setup.c 25 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087
  1. /*
  2. * linux/arch/arm/kernel/setup.c
  3. *
  4. * Copyright (C) 1995-2001 Russell King
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #include <linux/export.h>
  11. #include <linux/kernel.h>
  12. #include <linux/stddef.h>
  13. #include <linux/ioport.h>
  14. #include <linux/delay.h>
  15. #include <linux/utsname.h>
  16. #include <linux/initrd.h>
  17. #include <linux/console.h>
  18. #include <linux/bootmem.h>
  19. #include <linux/seq_file.h>
  20. #include <linux/screen_info.h>
  21. #include <linux/of_platform.h>
  22. #include <linux/init.h>
  23. #include <linux/kexec.h>
  24. #include <linux/of_fdt.h>
  25. #include <linux/cpu.h>
  26. #include <linux/interrupt.h>
  27. #include <linux/smp.h>
  28. #include <linux/proc_fs.h>
  29. #include <linux/memblock.h>
  30. #include <linux/bug.h>
  31. #include <linux/compiler.h>
  32. #include <linux/sort.h>
  33. #include <asm/unified.h>
  34. #include <asm/cp15.h>
  35. #include <asm/cpu.h>
  36. #include <asm/cputype.h>
  37. #include <asm/elf.h>
  38. #include <asm/procinfo.h>
  39. #include <asm/psci.h>
  40. #include <asm/sections.h>
  41. #include <asm/setup.h>
  42. #include <asm/smp_plat.h>
  43. #include <asm/mach-types.h>
  44. #include <asm/cacheflush.h>
  45. #include <asm/cachetype.h>
  46. #include <asm/tlbflush.h>
  47. #include <asm/prom.h>
  48. #include <asm/mach/arch.h>
  49. #include <asm/mach/irq.h>
  50. #include <asm/mach/time.h>
  51. #include <asm/system_info.h>
  52. #include <asm/system_misc.h>
  53. #include <asm/traps.h>
  54. #include <asm/unwind.h>
  55. #include <asm/memblock.h>
  56. #include <asm/virt.h>
  57. #include "atags.h"
  58. #if defined(CONFIG_FPE_NWFPE) || defined(CONFIG_FPE_FASTFPE)
  59. char fpe_type[8];
  60. static int __init fpe_setup(char *line)
  61. {
  62. memcpy(fpe_type, line, 8);
  63. return 1;
  64. }
  65. __setup("fpe=", fpe_setup);
  66. #endif
  67. extern void init_default_cache_policy(unsigned long);
  68. extern void paging_init(const struct machine_desc *desc);
  69. extern void early_paging_init(const struct machine_desc *,
  70. struct proc_info_list *);
  71. extern void sanity_check_meminfo(void);
  72. extern enum reboot_mode reboot_mode;
  73. extern void setup_dma_zone(const struct machine_desc *desc);
  74. unsigned int processor_id;
  75. EXPORT_SYMBOL(processor_id);
  76. unsigned int __machine_arch_type __read_mostly;
  77. EXPORT_SYMBOL(__machine_arch_type);
  78. unsigned int cacheid __read_mostly;
  79. EXPORT_SYMBOL(cacheid);
  80. unsigned int __atags_pointer __initdata;
  81. unsigned int system_rev;
  82. EXPORT_SYMBOL(system_rev);
  83. unsigned int system_serial_low;
  84. EXPORT_SYMBOL(system_serial_low);
  85. unsigned int system_serial_high;
  86. EXPORT_SYMBOL(system_serial_high);
  87. unsigned int elf_hwcap __read_mostly;
  88. EXPORT_SYMBOL(elf_hwcap);
  89. unsigned int elf_hwcap2 __read_mostly;
  90. EXPORT_SYMBOL(elf_hwcap2);
  91. #ifdef MULTI_CPU
  92. struct processor processor __read_mostly;
  93. #endif
  94. #ifdef MULTI_TLB
  95. struct cpu_tlb_fns cpu_tlb __read_mostly;
  96. #endif
  97. #ifdef MULTI_USER
  98. struct cpu_user_fns cpu_user __read_mostly;
  99. #endif
  100. #ifdef MULTI_CACHE
  101. struct cpu_cache_fns cpu_cache __read_mostly;
  102. #endif
  103. #ifdef CONFIG_OUTER_CACHE
  104. struct outer_cache_fns outer_cache __read_mostly;
  105. EXPORT_SYMBOL(outer_cache);
  106. #endif
  107. /*
  108. * Cached cpu_architecture() result for use by assembler code.
  109. * C code should use the cpu_architecture() function instead of accessing this
  110. * variable directly.
  111. */
  112. int __cpu_architecture __read_mostly = CPU_ARCH_UNKNOWN;
  113. struct stack {
  114. u32 irq[3];
  115. u32 abt[3];
  116. u32 und[3];
  117. } ____cacheline_aligned;
  118. #ifndef CONFIG_CPU_V7M
  119. static struct stack stacks[NR_CPUS];
  120. #endif
  121. char elf_platform[ELF_PLATFORM_SIZE];
  122. EXPORT_SYMBOL(elf_platform);
  123. static const char *cpu_name;
  124. static const char *machine_name;
  125. static char __initdata cmd_line[COMMAND_LINE_SIZE];
  126. const struct machine_desc *machine_desc __initdata;
  127. static union { char c[4]; unsigned long l; } endian_test __initdata = { { 'l', '?', '?', 'b' } };
  128. #define ENDIANNESS ((char)endian_test.l)
  129. DEFINE_PER_CPU(struct cpuinfo_arm, cpu_data);
  130. /*
  131. * Standard memory resources
  132. */
  133. static struct resource mem_res[] = {
  134. {
  135. .name = "Video RAM",
  136. .start = 0,
  137. .end = 0,
  138. .flags = IORESOURCE_MEM
  139. },
  140. {
  141. .name = "Kernel code",
  142. .start = 0,
  143. .end = 0,
  144. .flags = IORESOURCE_MEM
  145. },
  146. {
  147. .name = "Kernel data",
  148. .start = 0,
  149. .end = 0,
  150. .flags = IORESOURCE_MEM
  151. }
  152. };
  153. #define video_ram mem_res[0]
  154. #define kernel_code mem_res[1]
  155. #define kernel_data mem_res[2]
  156. static struct resource io_res[] = {
  157. {
  158. .name = "reserved",
  159. .start = 0x3bc,
  160. .end = 0x3be,
  161. .flags = IORESOURCE_IO | IORESOURCE_BUSY
  162. },
  163. {
  164. .name = "reserved",
  165. .start = 0x378,
  166. .end = 0x37f,
  167. .flags = IORESOURCE_IO | IORESOURCE_BUSY
  168. },
  169. {
  170. .name = "reserved",
  171. .start = 0x278,
  172. .end = 0x27f,
  173. .flags = IORESOURCE_IO | IORESOURCE_BUSY
  174. }
  175. };
  176. #define lp0 io_res[0]
  177. #define lp1 io_res[1]
  178. #define lp2 io_res[2]
  179. static const char *proc_arch[] = {
  180. "undefined/unknown",
  181. "3",
  182. "4",
  183. "4T",
  184. "5",
  185. "5T",
  186. "5TE",
  187. "5TEJ",
  188. "6TEJ",
  189. "7",
  190. "7M",
  191. "?(12)",
  192. "?(13)",
  193. "?(14)",
  194. "?(15)",
  195. "?(16)",
  196. "?(17)",
  197. };
  198. #ifdef CONFIG_CPU_V7M
  199. static int __get_cpu_architecture(void)
  200. {
  201. return CPU_ARCH_ARMv7M;
  202. }
  203. #else
  204. static int __get_cpu_architecture(void)
  205. {
  206. int cpu_arch;
  207. if ((read_cpuid_id() & 0x0008f000) == 0) {
  208. cpu_arch = CPU_ARCH_UNKNOWN;
  209. } else if ((read_cpuid_id() & 0x0008f000) == 0x00007000) {
  210. cpu_arch = (read_cpuid_id() & (1 << 23)) ? CPU_ARCH_ARMv4T : CPU_ARCH_ARMv3;
  211. } else if ((read_cpuid_id() & 0x00080000) == 0x00000000) {
  212. cpu_arch = (read_cpuid_id() >> 16) & 7;
  213. if (cpu_arch)
  214. cpu_arch += CPU_ARCH_ARMv3;
  215. } else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
  216. unsigned int mmfr0;
  217. /* Revised CPUID format. Read the Memory Model Feature
  218. * Register 0 and check for VMSAv7 or PMSAv7 */
  219. asm("mrc p15, 0, %0, c0, c1, 4"
  220. : "=r" (mmfr0));
  221. if ((mmfr0 & 0x0000000f) >= 0x00000003 ||
  222. (mmfr0 & 0x000000f0) >= 0x00000030)
  223. cpu_arch = CPU_ARCH_ARMv7;
  224. else if ((mmfr0 & 0x0000000f) == 0x00000002 ||
  225. (mmfr0 & 0x000000f0) == 0x00000020)
  226. cpu_arch = CPU_ARCH_ARMv6;
  227. else
  228. cpu_arch = CPU_ARCH_UNKNOWN;
  229. } else
  230. cpu_arch = CPU_ARCH_UNKNOWN;
  231. return cpu_arch;
  232. }
  233. #endif
  234. int __pure cpu_architecture(void)
  235. {
  236. BUG_ON(__cpu_architecture == CPU_ARCH_UNKNOWN);
  237. return __cpu_architecture;
  238. }
  239. static int cpu_has_aliasing_icache(unsigned int arch)
  240. {
  241. int aliasing_icache;
  242. unsigned int id_reg, num_sets, line_size;
  243. /* PIPT caches never alias. */
  244. if (icache_is_pipt())
  245. return 0;
  246. /* arch specifies the register format */
  247. switch (arch) {
  248. case CPU_ARCH_ARMv7:
  249. asm("mcr p15, 2, %0, c0, c0, 0 @ set CSSELR"
  250. : /* No output operands */
  251. : "r" (1));
  252. isb();
  253. asm("mrc p15, 1, %0, c0, c0, 0 @ read CCSIDR"
  254. : "=r" (id_reg));
  255. line_size = 4 << ((id_reg & 0x7) + 2);
  256. num_sets = ((id_reg >> 13) & 0x7fff) + 1;
  257. aliasing_icache = (line_size * num_sets) > PAGE_SIZE;
  258. break;
  259. case CPU_ARCH_ARMv6:
  260. aliasing_icache = read_cpuid_cachetype() & (1 << 11);
  261. break;
  262. default:
  263. /* I-cache aliases will be handled by D-cache aliasing code */
  264. aliasing_icache = 0;
  265. }
  266. return aliasing_icache;
  267. }
  268. static void __init cacheid_init(void)
  269. {
  270. unsigned int arch = cpu_architecture();
  271. if (arch == CPU_ARCH_ARMv7M) {
  272. cacheid = 0;
  273. } else if (arch >= CPU_ARCH_ARMv6) {
  274. unsigned int cachetype = read_cpuid_cachetype();
  275. if ((cachetype & (7 << 29)) == 4 << 29) {
  276. /* ARMv7 register format */
  277. arch = CPU_ARCH_ARMv7;
  278. cacheid = CACHEID_VIPT_NONALIASING;
  279. switch (cachetype & (3 << 14)) {
  280. case (1 << 14):
  281. cacheid |= CACHEID_ASID_TAGGED;
  282. break;
  283. case (3 << 14):
  284. cacheid |= CACHEID_PIPT;
  285. break;
  286. }
  287. } else {
  288. arch = CPU_ARCH_ARMv6;
  289. if (cachetype & (1 << 23))
  290. cacheid = CACHEID_VIPT_ALIASING;
  291. else
  292. cacheid = CACHEID_VIPT_NONALIASING;
  293. }
  294. if (cpu_has_aliasing_icache(arch))
  295. cacheid |= CACHEID_VIPT_I_ALIASING;
  296. } else {
  297. cacheid = CACHEID_VIVT;
  298. }
  299. pr_info("CPU: %s data cache, %s instruction cache\n",
  300. cache_is_vivt() ? "VIVT" :
  301. cache_is_vipt_aliasing() ? "VIPT aliasing" :
  302. cache_is_vipt_nonaliasing() ? "PIPT / VIPT nonaliasing" : "unknown",
  303. cache_is_vivt() ? "VIVT" :
  304. icache_is_vivt_asid_tagged() ? "VIVT ASID tagged" :
  305. icache_is_vipt_aliasing() ? "VIPT aliasing" :
  306. icache_is_pipt() ? "PIPT" :
  307. cache_is_vipt_nonaliasing() ? "VIPT nonaliasing" : "unknown");
  308. }
  309. /*
  310. * These functions re-use the assembly code in head.S, which
  311. * already provide the required functionality.
  312. */
  313. extern struct proc_info_list *lookup_processor_type(unsigned int);
  314. void __init early_print(const char *str, ...)
  315. {
  316. extern void printascii(const char *);
  317. char buf[256];
  318. va_list ap;
  319. va_start(ap, str);
  320. vsnprintf(buf, sizeof(buf), str, ap);
  321. va_end(ap);
  322. #ifdef CONFIG_DEBUG_LL
  323. printascii(buf);
  324. #endif
  325. printk("%s", buf);
  326. }
  327. static void __init cpuid_init_hwcaps(void)
  328. {
  329. unsigned int divide_instrs, vmsa;
  330. if (cpu_architecture() < CPU_ARCH_ARMv7)
  331. return;
  332. divide_instrs = (read_cpuid_ext(CPUID_EXT_ISAR0) & 0x0f000000) >> 24;
  333. switch (divide_instrs) {
  334. case 2:
  335. elf_hwcap |= HWCAP_IDIVA;
  336. case 1:
  337. elf_hwcap |= HWCAP_IDIVT;
  338. }
  339. /* LPAE implies atomic ldrd/strd instructions */
  340. vmsa = (read_cpuid_ext(CPUID_EXT_MMFR0) & 0xf) >> 0;
  341. if (vmsa >= 5)
  342. elf_hwcap |= HWCAP_LPAE;
  343. }
  344. static void __init feat_v6_fixup(void)
  345. {
  346. int id = read_cpuid_id();
  347. if ((id & 0xff0f0000) != 0x41070000)
  348. return;
  349. /*
  350. * HWCAP_TLS is available only on 1136 r1p0 and later,
  351. * see also kuser_get_tls_init.
  352. */
  353. if ((((id >> 4) & 0xfff) == 0xb36) && (((id >> 20) & 3) == 0))
  354. elf_hwcap &= ~HWCAP_TLS;
  355. }
  356. /*
  357. * cpu_init - initialise one CPU.
  358. *
  359. * cpu_init sets up the per-CPU stacks.
  360. */
  361. void notrace cpu_init(void)
  362. {
  363. #ifndef CONFIG_CPU_V7M
  364. unsigned int cpu = smp_processor_id();
  365. struct stack *stk = &stacks[cpu];
  366. if (cpu >= NR_CPUS) {
  367. pr_crit("CPU%u: bad primary CPU number\n", cpu);
  368. BUG();
  369. }
  370. /*
  371. * This only works on resume and secondary cores. For booting on the
  372. * boot cpu, smp_prepare_boot_cpu is called after percpu area setup.
  373. */
  374. set_my_cpu_offset(per_cpu_offset(cpu));
  375. cpu_proc_init();
  376. /*
  377. * Define the placement constraint for the inline asm directive below.
  378. * In Thumb-2, msr with an immediate value is not allowed.
  379. */
  380. #ifdef CONFIG_THUMB2_KERNEL
  381. #define PLC "r"
  382. #else
  383. #define PLC "I"
  384. #endif
  385. /*
  386. * setup stacks for re-entrant exception handlers
  387. */
  388. __asm__ (
  389. "msr cpsr_c, %1\n\t"
  390. "add r14, %0, %2\n\t"
  391. "mov sp, r14\n\t"
  392. "msr cpsr_c, %3\n\t"
  393. "add r14, %0, %4\n\t"
  394. "mov sp, r14\n\t"
  395. "msr cpsr_c, %5\n\t"
  396. "add r14, %0, %6\n\t"
  397. "mov sp, r14\n\t"
  398. "msr cpsr_c, %7"
  399. :
  400. : "r" (stk),
  401. PLC (PSR_F_BIT | PSR_I_BIT | IRQ_MODE),
  402. "I" (offsetof(struct stack, irq[0])),
  403. PLC (PSR_F_BIT | PSR_I_BIT | ABT_MODE),
  404. "I" (offsetof(struct stack, abt[0])),
  405. PLC (PSR_F_BIT | PSR_I_BIT | UND_MODE),
  406. "I" (offsetof(struct stack, und[0])),
  407. PLC (PSR_F_BIT | PSR_I_BIT | SVC_MODE)
  408. : "r14");
  409. #endif
  410. }
  411. u32 __cpu_logical_map[NR_CPUS] = { [0 ... NR_CPUS-1] = MPIDR_INVALID };
  412. void __init smp_setup_processor_id(void)
  413. {
  414. int i;
  415. u32 mpidr = is_smp() ? read_cpuid_mpidr() & MPIDR_HWID_BITMASK : 0;
  416. u32 cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
  417. cpu_logical_map(0) = cpu;
  418. for (i = 1; i < nr_cpu_ids; ++i)
  419. cpu_logical_map(i) = i == cpu ? 0 : i;
  420. /*
  421. * clear __my_cpu_offset on boot CPU to avoid hang caused by
  422. * using percpu variable early, for example, lockdep will
  423. * access percpu variable inside lock_release
  424. */
  425. set_my_cpu_offset(0);
  426. pr_info("Booting Linux on physical CPU 0x%x\n", mpidr);
  427. }
  428. struct mpidr_hash mpidr_hash;
  429. #ifdef CONFIG_SMP
  430. /**
  431. * smp_build_mpidr_hash - Pre-compute shifts required at each affinity
  432. * level in order to build a linear index from an
  433. * MPIDR value. Resulting algorithm is a collision
  434. * free hash carried out through shifting and ORing
  435. */
  436. static void __init smp_build_mpidr_hash(void)
  437. {
  438. u32 i, affinity;
  439. u32 fs[3], bits[3], ls, mask = 0;
  440. /*
  441. * Pre-scan the list of MPIDRS and filter out bits that do
  442. * not contribute to affinity levels, ie they never toggle.
  443. */
  444. for_each_possible_cpu(i)
  445. mask |= (cpu_logical_map(i) ^ cpu_logical_map(0));
  446. pr_debug("mask of set bits 0x%x\n", mask);
  447. /*
  448. * Find and stash the last and first bit set at all affinity levels to
  449. * check how many bits are required to represent them.
  450. */
  451. for (i = 0; i < 3; i++) {
  452. affinity = MPIDR_AFFINITY_LEVEL(mask, i);
  453. /*
  454. * Find the MSB bit and LSB bits position
  455. * to determine how many bits are required
  456. * to express the affinity level.
  457. */
  458. ls = fls(affinity);
  459. fs[i] = affinity ? ffs(affinity) - 1 : 0;
  460. bits[i] = ls - fs[i];
  461. }
  462. /*
  463. * An index can be created from the MPIDR by isolating the
  464. * significant bits at each affinity level and by shifting
  465. * them in order to compress the 24 bits values space to a
  466. * compressed set of values. This is equivalent to hashing
  467. * the MPIDR through shifting and ORing. It is a collision free
  468. * hash though not minimal since some levels might contain a number
  469. * of CPUs that is not an exact power of 2 and their bit
  470. * representation might contain holes, eg MPIDR[7:0] = {0x2, 0x80}.
  471. */
  472. mpidr_hash.shift_aff[0] = fs[0];
  473. mpidr_hash.shift_aff[1] = MPIDR_LEVEL_BITS + fs[1] - bits[0];
  474. mpidr_hash.shift_aff[2] = 2*MPIDR_LEVEL_BITS + fs[2] -
  475. (bits[1] + bits[0]);
  476. mpidr_hash.mask = mask;
  477. mpidr_hash.bits = bits[2] + bits[1] + bits[0];
  478. pr_debug("MPIDR hash: aff0[%u] aff1[%u] aff2[%u] mask[0x%x] bits[%u]\n",
  479. mpidr_hash.shift_aff[0],
  480. mpidr_hash.shift_aff[1],
  481. mpidr_hash.shift_aff[2],
  482. mpidr_hash.mask,
  483. mpidr_hash.bits);
  484. /*
  485. * 4x is an arbitrary value used to warn on a hash table much bigger
  486. * than expected on most systems.
  487. */
  488. if (mpidr_hash_size() > 4 * num_possible_cpus())
  489. pr_warn("Large number of MPIDR hash buckets detected\n");
  490. sync_cache_w(&mpidr_hash);
  491. }
  492. #endif
  493. static void __init setup_processor(void)
  494. {
  495. struct proc_info_list *list;
  496. /*
  497. * locate processor in the list of supported processor
  498. * types. The linker builds this table for us from the
  499. * entries in arch/arm/mm/proc-*.S
  500. */
  501. list = lookup_processor_type(read_cpuid_id());
  502. if (!list) {
  503. pr_err("CPU configuration botched (ID %08x), unable to continue.\n",
  504. read_cpuid_id());
  505. while (1);
  506. }
  507. cpu_name = list->cpu_name;
  508. __cpu_architecture = __get_cpu_architecture();
  509. #ifdef MULTI_CPU
  510. processor = *list->proc;
  511. #endif
  512. #ifdef MULTI_TLB
  513. cpu_tlb = *list->tlb;
  514. #endif
  515. #ifdef MULTI_USER
  516. cpu_user = *list->user;
  517. #endif
  518. #ifdef MULTI_CACHE
  519. cpu_cache = *list->cache;
  520. #endif
  521. pr_info("CPU: %s [%08x] revision %d (ARMv%s), cr=%08lx\n",
  522. cpu_name, read_cpuid_id(), read_cpuid_id() & 15,
  523. proc_arch[cpu_architecture()], get_cr());
  524. snprintf(init_utsname()->machine, __NEW_UTS_LEN + 1, "%s%c",
  525. list->arch_name, ENDIANNESS);
  526. snprintf(elf_platform, ELF_PLATFORM_SIZE, "%s%c",
  527. list->elf_name, ENDIANNESS);
  528. elf_hwcap = list->elf_hwcap;
  529. cpuid_init_hwcaps();
  530. #ifndef CONFIG_ARM_THUMB
  531. elf_hwcap &= ~(HWCAP_THUMB | HWCAP_IDIVT);
  532. #endif
  533. #ifdef CONFIG_MMU
  534. init_default_cache_policy(list->__cpu_mm_mmu_flags);
  535. #endif
  536. erratum_a15_798181_init();
  537. feat_v6_fixup();
  538. cacheid_init();
  539. cpu_init();
  540. }
  541. void __init dump_machine_table(void)
  542. {
  543. const struct machine_desc *p;
  544. early_print("Available machine support:\n\nID (hex)\tNAME\n");
  545. for_each_machine_desc(p)
  546. early_print("%08x\t%s\n", p->nr, p->name);
  547. early_print("\nPlease check your kernel config and/or bootloader.\n");
  548. while (true)
  549. /* can't use cpu_relax() here as it may require MMU setup */;
  550. }
  551. int __init arm_add_memory(u64 start, u64 size)
  552. {
  553. u64 aligned_start;
  554. /*
  555. * Ensure that start/size are aligned to a page boundary.
  556. * Size is appropriately rounded down, start is rounded up.
  557. */
  558. size -= start & ~PAGE_MASK;
  559. aligned_start = PAGE_ALIGN(start);
  560. #ifndef CONFIG_ARCH_PHYS_ADDR_T_64BIT
  561. if (aligned_start > ULONG_MAX) {
  562. pr_crit("Ignoring memory at 0x%08llx outside 32-bit physical address space\n",
  563. (long long)start);
  564. return -EINVAL;
  565. }
  566. if (aligned_start + size > ULONG_MAX) {
  567. pr_crit("Truncating memory at 0x%08llx to fit in 32-bit physical address space\n",
  568. (long long)start);
  569. /*
  570. * To ensure bank->start + bank->size is representable in
  571. * 32 bits, we use ULONG_MAX as the upper limit rather than 4GB.
  572. * This means we lose a page after masking.
  573. */
  574. size = ULONG_MAX - aligned_start;
  575. }
  576. #endif
  577. if (aligned_start < PHYS_OFFSET) {
  578. if (aligned_start + size <= PHYS_OFFSET) {
  579. pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
  580. aligned_start, aligned_start + size);
  581. return -EINVAL;
  582. }
  583. pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
  584. aligned_start, (u64)PHYS_OFFSET);
  585. size -= PHYS_OFFSET - aligned_start;
  586. aligned_start = PHYS_OFFSET;
  587. }
  588. start = aligned_start;
  589. size = size & ~(phys_addr_t)(PAGE_SIZE - 1);
  590. /*
  591. * Check whether this memory region has non-zero size or
  592. * invalid node number.
  593. */
  594. if (size == 0)
  595. return -EINVAL;
  596. memblock_add(start, size);
  597. return 0;
  598. }
  599. /*
  600. * Pick out the memory size. We look for mem=size@start,
  601. * where start and size are "size[KkMm]"
  602. */
  603. static int __init early_mem(char *p)
  604. {
  605. static int usermem __initdata = 0;
  606. u64 size;
  607. u64 start;
  608. char *endp;
  609. /*
  610. * If the user specifies memory size, we
  611. * blow away any automatically generated
  612. * size.
  613. */
  614. if (usermem == 0) {
  615. usermem = 1;
  616. memblock_remove(memblock_start_of_DRAM(),
  617. memblock_end_of_DRAM() - memblock_start_of_DRAM());
  618. }
  619. start = PHYS_OFFSET;
  620. size = memparse(p, &endp);
  621. if (*endp == '@')
  622. start = memparse(endp + 1, NULL);
  623. arm_add_memory(start, size);
  624. return 0;
  625. }
  626. early_param("mem", early_mem);
  627. static void __init request_standard_resources(const struct machine_desc *mdesc)
  628. {
  629. struct memblock_region *region;
  630. struct resource *res;
  631. kernel_code.start = virt_to_phys(_text);
  632. kernel_code.end = virt_to_phys(_etext - 1);
  633. kernel_data.start = virt_to_phys(_sdata);
  634. kernel_data.end = virt_to_phys(_end - 1);
  635. for_each_memblock(memory, region) {
  636. res = memblock_virt_alloc(sizeof(*res), 0);
  637. res->name = "System RAM";
  638. res->start = __pfn_to_phys(memblock_region_memory_base_pfn(region));
  639. res->end = __pfn_to_phys(memblock_region_memory_end_pfn(region)) - 1;
  640. res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
  641. request_resource(&iomem_resource, res);
  642. if (kernel_code.start >= res->start &&
  643. kernel_code.end <= res->end)
  644. request_resource(res, &kernel_code);
  645. if (kernel_data.start >= res->start &&
  646. kernel_data.end <= res->end)
  647. request_resource(res, &kernel_data);
  648. }
  649. if (mdesc->video_start) {
  650. video_ram.start = mdesc->video_start;
  651. video_ram.end = mdesc->video_end;
  652. request_resource(&iomem_resource, &video_ram);
  653. }
  654. /*
  655. * Some machines don't have the possibility of ever
  656. * possessing lp0, lp1 or lp2
  657. */
  658. if (mdesc->reserve_lp0)
  659. request_resource(&ioport_resource, &lp0);
  660. if (mdesc->reserve_lp1)
  661. request_resource(&ioport_resource, &lp1);
  662. if (mdesc->reserve_lp2)
  663. request_resource(&ioport_resource, &lp2);
  664. }
  665. #if defined(CONFIG_VGA_CONSOLE) || defined(CONFIG_DUMMY_CONSOLE)
  666. struct screen_info screen_info = {
  667. .orig_video_lines = 30,
  668. .orig_video_cols = 80,
  669. .orig_video_mode = 0,
  670. .orig_video_ega_bx = 0,
  671. .orig_video_isVGA = 1,
  672. .orig_video_points = 8
  673. };
  674. #endif
  675. static int __init customize_machine(void)
  676. {
  677. /*
  678. * customizes platform devices, or adds new ones
  679. * On DT based machines, we fall back to populating the
  680. * machine from the device tree, if no callback is provided,
  681. * otherwise we would always need an init_machine callback.
  682. */
  683. if (machine_desc->init_machine)
  684. machine_desc->init_machine();
  685. #ifdef CONFIG_OF
  686. else
  687. of_platform_populate(NULL, of_default_bus_match_table,
  688. NULL, NULL);
  689. #endif
  690. return 0;
  691. }
  692. arch_initcall(customize_machine);
  693. static int __init init_machine_late(void)
  694. {
  695. if (machine_desc->init_late)
  696. machine_desc->init_late();
  697. return 0;
  698. }
  699. late_initcall(init_machine_late);
  700. #ifdef CONFIG_KEXEC
  701. static inline unsigned long long get_total_mem(void)
  702. {
  703. unsigned long total;
  704. total = max_low_pfn - min_low_pfn;
  705. return total << PAGE_SHIFT;
  706. }
  707. /**
  708. * reserve_crashkernel() - reserves memory are for crash kernel
  709. *
  710. * This function reserves memory area given in "crashkernel=" kernel command
  711. * line parameter. The memory reserved is used by a dump capture kernel when
  712. * primary kernel is crashing.
  713. */
  714. static void __init reserve_crashkernel(void)
  715. {
  716. unsigned long long crash_size, crash_base;
  717. unsigned long long total_mem;
  718. int ret;
  719. total_mem = get_total_mem();
  720. ret = parse_crashkernel(boot_command_line, total_mem,
  721. &crash_size, &crash_base);
  722. if (ret)
  723. return;
  724. ret = memblock_reserve(crash_base, crash_size);
  725. if (ret < 0) {
  726. pr_warn("crashkernel reservation failed - memory is in use (0x%lx)\n",
  727. (unsigned long)crash_base);
  728. return;
  729. }
  730. pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
  731. (unsigned long)(crash_size >> 20),
  732. (unsigned long)(crash_base >> 20),
  733. (unsigned long)(total_mem >> 20));
  734. crashk_res.start = crash_base;
  735. crashk_res.end = crash_base + crash_size - 1;
  736. insert_resource(&iomem_resource, &crashk_res);
  737. }
  738. #else
  739. static inline void reserve_crashkernel(void) {}
  740. #endif /* CONFIG_KEXEC */
  741. void __init hyp_mode_check(void)
  742. {
  743. #ifdef CONFIG_ARM_VIRT_EXT
  744. sync_boot_mode();
  745. if (is_hyp_mode_available()) {
  746. pr_info("CPU: All CPU(s) started in HYP mode.\n");
  747. pr_info("CPU: Virtualization extensions available.\n");
  748. } else if (is_hyp_mode_mismatched()) {
  749. pr_warn("CPU: WARNING: CPU(s) started in wrong/inconsistent modes (primary CPU mode 0x%x)\n",
  750. __boot_cpu_mode & MODE_MASK);
  751. pr_warn("CPU: This may indicate a broken bootloader or firmware.\n");
  752. } else
  753. pr_info("CPU: All CPU(s) started in SVC mode.\n");
  754. #endif
  755. }
  756. void __init setup_arch(char **cmdline_p)
  757. {
  758. const struct machine_desc *mdesc;
  759. setup_processor();
  760. mdesc = setup_machine_fdt(__atags_pointer);
  761. if (!mdesc)
  762. mdesc = setup_machine_tags(__atags_pointer, __machine_arch_type);
  763. machine_desc = mdesc;
  764. machine_name = mdesc->name;
  765. if (mdesc->reboot_mode != REBOOT_HARD)
  766. reboot_mode = mdesc->reboot_mode;
  767. init_mm.start_code = (unsigned long) _text;
  768. init_mm.end_code = (unsigned long) _etext;
  769. init_mm.end_data = (unsigned long) _edata;
  770. init_mm.brk = (unsigned long) _end;
  771. /* populate cmd_line too for later use, preserving boot_command_line */
  772. strlcpy(cmd_line, boot_command_line, COMMAND_LINE_SIZE);
  773. *cmdline_p = cmd_line;
  774. parse_early_param();
  775. early_paging_init(mdesc, lookup_processor_type(read_cpuid_id()));
  776. setup_dma_zone(mdesc);
  777. sanity_check_meminfo();
  778. arm_memblock_init(mdesc);
  779. paging_init(mdesc);
  780. request_standard_resources(mdesc);
  781. if (mdesc->restart)
  782. arm_pm_restart = mdesc->restart;
  783. unflatten_device_tree();
  784. arm_dt_init_cpu_maps();
  785. psci_init();
  786. #ifdef CONFIG_SMP
  787. if (is_smp()) {
  788. if (!mdesc->smp_init || !mdesc->smp_init()) {
  789. if (psci_smp_available())
  790. smp_set_ops(&psci_smp_ops);
  791. else if (mdesc->smp)
  792. smp_set_ops(mdesc->smp);
  793. }
  794. smp_init_cpus();
  795. smp_build_mpidr_hash();
  796. }
  797. #endif
  798. if (!is_smp())
  799. hyp_mode_check();
  800. reserve_crashkernel();
  801. #ifdef CONFIG_MULTI_IRQ_HANDLER
  802. handle_arch_irq = mdesc->handle_irq;
  803. #endif
  804. #ifdef CONFIG_VT
  805. #if defined(CONFIG_VGA_CONSOLE)
  806. conswitchp = &vga_con;
  807. #elif defined(CONFIG_DUMMY_CONSOLE)
  808. conswitchp = &dummy_con;
  809. #endif
  810. #endif
  811. if (mdesc->init_early)
  812. mdesc->init_early();
  813. }
  814. static int __init topology_init(void)
  815. {
  816. int cpu;
  817. for_each_possible_cpu(cpu) {
  818. struct cpuinfo_arm *cpuinfo = &per_cpu(cpu_data, cpu);
  819. cpuinfo->cpu.hotpluggable = 1;
  820. register_cpu(&cpuinfo->cpu, cpu);
  821. }
  822. return 0;
  823. }
  824. subsys_initcall(topology_init);
  825. #ifdef CONFIG_HAVE_PROC_CPU
  826. static int __init proc_cpu_init(void)
  827. {
  828. struct proc_dir_entry *res;
  829. res = proc_mkdir("cpu", NULL);
  830. if (!res)
  831. return -ENOMEM;
  832. return 0;
  833. }
  834. fs_initcall(proc_cpu_init);
  835. #endif
  836. static const char *hwcap_str[] = {
  837. "swp",
  838. "half",
  839. "thumb",
  840. "26bit",
  841. "fastmult",
  842. "fpa",
  843. "vfp",
  844. "edsp",
  845. "java",
  846. "iwmmxt",
  847. "crunch",
  848. "thumbee",
  849. "neon",
  850. "vfpv3",
  851. "vfpv3d16",
  852. "tls",
  853. "vfpv4",
  854. "idiva",
  855. "idivt",
  856. "vfpd32",
  857. "lpae",
  858. "evtstrm",
  859. NULL
  860. };
  861. static const char *hwcap2_str[] = {
  862. "aes",
  863. "pmull",
  864. "sha1",
  865. "sha2",
  866. "crc32",
  867. NULL
  868. };
  869. static int c_show(struct seq_file *m, void *v)
  870. {
  871. int i, j;
  872. u32 cpuid;
  873. for_each_online_cpu(i) {
  874. /*
  875. * glibc reads /proc/cpuinfo to determine the number of
  876. * online processors, looking for lines beginning with
  877. * "processor". Give glibc what it expects.
  878. */
  879. seq_printf(m, "processor\t: %d\n", i);
  880. cpuid = is_smp() ? per_cpu(cpu_data, i).cpuid : read_cpuid_id();
  881. seq_printf(m, "model name\t: %s rev %d (%s)\n",
  882. cpu_name, cpuid & 15, elf_platform);
  883. /* dump out the processor features */
  884. seq_puts(m, "Features\t: ");
  885. for (j = 0; hwcap_str[j]; j++)
  886. if (elf_hwcap & (1 << j))
  887. seq_printf(m, "%s ", hwcap_str[j]);
  888. for (j = 0; hwcap2_str[j]; j++)
  889. if (elf_hwcap2 & (1 << j))
  890. seq_printf(m, "%s ", hwcap2_str[j]);
  891. seq_printf(m, "\nCPU implementer\t: 0x%02x\n", cpuid >> 24);
  892. seq_printf(m, "CPU architecture: %s\n",
  893. proc_arch[cpu_architecture()]);
  894. if ((cpuid & 0x0008f000) == 0x00000000) {
  895. /* pre-ARM7 */
  896. seq_printf(m, "CPU part\t: %07x\n", cpuid >> 4);
  897. } else {
  898. if ((cpuid & 0x0008f000) == 0x00007000) {
  899. /* ARM7 */
  900. seq_printf(m, "CPU variant\t: 0x%02x\n",
  901. (cpuid >> 16) & 127);
  902. } else {
  903. /* post-ARM7 */
  904. seq_printf(m, "CPU variant\t: 0x%x\n",
  905. (cpuid >> 20) & 15);
  906. }
  907. seq_printf(m, "CPU part\t: 0x%03x\n",
  908. (cpuid >> 4) & 0xfff);
  909. }
  910. seq_printf(m, "CPU revision\t: %d\n\n", cpuid & 15);
  911. }
  912. seq_printf(m, "Hardware\t: %s\n", machine_name);
  913. seq_printf(m, "Revision\t: %04x\n", system_rev);
  914. seq_printf(m, "Serial\t\t: %08x%08x\n",
  915. system_serial_high, system_serial_low);
  916. return 0;
  917. }
  918. static void *c_start(struct seq_file *m, loff_t *pos)
  919. {
  920. return *pos < 1 ? (void *)1 : NULL;
  921. }
  922. static void *c_next(struct seq_file *m, void *v, loff_t *pos)
  923. {
  924. ++*pos;
  925. return NULL;
  926. }
  927. static void c_stop(struct seq_file *m, void *v)
  928. {
  929. }
  930. const struct seq_operations cpuinfo_op = {
  931. .start = c_start,
  932. .next = c_next,
  933. .stop = c_stop,
  934. .show = c_show
  935. };