coproc.c 34 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234
  1. /*
  2. * Copyright (C) 2012 - Virtual Open Systems and Columbia University
  3. * Authors: Rusty Russell <rusty@rustcorp.com.au>
  4. * Christoffer Dall <c.dall@virtualopensystems.com>
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License, version 2, as
  8. * published by the Free Software Foundation.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
  18. */
  19. #include <linux/mm.h>
  20. #include <linux/kvm_host.h>
  21. #include <linux/uaccess.h>
  22. #include <asm/kvm_arm.h>
  23. #include <asm/kvm_host.h>
  24. #include <asm/kvm_emulate.h>
  25. #include <asm/kvm_coproc.h>
  26. #include <asm/kvm_mmu.h>
  27. #include <asm/cacheflush.h>
  28. #include <asm/cputype.h>
  29. #include <trace/events/kvm.h>
  30. #include <asm/vfp.h>
  31. #include "../vfp/vfpinstr.h"
  32. #include "trace.h"
  33. #include "coproc.h"
  34. /******************************************************************************
  35. * Co-processor emulation
  36. *****************************************************************************/
  37. /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
  38. static u32 cache_levels;
  39. /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
  40. #define CSSELR_MAX 12
  41. int kvm_handle_cp10_id(struct kvm_vcpu *vcpu, struct kvm_run *run)
  42. {
  43. kvm_inject_undefined(vcpu);
  44. return 1;
  45. }
  46. int kvm_handle_cp_0_13_access(struct kvm_vcpu *vcpu, struct kvm_run *run)
  47. {
  48. /*
  49. * We can get here, if the host has been built without VFPv3 support,
  50. * but the guest attempted a floating point operation.
  51. */
  52. kvm_inject_undefined(vcpu);
  53. return 1;
  54. }
  55. int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
  56. {
  57. kvm_inject_undefined(vcpu);
  58. return 1;
  59. }
  60. int kvm_handle_cp14_access(struct kvm_vcpu *vcpu, struct kvm_run *run)
  61. {
  62. kvm_inject_undefined(vcpu);
  63. return 1;
  64. }
  65. static void reset_mpidr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
  66. {
  67. /*
  68. * Compute guest MPIDR. We build a virtual cluster out of the
  69. * vcpu_id, but we read the 'U' bit from the underlying
  70. * hardware directly.
  71. */
  72. vcpu->arch.cp15[c0_MPIDR] = ((read_cpuid_mpidr() & MPIDR_SMP_BITMASK) |
  73. ((vcpu->vcpu_id >> 2) << MPIDR_LEVEL_BITS) |
  74. (vcpu->vcpu_id & 3));
  75. }
  76. /* TRM entries A7:4.3.31 A15:4.3.28 - RO WI */
  77. static bool access_actlr(struct kvm_vcpu *vcpu,
  78. const struct coproc_params *p,
  79. const struct coproc_reg *r)
  80. {
  81. if (p->is_write)
  82. return ignore_write(vcpu, p);
  83. *vcpu_reg(vcpu, p->Rt1) = vcpu->arch.cp15[c1_ACTLR];
  84. return true;
  85. }
  86. /* TRM entries A7:4.3.56, A15:4.3.60 - R/O. */
  87. static bool access_cbar(struct kvm_vcpu *vcpu,
  88. const struct coproc_params *p,
  89. const struct coproc_reg *r)
  90. {
  91. if (p->is_write)
  92. return write_to_read_only(vcpu, p);
  93. return read_zero(vcpu, p);
  94. }
  95. /* TRM entries A7:4.3.49, A15:4.3.48 - R/O WI */
  96. static bool access_l2ctlr(struct kvm_vcpu *vcpu,
  97. const struct coproc_params *p,
  98. const struct coproc_reg *r)
  99. {
  100. if (p->is_write)
  101. return ignore_write(vcpu, p);
  102. *vcpu_reg(vcpu, p->Rt1) = vcpu->arch.cp15[c9_L2CTLR];
  103. return true;
  104. }
  105. static void reset_l2ctlr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
  106. {
  107. u32 l2ctlr, ncores;
  108. asm volatile("mrc p15, 1, %0, c9, c0, 2\n" : "=r" (l2ctlr));
  109. l2ctlr &= ~(3 << 24);
  110. ncores = atomic_read(&vcpu->kvm->online_vcpus) - 1;
  111. /* How many cores in the current cluster and the next ones */
  112. ncores -= (vcpu->vcpu_id & ~3);
  113. /* Cap it to the maximum number of cores in a single cluster */
  114. ncores = min(ncores, 3U);
  115. l2ctlr |= (ncores & 3) << 24;
  116. vcpu->arch.cp15[c9_L2CTLR] = l2ctlr;
  117. }
  118. static void reset_actlr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
  119. {
  120. u32 actlr;
  121. /* ACTLR contains SMP bit: make sure you create all cpus first! */
  122. asm volatile("mrc p15, 0, %0, c1, c0, 1\n" : "=r" (actlr));
  123. /* Make the SMP bit consistent with the guest configuration */
  124. if (atomic_read(&vcpu->kvm->online_vcpus) > 1)
  125. actlr |= 1U << 6;
  126. else
  127. actlr &= ~(1U << 6);
  128. vcpu->arch.cp15[c1_ACTLR] = actlr;
  129. }
  130. /*
  131. * TRM entries: A7:4.3.50, A15:4.3.49
  132. * R/O WI (even if NSACR.NS_L2ERR, a write of 1 is ignored).
  133. */
  134. static bool access_l2ectlr(struct kvm_vcpu *vcpu,
  135. const struct coproc_params *p,
  136. const struct coproc_reg *r)
  137. {
  138. if (p->is_write)
  139. return ignore_write(vcpu, p);
  140. *vcpu_reg(vcpu, p->Rt1) = 0;
  141. return true;
  142. }
  143. /* See note at ARM ARM B1.14.4 */
  144. static bool access_dcsw(struct kvm_vcpu *vcpu,
  145. const struct coproc_params *p,
  146. const struct coproc_reg *r)
  147. {
  148. unsigned long val;
  149. int cpu;
  150. if (!p->is_write)
  151. return read_from_write_only(vcpu, p);
  152. cpu = get_cpu();
  153. cpumask_setall(&vcpu->arch.require_dcache_flush);
  154. cpumask_clear_cpu(cpu, &vcpu->arch.require_dcache_flush);
  155. /* If we were already preempted, take the long way around */
  156. if (cpu != vcpu->arch.last_pcpu) {
  157. flush_cache_all();
  158. goto done;
  159. }
  160. val = *vcpu_reg(vcpu, p->Rt1);
  161. switch (p->CRm) {
  162. case 6: /* Upgrade DCISW to DCCISW, as per HCR.SWIO */
  163. case 14: /* DCCISW */
  164. asm volatile("mcr p15, 0, %0, c7, c14, 2" : : "r" (val));
  165. break;
  166. case 10: /* DCCSW */
  167. asm volatile("mcr p15, 0, %0, c7, c10, 2" : : "r" (val));
  168. break;
  169. }
  170. done:
  171. put_cpu();
  172. return true;
  173. }
  174. /*
  175. * Generic accessor for VM registers. Only called as long as HCR_TVM
  176. * is set.
  177. */
  178. static bool access_vm_reg(struct kvm_vcpu *vcpu,
  179. const struct coproc_params *p,
  180. const struct coproc_reg *r)
  181. {
  182. BUG_ON(!p->is_write);
  183. vcpu->arch.cp15[r->reg] = *vcpu_reg(vcpu, p->Rt1);
  184. if (p->is_64bit)
  185. vcpu->arch.cp15[r->reg + 1] = *vcpu_reg(vcpu, p->Rt2);
  186. return true;
  187. }
  188. /*
  189. * SCTLR accessor. Only called as long as HCR_TVM is set. If the
  190. * guest enables the MMU, we stop trapping the VM sys_regs and leave
  191. * it in complete control of the caches.
  192. *
  193. * Used by the cpu-specific code.
  194. */
  195. bool access_sctlr(struct kvm_vcpu *vcpu,
  196. const struct coproc_params *p,
  197. const struct coproc_reg *r)
  198. {
  199. access_vm_reg(vcpu, p, r);
  200. if (vcpu_has_cache_enabled(vcpu)) { /* MMU+Caches enabled? */
  201. vcpu->arch.hcr &= ~HCR_TVM;
  202. stage2_flush_vm(vcpu->kvm);
  203. }
  204. return true;
  205. }
  206. /*
  207. * We could trap ID_DFR0 and tell the guest we don't support performance
  208. * monitoring. Unfortunately the patch to make the kernel check ID_DFR0 was
  209. * NAKed, so it will read the PMCR anyway.
  210. *
  211. * Therefore we tell the guest we have 0 counters. Unfortunately, we
  212. * must always support PMCCNTR (the cycle counter): we just RAZ/WI for
  213. * all PM registers, which doesn't crash the guest kernel at least.
  214. */
  215. static bool pm_fake(struct kvm_vcpu *vcpu,
  216. const struct coproc_params *p,
  217. const struct coproc_reg *r)
  218. {
  219. if (p->is_write)
  220. return ignore_write(vcpu, p);
  221. else
  222. return read_zero(vcpu, p);
  223. }
  224. #define access_pmcr pm_fake
  225. #define access_pmcntenset pm_fake
  226. #define access_pmcntenclr pm_fake
  227. #define access_pmovsr pm_fake
  228. #define access_pmselr pm_fake
  229. #define access_pmceid0 pm_fake
  230. #define access_pmceid1 pm_fake
  231. #define access_pmccntr pm_fake
  232. #define access_pmxevtyper pm_fake
  233. #define access_pmxevcntr pm_fake
  234. #define access_pmuserenr pm_fake
  235. #define access_pmintenset pm_fake
  236. #define access_pmintenclr pm_fake
  237. /* Architected CP15 registers.
  238. * CRn denotes the primary register number, but is copied to the CRm in the
  239. * user space API for 64-bit register access in line with the terminology used
  240. * in the ARM ARM.
  241. * Important: Must be sorted ascending by CRn, CRM, Op1, Op2 and with 64-bit
  242. * registers preceding 32-bit ones.
  243. */
  244. static const struct coproc_reg cp15_regs[] = {
  245. /* MPIDR: we use VMPIDR for guest access. */
  246. { CRn( 0), CRm( 0), Op1( 0), Op2( 5), is32,
  247. NULL, reset_mpidr, c0_MPIDR },
  248. /* CSSELR: swapped by interrupt.S. */
  249. { CRn( 0), CRm( 0), Op1( 2), Op2( 0), is32,
  250. NULL, reset_unknown, c0_CSSELR },
  251. /* ACTLR: trapped by HCR.TAC bit. */
  252. { CRn( 1), CRm( 0), Op1( 0), Op2( 1), is32,
  253. access_actlr, reset_actlr, c1_ACTLR },
  254. /* CPACR: swapped by interrupt.S. */
  255. { CRn( 1), CRm( 0), Op1( 0), Op2( 2), is32,
  256. NULL, reset_val, c1_CPACR, 0x00000000 },
  257. /* TTBR0/TTBR1/TTBCR: swapped by interrupt.S. */
  258. { CRm64( 2), Op1( 0), is64, access_vm_reg, reset_unknown64, c2_TTBR0 },
  259. { CRn(2), CRm( 0), Op1( 0), Op2( 0), is32,
  260. access_vm_reg, reset_unknown, c2_TTBR0 },
  261. { CRn(2), CRm( 0), Op1( 0), Op2( 1), is32,
  262. access_vm_reg, reset_unknown, c2_TTBR1 },
  263. { CRn( 2), CRm( 0), Op1( 0), Op2( 2), is32,
  264. access_vm_reg, reset_val, c2_TTBCR, 0x00000000 },
  265. { CRm64( 2), Op1( 1), is64, access_vm_reg, reset_unknown64, c2_TTBR1 },
  266. /* DACR: swapped by interrupt.S. */
  267. { CRn( 3), CRm( 0), Op1( 0), Op2( 0), is32,
  268. access_vm_reg, reset_unknown, c3_DACR },
  269. /* DFSR/IFSR/ADFSR/AIFSR: swapped by interrupt.S. */
  270. { CRn( 5), CRm( 0), Op1( 0), Op2( 0), is32,
  271. access_vm_reg, reset_unknown, c5_DFSR },
  272. { CRn( 5), CRm( 0), Op1( 0), Op2( 1), is32,
  273. access_vm_reg, reset_unknown, c5_IFSR },
  274. { CRn( 5), CRm( 1), Op1( 0), Op2( 0), is32,
  275. access_vm_reg, reset_unknown, c5_ADFSR },
  276. { CRn( 5), CRm( 1), Op1( 0), Op2( 1), is32,
  277. access_vm_reg, reset_unknown, c5_AIFSR },
  278. /* DFAR/IFAR: swapped by interrupt.S. */
  279. { CRn( 6), CRm( 0), Op1( 0), Op2( 0), is32,
  280. access_vm_reg, reset_unknown, c6_DFAR },
  281. { CRn( 6), CRm( 0), Op1( 0), Op2( 2), is32,
  282. access_vm_reg, reset_unknown, c6_IFAR },
  283. /* PAR swapped by interrupt.S */
  284. { CRm64( 7), Op1( 0), is64, NULL, reset_unknown64, c7_PAR },
  285. /*
  286. * DC{C,I,CI}SW operations:
  287. */
  288. { CRn( 7), CRm( 6), Op1( 0), Op2( 2), is32, access_dcsw},
  289. { CRn( 7), CRm(10), Op1( 0), Op2( 2), is32, access_dcsw},
  290. { CRn( 7), CRm(14), Op1( 0), Op2( 2), is32, access_dcsw},
  291. /*
  292. * L2CTLR access (guest wants to know #CPUs).
  293. */
  294. { CRn( 9), CRm( 0), Op1( 1), Op2( 2), is32,
  295. access_l2ctlr, reset_l2ctlr, c9_L2CTLR },
  296. { CRn( 9), CRm( 0), Op1( 1), Op2( 3), is32, access_l2ectlr},
  297. /*
  298. * Dummy performance monitor implementation.
  299. */
  300. { CRn( 9), CRm(12), Op1( 0), Op2( 0), is32, access_pmcr},
  301. { CRn( 9), CRm(12), Op1( 0), Op2( 1), is32, access_pmcntenset},
  302. { CRn( 9), CRm(12), Op1( 0), Op2( 2), is32, access_pmcntenclr},
  303. { CRn( 9), CRm(12), Op1( 0), Op2( 3), is32, access_pmovsr},
  304. { CRn( 9), CRm(12), Op1( 0), Op2( 5), is32, access_pmselr},
  305. { CRn( 9), CRm(12), Op1( 0), Op2( 6), is32, access_pmceid0},
  306. { CRn( 9), CRm(12), Op1( 0), Op2( 7), is32, access_pmceid1},
  307. { CRn( 9), CRm(13), Op1( 0), Op2( 0), is32, access_pmccntr},
  308. { CRn( 9), CRm(13), Op1( 0), Op2( 1), is32, access_pmxevtyper},
  309. { CRn( 9), CRm(13), Op1( 0), Op2( 2), is32, access_pmxevcntr},
  310. { CRn( 9), CRm(14), Op1( 0), Op2( 0), is32, access_pmuserenr},
  311. { CRn( 9), CRm(14), Op1( 0), Op2( 1), is32, access_pmintenset},
  312. { CRn( 9), CRm(14), Op1( 0), Op2( 2), is32, access_pmintenclr},
  313. /* PRRR/NMRR (aka MAIR0/MAIR1): swapped by interrupt.S. */
  314. { CRn(10), CRm( 2), Op1( 0), Op2( 0), is32,
  315. access_vm_reg, reset_unknown, c10_PRRR},
  316. { CRn(10), CRm( 2), Op1( 0), Op2( 1), is32,
  317. access_vm_reg, reset_unknown, c10_NMRR},
  318. /* AMAIR0/AMAIR1: swapped by interrupt.S. */
  319. { CRn(10), CRm( 3), Op1( 0), Op2( 0), is32,
  320. access_vm_reg, reset_unknown, c10_AMAIR0},
  321. { CRn(10), CRm( 3), Op1( 0), Op2( 1), is32,
  322. access_vm_reg, reset_unknown, c10_AMAIR1},
  323. /* VBAR: swapped by interrupt.S. */
  324. { CRn(12), CRm( 0), Op1( 0), Op2( 0), is32,
  325. NULL, reset_val, c12_VBAR, 0x00000000 },
  326. /* CONTEXTIDR/TPIDRURW/TPIDRURO/TPIDRPRW: swapped by interrupt.S. */
  327. { CRn(13), CRm( 0), Op1( 0), Op2( 1), is32,
  328. access_vm_reg, reset_val, c13_CID, 0x00000000 },
  329. { CRn(13), CRm( 0), Op1( 0), Op2( 2), is32,
  330. NULL, reset_unknown, c13_TID_URW },
  331. { CRn(13), CRm( 0), Op1( 0), Op2( 3), is32,
  332. NULL, reset_unknown, c13_TID_URO },
  333. { CRn(13), CRm( 0), Op1( 0), Op2( 4), is32,
  334. NULL, reset_unknown, c13_TID_PRIV },
  335. /* CNTKCTL: swapped by interrupt.S. */
  336. { CRn(14), CRm( 1), Op1( 0), Op2( 0), is32,
  337. NULL, reset_val, c14_CNTKCTL, 0x00000000 },
  338. /* The Configuration Base Address Register. */
  339. { CRn(15), CRm( 0), Op1( 4), Op2( 0), is32, access_cbar},
  340. };
  341. /* Target specific emulation tables */
  342. static struct kvm_coproc_target_table *target_tables[KVM_ARM_NUM_TARGETS];
  343. void kvm_register_target_coproc_table(struct kvm_coproc_target_table *table)
  344. {
  345. unsigned int i;
  346. for (i = 1; i < table->num; i++)
  347. BUG_ON(cmp_reg(&table->table[i-1],
  348. &table->table[i]) >= 0);
  349. target_tables[table->target] = table;
  350. }
  351. /* Get specific register table for this target. */
  352. static const struct coproc_reg *get_target_table(unsigned target, size_t *num)
  353. {
  354. struct kvm_coproc_target_table *table;
  355. table = target_tables[target];
  356. *num = table->num;
  357. return table->table;
  358. }
  359. static const struct coproc_reg *find_reg(const struct coproc_params *params,
  360. const struct coproc_reg table[],
  361. unsigned int num)
  362. {
  363. unsigned int i;
  364. for (i = 0; i < num; i++) {
  365. const struct coproc_reg *r = &table[i];
  366. if (params->is_64bit != r->is_64)
  367. continue;
  368. if (params->CRn != r->CRn)
  369. continue;
  370. if (params->CRm != r->CRm)
  371. continue;
  372. if (params->Op1 != r->Op1)
  373. continue;
  374. if (params->Op2 != r->Op2)
  375. continue;
  376. return r;
  377. }
  378. return NULL;
  379. }
  380. static int emulate_cp15(struct kvm_vcpu *vcpu,
  381. const struct coproc_params *params)
  382. {
  383. size_t num;
  384. const struct coproc_reg *table, *r;
  385. trace_kvm_emulate_cp15_imp(params->Op1, params->Rt1, params->CRn,
  386. params->CRm, params->Op2, params->is_write);
  387. table = get_target_table(vcpu->arch.target, &num);
  388. /* Search target-specific then generic table. */
  389. r = find_reg(params, table, num);
  390. if (!r)
  391. r = find_reg(params, cp15_regs, ARRAY_SIZE(cp15_regs));
  392. if (likely(r)) {
  393. /* If we don't have an accessor, we should never get here! */
  394. BUG_ON(!r->access);
  395. if (likely(r->access(vcpu, params, r))) {
  396. /* Skip instruction, since it was emulated */
  397. kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
  398. return 1;
  399. }
  400. /* If access function fails, it should complain. */
  401. } else {
  402. kvm_err("Unsupported guest CP15 access at: %08lx\n",
  403. *vcpu_pc(vcpu));
  404. print_cp_instr(params);
  405. }
  406. kvm_inject_undefined(vcpu);
  407. return 1;
  408. }
  409. /**
  410. * kvm_handle_cp15_64 -- handles a mrrc/mcrr trap on a guest CP15 access
  411. * @vcpu: The VCPU pointer
  412. * @run: The kvm_run struct
  413. */
  414. int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
  415. {
  416. struct coproc_params params;
  417. params.CRn = (kvm_vcpu_get_hsr(vcpu) >> 1) & 0xf;
  418. params.Rt1 = (kvm_vcpu_get_hsr(vcpu) >> 5) & 0xf;
  419. params.is_write = ((kvm_vcpu_get_hsr(vcpu) & 1) == 0);
  420. params.is_64bit = true;
  421. params.Op1 = (kvm_vcpu_get_hsr(vcpu) >> 16) & 0xf;
  422. params.Op2 = 0;
  423. params.Rt2 = (kvm_vcpu_get_hsr(vcpu) >> 10) & 0xf;
  424. params.CRm = 0;
  425. return emulate_cp15(vcpu, &params);
  426. }
  427. static void reset_coproc_regs(struct kvm_vcpu *vcpu,
  428. const struct coproc_reg *table, size_t num)
  429. {
  430. unsigned long i;
  431. for (i = 0; i < num; i++)
  432. if (table[i].reset)
  433. table[i].reset(vcpu, &table[i]);
  434. }
  435. /**
  436. * kvm_handle_cp15_32 -- handles a mrc/mcr trap on a guest CP15 access
  437. * @vcpu: The VCPU pointer
  438. * @run: The kvm_run struct
  439. */
  440. int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
  441. {
  442. struct coproc_params params;
  443. params.CRm = (kvm_vcpu_get_hsr(vcpu) >> 1) & 0xf;
  444. params.Rt1 = (kvm_vcpu_get_hsr(vcpu) >> 5) & 0xf;
  445. params.is_write = ((kvm_vcpu_get_hsr(vcpu) & 1) == 0);
  446. params.is_64bit = false;
  447. params.CRn = (kvm_vcpu_get_hsr(vcpu) >> 10) & 0xf;
  448. params.Op1 = (kvm_vcpu_get_hsr(vcpu) >> 14) & 0x7;
  449. params.Op2 = (kvm_vcpu_get_hsr(vcpu) >> 17) & 0x7;
  450. params.Rt2 = 0;
  451. return emulate_cp15(vcpu, &params);
  452. }
  453. /******************************************************************************
  454. * Userspace API
  455. *****************************************************************************/
  456. static bool index_to_params(u64 id, struct coproc_params *params)
  457. {
  458. switch (id & KVM_REG_SIZE_MASK) {
  459. case KVM_REG_SIZE_U32:
  460. /* Any unused index bits means it's not valid. */
  461. if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
  462. | KVM_REG_ARM_COPROC_MASK
  463. | KVM_REG_ARM_32_CRN_MASK
  464. | KVM_REG_ARM_CRM_MASK
  465. | KVM_REG_ARM_OPC1_MASK
  466. | KVM_REG_ARM_32_OPC2_MASK))
  467. return false;
  468. params->is_64bit = false;
  469. params->CRn = ((id & KVM_REG_ARM_32_CRN_MASK)
  470. >> KVM_REG_ARM_32_CRN_SHIFT);
  471. params->CRm = ((id & KVM_REG_ARM_CRM_MASK)
  472. >> KVM_REG_ARM_CRM_SHIFT);
  473. params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK)
  474. >> KVM_REG_ARM_OPC1_SHIFT);
  475. params->Op2 = ((id & KVM_REG_ARM_32_OPC2_MASK)
  476. >> KVM_REG_ARM_32_OPC2_SHIFT);
  477. return true;
  478. case KVM_REG_SIZE_U64:
  479. /* Any unused index bits means it's not valid. */
  480. if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
  481. | KVM_REG_ARM_COPROC_MASK
  482. | KVM_REG_ARM_CRM_MASK
  483. | KVM_REG_ARM_OPC1_MASK))
  484. return false;
  485. params->is_64bit = true;
  486. /* CRm to CRn: see cp15_to_index for details */
  487. params->CRn = ((id & KVM_REG_ARM_CRM_MASK)
  488. >> KVM_REG_ARM_CRM_SHIFT);
  489. params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK)
  490. >> KVM_REG_ARM_OPC1_SHIFT);
  491. params->Op2 = 0;
  492. params->CRm = 0;
  493. return true;
  494. default:
  495. return false;
  496. }
  497. }
  498. /* Decode an index value, and find the cp15 coproc_reg entry. */
  499. static const struct coproc_reg *index_to_coproc_reg(struct kvm_vcpu *vcpu,
  500. u64 id)
  501. {
  502. size_t num;
  503. const struct coproc_reg *table, *r;
  504. struct coproc_params params;
  505. /* We only do cp15 for now. */
  506. if ((id & KVM_REG_ARM_COPROC_MASK) >> KVM_REG_ARM_COPROC_SHIFT != 15)
  507. return NULL;
  508. if (!index_to_params(id, &params))
  509. return NULL;
  510. table = get_target_table(vcpu->arch.target, &num);
  511. r = find_reg(&params, table, num);
  512. if (!r)
  513. r = find_reg(&params, cp15_regs, ARRAY_SIZE(cp15_regs));
  514. /* Not saved in the cp15 array? */
  515. if (r && !r->reg)
  516. r = NULL;
  517. return r;
  518. }
  519. /*
  520. * These are the invariant cp15 registers: we let the guest see the host
  521. * versions of these, so they're part of the guest state.
  522. *
  523. * A future CPU may provide a mechanism to present different values to
  524. * the guest, or a future kvm may trap them.
  525. */
  526. /* Unfortunately, there's no register-argument for mrc, so generate. */
  527. #define FUNCTION_FOR32(crn, crm, op1, op2, name) \
  528. static void get_##name(struct kvm_vcpu *v, \
  529. const struct coproc_reg *r) \
  530. { \
  531. u32 val; \
  532. \
  533. asm volatile("mrc p15, " __stringify(op1) \
  534. ", %0, c" __stringify(crn) \
  535. ", c" __stringify(crm) \
  536. ", " __stringify(op2) "\n" : "=r" (val)); \
  537. ((struct coproc_reg *)r)->val = val; \
  538. }
  539. FUNCTION_FOR32(0, 0, 0, 0, MIDR)
  540. FUNCTION_FOR32(0, 0, 0, 1, CTR)
  541. FUNCTION_FOR32(0, 0, 0, 2, TCMTR)
  542. FUNCTION_FOR32(0, 0, 0, 3, TLBTR)
  543. FUNCTION_FOR32(0, 0, 0, 6, REVIDR)
  544. FUNCTION_FOR32(0, 1, 0, 0, ID_PFR0)
  545. FUNCTION_FOR32(0, 1, 0, 1, ID_PFR1)
  546. FUNCTION_FOR32(0, 1, 0, 2, ID_DFR0)
  547. FUNCTION_FOR32(0, 1, 0, 3, ID_AFR0)
  548. FUNCTION_FOR32(0, 1, 0, 4, ID_MMFR0)
  549. FUNCTION_FOR32(0, 1, 0, 5, ID_MMFR1)
  550. FUNCTION_FOR32(0, 1, 0, 6, ID_MMFR2)
  551. FUNCTION_FOR32(0, 1, 0, 7, ID_MMFR3)
  552. FUNCTION_FOR32(0, 2, 0, 0, ID_ISAR0)
  553. FUNCTION_FOR32(0, 2, 0, 1, ID_ISAR1)
  554. FUNCTION_FOR32(0, 2, 0, 2, ID_ISAR2)
  555. FUNCTION_FOR32(0, 2, 0, 3, ID_ISAR3)
  556. FUNCTION_FOR32(0, 2, 0, 4, ID_ISAR4)
  557. FUNCTION_FOR32(0, 2, 0, 5, ID_ISAR5)
  558. FUNCTION_FOR32(0, 0, 1, 1, CLIDR)
  559. FUNCTION_FOR32(0, 0, 1, 7, AIDR)
  560. /* ->val is filled in by kvm_invariant_coproc_table_init() */
  561. static struct coproc_reg invariant_cp15[] = {
  562. { CRn( 0), CRm( 0), Op1( 0), Op2( 0), is32, NULL, get_MIDR },
  563. { CRn( 0), CRm( 0), Op1( 0), Op2( 1), is32, NULL, get_CTR },
  564. { CRn( 0), CRm( 0), Op1( 0), Op2( 2), is32, NULL, get_TCMTR },
  565. { CRn( 0), CRm( 0), Op1( 0), Op2( 3), is32, NULL, get_TLBTR },
  566. { CRn( 0), CRm( 0), Op1( 0), Op2( 6), is32, NULL, get_REVIDR },
  567. { CRn( 0), CRm( 1), Op1( 0), Op2( 0), is32, NULL, get_ID_PFR0 },
  568. { CRn( 0), CRm( 1), Op1( 0), Op2( 1), is32, NULL, get_ID_PFR1 },
  569. { CRn( 0), CRm( 1), Op1( 0), Op2( 2), is32, NULL, get_ID_DFR0 },
  570. { CRn( 0), CRm( 1), Op1( 0), Op2( 3), is32, NULL, get_ID_AFR0 },
  571. { CRn( 0), CRm( 1), Op1( 0), Op2( 4), is32, NULL, get_ID_MMFR0 },
  572. { CRn( 0), CRm( 1), Op1( 0), Op2( 5), is32, NULL, get_ID_MMFR1 },
  573. { CRn( 0), CRm( 1), Op1( 0), Op2( 6), is32, NULL, get_ID_MMFR2 },
  574. { CRn( 0), CRm( 1), Op1( 0), Op2( 7), is32, NULL, get_ID_MMFR3 },
  575. { CRn( 0), CRm( 2), Op1( 0), Op2( 0), is32, NULL, get_ID_ISAR0 },
  576. { CRn( 0), CRm( 2), Op1( 0), Op2( 1), is32, NULL, get_ID_ISAR1 },
  577. { CRn( 0), CRm( 2), Op1( 0), Op2( 2), is32, NULL, get_ID_ISAR2 },
  578. { CRn( 0), CRm( 2), Op1( 0), Op2( 3), is32, NULL, get_ID_ISAR3 },
  579. { CRn( 0), CRm( 2), Op1( 0), Op2( 4), is32, NULL, get_ID_ISAR4 },
  580. { CRn( 0), CRm( 2), Op1( 0), Op2( 5), is32, NULL, get_ID_ISAR5 },
  581. { CRn( 0), CRm( 0), Op1( 1), Op2( 1), is32, NULL, get_CLIDR },
  582. { CRn( 0), CRm( 0), Op1( 1), Op2( 7), is32, NULL, get_AIDR },
  583. };
  584. static int reg_from_user(void *val, const void __user *uaddr, u64 id)
  585. {
  586. /* This Just Works because we are little endian. */
  587. if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
  588. return -EFAULT;
  589. return 0;
  590. }
  591. static int reg_to_user(void __user *uaddr, const void *val, u64 id)
  592. {
  593. /* This Just Works because we are little endian. */
  594. if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
  595. return -EFAULT;
  596. return 0;
  597. }
  598. static int get_invariant_cp15(u64 id, void __user *uaddr)
  599. {
  600. struct coproc_params params;
  601. const struct coproc_reg *r;
  602. if (!index_to_params(id, &params))
  603. return -ENOENT;
  604. r = find_reg(&params, invariant_cp15, ARRAY_SIZE(invariant_cp15));
  605. if (!r)
  606. return -ENOENT;
  607. return reg_to_user(uaddr, &r->val, id);
  608. }
  609. static int set_invariant_cp15(u64 id, void __user *uaddr)
  610. {
  611. struct coproc_params params;
  612. const struct coproc_reg *r;
  613. int err;
  614. u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
  615. if (!index_to_params(id, &params))
  616. return -ENOENT;
  617. r = find_reg(&params, invariant_cp15, ARRAY_SIZE(invariant_cp15));
  618. if (!r)
  619. return -ENOENT;
  620. err = reg_from_user(&val, uaddr, id);
  621. if (err)
  622. return err;
  623. /* This is what we mean by invariant: you can't change it. */
  624. if (r->val != val)
  625. return -EINVAL;
  626. return 0;
  627. }
  628. static bool is_valid_cache(u32 val)
  629. {
  630. u32 level, ctype;
  631. if (val >= CSSELR_MAX)
  632. return -ENOENT;
  633. /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */
  634. level = (val >> 1);
  635. ctype = (cache_levels >> (level * 3)) & 7;
  636. switch (ctype) {
  637. case 0: /* No cache */
  638. return false;
  639. case 1: /* Instruction cache only */
  640. return (val & 1);
  641. case 2: /* Data cache only */
  642. case 4: /* Unified cache */
  643. return !(val & 1);
  644. case 3: /* Separate instruction and data caches */
  645. return true;
  646. default: /* Reserved: we can't know instruction or data. */
  647. return false;
  648. }
  649. }
  650. /* Which cache CCSIDR represents depends on CSSELR value. */
  651. static u32 get_ccsidr(u32 csselr)
  652. {
  653. u32 ccsidr;
  654. /* Make sure noone else changes CSSELR during this! */
  655. local_irq_disable();
  656. /* Put value into CSSELR */
  657. asm volatile("mcr p15, 2, %0, c0, c0, 0" : : "r" (csselr));
  658. isb();
  659. /* Read result out of CCSIDR */
  660. asm volatile("mrc p15, 1, %0, c0, c0, 0" : "=r" (ccsidr));
  661. local_irq_enable();
  662. return ccsidr;
  663. }
  664. static int demux_c15_get(u64 id, void __user *uaddr)
  665. {
  666. u32 val;
  667. u32 __user *uval = uaddr;
  668. /* Fail if we have unknown bits set. */
  669. if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
  670. | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
  671. return -ENOENT;
  672. switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
  673. case KVM_REG_ARM_DEMUX_ID_CCSIDR:
  674. if (KVM_REG_SIZE(id) != 4)
  675. return -ENOENT;
  676. val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
  677. >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
  678. if (!is_valid_cache(val))
  679. return -ENOENT;
  680. return put_user(get_ccsidr(val), uval);
  681. default:
  682. return -ENOENT;
  683. }
  684. }
  685. static int demux_c15_set(u64 id, void __user *uaddr)
  686. {
  687. u32 val, newval;
  688. u32 __user *uval = uaddr;
  689. /* Fail if we have unknown bits set. */
  690. if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
  691. | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
  692. return -ENOENT;
  693. switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
  694. case KVM_REG_ARM_DEMUX_ID_CCSIDR:
  695. if (KVM_REG_SIZE(id) != 4)
  696. return -ENOENT;
  697. val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
  698. >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
  699. if (!is_valid_cache(val))
  700. return -ENOENT;
  701. if (get_user(newval, uval))
  702. return -EFAULT;
  703. /* This is also invariant: you can't change it. */
  704. if (newval != get_ccsidr(val))
  705. return -EINVAL;
  706. return 0;
  707. default:
  708. return -ENOENT;
  709. }
  710. }
  711. #ifdef CONFIG_VFPv3
  712. static const int vfp_sysregs[] = { KVM_REG_ARM_VFP_FPEXC,
  713. KVM_REG_ARM_VFP_FPSCR,
  714. KVM_REG_ARM_VFP_FPINST,
  715. KVM_REG_ARM_VFP_FPINST2,
  716. KVM_REG_ARM_VFP_MVFR0,
  717. KVM_REG_ARM_VFP_MVFR1,
  718. KVM_REG_ARM_VFP_FPSID };
  719. static unsigned int num_fp_regs(void)
  720. {
  721. if (((fmrx(MVFR0) & MVFR0_A_SIMD_MASK) >> MVFR0_A_SIMD_BIT) == 2)
  722. return 32;
  723. else
  724. return 16;
  725. }
  726. static unsigned int num_vfp_regs(void)
  727. {
  728. /* Normal FP regs + control regs. */
  729. return num_fp_regs() + ARRAY_SIZE(vfp_sysregs);
  730. }
  731. static int copy_vfp_regids(u64 __user *uindices)
  732. {
  733. unsigned int i;
  734. const u64 u32reg = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP;
  735. const u64 u64reg = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
  736. for (i = 0; i < num_fp_regs(); i++) {
  737. if (put_user((u64reg | KVM_REG_ARM_VFP_BASE_REG) + i,
  738. uindices))
  739. return -EFAULT;
  740. uindices++;
  741. }
  742. for (i = 0; i < ARRAY_SIZE(vfp_sysregs); i++) {
  743. if (put_user(u32reg | vfp_sysregs[i], uindices))
  744. return -EFAULT;
  745. uindices++;
  746. }
  747. return num_vfp_regs();
  748. }
  749. static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
  750. {
  751. u32 vfpid = (id & KVM_REG_ARM_VFP_MASK);
  752. u32 val;
  753. /* Fail if we have unknown bits set. */
  754. if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
  755. | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
  756. return -ENOENT;
  757. if (vfpid < num_fp_regs()) {
  758. if (KVM_REG_SIZE(id) != 8)
  759. return -ENOENT;
  760. return reg_to_user(uaddr, &vcpu->arch.vfp_guest.fpregs[vfpid],
  761. id);
  762. }
  763. /* FP control registers are all 32 bit. */
  764. if (KVM_REG_SIZE(id) != 4)
  765. return -ENOENT;
  766. switch (vfpid) {
  767. case KVM_REG_ARM_VFP_FPEXC:
  768. return reg_to_user(uaddr, &vcpu->arch.vfp_guest.fpexc, id);
  769. case KVM_REG_ARM_VFP_FPSCR:
  770. return reg_to_user(uaddr, &vcpu->arch.vfp_guest.fpscr, id);
  771. case KVM_REG_ARM_VFP_FPINST:
  772. return reg_to_user(uaddr, &vcpu->arch.vfp_guest.fpinst, id);
  773. case KVM_REG_ARM_VFP_FPINST2:
  774. return reg_to_user(uaddr, &vcpu->arch.vfp_guest.fpinst2, id);
  775. case KVM_REG_ARM_VFP_MVFR0:
  776. val = fmrx(MVFR0);
  777. return reg_to_user(uaddr, &val, id);
  778. case KVM_REG_ARM_VFP_MVFR1:
  779. val = fmrx(MVFR1);
  780. return reg_to_user(uaddr, &val, id);
  781. case KVM_REG_ARM_VFP_FPSID:
  782. val = fmrx(FPSID);
  783. return reg_to_user(uaddr, &val, id);
  784. default:
  785. return -ENOENT;
  786. }
  787. }
  788. static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr)
  789. {
  790. u32 vfpid = (id & KVM_REG_ARM_VFP_MASK);
  791. u32 val;
  792. /* Fail if we have unknown bits set. */
  793. if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
  794. | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
  795. return -ENOENT;
  796. if (vfpid < num_fp_regs()) {
  797. if (KVM_REG_SIZE(id) != 8)
  798. return -ENOENT;
  799. return reg_from_user(&vcpu->arch.vfp_guest.fpregs[vfpid],
  800. uaddr, id);
  801. }
  802. /* FP control registers are all 32 bit. */
  803. if (KVM_REG_SIZE(id) != 4)
  804. return -ENOENT;
  805. switch (vfpid) {
  806. case KVM_REG_ARM_VFP_FPEXC:
  807. return reg_from_user(&vcpu->arch.vfp_guest.fpexc, uaddr, id);
  808. case KVM_REG_ARM_VFP_FPSCR:
  809. return reg_from_user(&vcpu->arch.vfp_guest.fpscr, uaddr, id);
  810. case KVM_REG_ARM_VFP_FPINST:
  811. return reg_from_user(&vcpu->arch.vfp_guest.fpinst, uaddr, id);
  812. case KVM_REG_ARM_VFP_FPINST2:
  813. return reg_from_user(&vcpu->arch.vfp_guest.fpinst2, uaddr, id);
  814. /* These are invariant. */
  815. case KVM_REG_ARM_VFP_MVFR0:
  816. if (reg_from_user(&val, uaddr, id))
  817. return -EFAULT;
  818. if (val != fmrx(MVFR0))
  819. return -EINVAL;
  820. return 0;
  821. case KVM_REG_ARM_VFP_MVFR1:
  822. if (reg_from_user(&val, uaddr, id))
  823. return -EFAULT;
  824. if (val != fmrx(MVFR1))
  825. return -EINVAL;
  826. return 0;
  827. case KVM_REG_ARM_VFP_FPSID:
  828. if (reg_from_user(&val, uaddr, id))
  829. return -EFAULT;
  830. if (val != fmrx(FPSID))
  831. return -EINVAL;
  832. return 0;
  833. default:
  834. return -ENOENT;
  835. }
  836. }
  837. #else /* !CONFIG_VFPv3 */
  838. static unsigned int num_vfp_regs(void)
  839. {
  840. return 0;
  841. }
  842. static int copy_vfp_regids(u64 __user *uindices)
  843. {
  844. return 0;
  845. }
  846. static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
  847. {
  848. return -ENOENT;
  849. }
  850. static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr)
  851. {
  852. return -ENOENT;
  853. }
  854. #endif /* !CONFIG_VFPv3 */
  855. int kvm_arm_coproc_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
  856. {
  857. const struct coproc_reg *r;
  858. void __user *uaddr = (void __user *)(long)reg->addr;
  859. if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
  860. return demux_c15_get(reg->id, uaddr);
  861. if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP)
  862. return vfp_get_reg(vcpu, reg->id, uaddr);
  863. r = index_to_coproc_reg(vcpu, reg->id);
  864. if (!r)
  865. return get_invariant_cp15(reg->id, uaddr);
  866. /* Note: copies two regs if size is 64 bit. */
  867. return reg_to_user(uaddr, &vcpu->arch.cp15[r->reg], reg->id);
  868. }
  869. int kvm_arm_coproc_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
  870. {
  871. const struct coproc_reg *r;
  872. void __user *uaddr = (void __user *)(long)reg->addr;
  873. if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
  874. return demux_c15_set(reg->id, uaddr);
  875. if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP)
  876. return vfp_set_reg(vcpu, reg->id, uaddr);
  877. r = index_to_coproc_reg(vcpu, reg->id);
  878. if (!r)
  879. return set_invariant_cp15(reg->id, uaddr);
  880. /* Note: copies two regs if size is 64 bit */
  881. return reg_from_user(&vcpu->arch.cp15[r->reg], uaddr, reg->id);
  882. }
  883. static unsigned int num_demux_regs(void)
  884. {
  885. unsigned int i, count = 0;
  886. for (i = 0; i < CSSELR_MAX; i++)
  887. if (is_valid_cache(i))
  888. count++;
  889. return count;
  890. }
  891. static int write_demux_regids(u64 __user *uindices)
  892. {
  893. u64 val = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
  894. unsigned int i;
  895. val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
  896. for (i = 0; i < CSSELR_MAX; i++) {
  897. if (!is_valid_cache(i))
  898. continue;
  899. if (put_user(val | i, uindices))
  900. return -EFAULT;
  901. uindices++;
  902. }
  903. return 0;
  904. }
  905. static u64 cp15_to_index(const struct coproc_reg *reg)
  906. {
  907. u64 val = KVM_REG_ARM | (15 << KVM_REG_ARM_COPROC_SHIFT);
  908. if (reg->is_64) {
  909. val |= KVM_REG_SIZE_U64;
  910. val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT);
  911. /*
  912. * CRn always denotes the primary coproc. reg. nr. for the
  913. * in-kernel representation, but the user space API uses the
  914. * CRm for the encoding, because it is modelled after the
  915. * MRRC/MCRR instructions: see the ARM ARM rev. c page
  916. * B3-1445
  917. */
  918. val |= (reg->CRn << KVM_REG_ARM_CRM_SHIFT);
  919. } else {
  920. val |= KVM_REG_SIZE_U32;
  921. val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT);
  922. val |= (reg->Op2 << KVM_REG_ARM_32_OPC2_SHIFT);
  923. val |= (reg->CRm << KVM_REG_ARM_CRM_SHIFT);
  924. val |= (reg->CRn << KVM_REG_ARM_32_CRN_SHIFT);
  925. }
  926. return val;
  927. }
  928. static bool copy_reg_to_user(const struct coproc_reg *reg, u64 __user **uind)
  929. {
  930. if (!*uind)
  931. return true;
  932. if (put_user(cp15_to_index(reg), *uind))
  933. return false;
  934. (*uind)++;
  935. return true;
  936. }
  937. /* Assumed ordered tables, see kvm_coproc_table_init. */
  938. static int walk_cp15(struct kvm_vcpu *vcpu, u64 __user *uind)
  939. {
  940. const struct coproc_reg *i1, *i2, *end1, *end2;
  941. unsigned int total = 0;
  942. size_t num;
  943. /* We check for duplicates here, to allow arch-specific overrides. */
  944. i1 = get_target_table(vcpu->arch.target, &num);
  945. end1 = i1 + num;
  946. i2 = cp15_regs;
  947. end2 = cp15_regs + ARRAY_SIZE(cp15_regs);
  948. BUG_ON(i1 == end1 || i2 == end2);
  949. /* Walk carefully, as both tables may refer to the same register. */
  950. while (i1 || i2) {
  951. int cmp = cmp_reg(i1, i2);
  952. /* target-specific overrides generic entry. */
  953. if (cmp <= 0) {
  954. /* Ignore registers we trap but don't save. */
  955. if (i1->reg) {
  956. if (!copy_reg_to_user(i1, &uind))
  957. return -EFAULT;
  958. total++;
  959. }
  960. } else {
  961. /* Ignore registers we trap but don't save. */
  962. if (i2->reg) {
  963. if (!copy_reg_to_user(i2, &uind))
  964. return -EFAULT;
  965. total++;
  966. }
  967. }
  968. if (cmp <= 0 && ++i1 == end1)
  969. i1 = NULL;
  970. if (cmp >= 0 && ++i2 == end2)
  971. i2 = NULL;
  972. }
  973. return total;
  974. }
  975. unsigned long kvm_arm_num_coproc_regs(struct kvm_vcpu *vcpu)
  976. {
  977. return ARRAY_SIZE(invariant_cp15)
  978. + num_demux_regs()
  979. + num_vfp_regs()
  980. + walk_cp15(vcpu, (u64 __user *)NULL);
  981. }
  982. int kvm_arm_copy_coproc_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
  983. {
  984. unsigned int i;
  985. int err;
  986. /* Then give them all the invariant registers' indices. */
  987. for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++) {
  988. if (put_user(cp15_to_index(&invariant_cp15[i]), uindices))
  989. return -EFAULT;
  990. uindices++;
  991. }
  992. err = walk_cp15(vcpu, uindices);
  993. if (err < 0)
  994. return err;
  995. uindices += err;
  996. err = copy_vfp_regids(uindices);
  997. if (err < 0)
  998. return err;
  999. uindices += err;
  1000. return write_demux_regids(uindices);
  1001. }
  1002. void kvm_coproc_table_init(void)
  1003. {
  1004. unsigned int i;
  1005. /* Make sure tables are unique and in order. */
  1006. for (i = 1; i < ARRAY_SIZE(cp15_regs); i++)
  1007. BUG_ON(cmp_reg(&cp15_regs[i-1], &cp15_regs[i]) >= 0);
  1008. /* We abuse the reset function to overwrite the table itself. */
  1009. for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++)
  1010. invariant_cp15[i].reset(NULL, &invariant_cp15[i]);
  1011. /*
  1012. * CLIDR format is awkward, so clean it up. See ARM B4.1.20:
  1013. *
  1014. * If software reads the Cache Type fields from Ctype1
  1015. * upwards, once it has seen a value of 0b000, no caches
  1016. * exist at further-out levels of the hierarchy. So, for
  1017. * example, if Ctype3 is the first Cache Type field with a
  1018. * value of 0b000, the values of Ctype4 to Ctype7 must be
  1019. * ignored.
  1020. */
  1021. asm volatile("mrc p15, 1, %0, c0, c0, 1" : "=r" (cache_levels));
  1022. for (i = 0; i < 7; i++)
  1023. if (((cache_levels >> (i*3)) & 7) == 0)
  1024. break;
  1025. /* Clear all higher bits. */
  1026. cache_levels &= (1 << (i*3))-1;
  1027. }
  1028. /**
  1029. * kvm_reset_coprocs - sets cp15 registers to reset value
  1030. * @vcpu: The VCPU pointer
  1031. *
  1032. * This function finds the right table above and sets the registers on the
  1033. * virtual CPU struct to their architecturally defined reset values.
  1034. */
  1035. void kvm_reset_coprocs(struct kvm_vcpu *vcpu)
  1036. {
  1037. size_t num;
  1038. const struct coproc_reg *table;
  1039. /* Catch someone adding a register without putting in reset entry. */
  1040. memset(vcpu->arch.cp15, 0x42, sizeof(vcpu->arch.cp15));
  1041. /* Generic chip reset first (so target could override). */
  1042. reset_coproc_regs(vcpu, cp15_regs, ARRAY_SIZE(cp15_regs));
  1043. table = get_target_table(vcpu->arch.target, &num);
  1044. reset_coproc_regs(vcpu, table, num);
  1045. for (num = 1; num < NR_CP15_REGS; num++)
  1046. if (vcpu->arch.cp15[num] == 0x42424242)
  1047. panic("Didn't reset vcpu->arch.cp15[%zi]", num);
  1048. }