integrator_ap.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566
  1. /*
  2. * linux/arch/arm/mach-integrator/integrator_ap.c
  3. *
  4. * Copyright (C) 2000-2003 Deep Blue Solutions Ltd
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program; if not, write to the Free Software
  18. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  19. */
  20. #include <linux/types.h>
  21. #include <linux/kernel.h>
  22. #include <linux/init.h>
  23. #include <linux/list.h>
  24. #include <linux/platform_device.h>
  25. #include <linux/slab.h>
  26. #include <linux/string.h>
  27. #include <linux/syscore_ops.h>
  28. #include <linux/amba/bus.h>
  29. #include <linux/amba/kmi.h>
  30. #include <linux/clocksource.h>
  31. #include <linux/clockchips.h>
  32. #include <linux/interrupt.h>
  33. #include <linux/io.h>
  34. #include <linux/irqchip/versatile-fpga.h>
  35. #include <linux/mtd/physmap.h>
  36. #include <linux/clk.h>
  37. #include <linux/platform_data/clk-integrator.h>
  38. #include <linux/of_irq.h>
  39. #include <linux/of_address.h>
  40. #include <linux/of_platform.h>
  41. #include <linux/stat.h>
  42. #include <linux/sys_soc.h>
  43. #include <linux/termios.h>
  44. #include <linux/sched_clock.h>
  45. #include <linux/clk-provider.h>
  46. #include <asm/hardware/arm_timer.h>
  47. #include <asm/setup.h>
  48. #include <asm/param.h> /* HZ */
  49. #include <asm/mach-types.h>
  50. #include <asm/mach/arch.h>
  51. #include <asm/mach/irq.h>
  52. #include <asm/mach/map.h>
  53. #include <asm/mach/time.h>
  54. #include "hardware.h"
  55. #include "cm.h"
  56. #include "common.h"
  57. #include "pci_v3.h"
  58. #include "lm.h"
  59. /* Base address to the AP system controller */
  60. void __iomem *ap_syscon_base;
  61. /* Base address to the external bus interface */
  62. static void __iomem *ebi_base;
  63. /*
  64. * All IO addresses are mapped onto VA 0xFFFx.xxxx, where x.xxxx
  65. * is the (PA >> 12).
  66. *
  67. * Setup a VA for the Integrator interrupt controller (for header #0,
  68. * just for now).
  69. */
  70. #define VA_IC_BASE __io_address(INTEGRATOR_IC_BASE)
  71. /*
  72. * Logical Physical
  73. * ef000000 Cache flush
  74. * f1100000 11000000 System controller registers
  75. * f1300000 13000000 Counter/Timer
  76. * f1400000 14000000 Interrupt controller
  77. * f1600000 16000000 UART 0
  78. * f1700000 17000000 UART 1
  79. * f1a00000 1a000000 Debug LEDs
  80. * f1b00000 1b000000 GPIO
  81. */
  82. static struct map_desc ap_io_desc[] __initdata __maybe_unused = {
  83. {
  84. .virtual = IO_ADDRESS(INTEGRATOR_CT_BASE),
  85. .pfn = __phys_to_pfn(INTEGRATOR_CT_BASE),
  86. .length = SZ_4K,
  87. .type = MT_DEVICE
  88. }, {
  89. .virtual = IO_ADDRESS(INTEGRATOR_IC_BASE),
  90. .pfn = __phys_to_pfn(INTEGRATOR_IC_BASE),
  91. .length = SZ_4K,
  92. .type = MT_DEVICE
  93. }, {
  94. .virtual = IO_ADDRESS(INTEGRATOR_UART0_BASE),
  95. .pfn = __phys_to_pfn(INTEGRATOR_UART0_BASE),
  96. .length = SZ_4K,
  97. .type = MT_DEVICE
  98. }, {
  99. .virtual = IO_ADDRESS(INTEGRATOR_DBG_BASE),
  100. .pfn = __phys_to_pfn(INTEGRATOR_DBG_BASE),
  101. .length = SZ_4K,
  102. .type = MT_DEVICE
  103. }, {
  104. .virtual = IO_ADDRESS(INTEGRATOR_AP_GPIO_BASE),
  105. .pfn = __phys_to_pfn(INTEGRATOR_AP_GPIO_BASE),
  106. .length = SZ_4K,
  107. .type = MT_DEVICE
  108. }
  109. };
  110. static void __init ap_map_io(void)
  111. {
  112. iotable_init(ap_io_desc, ARRAY_SIZE(ap_io_desc));
  113. pci_v3_early_init();
  114. }
  115. #ifdef CONFIG_PM
  116. static unsigned long ic_irq_enable;
  117. static int irq_suspend(void)
  118. {
  119. ic_irq_enable = readl(VA_IC_BASE + IRQ_ENABLE);
  120. return 0;
  121. }
  122. static void irq_resume(void)
  123. {
  124. /* disable all irq sources */
  125. cm_clear_irqs();
  126. writel(-1, VA_IC_BASE + IRQ_ENABLE_CLEAR);
  127. writel(-1, VA_IC_BASE + FIQ_ENABLE_CLEAR);
  128. writel(ic_irq_enable, VA_IC_BASE + IRQ_ENABLE_SET);
  129. }
  130. #else
  131. #define irq_suspend NULL
  132. #define irq_resume NULL
  133. #endif
  134. static struct syscore_ops irq_syscore_ops = {
  135. .suspend = irq_suspend,
  136. .resume = irq_resume,
  137. };
  138. static int __init irq_syscore_init(void)
  139. {
  140. register_syscore_ops(&irq_syscore_ops);
  141. return 0;
  142. }
  143. device_initcall(irq_syscore_init);
  144. /*
  145. * Flash handling.
  146. */
  147. static int ap_flash_init(struct platform_device *dev)
  148. {
  149. u32 tmp;
  150. writel(INTEGRATOR_SC_CTRL_nFLVPPEN | INTEGRATOR_SC_CTRL_nFLWP,
  151. ap_syscon_base + INTEGRATOR_SC_CTRLC_OFFSET);
  152. tmp = readl(ebi_base + INTEGRATOR_EBI_CSR1_OFFSET) |
  153. INTEGRATOR_EBI_WRITE_ENABLE;
  154. writel(tmp, ebi_base + INTEGRATOR_EBI_CSR1_OFFSET);
  155. if (!(readl(ebi_base + INTEGRATOR_EBI_CSR1_OFFSET)
  156. & INTEGRATOR_EBI_WRITE_ENABLE)) {
  157. writel(0xa05f, ebi_base + INTEGRATOR_EBI_LOCK_OFFSET);
  158. writel(tmp, ebi_base + INTEGRATOR_EBI_CSR1_OFFSET);
  159. writel(0, ebi_base + INTEGRATOR_EBI_LOCK_OFFSET);
  160. }
  161. return 0;
  162. }
  163. static void ap_flash_exit(struct platform_device *dev)
  164. {
  165. u32 tmp;
  166. writel(INTEGRATOR_SC_CTRL_nFLVPPEN | INTEGRATOR_SC_CTRL_nFLWP,
  167. ap_syscon_base + INTEGRATOR_SC_CTRLC_OFFSET);
  168. tmp = readl(ebi_base + INTEGRATOR_EBI_CSR1_OFFSET) &
  169. ~INTEGRATOR_EBI_WRITE_ENABLE;
  170. writel(tmp, ebi_base + INTEGRATOR_EBI_CSR1_OFFSET);
  171. if (readl(ebi_base + INTEGRATOR_EBI_CSR1_OFFSET) &
  172. INTEGRATOR_EBI_WRITE_ENABLE) {
  173. writel(0xa05f, ebi_base + INTEGRATOR_EBI_LOCK_OFFSET);
  174. writel(tmp, ebi_base + INTEGRATOR_EBI_CSR1_OFFSET);
  175. writel(0, ebi_base + INTEGRATOR_EBI_LOCK_OFFSET);
  176. }
  177. }
  178. static void ap_flash_set_vpp(struct platform_device *pdev, int on)
  179. {
  180. if (on)
  181. writel(INTEGRATOR_SC_CTRL_nFLVPPEN,
  182. ap_syscon_base + INTEGRATOR_SC_CTRLS_OFFSET);
  183. else
  184. writel(INTEGRATOR_SC_CTRL_nFLVPPEN,
  185. ap_syscon_base + INTEGRATOR_SC_CTRLC_OFFSET);
  186. }
  187. static struct physmap_flash_data ap_flash_data = {
  188. .width = 4,
  189. .init = ap_flash_init,
  190. .exit = ap_flash_exit,
  191. .set_vpp = ap_flash_set_vpp,
  192. };
  193. /*
  194. * For the PL010 found in the Integrator/AP some of the UART control is
  195. * implemented in the system controller and accessed using a callback
  196. * from the driver.
  197. */
  198. static void integrator_uart_set_mctrl(struct amba_device *dev,
  199. void __iomem *base, unsigned int mctrl)
  200. {
  201. unsigned int ctrls = 0, ctrlc = 0, rts_mask, dtr_mask;
  202. u32 phybase = dev->res.start;
  203. if (phybase == INTEGRATOR_UART0_BASE) {
  204. /* UART0 */
  205. rts_mask = 1 << 4;
  206. dtr_mask = 1 << 5;
  207. } else {
  208. /* UART1 */
  209. rts_mask = 1 << 6;
  210. dtr_mask = 1 << 7;
  211. }
  212. if (mctrl & TIOCM_RTS)
  213. ctrlc |= rts_mask;
  214. else
  215. ctrls |= rts_mask;
  216. if (mctrl & TIOCM_DTR)
  217. ctrlc |= dtr_mask;
  218. else
  219. ctrls |= dtr_mask;
  220. __raw_writel(ctrls, ap_syscon_base + INTEGRATOR_SC_CTRLS_OFFSET);
  221. __raw_writel(ctrlc, ap_syscon_base + INTEGRATOR_SC_CTRLC_OFFSET);
  222. }
  223. struct amba_pl010_data ap_uart_data = {
  224. .set_mctrl = integrator_uart_set_mctrl,
  225. };
  226. /*
  227. * Where is the timer (VA)?
  228. */
  229. #define TIMER0_VA_BASE __io_address(INTEGRATOR_TIMER0_BASE)
  230. #define TIMER1_VA_BASE __io_address(INTEGRATOR_TIMER1_BASE)
  231. #define TIMER2_VA_BASE __io_address(INTEGRATOR_TIMER2_BASE)
  232. static unsigned long timer_reload;
  233. static u64 notrace integrator_read_sched_clock(void)
  234. {
  235. return -readl((void __iomem *) TIMER2_VA_BASE + TIMER_VALUE);
  236. }
  237. static void integrator_clocksource_init(unsigned long inrate,
  238. void __iomem *base)
  239. {
  240. u32 ctrl = TIMER_CTRL_ENABLE | TIMER_CTRL_PERIODIC;
  241. unsigned long rate = inrate;
  242. if (rate >= 1500000) {
  243. rate /= 16;
  244. ctrl |= TIMER_CTRL_DIV16;
  245. }
  246. writel(0xffff, base + TIMER_LOAD);
  247. writel(ctrl, base + TIMER_CTRL);
  248. clocksource_mmio_init(base + TIMER_VALUE, "timer2",
  249. rate, 200, 16, clocksource_mmio_readl_down);
  250. sched_clock_register(integrator_read_sched_clock, 16, rate);
  251. }
  252. static void __iomem * clkevt_base;
  253. /*
  254. * IRQ handler for the timer
  255. */
  256. static irqreturn_t integrator_timer_interrupt(int irq, void *dev_id)
  257. {
  258. struct clock_event_device *evt = dev_id;
  259. /* clear the interrupt */
  260. writel(1, clkevt_base + TIMER_INTCLR);
  261. evt->event_handler(evt);
  262. return IRQ_HANDLED;
  263. }
  264. static void clkevt_set_mode(enum clock_event_mode mode, struct clock_event_device *evt)
  265. {
  266. u32 ctrl = readl(clkevt_base + TIMER_CTRL) & ~TIMER_CTRL_ENABLE;
  267. /* Disable timer */
  268. writel(ctrl, clkevt_base + TIMER_CTRL);
  269. switch (mode) {
  270. case CLOCK_EVT_MODE_PERIODIC:
  271. /* Enable the timer and start the periodic tick */
  272. writel(timer_reload, clkevt_base + TIMER_LOAD);
  273. ctrl |= TIMER_CTRL_PERIODIC | TIMER_CTRL_ENABLE;
  274. writel(ctrl, clkevt_base + TIMER_CTRL);
  275. break;
  276. case CLOCK_EVT_MODE_ONESHOT:
  277. /* Leave the timer disabled, .set_next_event will enable it */
  278. ctrl &= ~TIMER_CTRL_PERIODIC;
  279. writel(ctrl, clkevt_base + TIMER_CTRL);
  280. break;
  281. case CLOCK_EVT_MODE_UNUSED:
  282. case CLOCK_EVT_MODE_SHUTDOWN:
  283. case CLOCK_EVT_MODE_RESUME:
  284. default:
  285. /* Just leave in disabled state */
  286. break;
  287. }
  288. }
  289. static int clkevt_set_next_event(unsigned long next, struct clock_event_device *evt)
  290. {
  291. unsigned long ctrl = readl(clkevt_base + TIMER_CTRL);
  292. writel(ctrl & ~TIMER_CTRL_ENABLE, clkevt_base + TIMER_CTRL);
  293. writel(next, clkevt_base + TIMER_LOAD);
  294. writel(ctrl | TIMER_CTRL_ENABLE, clkevt_base + TIMER_CTRL);
  295. return 0;
  296. }
  297. static struct clock_event_device integrator_clockevent = {
  298. .name = "timer1",
  299. .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
  300. .set_mode = clkevt_set_mode,
  301. .set_next_event = clkevt_set_next_event,
  302. .rating = 300,
  303. };
  304. static struct irqaction integrator_timer_irq = {
  305. .name = "timer",
  306. .flags = IRQF_TIMER | IRQF_IRQPOLL,
  307. .handler = integrator_timer_interrupt,
  308. .dev_id = &integrator_clockevent,
  309. };
  310. static void integrator_clockevent_init(unsigned long inrate,
  311. void __iomem *base, int irq)
  312. {
  313. unsigned long rate = inrate;
  314. unsigned int ctrl = 0;
  315. clkevt_base = base;
  316. /* Calculate and program a divisor */
  317. if (rate > 0x100000 * HZ) {
  318. rate /= 256;
  319. ctrl |= TIMER_CTRL_DIV256;
  320. } else if (rate > 0x10000 * HZ) {
  321. rate /= 16;
  322. ctrl |= TIMER_CTRL_DIV16;
  323. }
  324. timer_reload = rate / HZ;
  325. writel(ctrl, clkevt_base + TIMER_CTRL);
  326. setup_irq(irq, &integrator_timer_irq);
  327. clockevents_config_and_register(&integrator_clockevent,
  328. rate,
  329. 1,
  330. 0xffffU);
  331. }
  332. void __init ap_init_early(void)
  333. {
  334. }
  335. static void __init ap_of_timer_init(void)
  336. {
  337. struct device_node *node;
  338. const char *path;
  339. void __iomem *base;
  340. int err;
  341. int irq;
  342. struct clk *clk;
  343. unsigned long rate;
  344. of_clk_init(NULL);
  345. err = of_property_read_string(of_aliases,
  346. "arm,timer-primary", &path);
  347. if (WARN_ON(err))
  348. return;
  349. node = of_find_node_by_path(path);
  350. base = of_iomap(node, 0);
  351. if (WARN_ON(!base))
  352. return;
  353. clk = of_clk_get(node, 0);
  354. BUG_ON(IS_ERR(clk));
  355. clk_prepare_enable(clk);
  356. rate = clk_get_rate(clk);
  357. writel(0, base + TIMER_CTRL);
  358. integrator_clocksource_init(rate, base);
  359. err = of_property_read_string(of_aliases,
  360. "arm,timer-secondary", &path);
  361. if (WARN_ON(err))
  362. return;
  363. node = of_find_node_by_path(path);
  364. base = of_iomap(node, 0);
  365. if (WARN_ON(!base))
  366. return;
  367. irq = irq_of_parse_and_map(node, 0);
  368. clk = of_clk_get(node, 0);
  369. BUG_ON(IS_ERR(clk));
  370. clk_prepare_enable(clk);
  371. rate = clk_get_rate(clk);
  372. writel(0, base + TIMER_CTRL);
  373. integrator_clockevent_init(rate, base, irq);
  374. }
  375. static const struct of_device_id fpga_irq_of_match[] __initconst = {
  376. { .compatible = "arm,versatile-fpga-irq", .data = fpga_irq_of_init, },
  377. { /* Sentinel */ }
  378. };
  379. static void __init ap_init_irq_of(void)
  380. {
  381. cm_init();
  382. of_irq_init(fpga_irq_of_match);
  383. }
  384. /* For the Device Tree, add in the UART callbacks as AUXDATA */
  385. static struct of_dev_auxdata ap_auxdata_lookup[] __initdata = {
  386. OF_DEV_AUXDATA("arm,primecell", INTEGRATOR_RTC_BASE,
  387. "rtc", NULL),
  388. OF_DEV_AUXDATA("arm,primecell", INTEGRATOR_UART0_BASE,
  389. "uart0", &ap_uart_data),
  390. OF_DEV_AUXDATA("arm,primecell", INTEGRATOR_UART1_BASE,
  391. "uart1", &ap_uart_data),
  392. OF_DEV_AUXDATA("arm,primecell", KMI0_BASE,
  393. "kmi0", NULL),
  394. OF_DEV_AUXDATA("arm,primecell", KMI1_BASE,
  395. "kmi1", NULL),
  396. OF_DEV_AUXDATA("cfi-flash", INTEGRATOR_FLASH_BASE,
  397. "physmap-flash", &ap_flash_data),
  398. { /* sentinel */ },
  399. };
  400. static const struct of_device_id ap_syscon_match[] = {
  401. { .compatible = "arm,integrator-ap-syscon"},
  402. { },
  403. };
  404. static const struct of_device_id ebi_match[] = {
  405. { .compatible = "arm,external-bus-interface"},
  406. { },
  407. };
  408. static void __init ap_init_of(void)
  409. {
  410. unsigned long sc_dec;
  411. struct device_node *syscon;
  412. struct device_node *ebi;
  413. struct device *parent;
  414. struct soc_device *soc_dev;
  415. struct soc_device_attribute *soc_dev_attr;
  416. u32 ap_sc_id;
  417. int i;
  418. syscon = of_find_matching_node(NULL, ap_syscon_match);
  419. if (!syscon)
  420. return;
  421. ebi = of_find_matching_node(NULL, ebi_match);
  422. if (!ebi)
  423. return;
  424. ap_syscon_base = of_iomap(syscon, 0);
  425. if (!ap_syscon_base)
  426. return;
  427. ebi_base = of_iomap(ebi, 0);
  428. if (!ebi_base)
  429. return;
  430. of_platform_populate(NULL, of_default_bus_match_table,
  431. ap_auxdata_lookup, NULL);
  432. ap_sc_id = readl(ap_syscon_base);
  433. soc_dev_attr = kzalloc(sizeof(*soc_dev_attr), GFP_KERNEL);
  434. if (!soc_dev_attr)
  435. return;
  436. soc_dev_attr->soc_id = "XVC";
  437. soc_dev_attr->machine = "Integrator/AP";
  438. soc_dev_attr->family = "Integrator";
  439. soc_dev_attr->revision = kasprintf(GFP_KERNEL, "%c",
  440. 'A' + (ap_sc_id & 0x0f));
  441. soc_dev = soc_device_register(soc_dev_attr);
  442. if (IS_ERR(soc_dev)) {
  443. kfree(soc_dev_attr->revision);
  444. kfree(soc_dev_attr);
  445. return;
  446. }
  447. parent = soc_device_to_device(soc_dev);
  448. integrator_init_sysfs(parent, ap_sc_id);
  449. sc_dec = readl(ap_syscon_base + INTEGRATOR_SC_DEC_OFFSET);
  450. for (i = 0; i < 4; i++) {
  451. struct lm_device *lmdev;
  452. if ((sc_dec & (16 << i)) == 0)
  453. continue;
  454. lmdev = kzalloc(sizeof(struct lm_device), GFP_KERNEL);
  455. if (!lmdev)
  456. continue;
  457. lmdev->resource.start = 0xc0000000 + 0x10000000 * i;
  458. lmdev->resource.end = lmdev->resource.start + 0x0fffffff;
  459. lmdev->resource.flags = IORESOURCE_MEM;
  460. lmdev->irq = irq_of_parse_and_map(syscon, i);
  461. lmdev->id = i;
  462. lm_device_register(lmdev);
  463. }
  464. }
  465. static const char * ap_dt_board_compat[] = {
  466. "arm,integrator-ap",
  467. NULL,
  468. };
  469. DT_MACHINE_START(INTEGRATOR_AP_DT, "ARM Integrator/AP (Device Tree)")
  470. .reserve = integrator_reserve,
  471. .map_io = ap_map_io,
  472. .init_early = ap_init_early,
  473. .init_irq = ap_init_irq_of,
  474. .handle_irq = fpga_handle_irq,
  475. .init_time = ap_of_timer_init,
  476. .init_machine = ap_init_of,
  477. .restart = integrator_restart,
  478. .dt_compat = ap_dt_board_compat,
  479. MACHINE_END