flush.c 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402
  1. /*
  2. * linux/arch/arm/mm/flush.c
  3. *
  4. * Copyright (C) 1995-2002 Russell King
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #include <linux/module.h>
  11. #include <linux/mm.h>
  12. #include <linux/pagemap.h>
  13. #include <linux/highmem.h>
  14. #include <asm/cacheflush.h>
  15. #include <asm/cachetype.h>
  16. #include <asm/highmem.h>
  17. #include <asm/smp_plat.h>
  18. #include <asm/tlbflush.h>
  19. #include <linux/hugetlb.h>
  20. #include "mm.h"
  21. #ifdef CONFIG_CPU_CACHE_VIPT
  22. static void flush_pfn_alias(unsigned long pfn, unsigned long vaddr)
  23. {
  24. unsigned long to = FLUSH_ALIAS_START + (CACHE_COLOUR(vaddr) << PAGE_SHIFT);
  25. const int zero = 0;
  26. set_top_pte(to, pfn_pte(pfn, PAGE_KERNEL));
  27. asm( "mcrr p15, 0, %1, %0, c14\n"
  28. " mcr p15, 0, %2, c7, c10, 4"
  29. :
  30. : "r" (to), "r" (to + PAGE_SIZE - L1_CACHE_BYTES), "r" (zero)
  31. : "cc");
  32. }
  33. static void flush_icache_alias(unsigned long pfn, unsigned long vaddr, unsigned long len)
  34. {
  35. unsigned long va = FLUSH_ALIAS_START + (CACHE_COLOUR(vaddr) << PAGE_SHIFT);
  36. unsigned long offset = vaddr & (PAGE_SIZE - 1);
  37. unsigned long to;
  38. set_top_pte(va, pfn_pte(pfn, PAGE_KERNEL));
  39. to = va + offset;
  40. flush_icache_range(to, to + len);
  41. }
  42. void flush_cache_mm(struct mm_struct *mm)
  43. {
  44. if (cache_is_vivt()) {
  45. vivt_flush_cache_mm(mm);
  46. return;
  47. }
  48. if (cache_is_vipt_aliasing()) {
  49. asm( "mcr p15, 0, %0, c7, c14, 0\n"
  50. " mcr p15, 0, %0, c7, c10, 4"
  51. :
  52. : "r" (0)
  53. : "cc");
  54. }
  55. }
  56. void flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
  57. {
  58. if (cache_is_vivt()) {
  59. vivt_flush_cache_range(vma, start, end);
  60. return;
  61. }
  62. if (cache_is_vipt_aliasing()) {
  63. asm( "mcr p15, 0, %0, c7, c14, 0\n"
  64. " mcr p15, 0, %0, c7, c10, 4"
  65. :
  66. : "r" (0)
  67. : "cc");
  68. }
  69. if (vma->vm_flags & VM_EXEC)
  70. __flush_icache_all();
  71. }
  72. void flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn)
  73. {
  74. if (cache_is_vivt()) {
  75. vivt_flush_cache_page(vma, user_addr, pfn);
  76. return;
  77. }
  78. if (cache_is_vipt_aliasing()) {
  79. flush_pfn_alias(pfn, user_addr);
  80. __flush_icache_all();
  81. }
  82. if (vma->vm_flags & VM_EXEC && icache_is_vivt_asid_tagged())
  83. __flush_icache_all();
  84. }
  85. #else
  86. #define flush_pfn_alias(pfn,vaddr) do { } while (0)
  87. #define flush_icache_alias(pfn,vaddr,len) do { } while (0)
  88. #endif
  89. #define FLAG_PA_IS_EXEC 1
  90. #define FLAG_PA_CORE_IN_MM 2
  91. static void flush_ptrace_access_other(void *args)
  92. {
  93. __flush_icache_all();
  94. }
  95. static inline
  96. void __flush_ptrace_access(struct page *page, unsigned long uaddr, void *kaddr,
  97. unsigned long len, unsigned int flags)
  98. {
  99. if (cache_is_vivt()) {
  100. if (flags & FLAG_PA_CORE_IN_MM) {
  101. unsigned long addr = (unsigned long)kaddr;
  102. __cpuc_coherent_kern_range(addr, addr + len);
  103. }
  104. return;
  105. }
  106. if (cache_is_vipt_aliasing()) {
  107. flush_pfn_alias(page_to_pfn(page), uaddr);
  108. __flush_icache_all();
  109. return;
  110. }
  111. /* VIPT non-aliasing D-cache */
  112. if (flags & FLAG_PA_IS_EXEC) {
  113. unsigned long addr = (unsigned long)kaddr;
  114. if (icache_is_vipt_aliasing())
  115. flush_icache_alias(page_to_pfn(page), uaddr, len);
  116. else
  117. __cpuc_coherent_kern_range(addr, addr + len);
  118. if (cache_ops_need_broadcast())
  119. smp_call_function(flush_ptrace_access_other,
  120. NULL, 1);
  121. }
  122. }
  123. static
  124. void flush_ptrace_access(struct vm_area_struct *vma, struct page *page,
  125. unsigned long uaddr, void *kaddr, unsigned long len)
  126. {
  127. unsigned int flags = 0;
  128. if (cpumask_test_cpu(smp_processor_id(), mm_cpumask(vma->vm_mm)))
  129. flags |= FLAG_PA_CORE_IN_MM;
  130. if (vma->vm_flags & VM_EXEC)
  131. flags |= FLAG_PA_IS_EXEC;
  132. __flush_ptrace_access(page, uaddr, kaddr, len, flags);
  133. }
  134. void flush_uprobe_xol_access(struct page *page, unsigned long uaddr,
  135. void *kaddr, unsigned long len)
  136. {
  137. unsigned int flags = FLAG_PA_CORE_IN_MM|FLAG_PA_IS_EXEC;
  138. __flush_ptrace_access(page, uaddr, kaddr, len, flags);
  139. }
  140. /*
  141. * Copy user data from/to a page which is mapped into a different
  142. * processes address space. Really, we want to allow our "user
  143. * space" model to handle this.
  144. *
  145. * Note that this code needs to run on the current CPU.
  146. */
  147. void copy_to_user_page(struct vm_area_struct *vma, struct page *page,
  148. unsigned long uaddr, void *dst, const void *src,
  149. unsigned long len)
  150. {
  151. #ifdef CONFIG_SMP
  152. preempt_disable();
  153. #endif
  154. memcpy(dst, src, len);
  155. flush_ptrace_access(vma, page, uaddr, dst, len);
  156. #ifdef CONFIG_SMP
  157. preempt_enable();
  158. #endif
  159. }
  160. void __flush_dcache_page(struct address_space *mapping, struct page *page)
  161. {
  162. /*
  163. * Writeback any data associated with the kernel mapping of this
  164. * page. This ensures that data in the physical page is mutually
  165. * coherent with the kernels mapping.
  166. */
  167. if (!PageHighMem(page)) {
  168. size_t page_size = PAGE_SIZE << compound_order(page);
  169. __cpuc_flush_dcache_area(page_address(page), page_size);
  170. } else {
  171. unsigned long i;
  172. if (cache_is_vipt_nonaliasing()) {
  173. for (i = 0; i < (1 << compound_order(page)); i++) {
  174. void *addr = kmap_atomic(page + i);
  175. __cpuc_flush_dcache_area(addr, PAGE_SIZE);
  176. kunmap_atomic(addr);
  177. }
  178. } else {
  179. for (i = 0; i < (1 << compound_order(page)); i++) {
  180. void *addr = kmap_high_get(page + i);
  181. if (addr) {
  182. __cpuc_flush_dcache_area(addr, PAGE_SIZE);
  183. kunmap_high(page + i);
  184. }
  185. }
  186. }
  187. }
  188. /*
  189. * If this is a page cache page, and we have an aliasing VIPT cache,
  190. * we only need to do one flush - which would be at the relevant
  191. * userspace colour, which is congruent with page->index.
  192. */
  193. if (mapping && cache_is_vipt_aliasing())
  194. flush_pfn_alias(page_to_pfn(page),
  195. page->index << PAGE_CACHE_SHIFT);
  196. }
  197. static void __flush_dcache_aliases(struct address_space *mapping, struct page *page)
  198. {
  199. struct mm_struct *mm = current->active_mm;
  200. struct vm_area_struct *mpnt;
  201. pgoff_t pgoff;
  202. /*
  203. * There are possible user space mappings of this page:
  204. * - VIVT cache: we need to also write back and invalidate all user
  205. * data in the current VM view associated with this page.
  206. * - aliasing VIPT: we only need to find one mapping of this page.
  207. */
  208. pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  209. flush_dcache_mmap_lock(mapping);
  210. vma_interval_tree_foreach(mpnt, &mapping->i_mmap, pgoff, pgoff) {
  211. unsigned long offset;
  212. /*
  213. * If this VMA is not in our MM, we can ignore it.
  214. */
  215. if (mpnt->vm_mm != mm)
  216. continue;
  217. if (!(mpnt->vm_flags & VM_MAYSHARE))
  218. continue;
  219. offset = (pgoff - mpnt->vm_pgoff) << PAGE_SHIFT;
  220. flush_cache_page(mpnt, mpnt->vm_start + offset, page_to_pfn(page));
  221. }
  222. flush_dcache_mmap_unlock(mapping);
  223. }
  224. #if __LINUX_ARM_ARCH__ >= 6
  225. void __sync_icache_dcache(pte_t pteval)
  226. {
  227. unsigned long pfn;
  228. struct page *page;
  229. struct address_space *mapping;
  230. if (cache_is_vipt_nonaliasing() && !pte_exec(pteval))
  231. /* only flush non-aliasing VIPT caches for exec mappings */
  232. return;
  233. pfn = pte_pfn(pteval);
  234. if (!pfn_valid(pfn))
  235. return;
  236. page = pfn_to_page(pfn);
  237. if (cache_is_vipt_aliasing())
  238. mapping = page_mapping(page);
  239. else
  240. mapping = NULL;
  241. if (!test_and_set_bit(PG_dcache_clean, &page->flags))
  242. __flush_dcache_page(mapping, page);
  243. if (pte_exec(pteval))
  244. __flush_icache_all();
  245. }
  246. #endif
  247. /*
  248. * Ensure cache coherency between kernel mapping and userspace mapping
  249. * of this page.
  250. *
  251. * We have three cases to consider:
  252. * - VIPT non-aliasing cache: fully coherent so nothing required.
  253. * - VIVT: fully aliasing, so we need to handle every alias in our
  254. * current VM view.
  255. * - VIPT aliasing: need to handle one alias in our current VM view.
  256. *
  257. * If we need to handle aliasing:
  258. * If the page only exists in the page cache and there are no user
  259. * space mappings, we can be lazy and remember that we may have dirty
  260. * kernel cache lines for later. Otherwise, we assume we have
  261. * aliasing mappings.
  262. *
  263. * Note that we disable the lazy flush for SMP configurations where
  264. * the cache maintenance operations are not automatically broadcasted.
  265. */
  266. void flush_dcache_page(struct page *page)
  267. {
  268. struct address_space *mapping;
  269. /*
  270. * The zero page is never written to, so never has any dirty
  271. * cache lines, and therefore never needs to be flushed.
  272. */
  273. if (page == ZERO_PAGE(0))
  274. return;
  275. mapping = page_mapping(page);
  276. if (!cache_ops_need_broadcast() &&
  277. mapping && !page_mapped(page))
  278. clear_bit(PG_dcache_clean, &page->flags);
  279. else {
  280. __flush_dcache_page(mapping, page);
  281. if (mapping && cache_is_vivt())
  282. __flush_dcache_aliases(mapping, page);
  283. else if (mapping)
  284. __flush_icache_all();
  285. set_bit(PG_dcache_clean, &page->flags);
  286. }
  287. }
  288. EXPORT_SYMBOL(flush_dcache_page);
  289. /*
  290. * Ensure cache coherency for the kernel mapping of this page. We can
  291. * assume that the page is pinned via kmap.
  292. *
  293. * If the page only exists in the page cache and there are no user
  294. * space mappings, this is a no-op since the page was already marked
  295. * dirty at creation. Otherwise, we need to flush the dirty kernel
  296. * cache lines directly.
  297. */
  298. void flush_kernel_dcache_page(struct page *page)
  299. {
  300. if (cache_is_vivt() || cache_is_vipt_aliasing()) {
  301. struct address_space *mapping;
  302. mapping = page_mapping(page);
  303. if (!mapping || mapping_mapped(mapping)) {
  304. void *addr;
  305. addr = page_address(page);
  306. /*
  307. * kmap_atomic() doesn't set the page virtual
  308. * address for highmem pages, and
  309. * kunmap_atomic() takes care of cache
  310. * flushing already.
  311. */
  312. if (!IS_ENABLED(CONFIG_HIGHMEM) || addr)
  313. __cpuc_flush_dcache_area(addr, PAGE_SIZE);
  314. }
  315. }
  316. }
  317. EXPORT_SYMBOL(flush_kernel_dcache_page);
  318. /*
  319. * Flush an anonymous page so that users of get_user_pages()
  320. * can safely access the data. The expected sequence is:
  321. *
  322. * get_user_pages()
  323. * -> flush_anon_page
  324. * memcpy() to/from page
  325. * if written to page, flush_dcache_page()
  326. */
  327. void __flush_anon_page(struct vm_area_struct *vma, struct page *page, unsigned long vmaddr)
  328. {
  329. unsigned long pfn;
  330. /* VIPT non-aliasing caches need do nothing */
  331. if (cache_is_vipt_nonaliasing())
  332. return;
  333. /*
  334. * Write back and invalidate userspace mapping.
  335. */
  336. pfn = page_to_pfn(page);
  337. if (cache_is_vivt()) {
  338. flush_cache_page(vma, vmaddr, pfn);
  339. } else {
  340. /*
  341. * For aliasing VIPT, we can flush an alias of the
  342. * userspace address only.
  343. */
  344. flush_pfn_alias(pfn, vmaddr);
  345. __flush_icache_all();
  346. }
  347. /*
  348. * Invalidate kernel mapping. No data should be contained
  349. * in this mapping of the page. FIXME: this is overkill
  350. * since we actually ask for a write-back and invalidate.
  351. */
  352. __cpuc_flush_dcache_area(page_address(page), PAGE_SIZE);
  353. }