key.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925
  1. /*
  2. * Copyright 2002-2005, Instant802 Networks, Inc.
  3. * Copyright 2005-2006, Devicescape Software, Inc.
  4. * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
  5. * Copyright 2007-2008 Johannes Berg <johannes@sipsolutions.net>
  6. * Copyright 2013-2014 Intel Mobile Communications GmbH
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License version 2 as
  10. * published by the Free Software Foundation.
  11. */
  12. #include <linux/if_ether.h>
  13. #include <linux/etherdevice.h>
  14. #include <linux/list.h>
  15. #include <linux/rcupdate.h>
  16. #include <linux/rtnetlink.h>
  17. #include <linux/slab.h>
  18. #include <linux/export.h>
  19. #include <net/mac80211.h>
  20. #include <asm/unaligned.h>
  21. #include "ieee80211_i.h"
  22. #include "driver-ops.h"
  23. #include "debugfs_key.h"
  24. #include "aes_ccm.h"
  25. #include "aes_cmac.h"
  26. /**
  27. * DOC: Key handling basics
  28. *
  29. * Key handling in mac80211 is done based on per-interface (sub_if_data)
  30. * keys and per-station keys. Since each station belongs to an interface,
  31. * each station key also belongs to that interface.
  32. *
  33. * Hardware acceleration is done on a best-effort basis for algorithms
  34. * that are implemented in software, for each key the hardware is asked
  35. * to enable that key for offloading but if it cannot do that the key is
  36. * simply kept for software encryption (unless it is for an algorithm
  37. * that isn't implemented in software).
  38. * There is currently no way of knowing whether a key is handled in SW
  39. * or HW except by looking into debugfs.
  40. *
  41. * All key management is internally protected by a mutex. Within all
  42. * other parts of mac80211, key references are, just as STA structure
  43. * references, protected by RCU. Note, however, that some things are
  44. * unprotected, namely the key->sta dereferences within the hardware
  45. * acceleration functions. This means that sta_info_destroy() must
  46. * remove the key which waits for an RCU grace period.
  47. */
  48. static const u8 bcast_addr[ETH_ALEN] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
  49. static void assert_key_lock(struct ieee80211_local *local)
  50. {
  51. lockdep_assert_held(&local->key_mtx);
  52. }
  53. static void increment_tailroom_need_count(struct ieee80211_sub_if_data *sdata)
  54. {
  55. /*
  56. * When this count is zero, SKB resizing for allocating tailroom
  57. * for IV or MMIC is skipped. But, this check has created two race
  58. * cases in xmit path while transiting from zero count to one:
  59. *
  60. * 1. SKB resize was skipped because no key was added but just before
  61. * the xmit key is added and SW encryption kicks off.
  62. *
  63. * 2. SKB resize was skipped because all the keys were hw planted but
  64. * just before xmit one of the key is deleted and SW encryption kicks
  65. * off.
  66. *
  67. * In both the above case SW encryption will find not enough space for
  68. * tailroom and exits with WARN_ON. (See WARN_ONs at wpa.c)
  69. *
  70. * Solution has been explained at
  71. * http://mid.gmane.org/1308590980.4322.19.camel@jlt3.sipsolutions.net
  72. */
  73. if (!sdata->crypto_tx_tailroom_needed_cnt++) {
  74. /*
  75. * Flush all XMIT packets currently using HW encryption or no
  76. * encryption at all if the count transition is from 0 -> 1.
  77. */
  78. synchronize_net();
  79. }
  80. }
  81. static int ieee80211_key_enable_hw_accel(struct ieee80211_key *key)
  82. {
  83. struct ieee80211_sub_if_data *sdata;
  84. struct sta_info *sta;
  85. int ret;
  86. might_sleep();
  87. if (key->flags & KEY_FLAG_TAINTED) {
  88. /* If we get here, it's during resume and the key is
  89. * tainted so shouldn't be used/programmed any more.
  90. * However, its flags may still indicate that it was
  91. * programmed into the device (since we're in resume)
  92. * so clear that flag now to avoid trying to remove
  93. * it again later.
  94. */
  95. key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE;
  96. return -EINVAL;
  97. }
  98. if (!key->local->ops->set_key)
  99. goto out_unsupported;
  100. assert_key_lock(key->local);
  101. sta = key->sta;
  102. /*
  103. * If this is a per-STA GTK, check if it
  104. * is supported; if not, return.
  105. */
  106. if (sta && !(key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE) &&
  107. !(key->local->hw.flags & IEEE80211_HW_SUPPORTS_PER_STA_GTK))
  108. goto out_unsupported;
  109. if (sta && !sta->uploaded)
  110. goto out_unsupported;
  111. sdata = key->sdata;
  112. if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
  113. /*
  114. * The driver doesn't know anything about VLAN interfaces.
  115. * Hence, don't send GTKs for VLAN interfaces to the driver.
  116. */
  117. if (!(key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE))
  118. goto out_unsupported;
  119. }
  120. ret = drv_set_key(key->local, SET_KEY, sdata,
  121. sta ? &sta->sta : NULL, &key->conf);
  122. if (!ret) {
  123. key->flags |= KEY_FLAG_UPLOADED_TO_HARDWARE;
  124. if (!(key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_MMIC))
  125. sdata->crypto_tx_tailroom_needed_cnt--;
  126. WARN_ON((key->conf.flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE) &&
  127. (key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_IV));
  128. return 0;
  129. }
  130. if (ret != -ENOSPC && ret != -EOPNOTSUPP)
  131. sdata_err(sdata,
  132. "failed to set key (%d, %pM) to hardware (%d)\n",
  133. key->conf.keyidx,
  134. sta ? sta->sta.addr : bcast_addr, ret);
  135. out_unsupported:
  136. switch (key->conf.cipher) {
  137. case WLAN_CIPHER_SUITE_WEP40:
  138. case WLAN_CIPHER_SUITE_WEP104:
  139. case WLAN_CIPHER_SUITE_TKIP:
  140. case WLAN_CIPHER_SUITE_CCMP:
  141. case WLAN_CIPHER_SUITE_AES_CMAC:
  142. /* all of these we can do in software */
  143. return 0;
  144. default:
  145. return -EINVAL;
  146. }
  147. }
  148. static void ieee80211_key_disable_hw_accel(struct ieee80211_key *key)
  149. {
  150. struct ieee80211_sub_if_data *sdata;
  151. struct sta_info *sta;
  152. int ret;
  153. might_sleep();
  154. if (!key || !key->local->ops->set_key)
  155. return;
  156. assert_key_lock(key->local);
  157. if (!(key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE))
  158. return;
  159. sta = key->sta;
  160. sdata = key->sdata;
  161. if (!(key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_MMIC))
  162. increment_tailroom_need_count(sdata);
  163. ret = drv_set_key(key->local, DISABLE_KEY, sdata,
  164. sta ? &sta->sta : NULL, &key->conf);
  165. if (ret)
  166. sdata_err(sdata,
  167. "failed to remove key (%d, %pM) from hardware (%d)\n",
  168. key->conf.keyidx,
  169. sta ? sta->sta.addr : bcast_addr, ret);
  170. key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE;
  171. }
  172. static void __ieee80211_set_default_key(struct ieee80211_sub_if_data *sdata,
  173. int idx, bool uni, bool multi)
  174. {
  175. struct ieee80211_key *key = NULL;
  176. assert_key_lock(sdata->local);
  177. if (idx >= 0 && idx < NUM_DEFAULT_KEYS)
  178. key = key_mtx_dereference(sdata->local, sdata->keys[idx]);
  179. if (uni) {
  180. rcu_assign_pointer(sdata->default_unicast_key, key);
  181. drv_set_default_unicast_key(sdata->local, sdata, idx);
  182. }
  183. if (multi)
  184. rcu_assign_pointer(sdata->default_multicast_key, key);
  185. ieee80211_debugfs_key_update_default(sdata);
  186. }
  187. void ieee80211_set_default_key(struct ieee80211_sub_if_data *sdata, int idx,
  188. bool uni, bool multi)
  189. {
  190. mutex_lock(&sdata->local->key_mtx);
  191. __ieee80211_set_default_key(sdata, idx, uni, multi);
  192. mutex_unlock(&sdata->local->key_mtx);
  193. }
  194. static void
  195. __ieee80211_set_default_mgmt_key(struct ieee80211_sub_if_data *sdata, int idx)
  196. {
  197. struct ieee80211_key *key = NULL;
  198. assert_key_lock(sdata->local);
  199. if (idx >= NUM_DEFAULT_KEYS &&
  200. idx < NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
  201. key = key_mtx_dereference(sdata->local, sdata->keys[idx]);
  202. rcu_assign_pointer(sdata->default_mgmt_key, key);
  203. ieee80211_debugfs_key_update_default(sdata);
  204. }
  205. void ieee80211_set_default_mgmt_key(struct ieee80211_sub_if_data *sdata,
  206. int idx)
  207. {
  208. mutex_lock(&sdata->local->key_mtx);
  209. __ieee80211_set_default_mgmt_key(sdata, idx);
  210. mutex_unlock(&sdata->local->key_mtx);
  211. }
  212. static void ieee80211_key_replace(struct ieee80211_sub_if_data *sdata,
  213. struct sta_info *sta,
  214. bool pairwise,
  215. struct ieee80211_key *old,
  216. struct ieee80211_key *new)
  217. {
  218. int idx;
  219. bool defunikey, defmultikey, defmgmtkey;
  220. /* caller must provide at least one old/new */
  221. if (WARN_ON(!new && !old))
  222. return;
  223. if (new)
  224. list_add_tail(&new->list, &sdata->key_list);
  225. WARN_ON(new && old && new->conf.keyidx != old->conf.keyidx);
  226. if (old)
  227. idx = old->conf.keyidx;
  228. else
  229. idx = new->conf.keyidx;
  230. if (sta) {
  231. if (pairwise) {
  232. rcu_assign_pointer(sta->ptk[idx], new);
  233. sta->ptk_idx = idx;
  234. } else {
  235. rcu_assign_pointer(sta->gtk[idx], new);
  236. sta->gtk_idx = idx;
  237. }
  238. } else {
  239. defunikey = old &&
  240. old == key_mtx_dereference(sdata->local,
  241. sdata->default_unicast_key);
  242. defmultikey = old &&
  243. old == key_mtx_dereference(sdata->local,
  244. sdata->default_multicast_key);
  245. defmgmtkey = old &&
  246. old == key_mtx_dereference(sdata->local,
  247. sdata->default_mgmt_key);
  248. if (defunikey && !new)
  249. __ieee80211_set_default_key(sdata, -1, true, false);
  250. if (defmultikey && !new)
  251. __ieee80211_set_default_key(sdata, -1, false, true);
  252. if (defmgmtkey && !new)
  253. __ieee80211_set_default_mgmt_key(sdata, -1);
  254. rcu_assign_pointer(sdata->keys[idx], new);
  255. if (defunikey && new)
  256. __ieee80211_set_default_key(sdata, new->conf.keyidx,
  257. true, false);
  258. if (defmultikey && new)
  259. __ieee80211_set_default_key(sdata, new->conf.keyidx,
  260. false, true);
  261. if (defmgmtkey && new)
  262. __ieee80211_set_default_mgmt_key(sdata,
  263. new->conf.keyidx);
  264. }
  265. if (old)
  266. list_del(&old->list);
  267. }
  268. struct ieee80211_key *
  269. ieee80211_key_alloc(u32 cipher, int idx, size_t key_len,
  270. const u8 *key_data,
  271. size_t seq_len, const u8 *seq,
  272. const struct ieee80211_cipher_scheme *cs)
  273. {
  274. struct ieee80211_key *key;
  275. int i, j, err;
  276. if (WARN_ON(idx < 0 || idx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS))
  277. return ERR_PTR(-EINVAL);
  278. key = kzalloc(sizeof(struct ieee80211_key) + key_len, GFP_KERNEL);
  279. if (!key)
  280. return ERR_PTR(-ENOMEM);
  281. /*
  282. * Default to software encryption; we'll later upload the
  283. * key to the hardware if possible.
  284. */
  285. key->conf.flags = 0;
  286. key->flags = 0;
  287. key->conf.cipher = cipher;
  288. key->conf.keyidx = idx;
  289. key->conf.keylen = key_len;
  290. switch (cipher) {
  291. case WLAN_CIPHER_SUITE_WEP40:
  292. case WLAN_CIPHER_SUITE_WEP104:
  293. key->conf.iv_len = IEEE80211_WEP_IV_LEN;
  294. key->conf.icv_len = IEEE80211_WEP_ICV_LEN;
  295. break;
  296. case WLAN_CIPHER_SUITE_TKIP:
  297. key->conf.iv_len = IEEE80211_TKIP_IV_LEN;
  298. key->conf.icv_len = IEEE80211_TKIP_ICV_LEN;
  299. if (seq) {
  300. for (i = 0; i < IEEE80211_NUM_TIDS; i++) {
  301. key->u.tkip.rx[i].iv32 =
  302. get_unaligned_le32(&seq[2]);
  303. key->u.tkip.rx[i].iv16 =
  304. get_unaligned_le16(seq);
  305. }
  306. }
  307. spin_lock_init(&key->u.tkip.txlock);
  308. break;
  309. case WLAN_CIPHER_SUITE_CCMP:
  310. key->conf.iv_len = IEEE80211_CCMP_HDR_LEN;
  311. key->conf.icv_len = IEEE80211_CCMP_MIC_LEN;
  312. if (seq) {
  313. for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++)
  314. for (j = 0; j < IEEE80211_CCMP_PN_LEN; j++)
  315. key->u.ccmp.rx_pn[i][j] =
  316. seq[IEEE80211_CCMP_PN_LEN - j - 1];
  317. }
  318. /*
  319. * Initialize AES key state here as an optimization so that
  320. * it does not need to be initialized for every packet.
  321. */
  322. key->u.ccmp.tfm = ieee80211_aes_key_setup_encrypt(key_data);
  323. if (IS_ERR(key->u.ccmp.tfm)) {
  324. err = PTR_ERR(key->u.ccmp.tfm);
  325. kfree(key);
  326. return ERR_PTR(err);
  327. }
  328. break;
  329. case WLAN_CIPHER_SUITE_AES_CMAC:
  330. key->conf.iv_len = 0;
  331. key->conf.icv_len = sizeof(struct ieee80211_mmie);
  332. if (seq)
  333. for (j = 0; j < IEEE80211_CMAC_PN_LEN; j++)
  334. key->u.aes_cmac.rx_pn[j] =
  335. seq[IEEE80211_CMAC_PN_LEN - j - 1];
  336. /*
  337. * Initialize AES key state here as an optimization so that
  338. * it does not need to be initialized for every packet.
  339. */
  340. key->u.aes_cmac.tfm =
  341. ieee80211_aes_cmac_key_setup(key_data);
  342. if (IS_ERR(key->u.aes_cmac.tfm)) {
  343. err = PTR_ERR(key->u.aes_cmac.tfm);
  344. kfree(key);
  345. return ERR_PTR(err);
  346. }
  347. break;
  348. default:
  349. if (cs) {
  350. size_t len = (seq_len > MAX_PN_LEN) ?
  351. MAX_PN_LEN : seq_len;
  352. key->conf.iv_len = cs->hdr_len;
  353. key->conf.icv_len = cs->mic_len;
  354. for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++)
  355. for (j = 0; j < len; j++)
  356. key->u.gen.rx_pn[i][j] =
  357. seq[len - j - 1];
  358. }
  359. }
  360. memcpy(key->conf.key, key_data, key_len);
  361. INIT_LIST_HEAD(&key->list);
  362. return key;
  363. }
  364. static void ieee80211_key_free_common(struct ieee80211_key *key)
  365. {
  366. if (key->conf.cipher == WLAN_CIPHER_SUITE_CCMP)
  367. ieee80211_aes_key_free(key->u.ccmp.tfm);
  368. if (key->conf.cipher == WLAN_CIPHER_SUITE_AES_CMAC)
  369. ieee80211_aes_cmac_key_free(key->u.aes_cmac.tfm);
  370. kzfree(key);
  371. }
  372. static void __ieee80211_key_destroy(struct ieee80211_key *key,
  373. bool delay_tailroom)
  374. {
  375. if (key->local)
  376. ieee80211_key_disable_hw_accel(key);
  377. if (key->local) {
  378. struct ieee80211_sub_if_data *sdata = key->sdata;
  379. ieee80211_debugfs_key_remove(key);
  380. if (delay_tailroom) {
  381. /* see ieee80211_delayed_tailroom_dec */
  382. sdata->crypto_tx_tailroom_pending_dec++;
  383. schedule_delayed_work(&sdata->dec_tailroom_needed_wk,
  384. HZ/2);
  385. } else {
  386. sdata->crypto_tx_tailroom_needed_cnt--;
  387. }
  388. }
  389. ieee80211_key_free_common(key);
  390. }
  391. static void ieee80211_key_destroy(struct ieee80211_key *key,
  392. bool delay_tailroom)
  393. {
  394. if (!key)
  395. return;
  396. /*
  397. * Synchronize so the TX path can no longer be using
  398. * this key before we free/remove it.
  399. */
  400. synchronize_net();
  401. __ieee80211_key_destroy(key, delay_tailroom);
  402. }
  403. void ieee80211_key_free_unused(struct ieee80211_key *key)
  404. {
  405. WARN_ON(key->sdata || key->local);
  406. ieee80211_key_free_common(key);
  407. }
  408. int ieee80211_key_link(struct ieee80211_key *key,
  409. struct ieee80211_sub_if_data *sdata,
  410. struct sta_info *sta)
  411. {
  412. struct ieee80211_local *local = sdata->local;
  413. struct ieee80211_key *old_key;
  414. int idx, ret;
  415. bool pairwise;
  416. pairwise = key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE;
  417. idx = key->conf.keyidx;
  418. key->local = sdata->local;
  419. key->sdata = sdata;
  420. key->sta = sta;
  421. mutex_lock(&sdata->local->key_mtx);
  422. if (sta && pairwise)
  423. old_key = key_mtx_dereference(sdata->local, sta->ptk[idx]);
  424. else if (sta)
  425. old_key = key_mtx_dereference(sdata->local, sta->gtk[idx]);
  426. else
  427. old_key = key_mtx_dereference(sdata->local, sdata->keys[idx]);
  428. increment_tailroom_need_count(sdata);
  429. ieee80211_key_replace(sdata, sta, pairwise, old_key, key);
  430. ieee80211_key_destroy(old_key, true);
  431. ieee80211_debugfs_key_add(key);
  432. if (!local->wowlan) {
  433. ret = ieee80211_key_enable_hw_accel(key);
  434. if (ret)
  435. ieee80211_key_free(key, true);
  436. } else {
  437. ret = 0;
  438. }
  439. mutex_unlock(&sdata->local->key_mtx);
  440. return ret;
  441. }
  442. void ieee80211_key_free(struct ieee80211_key *key, bool delay_tailroom)
  443. {
  444. if (!key)
  445. return;
  446. /*
  447. * Replace key with nothingness if it was ever used.
  448. */
  449. if (key->sdata)
  450. ieee80211_key_replace(key->sdata, key->sta,
  451. key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
  452. key, NULL);
  453. ieee80211_key_destroy(key, delay_tailroom);
  454. }
  455. void ieee80211_enable_keys(struct ieee80211_sub_if_data *sdata)
  456. {
  457. struct ieee80211_key *key;
  458. ASSERT_RTNL();
  459. if (WARN_ON(!ieee80211_sdata_running(sdata)))
  460. return;
  461. mutex_lock(&sdata->local->key_mtx);
  462. sdata->crypto_tx_tailroom_needed_cnt = 0;
  463. list_for_each_entry(key, &sdata->key_list, list) {
  464. increment_tailroom_need_count(sdata);
  465. ieee80211_key_enable_hw_accel(key);
  466. }
  467. mutex_unlock(&sdata->local->key_mtx);
  468. }
  469. void ieee80211_iter_keys(struct ieee80211_hw *hw,
  470. struct ieee80211_vif *vif,
  471. void (*iter)(struct ieee80211_hw *hw,
  472. struct ieee80211_vif *vif,
  473. struct ieee80211_sta *sta,
  474. struct ieee80211_key_conf *key,
  475. void *data),
  476. void *iter_data)
  477. {
  478. struct ieee80211_local *local = hw_to_local(hw);
  479. struct ieee80211_key *key, *tmp;
  480. struct ieee80211_sub_if_data *sdata;
  481. ASSERT_RTNL();
  482. mutex_lock(&local->key_mtx);
  483. if (vif) {
  484. sdata = vif_to_sdata(vif);
  485. list_for_each_entry_safe(key, tmp, &sdata->key_list, list)
  486. iter(hw, &sdata->vif,
  487. key->sta ? &key->sta->sta : NULL,
  488. &key->conf, iter_data);
  489. } else {
  490. list_for_each_entry(sdata, &local->interfaces, list)
  491. list_for_each_entry_safe(key, tmp,
  492. &sdata->key_list, list)
  493. iter(hw, &sdata->vif,
  494. key->sta ? &key->sta->sta : NULL,
  495. &key->conf, iter_data);
  496. }
  497. mutex_unlock(&local->key_mtx);
  498. }
  499. EXPORT_SYMBOL(ieee80211_iter_keys);
  500. static void ieee80211_free_keys_iface(struct ieee80211_sub_if_data *sdata,
  501. struct list_head *keys)
  502. {
  503. struct ieee80211_key *key, *tmp;
  504. sdata->crypto_tx_tailroom_needed_cnt -=
  505. sdata->crypto_tx_tailroom_pending_dec;
  506. sdata->crypto_tx_tailroom_pending_dec = 0;
  507. ieee80211_debugfs_key_remove_mgmt_default(sdata);
  508. list_for_each_entry_safe(key, tmp, &sdata->key_list, list) {
  509. ieee80211_key_replace(key->sdata, key->sta,
  510. key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
  511. key, NULL);
  512. list_add_tail(&key->list, keys);
  513. }
  514. ieee80211_debugfs_key_update_default(sdata);
  515. }
  516. void ieee80211_free_keys(struct ieee80211_sub_if_data *sdata,
  517. bool force_synchronize)
  518. {
  519. struct ieee80211_local *local = sdata->local;
  520. struct ieee80211_sub_if_data *vlan;
  521. struct ieee80211_key *key, *tmp;
  522. LIST_HEAD(keys);
  523. cancel_delayed_work_sync(&sdata->dec_tailroom_needed_wk);
  524. mutex_lock(&local->key_mtx);
  525. ieee80211_free_keys_iface(sdata, &keys);
  526. if (sdata->vif.type == NL80211_IFTYPE_AP) {
  527. list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list)
  528. ieee80211_free_keys_iface(vlan, &keys);
  529. }
  530. if (!list_empty(&keys) || force_synchronize)
  531. synchronize_net();
  532. list_for_each_entry_safe(key, tmp, &keys, list)
  533. __ieee80211_key_destroy(key, false);
  534. WARN_ON_ONCE(sdata->crypto_tx_tailroom_needed_cnt ||
  535. sdata->crypto_tx_tailroom_pending_dec);
  536. if (sdata->vif.type == NL80211_IFTYPE_AP) {
  537. list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list)
  538. WARN_ON_ONCE(vlan->crypto_tx_tailroom_needed_cnt ||
  539. vlan->crypto_tx_tailroom_pending_dec);
  540. }
  541. mutex_unlock(&local->key_mtx);
  542. }
  543. void ieee80211_free_sta_keys(struct ieee80211_local *local,
  544. struct sta_info *sta)
  545. {
  546. struct ieee80211_key *key;
  547. int i;
  548. mutex_lock(&local->key_mtx);
  549. for (i = 0; i < ARRAY_SIZE(sta->gtk); i++) {
  550. key = key_mtx_dereference(local, sta->gtk[i]);
  551. if (!key)
  552. continue;
  553. ieee80211_key_replace(key->sdata, key->sta,
  554. key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
  555. key, NULL);
  556. __ieee80211_key_destroy(key, true);
  557. }
  558. for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
  559. key = key_mtx_dereference(local, sta->ptk[i]);
  560. if (!key)
  561. continue;
  562. ieee80211_key_replace(key->sdata, key->sta,
  563. key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
  564. key, NULL);
  565. __ieee80211_key_destroy(key, true);
  566. }
  567. mutex_unlock(&local->key_mtx);
  568. }
  569. void ieee80211_delayed_tailroom_dec(struct work_struct *wk)
  570. {
  571. struct ieee80211_sub_if_data *sdata;
  572. sdata = container_of(wk, struct ieee80211_sub_if_data,
  573. dec_tailroom_needed_wk.work);
  574. /*
  575. * The reason for the delayed tailroom needed decrementing is to
  576. * make roaming faster: during roaming, all keys are first deleted
  577. * and then new keys are installed. The first new key causes the
  578. * crypto_tx_tailroom_needed_cnt to go from 0 to 1, which invokes
  579. * the cost of synchronize_net() (which can be slow). Avoid this
  580. * by deferring the crypto_tx_tailroom_needed_cnt decrementing on
  581. * key removal for a while, so if we roam the value is larger than
  582. * zero and no 0->1 transition happens.
  583. *
  584. * The cost is that if the AP switching was from an AP with keys
  585. * to one without, we still allocate tailroom while it would no
  586. * longer be needed. However, in the typical (fast) roaming case
  587. * within an ESS this usually won't happen.
  588. */
  589. mutex_lock(&sdata->local->key_mtx);
  590. sdata->crypto_tx_tailroom_needed_cnt -=
  591. sdata->crypto_tx_tailroom_pending_dec;
  592. sdata->crypto_tx_tailroom_pending_dec = 0;
  593. mutex_unlock(&sdata->local->key_mtx);
  594. }
  595. void ieee80211_gtk_rekey_notify(struct ieee80211_vif *vif, const u8 *bssid,
  596. const u8 *replay_ctr, gfp_t gfp)
  597. {
  598. struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
  599. trace_api_gtk_rekey_notify(sdata, bssid, replay_ctr);
  600. cfg80211_gtk_rekey_notify(sdata->dev, bssid, replay_ctr, gfp);
  601. }
  602. EXPORT_SYMBOL_GPL(ieee80211_gtk_rekey_notify);
  603. void ieee80211_get_key_tx_seq(struct ieee80211_key_conf *keyconf,
  604. struct ieee80211_key_seq *seq)
  605. {
  606. struct ieee80211_key *key;
  607. u64 pn64;
  608. if (WARN_ON(!(keyconf->flags & IEEE80211_KEY_FLAG_GENERATE_IV)))
  609. return;
  610. key = container_of(keyconf, struct ieee80211_key, conf);
  611. switch (key->conf.cipher) {
  612. case WLAN_CIPHER_SUITE_TKIP:
  613. seq->tkip.iv32 = key->u.tkip.tx.iv32;
  614. seq->tkip.iv16 = key->u.tkip.tx.iv16;
  615. break;
  616. case WLAN_CIPHER_SUITE_CCMP:
  617. pn64 = atomic64_read(&key->u.ccmp.tx_pn);
  618. seq->ccmp.pn[5] = pn64;
  619. seq->ccmp.pn[4] = pn64 >> 8;
  620. seq->ccmp.pn[3] = pn64 >> 16;
  621. seq->ccmp.pn[2] = pn64 >> 24;
  622. seq->ccmp.pn[1] = pn64 >> 32;
  623. seq->ccmp.pn[0] = pn64 >> 40;
  624. break;
  625. case WLAN_CIPHER_SUITE_AES_CMAC:
  626. pn64 = atomic64_read(&key->u.aes_cmac.tx_pn);
  627. seq->ccmp.pn[5] = pn64;
  628. seq->ccmp.pn[4] = pn64 >> 8;
  629. seq->ccmp.pn[3] = pn64 >> 16;
  630. seq->ccmp.pn[2] = pn64 >> 24;
  631. seq->ccmp.pn[1] = pn64 >> 32;
  632. seq->ccmp.pn[0] = pn64 >> 40;
  633. break;
  634. default:
  635. WARN_ON(1);
  636. }
  637. }
  638. EXPORT_SYMBOL(ieee80211_get_key_tx_seq);
  639. void ieee80211_get_key_rx_seq(struct ieee80211_key_conf *keyconf,
  640. int tid, struct ieee80211_key_seq *seq)
  641. {
  642. struct ieee80211_key *key;
  643. const u8 *pn;
  644. key = container_of(keyconf, struct ieee80211_key, conf);
  645. switch (key->conf.cipher) {
  646. case WLAN_CIPHER_SUITE_TKIP:
  647. if (WARN_ON(tid < 0 || tid >= IEEE80211_NUM_TIDS))
  648. return;
  649. seq->tkip.iv32 = key->u.tkip.rx[tid].iv32;
  650. seq->tkip.iv16 = key->u.tkip.rx[tid].iv16;
  651. break;
  652. case WLAN_CIPHER_SUITE_CCMP:
  653. if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS))
  654. return;
  655. if (tid < 0)
  656. pn = key->u.ccmp.rx_pn[IEEE80211_NUM_TIDS];
  657. else
  658. pn = key->u.ccmp.rx_pn[tid];
  659. memcpy(seq->ccmp.pn, pn, IEEE80211_CCMP_PN_LEN);
  660. break;
  661. case WLAN_CIPHER_SUITE_AES_CMAC:
  662. if (WARN_ON(tid != 0))
  663. return;
  664. pn = key->u.aes_cmac.rx_pn;
  665. memcpy(seq->aes_cmac.pn, pn, IEEE80211_CMAC_PN_LEN);
  666. break;
  667. }
  668. }
  669. EXPORT_SYMBOL(ieee80211_get_key_rx_seq);
  670. void ieee80211_set_key_tx_seq(struct ieee80211_key_conf *keyconf,
  671. struct ieee80211_key_seq *seq)
  672. {
  673. struct ieee80211_key *key;
  674. u64 pn64;
  675. key = container_of(keyconf, struct ieee80211_key, conf);
  676. switch (key->conf.cipher) {
  677. case WLAN_CIPHER_SUITE_TKIP:
  678. key->u.tkip.tx.iv32 = seq->tkip.iv32;
  679. key->u.tkip.tx.iv16 = seq->tkip.iv16;
  680. break;
  681. case WLAN_CIPHER_SUITE_CCMP:
  682. pn64 = (u64)seq->ccmp.pn[5] |
  683. ((u64)seq->ccmp.pn[4] << 8) |
  684. ((u64)seq->ccmp.pn[3] << 16) |
  685. ((u64)seq->ccmp.pn[2] << 24) |
  686. ((u64)seq->ccmp.pn[1] << 32) |
  687. ((u64)seq->ccmp.pn[0] << 40);
  688. atomic64_set(&key->u.ccmp.tx_pn, pn64);
  689. break;
  690. case WLAN_CIPHER_SUITE_AES_CMAC:
  691. pn64 = (u64)seq->aes_cmac.pn[5] |
  692. ((u64)seq->aes_cmac.pn[4] << 8) |
  693. ((u64)seq->aes_cmac.pn[3] << 16) |
  694. ((u64)seq->aes_cmac.pn[2] << 24) |
  695. ((u64)seq->aes_cmac.pn[1] << 32) |
  696. ((u64)seq->aes_cmac.pn[0] << 40);
  697. atomic64_set(&key->u.aes_cmac.tx_pn, pn64);
  698. break;
  699. default:
  700. WARN_ON(1);
  701. break;
  702. }
  703. }
  704. EXPORT_SYMBOL_GPL(ieee80211_set_key_tx_seq);
  705. void ieee80211_set_key_rx_seq(struct ieee80211_key_conf *keyconf,
  706. int tid, struct ieee80211_key_seq *seq)
  707. {
  708. struct ieee80211_key *key;
  709. u8 *pn;
  710. key = container_of(keyconf, struct ieee80211_key, conf);
  711. switch (key->conf.cipher) {
  712. case WLAN_CIPHER_SUITE_TKIP:
  713. if (WARN_ON(tid < 0 || tid >= IEEE80211_NUM_TIDS))
  714. return;
  715. key->u.tkip.rx[tid].iv32 = seq->tkip.iv32;
  716. key->u.tkip.rx[tid].iv16 = seq->tkip.iv16;
  717. break;
  718. case WLAN_CIPHER_SUITE_CCMP:
  719. if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS))
  720. return;
  721. if (tid < 0)
  722. pn = key->u.ccmp.rx_pn[IEEE80211_NUM_TIDS];
  723. else
  724. pn = key->u.ccmp.rx_pn[tid];
  725. memcpy(pn, seq->ccmp.pn, IEEE80211_CCMP_PN_LEN);
  726. break;
  727. case WLAN_CIPHER_SUITE_AES_CMAC:
  728. if (WARN_ON(tid != 0))
  729. return;
  730. pn = key->u.aes_cmac.rx_pn;
  731. memcpy(pn, seq->aes_cmac.pn, IEEE80211_CMAC_PN_LEN);
  732. break;
  733. default:
  734. WARN_ON(1);
  735. break;
  736. }
  737. }
  738. EXPORT_SYMBOL_GPL(ieee80211_set_key_rx_seq);
  739. void ieee80211_remove_key(struct ieee80211_key_conf *keyconf)
  740. {
  741. struct ieee80211_key *key;
  742. key = container_of(keyconf, struct ieee80211_key, conf);
  743. assert_key_lock(key->local);
  744. /*
  745. * if key was uploaded, we assume the driver will/has remove(d)
  746. * it, so adjust bookkeeping accordingly
  747. */
  748. if (key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE) {
  749. key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE;
  750. if (!(key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_MMIC))
  751. increment_tailroom_need_count(key->sdata);
  752. }
  753. ieee80211_key_free(key, false);
  754. }
  755. EXPORT_SYMBOL_GPL(ieee80211_remove_key);
  756. struct ieee80211_key_conf *
  757. ieee80211_gtk_rekey_add(struct ieee80211_vif *vif,
  758. struct ieee80211_key_conf *keyconf)
  759. {
  760. struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
  761. struct ieee80211_local *local = sdata->local;
  762. struct ieee80211_key *key;
  763. int err;
  764. if (WARN_ON(!local->wowlan))
  765. return ERR_PTR(-EINVAL);
  766. if (WARN_ON(vif->type != NL80211_IFTYPE_STATION))
  767. return ERR_PTR(-EINVAL);
  768. key = ieee80211_key_alloc(keyconf->cipher, keyconf->keyidx,
  769. keyconf->keylen, keyconf->key,
  770. 0, NULL, NULL);
  771. if (IS_ERR(key))
  772. return ERR_CAST(key);
  773. if (sdata->u.mgd.mfp != IEEE80211_MFP_DISABLED)
  774. key->conf.flags |= IEEE80211_KEY_FLAG_RX_MGMT;
  775. err = ieee80211_key_link(key, sdata, NULL);
  776. if (err)
  777. return ERR_PTR(err);
  778. return &key->conf;
  779. }
  780. EXPORT_SYMBOL_GPL(ieee80211_gtk_rekey_add);