perf_event.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656
  1. #undef DEBUG
  2. /*
  3. * ARM performance counter support.
  4. *
  5. * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
  6. * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
  7. *
  8. * This code is based on the sparc64 perf event code, which is in turn based
  9. * on the x86 code. Callchain code is based on the ARM OProfile backtrace
  10. * code.
  11. */
  12. #define pr_fmt(fmt) "hw perfevents: " fmt
  13. #include <linux/kernel.h>
  14. #include <linux/platform_device.h>
  15. #include <linux/pm_runtime.h>
  16. #include <linux/uaccess.h>
  17. #include <linux/irq.h>
  18. #include <linux/irqdesc.h>
  19. #include <asm/irq_regs.h>
  20. #include <asm/pmu.h>
  21. #include <asm/stacktrace.h>
  22. static int
  23. armpmu_map_cache_event(const unsigned (*cache_map)
  24. [PERF_COUNT_HW_CACHE_MAX]
  25. [PERF_COUNT_HW_CACHE_OP_MAX]
  26. [PERF_COUNT_HW_CACHE_RESULT_MAX],
  27. u64 config)
  28. {
  29. unsigned int cache_type, cache_op, cache_result, ret;
  30. cache_type = (config >> 0) & 0xff;
  31. if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
  32. return -EINVAL;
  33. cache_op = (config >> 8) & 0xff;
  34. if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
  35. return -EINVAL;
  36. cache_result = (config >> 16) & 0xff;
  37. if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
  38. return -EINVAL;
  39. ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
  40. if (ret == CACHE_OP_UNSUPPORTED)
  41. return -ENOENT;
  42. return ret;
  43. }
  44. static int
  45. armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
  46. {
  47. int mapping;
  48. if (config >= PERF_COUNT_HW_MAX)
  49. return -EINVAL;
  50. mapping = (*event_map)[config];
  51. return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
  52. }
  53. static int
  54. armpmu_map_raw_event(u32 raw_event_mask, u64 config)
  55. {
  56. return (int)(config & raw_event_mask);
  57. }
  58. int
  59. armpmu_map_event(struct perf_event *event,
  60. const unsigned (*event_map)[PERF_COUNT_HW_MAX],
  61. const unsigned (*cache_map)
  62. [PERF_COUNT_HW_CACHE_MAX]
  63. [PERF_COUNT_HW_CACHE_OP_MAX]
  64. [PERF_COUNT_HW_CACHE_RESULT_MAX],
  65. u32 raw_event_mask)
  66. {
  67. u64 config = event->attr.config;
  68. switch (event->attr.type) {
  69. case PERF_TYPE_HARDWARE:
  70. return armpmu_map_hw_event(event_map, config);
  71. case PERF_TYPE_HW_CACHE:
  72. return armpmu_map_cache_event(cache_map, config);
  73. case PERF_TYPE_RAW:
  74. return armpmu_map_raw_event(raw_event_mask, config);
  75. }
  76. return -ENOENT;
  77. }
  78. int armpmu_event_set_period(struct perf_event *event)
  79. {
  80. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  81. struct hw_perf_event *hwc = &event->hw;
  82. s64 left = local64_read(&hwc->period_left);
  83. s64 period = hwc->sample_period;
  84. int ret = 0;
  85. if (unlikely(left <= -period)) {
  86. left = period;
  87. local64_set(&hwc->period_left, left);
  88. hwc->last_period = period;
  89. ret = 1;
  90. }
  91. if (unlikely(left <= 0)) {
  92. left += period;
  93. local64_set(&hwc->period_left, left);
  94. hwc->last_period = period;
  95. ret = 1;
  96. }
  97. if (left > (s64)armpmu->max_period)
  98. left = armpmu->max_period;
  99. local64_set(&hwc->prev_count, (u64)-left);
  100. armpmu->write_counter(event, (u64)(-left) & 0xffffffff);
  101. perf_event_update_userpage(event);
  102. return ret;
  103. }
  104. u64 armpmu_event_update(struct perf_event *event)
  105. {
  106. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  107. struct hw_perf_event *hwc = &event->hw;
  108. u64 delta, prev_raw_count, new_raw_count;
  109. again:
  110. prev_raw_count = local64_read(&hwc->prev_count);
  111. new_raw_count = armpmu->read_counter(event);
  112. if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
  113. new_raw_count) != prev_raw_count)
  114. goto again;
  115. delta = (new_raw_count - prev_raw_count) & armpmu->max_period;
  116. local64_add(delta, &event->count);
  117. local64_sub(delta, &hwc->period_left);
  118. return new_raw_count;
  119. }
  120. static void
  121. armpmu_read(struct perf_event *event)
  122. {
  123. armpmu_event_update(event);
  124. }
  125. static void
  126. armpmu_stop(struct perf_event *event, int flags)
  127. {
  128. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  129. struct hw_perf_event *hwc = &event->hw;
  130. /*
  131. * ARM pmu always has to update the counter, so ignore
  132. * PERF_EF_UPDATE, see comments in armpmu_start().
  133. */
  134. if (!(hwc->state & PERF_HES_STOPPED)) {
  135. armpmu->disable(event);
  136. armpmu_event_update(event);
  137. hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
  138. }
  139. }
  140. static void armpmu_start(struct perf_event *event, int flags)
  141. {
  142. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  143. struct hw_perf_event *hwc = &event->hw;
  144. /*
  145. * ARM pmu always has to reprogram the period, so ignore
  146. * PERF_EF_RELOAD, see the comment below.
  147. */
  148. if (flags & PERF_EF_RELOAD)
  149. WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
  150. hwc->state = 0;
  151. /*
  152. * Set the period again. Some counters can't be stopped, so when we
  153. * were stopped we simply disabled the IRQ source and the counter
  154. * may have been left counting. If we don't do this step then we may
  155. * get an interrupt too soon or *way* too late if the overflow has
  156. * happened since disabling.
  157. */
  158. armpmu_event_set_period(event);
  159. armpmu->enable(event);
  160. }
  161. static void
  162. armpmu_del(struct perf_event *event, int flags)
  163. {
  164. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  165. struct pmu_hw_events *hw_events = armpmu->get_hw_events();
  166. struct hw_perf_event *hwc = &event->hw;
  167. int idx = hwc->idx;
  168. armpmu_stop(event, PERF_EF_UPDATE);
  169. hw_events->events[idx] = NULL;
  170. clear_bit(idx, hw_events->used_mask);
  171. if (armpmu->clear_event_idx)
  172. armpmu->clear_event_idx(hw_events, event);
  173. perf_event_update_userpage(event);
  174. }
  175. static int
  176. armpmu_add(struct perf_event *event, int flags)
  177. {
  178. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  179. struct pmu_hw_events *hw_events = armpmu->get_hw_events();
  180. struct hw_perf_event *hwc = &event->hw;
  181. int idx;
  182. int err = 0;
  183. perf_pmu_disable(event->pmu);
  184. /* If we don't have a space for the counter then finish early. */
  185. idx = armpmu->get_event_idx(hw_events, event);
  186. if (idx < 0) {
  187. err = idx;
  188. goto out;
  189. }
  190. /*
  191. * If there is an event in the counter we are going to use then make
  192. * sure it is disabled.
  193. */
  194. event->hw.idx = idx;
  195. armpmu->disable(event);
  196. hw_events->events[idx] = event;
  197. hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
  198. if (flags & PERF_EF_START)
  199. armpmu_start(event, PERF_EF_RELOAD);
  200. /* Propagate our changes to the userspace mapping. */
  201. perf_event_update_userpage(event);
  202. out:
  203. perf_pmu_enable(event->pmu);
  204. return err;
  205. }
  206. static int
  207. validate_event(struct pmu_hw_events *hw_events,
  208. struct perf_event *event)
  209. {
  210. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  211. if (is_software_event(event))
  212. return 1;
  213. if (event->state < PERF_EVENT_STATE_OFF)
  214. return 1;
  215. if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
  216. return 1;
  217. return armpmu->get_event_idx(hw_events, event) >= 0;
  218. }
  219. static int
  220. validate_group(struct perf_event *event)
  221. {
  222. struct perf_event *sibling, *leader = event->group_leader;
  223. struct pmu_hw_events fake_pmu;
  224. DECLARE_BITMAP(fake_used_mask, ARMPMU_MAX_HWEVENTS);
  225. /*
  226. * Initialise the fake PMU. We only need to populate the
  227. * used_mask for the purposes of validation.
  228. */
  229. memset(fake_used_mask, 0, sizeof(fake_used_mask));
  230. fake_pmu.used_mask = fake_used_mask;
  231. if (!validate_event(&fake_pmu, leader))
  232. return -EINVAL;
  233. list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
  234. if (!validate_event(&fake_pmu, sibling))
  235. return -EINVAL;
  236. }
  237. if (!validate_event(&fake_pmu, event))
  238. return -EINVAL;
  239. return 0;
  240. }
  241. static irqreturn_t armpmu_dispatch_irq(int irq, void *dev)
  242. {
  243. struct arm_pmu *armpmu;
  244. struct platform_device *plat_device;
  245. struct arm_pmu_platdata *plat;
  246. int ret;
  247. u64 start_clock, finish_clock;
  248. if (irq_is_percpu(irq))
  249. dev = *(void **)dev;
  250. armpmu = dev;
  251. plat_device = armpmu->plat_device;
  252. plat = dev_get_platdata(&plat_device->dev);
  253. start_clock = sched_clock();
  254. if (plat && plat->handle_irq)
  255. ret = plat->handle_irq(irq, dev, armpmu->handle_irq);
  256. else
  257. ret = armpmu->handle_irq(irq, dev);
  258. finish_clock = sched_clock();
  259. perf_sample_event_took(finish_clock - start_clock);
  260. return ret;
  261. }
  262. static void
  263. armpmu_release_hardware(struct arm_pmu *armpmu)
  264. {
  265. armpmu->free_irq(armpmu);
  266. pm_runtime_put_sync(&armpmu->plat_device->dev);
  267. }
  268. static int
  269. armpmu_reserve_hardware(struct arm_pmu *armpmu)
  270. {
  271. int err;
  272. struct platform_device *pmu_device = armpmu->plat_device;
  273. if (!pmu_device)
  274. return -ENODEV;
  275. pm_runtime_get_sync(&pmu_device->dev);
  276. err = armpmu->request_irq(armpmu, armpmu_dispatch_irq);
  277. if (err) {
  278. armpmu_release_hardware(armpmu);
  279. return err;
  280. }
  281. return 0;
  282. }
  283. static void
  284. hw_perf_event_destroy(struct perf_event *event)
  285. {
  286. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  287. atomic_t *active_events = &armpmu->active_events;
  288. struct mutex *pmu_reserve_mutex = &armpmu->reserve_mutex;
  289. if (atomic_dec_and_mutex_lock(active_events, pmu_reserve_mutex)) {
  290. armpmu_release_hardware(armpmu);
  291. mutex_unlock(pmu_reserve_mutex);
  292. }
  293. }
  294. static int
  295. event_requires_mode_exclusion(struct perf_event_attr *attr)
  296. {
  297. return attr->exclude_idle || attr->exclude_user ||
  298. attr->exclude_kernel || attr->exclude_hv;
  299. }
  300. static int
  301. __hw_perf_event_init(struct perf_event *event)
  302. {
  303. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  304. struct hw_perf_event *hwc = &event->hw;
  305. int mapping;
  306. mapping = armpmu->map_event(event);
  307. if (mapping < 0) {
  308. pr_debug("event %x:%llx not supported\n", event->attr.type,
  309. event->attr.config);
  310. return mapping;
  311. }
  312. /*
  313. * We don't assign an index until we actually place the event onto
  314. * hardware. Use -1 to signify that we haven't decided where to put it
  315. * yet. For SMP systems, each core has it's own PMU so we can't do any
  316. * clever allocation or constraints checking at this point.
  317. */
  318. hwc->idx = -1;
  319. hwc->config_base = 0;
  320. hwc->config = 0;
  321. hwc->event_base = 0;
  322. /*
  323. * Check whether we need to exclude the counter from certain modes.
  324. */
  325. if ((!armpmu->set_event_filter ||
  326. armpmu->set_event_filter(hwc, &event->attr)) &&
  327. event_requires_mode_exclusion(&event->attr)) {
  328. pr_debug("ARM performance counters do not support "
  329. "mode exclusion\n");
  330. return -EOPNOTSUPP;
  331. }
  332. /*
  333. * Store the event encoding into the config_base field.
  334. */
  335. hwc->config_base |= (unsigned long)mapping;
  336. if (!is_sampling_event(event)) {
  337. /*
  338. * For non-sampling runs, limit the sample_period to half
  339. * of the counter width. That way, the new counter value
  340. * is far less likely to overtake the previous one unless
  341. * you have some serious IRQ latency issues.
  342. */
  343. hwc->sample_period = armpmu->max_period >> 1;
  344. hwc->last_period = hwc->sample_period;
  345. local64_set(&hwc->period_left, hwc->sample_period);
  346. }
  347. if (event->group_leader != event) {
  348. if (validate_group(event) != 0)
  349. return -EINVAL;
  350. }
  351. return 0;
  352. }
  353. static int armpmu_event_init(struct perf_event *event)
  354. {
  355. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  356. int err = 0;
  357. atomic_t *active_events = &armpmu->active_events;
  358. /* does not support taken branch sampling */
  359. if (has_branch_stack(event))
  360. return -EOPNOTSUPP;
  361. if (armpmu->map_event(event) == -ENOENT)
  362. return -ENOENT;
  363. event->destroy = hw_perf_event_destroy;
  364. if (!atomic_inc_not_zero(active_events)) {
  365. mutex_lock(&armpmu->reserve_mutex);
  366. if (atomic_read(active_events) == 0)
  367. err = armpmu_reserve_hardware(armpmu);
  368. if (!err)
  369. atomic_inc(active_events);
  370. mutex_unlock(&armpmu->reserve_mutex);
  371. }
  372. if (err)
  373. return err;
  374. err = __hw_perf_event_init(event);
  375. if (err)
  376. hw_perf_event_destroy(event);
  377. return err;
  378. }
  379. static void armpmu_enable(struct pmu *pmu)
  380. {
  381. struct arm_pmu *armpmu = to_arm_pmu(pmu);
  382. struct pmu_hw_events *hw_events = armpmu->get_hw_events();
  383. int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
  384. if (enabled)
  385. armpmu->start(armpmu);
  386. }
  387. static void armpmu_disable(struct pmu *pmu)
  388. {
  389. struct arm_pmu *armpmu = to_arm_pmu(pmu);
  390. armpmu->stop(armpmu);
  391. }
  392. #ifdef CONFIG_PM_RUNTIME
  393. static int armpmu_runtime_resume(struct device *dev)
  394. {
  395. struct arm_pmu_platdata *plat = dev_get_platdata(dev);
  396. if (plat && plat->runtime_resume)
  397. return plat->runtime_resume(dev);
  398. return 0;
  399. }
  400. static int armpmu_runtime_suspend(struct device *dev)
  401. {
  402. struct arm_pmu_platdata *plat = dev_get_platdata(dev);
  403. if (plat && plat->runtime_suspend)
  404. return plat->runtime_suspend(dev);
  405. return 0;
  406. }
  407. #endif
  408. const struct dev_pm_ops armpmu_dev_pm_ops = {
  409. SET_RUNTIME_PM_OPS(armpmu_runtime_suspend, armpmu_runtime_resume, NULL)
  410. };
  411. static void armpmu_init(struct arm_pmu *armpmu)
  412. {
  413. atomic_set(&armpmu->active_events, 0);
  414. mutex_init(&armpmu->reserve_mutex);
  415. armpmu->pmu = (struct pmu) {
  416. .pmu_enable = armpmu_enable,
  417. .pmu_disable = armpmu_disable,
  418. .event_init = armpmu_event_init,
  419. .add = armpmu_add,
  420. .del = armpmu_del,
  421. .start = armpmu_start,
  422. .stop = armpmu_stop,
  423. .read = armpmu_read,
  424. };
  425. }
  426. int armpmu_register(struct arm_pmu *armpmu, int type)
  427. {
  428. armpmu_init(armpmu);
  429. pm_runtime_enable(&armpmu->plat_device->dev);
  430. pr_info("enabled with %s PMU driver, %d counters available\n",
  431. armpmu->name, armpmu->num_events);
  432. return perf_pmu_register(&armpmu->pmu, armpmu->name, type);
  433. }
  434. /*
  435. * Callchain handling code.
  436. */
  437. /*
  438. * The registers we're interested in are at the end of the variable
  439. * length saved register structure. The fp points at the end of this
  440. * structure so the address of this struct is:
  441. * (struct frame_tail *)(xxx->fp)-1
  442. *
  443. * This code has been adapted from the ARM OProfile support.
  444. */
  445. struct frame_tail {
  446. struct frame_tail __user *fp;
  447. unsigned long sp;
  448. unsigned long lr;
  449. } __attribute__((packed));
  450. /*
  451. * Get the return address for a single stackframe and return a pointer to the
  452. * next frame tail.
  453. */
  454. static struct frame_tail __user *
  455. user_backtrace(struct frame_tail __user *tail,
  456. struct perf_callchain_entry *entry)
  457. {
  458. struct frame_tail buftail;
  459. /* Also check accessibility of one struct frame_tail beyond */
  460. if (!access_ok(VERIFY_READ, tail, sizeof(buftail)))
  461. return NULL;
  462. if (__copy_from_user_inatomic(&buftail, tail, sizeof(buftail)))
  463. return NULL;
  464. perf_callchain_store(entry, buftail.lr);
  465. /*
  466. * Frame pointers should strictly progress back up the stack
  467. * (towards higher addresses).
  468. */
  469. if (tail + 1 >= buftail.fp)
  470. return NULL;
  471. return buftail.fp - 1;
  472. }
  473. void
  474. perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
  475. {
  476. struct frame_tail __user *tail;
  477. if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
  478. /* We don't support guest os callchain now */
  479. return;
  480. }
  481. perf_callchain_store(entry, regs->ARM_pc);
  482. tail = (struct frame_tail __user *)regs->ARM_fp - 1;
  483. while ((entry->nr < PERF_MAX_STACK_DEPTH) &&
  484. tail && !((unsigned long)tail & 0x3))
  485. tail = user_backtrace(tail, entry);
  486. }
  487. /*
  488. * Gets called by walk_stackframe() for every stackframe. This will be called
  489. * whist unwinding the stackframe and is like a subroutine return so we use
  490. * the PC.
  491. */
  492. static int
  493. callchain_trace(struct stackframe *fr,
  494. void *data)
  495. {
  496. struct perf_callchain_entry *entry = data;
  497. perf_callchain_store(entry, fr->pc);
  498. return 0;
  499. }
  500. void
  501. perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
  502. {
  503. struct stackframe fr;
  504. if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
  505. /* We don't support guest os callchain now */
  506. return;
  507. }
  508. fr.fp = regs->ARM_fp;
  509. fr.sp = regs->ARM_sp;
  510. fr.lr = regs->ARM_lr;
  511. fr.pc = regs->ARM_pc;
  512. walk_stackframe(&fr, callchain_trace, entry);
  513. }
  514. unsigned long perf_instruction_pointer(struct pt_regs *regs)
  515. {
  516. if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
  517. return perf_guest_cbs->get_guest_ip();
  518. return instruction_pointer(regs);
  519. }
  520. unsigned long perf_misc_flags(struct pt_regs *regs)
  521. {
  522. int misc = 0;
  523. if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
  524. if (perf_guest_cbs->is_user_mode())
  525. misc |= PERF_RECORD_MISC_GUEST_USER;
  526. else
  527. misc |= PERF_RECORD_MISC_GUEST_KERNEL;
  528. } else {
  529. if (user_mode(regs))
  530. misc |= PERF_RECORD_MISC_USER;
  531. else
  532. misc |= PERF_RECORD_MISC_KERNEL;
  533. }
  534. return misc;
  535. }