clock-r7s72100.c 6.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230
  1. /*
  2. * r7a72100 clock framework support
  3. *
  4. * Copyright (C) 2013 Renesas Solutions Corp.
  5. * Copyright (C) 2012 Phil Edworthy
  6. * Copyright (C) 2011 Magnus Damm
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; version 2 of the License.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. */
  17. #include <linux/init.h>
  18. #include <linux/kernel.h>
  19. #include <linux/io.h>
  20. #include <linux/sh_clk.h>
  21. #include <linux/clkdev.h>
  22. #include <mach/common.h>
  23. #include <mach/r7s72100.h>
  24. /* Frequency Control Registers */
  25. #define FRQCR 0xfcfe0010
  26. #define FRQCR2 0xfcfe0014
  27. /* Standby Control Registers */
  28. #define STBCR3 0xfcfe0420
  29. #define STBCR4 0xfcfe0424
  30. #define STBCR7 0xfcfe0430
  31. #define STBCR9 0xfcfe0438
  32. #define STBCR10 0xfcfe043c
  33. #define PLL_RATE 30
  34. static struct clk_mapping cpg_mapping = {
  35. .phys = 0xfcfe0000,
  36. .len = 0x1000,
  37. };
  38. /* Fixed 32 KHz root clock for RTC */
  39. static struct clk r_clk = {
  40. .rate = 32768,
  41. };
  42. /*
  43. * Default rate for the root input clock, reset this with clk_set_rate()
  44. * from the platform code.
  45. */
  46. static struct clk extal_clk = {
  47. .rate = 13330000,
  48. .mapping = &cpg_mapping,
  49. };
  50. static unsigned long pll_recalc(struct clk *clk)
  51. {
  52. return clk->parent->rate * PLL_RATE;
  53. }
  54. static struct sh_clk_ops pll_clk_ops = {
  55. .recalc = pll_recalc,
  56. };
  57. static struct clk pll_clk = {
  58. .ops = &pll_clk_ops,
  59. .parent = &extal_clk,
  60. .flags = CLK_ENABLE_ON_INIT,
  61. };
  62. static unsigned long bus_recalc(struct clk *clk)
  63. {
  64. return clk->parent->rate / 3;
  65. }
  66. static struct sh_clk_ops bus_clk_ops = {
  67. .recalc = bus_recalc,
  68. };
  69. static struct clk bus_clk = {
  70. .ops = &bus_clk_ops,
  71. .parent = &pll_clk,
  72. .flags = CLK_ENABLE_ON_INIT,
  73. };
  74. static unsigned long peripheral0_recalc(struct clk *clk)
  75. {
  76. return clk->parent->rate / 12;
  77. }
  78. static struct sh_clk_ops peripheral0_clk_ops = {
  79. .recalc = peripheral0_recalc,
  80. };
  81. static struct clk peripheral0_clk = {
  82. .ops = &peripheral0_clk_ops,
  83. .parent = &pll_clk,
  84. .flags = CLK_ENABLE_ON_INIT,
  85. };
  86. static unsigned long peripheral1_recalc(struct clk *clk)
  87. {
  88. return clk->parent->rate / 6;
  89. }
  90. static struct sh_clk_ops peripheral1_clk_ops = {
  91. .recalc = peripheral1_recalc,
  92. };
  93. static struct clk peripheral1_clk = {
  94. .ops = &peripheral1_clk_ops,
  95. .parent = &pll_clk,
  96. .flags = CLK_ENABLE_ON_INIT,
  97. };
  98. struct clk *main_clks[] = {
  99. &r_clk,
  100. &extal_clk,
  101. &pll_clk,
  102. &bus_clk,
  103. &peripheral0_clk,
  104. &peripheral1_clk,
  105. };
  106. static int div2[] = { 1, 3, 0, 3 }; /* 1, 2/3, reserve, 1/3 */
  107. static int multipliers[] = { 1, 2, 1, 1 };
  108. static struct clk_div_mult_table div4_div_mult_table = {
  109. .divisors = div2,
  110. .nr_divisors = ARRAY_SIZE(div2),
  111. .multipliers = multipliers,
  112. .nr_multipliers = ARRAY_SIZE(multipliers),
  113. };
  114. static struct clk_div4_table div4_table = {
  115. .div_mult_table = &div4_div_mult_table,
  116. };
  117. enum { DIV4_I,
  118. DIV4_NR };
  119. #define DIV4(_reg, _bit, _mask, _flags) \
  120. SH_CLK_DIV4(&pll_clk, _reg, _bit, _mask, _flags)
  121. /* The mask field specifies the div2 entries that are valid */
  122. struct clk div4_clks[DIV4_NR] = {
  123. [DIV4_I] = DIV4(FRQCR, 8, 0xB, CLK_ENABLE_REG_16BIT
  124. | CLK_ENABLE_ON_INIT),
  125. };
  126. enum {
  127. MSTP107, MSTP106, MSTP105, MSTP104, MSTP103,
  128. MSTP97, MSTP96, MSTP95, MSTP94,
  129. MSTP74,
  130. MSTP47, MSTP46, MSTP45, MSTP44, MSTP43, MSTP42, MSTP41, MSTP40,
  131. MSTP33, MSTP_NR
  132. };
  133. static struct clk mstp_clks[MSTP_NR] = {
  134. [MSTP107] = SH_CLK_MSTP8(&peripheral1_clk, STBCR10, 7, 0), /* RSPI0 */
  135. [MSTP106] = SH_CLK_MSTP8(&peripheral1_clk, STBCR10, 6, 0), /* RSPI1 */
  136. [MSTP105] = SH_CLK_MSTP8(&peripheral1_clk, STBCR10, 5, 0), /* RSPI2 */
  137. [MSTP104] = SH_CLK_MSTP8(&peripheral1_clk, STBCR10, 4, 0), /* RSPI3 */
  138. [MSTP103] = SH_CLK_MSTP8(&peripheral1_clk, STBCR10, 3, 0), /* RSPI4 */
  139. [MSTP97] = SH_CLK_MSTP8(&peripheral0_clk, STBCR9, 7, 0), /* RIIC0 */
  140. [MSTP96] = SH_CLK_MSTP8(&peripheral0_clk, STBCR9, 6, 0), /* RIIC1 */
  141. [MSTP95] = SH_CLK_MSTP8(&peripheral0_clk, STBCR9, 5, 0), /* RIIC2 */
  142. [MSTP94] = SH_CLK_MSTP8(&peripheral0_clk, STBCR9, 4, 0), /* RIIC3 */
  143. [MSTP74] = SH_CLK_MSTP8(&peripheral1_clk, STBCR7, 4, 0), /* Ether */
  144. [MSTP47] = SH_CLK_MSTP8(&peripheral1_clk, STBCR4, 7, 0), /* SCIF0 */
  145. [MSTP46] = SH_CLK_MSTP8(&peripheral1_clk, STBCR4, 6, 0), /* SCIF1 */
  146. [MSTP45] = SH_CLK_MSTP8(&peripheral1_clk, STBCR4, 5, 0), /* SCIF2 */
  147. [MSTP44] = SH_CLK_MSTP8(&peripheral1_clk, STBCR4, 4, 0), /* SCIF3 */
  148. [MSTP43] = SH_CLK_MSTP8(&peripheral1_clk, STBCR4, 3, 0), /* SCIF4 */
  149. [MSTP42] = SH_CLK_MSTP8(&peripheral1_clk, STBCR4, 2, 0), /* SCIF5 */
  150. [MSTP41] = SH_CLK_MSTP8(&peripheral1_clk, STBCR4, 1, 0), /* SCIF6 */
  151. [MSTP40] = SH_CLK_MSTP8(&peripheral1_clk, STBCR4, 0, 0), /* SCIF7 */
  152. [MSTP33] = SH_CLK_MSTP8(&peripheral0_clk, STBCR3, 3, 0), /* MTU2 */
  153. };
  154. static struct clk_lookup lookups[] = {
  155. /* main clocks */
  156. CLKDEV_CON_ID("rclk", &r_clk),
  157. CLKDEV_CON_ID("extal", &extal_clk),
  158. CLKDEV_CON_ID("pll_clk", &pll_clk),
  159. CLKDEV_CON_ID("peripheral_clk", &peripheral1_clk),
  160. /* DIV4 clocks */
  161. CLKDEV_CON_ID("cpu_clk", &div4_clks[DIV4_I]),
  162. /* MSTP clocks */
  163. CLKDEV_DEV_ID("rspi-rz.0", &mstp_clks[MSTP107]),
  164. CLKDEV_DEV_ID("rspi-rz.1", &mstp_clks[MSTP106]),
  165. CLKDEV_DEV_ID("rspi-rz.2", &mstp_clks[MSTP105]),
  166. CLKDEV_DEV_ID("rspi-rz.3", &mstp_clks[MSTP104]),
  167. CLKDEV_DEV_ID("rspi-rz.4", &mstp_clks[MSTP103]),
  168. CLKDEV_DEV_ID("r7s72100-ether", &mstp_clks[MSTP74]),
  169. /* ICK */
  170. CLKDEV_ICK_ID("sci_fck", "sh-sci.0", &mstp_clks[MSTP47]),
  171. CLKDEV_ICK_ID("sci_fck", "sh-sci.1", &mstp_clks[MSTP46]),
  172. CLKDEV_ICK_ID("sci_fck", "sh-sci.2", &mstp_clks[MSTP45]),
  173. CLKDEV_ICK_ID("sci_fck", "sh-sci.3", &mstp_clks[MSTP44]),
  174. CLKDEV_ICK_ID("sci_fck", "sh-sci.4", &mstp_clks[MSTP43]),
  175. CLKDEV_ICK_ID("sci_fck", "sh-sci.5", &mstp_clks[MSTP42]),
  176. CLKDEV_ICK_ID("sci_fck", "sh-sci.6", &mstp_clks[MSTP41]),
  177. CLKDEV_ICK_ID("sci_fck", "sh-sci.7", &mstp_clks[MSTP40]),
  178. CLKDEV_ICK_ID("fck", "sh-mtu2", &mstp_clks[MSTP33]),
  179. };
  180. void __init r7s72100_clock_init(void)
  181. {
  182. int k, ret = 0;
  183. for (k = 0; !ret && (k < ARRAY_SIZE(main_clks)); k++)
  184. ret = clk_register(main_clks[k]);
  185. clkdev_add_table(lookups, ARRAY_SIZE(lookups));
  186. if (!ret)
  187. ret = sh_clk_div4_register(div4_clks, DIV4_NR, &div4_table);
  188. if (!ret)
  189. ret = sh_clk_mstp_register(mstp_clks, MSTP_NR);
  190. if (!ret)
  191. shmobile_clk_init();
  192. else
  193. panic("failed to setup rza1 clocks\n");
  194. }