374. /*
  1375. * On SN2, the ITC isn't stable, so copy in fast path code to use the
  1376. * SN2 RTC, replacing the ITC based default verion.
  1377. */
  1378. static void kvm_patch_vmm(struct kvm_vmm_info *vmm_info,
  1379. struct module *module)
  1380. {
  1381. unsigned long new_ar, new_ar_sn2;
  1382. unsigned long module_base;
  1383. if (!ia64_platform_is("sn2"))
  1384. return;
  1385. module_base = (unsigned long)module->module_core;
  1386. new_ar = kvm_vmm_base + vmm_info->patch_mov_ar - module_base;
  1387. new_ar_sn2 = kvm_vmm_base + vmm_info->patch_mov_ar_sn2 - module_base;
  1388. printk(KERN_INFO "kvm: Patching ITC emulation to use SGI SN2 RTC "
  1389. "as source\n");
  1390. /*
  1391. * Copy the SN2 version of mov_ar into place. They are both
  1392. * the same size, so 6 bundles is sufficient (6 * 0x10).
  1393. */
  1394. memcpy((void *)new_ar, (void *)new_ar_sn2, 0x60);
  1395. }
  1396. static int kvm_relocate_vmm(struct kvm_vmm_info *vmm_info,
  1397. struct module *module)
  1398. {
  1399. unsigned long module_base;
  1400. unsigned long vmm_size;
  1401. unsigned long vmm_offset, func_offset, fdesc_offset;
  1402. struct fdesc *p_fdesc;
  1403. BUG_ON(!module);
  1404. if (!kvm_vmm_base) {
  1405. printk("kvm: kvm area hasn't been initialized yet!!\n");
  1406. return -EFAULT;
  1407. }
  1408. /*Calculate new position of relocated vmm module.*/
  1409. module_base = (unsigned long)module->module_core;
  1410. vmm_size = module->core_size;
  1411. if (unlikely(vmm_size > KVM_VMM_SIZE))
  1412. return -EFAULT;
  1413. memcpy((void *)kvm_vmm_base, (void *)module_base, vmm_size);
  1414. kvm_patch_vmm(vmm_info, module);
  1415. kvm_flush_icache(kvm_vmm_base, vmm_size);
  1416. /*Recalculate kvm_vmm_info based on new VMM*/
  1417. vmm_offset = vmm_info->vmm_ivt - module_base;
  1418. kvm_vmm_info->vmm_ivt = KVM_VMM_BASE + vmm_offset;
  1419. printk(KERN_DEBUG"kvm: Relocated VMM's IVT Base Addr:%lx\n",
  1420. kvm_vmm_info->vmm_ivt);
  1421. fdesc_offset = (unsigned long)vmm_info->vmm_entry - module_base;
  1422. kvm_vmm_info->vmm_entry = (kvm_vmm_entry *)(KVM_VMM_BASE +
  1423. fdesc_offset);
  1424. func_offset = *(unsigned long *)vmm_info->vmm_entry - module_base;
  1425. p_fdesc = (struct fdesc *)(kvm_vmm_base + fdesc_offset);
  1426. p_fdesc->ip = KVM_VMM_BASE + func_offset;
  1427. p_fdesc->gp = KVM_VMM_BASE+(p_fdesc->gp - module_base);
  1428. printk(KERN_DEBUG"kvm: Relocated VMM's Init Entry Addr:%lx\n",
  1429. KVM_VMM_BASE+func_offset);
  1430. fdesc_offset = (unsigned long)vmm_info->tramp_entry - module_base;
  1431. kvm_vmm_info->tramp_entry = (kvm_tramp_entry *)(KVM_VMM_BASE +
  1432. fdesc_offset);
  1433. func_offset = *(unsigned long *)vmm_info->tramp_entry - module_base;
  1434. p_fdesc = (struct fdesc *)(kvm_vmm_base + fdesc_offset);
  1435. p_fdesc->ip = KVM_VMM_BASE + func_offset;
  1436. p_fdesc->gp = KVM_VMM_BASE + (p_fdesc->gp - module_base);
  1437. kvm_vmm_gp = p_fdesc->gp;
  1438. printk(KERN_DEBUG"kvm: Relocated VMM's Entry IP:%p\n",
  1439. kvm_vmm_info->vmm_entry);
  1440. printk(KERN_DEBUG"kvm: Relocated VMM's Trampoline Entry IP:0x%lx\n",
  1441. KVM_VMM_BASE + func_offset);
  1442. return 0;
  1443. }
  1444. int kvm_arch_init(void *opaque)
  1445. {
  1446. int r;
  1447. struct kvm_vmm_info *vmm_info = (struct kvm_vmm_info *)opaque;
  1448. if (!vti_cpu_has_kvm_support()) {
  1449. printk(KERN_ERR "kvm: No Hardware Virtualization Support!\n");
  1450. r = -EOPNOTSUPP;
  1451. goto out;
  1452. }
  1453. if (kvm_vmm_info) {
  1454. printk(KERN_ERR "kvm: Already loaded VMM module!\n");
  1455. r = -EEXIST;
  1456. goto out;
  1457. }
  1458. r = -ENOMEM;
  1459. kvm_vmm_info = kzalloc(sizeof(struct kvm_vmm_info), GFP_KERNEL);
  1460. if (!kvm_vmm_info)
  1461. goto out;
  1462. if (kvm_alloc_vmm_area())
  1463. goto out_free0;
  1464. r = kvm_relocate_vmm(vmm_info, vmm_info->module);
  1465. if (r)
  1466. goto out_free1;
  1467. return 0;
  1468. out_free1:
  1469. kvm_free_vmm_area();
  1470. out_free0:
  1471. kfree(kvm_vmm_info);
  1472. out:
  1473. return r;
  1474. }
  1475. void kvm_arch_exit(void)
  1476. {
  1477. kvm_free_vmm_area();
  1478. kfree(kvm_vmm_info);
  1479. kvm_vmm_info = NULL;
  1480. }
  1481. static void kvm_ia64_sync_dirty_log(struct kvm *kvm,
  1482. struct kvm_memory_slot *memslot)
  1483. {
  1484. int i;
  1485. long base;
  1486. unsigned long n;
  1487. unsigned long *dirty_bitmap = (unsigned long *)(kvm->arch.vm_base +
  1488. offsetof(struct kvm_vm_data, kvm_mem_dirty_log));
  1489. n = kvm_dirty_bitmap_bytes(memslot);
  1490. base = memslot->base_gfn / BITS_PER_LONG;
  1491. spin_lock(&kvm->arch.dirty_log_lock);
  1492. for (i = 0; i < n/sizeof(long); ++i) {
  1493. memslot->dirty_bitmap[i] = dirty_bitmap[base + i];
  1494. dirty_bitmap[base + i] = 0;
  1495. }
  1496. spin_unlock(&kvm->arch.dirty_log_lock);
  1497. }
  1498. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  1499. struct kvm_dirty_log *log)
  1500. {
  1501. int r;
  1502. unsigned long n;
  1503. struct kvm_memory_slot *memslot;
  1504. int is_dirty = 0;
  1505. mutex_lock(&kvm->slots_lock);
  1506. r = -EINVAL;
  1507. if (log->slot >= KVM_USER_MEM_SLOTS)
  1508. goto out;
  1509. memslot = id_to_memslot(kvm->memslots, log->slot);
  1510. r = -ENOENT;
  1511. if (!memslot->dirty_bitmap)
  1512. goto out;
  1513. kvm_ia64_sync_dirty_log(kvm, memslot);
  1514. r = kvm_get_dirty_log(kvm, log, &is_dirty);
  1515. if (r)
  1516. goto out;
  1517. /* If nothing is dirty, don't bother messing with page tables. */
  1518. if (is_dirty) {
  1519. kvm_flush_remote_tlbs(kvm);
  1520. n = kvm_dirty_bitmap_bytes(memslot);
  1521. memset(memslot->dirty_bitmap, 0, n);
  1522. }
  1523. r = 0;
  1524. out:
  1525. mutex_unlock(&kvm->slots_lock);
  1526. return r;
  1527. }
  1528. int kvm_arch_hardware_setup(void)
  1529. {
  1530. return 0;
  1531. }
  1532. void kvm_arch_hardware_unsetup(void)
  1533. {
  1534. }
  1535. int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq)
  1536. {
  1537. return __apic_accept_irq(vcpu, irq->vector);
  1538. }
  1539. int kvm_apic_match_physical_addr(struct kvm_lapic *apic, u16 dest)
  1540. {
  1541. return apic->vcpu->vcpu_id == dest;
  1542. }
  1543. int kvm_apic_match_logical_addr(struct kvm_lapic *apic, u8 mda)
  1544. {
  1545. return 0;
  1546. }
  1547. int kvm_apic_compare_prio(struct kvm_vcpu *vcpu1, struct kvm_vcpu *vcpu2)
  1548. {
  1549. return vcpu1->arch.xtp - vcpu2->arch.xtp;
  1550. }
  1551. int kvm_apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source,
  1552. int short_hand, int dest, int dest_mode)
  1553. {
  1554. struct kvm_lapic *target = vcpu->arch.apic;
  1555. return (dest_mode == 0) ?
  1556. kvm_apic_match_physical_addr(target, dest) :
  1557. kvm_apic_match_logical_addr(target, dest);
  1558. }
  1559. static int find_highest_bits(int *dat)
  1560. {
  1561. u32 bits, bitnum;
  1562. int i;
  1563. /* loop for all 256 bits */
  1564. for (i = 7; i >= 0 ; i--) {
  1565. bits = dat[i];
  1566. if (bits) {
  1567. bitnum = fls(bits);
  1568. return i * 32 + bitnum - 1;
  1569. }
  1570. }
  1571. return -1;
  1572. }
  1573. int kvm_highest_pending_irq(struct kvm_vcpu *vcpu)
  1574. {
  1575. struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
  1576. if (vpd->irr[0] & (1UL << NMI_VECTOR))
  1577. return NMI_VECTOR;
  1578. if (vpd->irr[0] & (1UL << ExtINT_VECTOR))
  1579. return ExtINT_VECTOR;
  1580. return find_highest_bits((int *)&vpd->irr[0]);
  1581. }
  1582. int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
  1583. {
  1584. return vcpu->arch.timer_fired;
  1585. }
  1586. int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  1587. {
  1588. return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE) ||
  1589. (kvm_highest_pending_irq(vcpu) != -1);
  1590. }
  1591. int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
  1592. {
  1593. return (!test_and_set_bit(KVM_REQ_KICK, &vcpu->requests));
  1594. }
  1595. int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
  1596. struct kvm_mp_state *mp_state)
  1597. {
  1598. mp_state->mp_state = vcpu->arch.mp_state;
  1599. return 0;
  1600. }
  1601. static int vcpu_reset(struct kvm_vcpu *vcpu)
  1602. {
  1603. int r;
  1604. long psr;
  1605. local_irq_save(psr);
  1606. r = kvm_insert_vmm_mapping(vcpu);
  1607. local_irq_restore(psr);
  1608. if (r)
  1609. goto fail;
  1610. vcpu->arch.launched = 0;
  1611. kvm_arch_vcpu_uninit(vcpu);
  1612. r = kvm_arch_vcpu_init(vcpu);
  1613. if (r)
  1614. goto fail;
  1615. kvm_purge_vmm_mapping(vcpu);
  1616. r = 0;
  1617. fail:
  1618. return r;
  1619. }
  1620. int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
  1621. struct kvm_mp_state *mp_state)
  1622. {
  1623. int r = 0;
  1624. vcpu->arch.mp_state = mp_state->mp_state;
  1625. if (vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)
  1626. r = vcpu_reset(vcpu);
  1627. return r;
  1628. }