task_mmu.c 39 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620
  1. #include <linux/mm.h>
  2. #include <linux/vmacache.h>
  3. #include <linux/hugetlb.h>
  4. #include <linux/huge_mm.h>
  5. #include <linux/mount.h>
  6. #include <linux/seq_file.h>
  7. #include <linux/highmem.h>
  8. #include <linux/ptrace.h>
  9. #include <linux/slab.h>
  10. #include <linux/pagemap.h>
  11. #include <linux/mempolicy.h>
  12. #include <linux/rmap.h>
  13. #include <linux/swap.h>
  14. #include <linux/swapops.h>
  15. #include <linux/mmu_notifier.h>
  16. #include <asm/elf.h>
  17. #include <asm/uaccess.h>
  18. #include <asm/tlbflush.h>
  19. #include "internal.h"
  20. void task_mem(struct seq_file *m, struct mm_struct *mm)
  21. {
  22. unsigned long data, text, lib, swap;
  23. unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
  24. /*
  25. * Note: to minimize their overhead, mm maintains hiwater_vm and
  26. * hiwater_rss only when about to *lower* total_vm or rss. Any
  27. * collector of these hiwater stats must therefore get total_vm
  28. * and rss too, which will usually be the higher. Barriers? not
  29. * worth the effort, such snapshots can always be inconsistent.
  30. */
  31. hiwater_vm = total_vm = mm->total_vm;
  32. if (hiwater_vm < mm->hiwater_vm)
  33. hiwater_vm = mm->hiwater_vm;
  34. hiwater_rss = total_rss = get_mm_rss(mm);
  35. if (hiwater_rss < mm->hiwater_rss)
  36. hiwater_rss = mm->hiwater_rss;
  37. data = mm->total_vm - mm->shared_vm - mm->stack_vm;
  38. text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
  39. lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
  40. swap = get_mm_counter(mm, MM_SWAPENTS);
  41. seq_printf(m,
  42. "VmPeak:\t%8lu kB\n"
  43. "VmSize:\t%8lu kB\n"
  44. "VmLck:\t%8lu kB\n"
  45. "VmPin:\t%8lu kB\n"
  46. "VmHWM:\t%8lu kB\n"
  47. "VmRSS:\t%8lu kB\n"
  48. "VmData:\t%8lu kB\n"
  49. "VmStk:\t%8lu kB\n"
  50. "VmExe:\t%8lu kB\n"
  51. "VmLib:\t%8lu kB\n"
  52. "VmPTE:\t%8lu kB\n"
  53. "VmSwap:\t%8lu kB\n",
  54. hiwater_vm << (PAGE_SHIFT-10),
  55. total_vm << (PAGE_SHIFT-10),
  56. mm->locked_vm << (PAGE_SHIFT-10),
  57. mm->pinned_vm << (PAGE_SHIFT-10),
  58. hiwater_rss << (PAGE_SHIFT-10),
  59. total_rss << (PAGE_SHIFT-10),
  60. data << (PAGE_SHIFT-10),
  61. mm->stack_vm << (PAGE_SHIFT-10), text, lib,
  62. (PTRS_PER_PTE * sizeof(pte_t) *
  63. atomic_long_read(&mm->nr_ptes)) >> 10,
  64. swap << (PAGE_SHIFT-10));
  65. }
  66. unsigned long task_vsize(struct mm_struct *mm)
  67. {
  68. return PAGE_SIZE * mm->total_vm;
  69. }
  70. unsigned long task_statm(struct mm_struct *mm,
  71. unsigned long *shared, unsigned long *text,
  72. unsigned long *data, unsigned long *resident)
  73. {
  74. *shared = get_mm_counter(mm, MM_FILEPAGES);
  75. *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
  76. >> PAGE_SHIFT;
  77. *data = mm->total_vm - mm->shared_vm;
  78. *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
  79. return mm->total_vm;
  80. }
  81. #ifdef CONFIG_NUMA
  82. /*
  83. * Save get_task_policy() for show_numa_map().
  84. */
  85. static void hold_task_mempolicy(struct proc_maps_private *priv)
  86. {
  87. struct task_struct *task = priv->task;
  88. task_lock(task);
  89. priv->task_mempolicy = get_task_policy(task);
  90. mpol_get(priv->task_mempolicy);
  91. task_unlock(task);
  92. }
  93. static void release_task_mempolicy(struct proc_maps_private *priv)
  94. {
  95. mpol_put(priv->task_mempolicy);
  96. }
  97. #else
  98. static void hold_task_mempolicy(struct proc_maps_private *priv)
  99. {
  100. }
  101. static void release_task_mempolicy(struct proc_maps_private *priv)
  102. {
  103. }
  104. #endif
  105. static void vma_stop(struct proc_maps_private *priv)
  106. {
  107. struct mm_struct *mm = priv->mm;
  108. release_task_mempolicy(priv);
  109. up_read(&mm->mmap_sem);
  110. mmput(mm);
  111. }
  112. static struct vm_area_struct *
  113. m_next_vma(struct proc_maps_private *priv, struct vm_area_struct *vma)
  114. {
  115. if (vma == priv->tail_vma)
  116. return NULL;
  117. return vma->vm_next ?: priv->tail_vma;
  118. }
  119. static void m_cache_vma(struct seq_file *m, struct vm_area_struct *vma)
  120. {
  121. if (m->count < m->size) /* vma is copied successfully */
  122. m->version = m_next_vma(m->private, vma) ? vma->vm_start : -1UL;
  123. }
  124. static void *m_start(struct seq_file *m, loff_t *ppos)
  125. {
  126. struct proc_maps_private *priv = m->private;
  127. unsigned long last_addr = m->version;
  128. struct mm_struct *mm;
  129. struct vm_area_struct *vma;
  130. unsigned int pos = *ppos;
  131. /* See m_cache_vma(). Zero at the start or after lseek. */
  132. if (last_addr == -1UL)
  133. return NULL;
  134. priv->task = get_proc_task(priv->inode);
  135. if (!priv->task)
  136. return ERR_PTR(-ESRCH);
  137. mm = priv->mm;
  138. if (!mm || !atomic_inc_not_zero(&mm->mm_users))
  139. return NULL;
  140. down_read(&mm->mmap_sem);
  141. hold_task_mempolicy(priv);
  142. priv->tail_vma = get_gate_vma(mm);
  143. if (last_addr) {
  144. vma = find_vma(mm, last_addr);
  145. if (vma && (vma = m_next_vma(priv, vma)))
  146. return vma;
  147. }
  148. m->version = 0;
  149. if (pos < mm->map_count) {
  150. for (vma = mm->mmap; pos; pos--) {
  151. m->version = vma->vm_start;
  152. vma = vma->vm_next;
  153. }
  154. return vma;
  155. }
  156. /* we do not bother to update m->version in this case */
  157. if (pos == mm->map_count && priv->tail_vma)
  158. return priv->tail_vma;
  159. vma_stop(priv);
  160. return NULL;
  161. }
  162. static void *m_next(struct seq_file *m, void *v, loff_t *pos)
  163. {
  164. struct proc_maps_private *priv = m->private;
  165. struct vm_area_struct *next;
  166. (*pos)++;
  167. next = m_next_vma(priv, v);
  168. if (!next)
  169. vma_stop(priv);
  170. return next;
  171. }
  172. static void m_stop(struct seq_file *m, void *v)
  173. {
  174. struct proc_maps_private *priv = m->private;
  175. if (!IS_ERR_OR_NULL(v))
  176. vma_stop(priv);
  177. if (priv->task) {
  178. put_task_struct(priv->task);
  179. priv->task = NULL;
  180. }
  181. }
  182. static int proc_maps_open(struct inode *inode, struct file *file,
  183. const struct seq_operations *ops, int psize)
  184. {
  185. struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
  186. if (!priv)
  187. return -ENOMEM;
  188. priv->inode = inode;
  189. priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
  190. if (IS_ERR(priv->mm)) {
  191. int err = PTR_ERR(priv->mm);
  192. seq_release_private(inode, file);
  193. return err;
  194. }
  195. return 0;
  196. }
  197. static int proc_map_release(struct inode *inode, struct file *file)
  198. {
  199. struct seq_file *seq = file->private_data;
  200. struct proc_maps_private *priv = seq->private;
  201. if (priv->mm)
  202. mmdrop(priv->mm);
  203. return seq_release_private(inode, file);
  204. }
  205. static int do_maps_open(struct inode *inode, struct file *file,
  206. const struct seq_operations *ops)
  207. {
  208. return proc_maps_open(inode, file, ops,
  209. sizeof(struct proc_maps_private));
  210. }
  211. static pid_t pid_of_stack(struct proc_maps_private *priv,
  212. struct vm_area_struct *vma, bool is_pid)
  213. {
  214. struct inode *inode = priv->inode;
  215. struct task_struct *task;
  216. pid_t ret = 0;
  217. rcu_read_lock();
  218. task = pid_task(proc_pid(inode), PIDTYPE_PID);
  219. if (task) {
  220. task = task_of_stack(task, vma, is_pid);
  221. if (task)
  222. ret = task_pid_nr_ns(task, inode->i_sb->s_fs_info);
  223. }
  224. rcu_read_unlock();
  225. return ret;
  226. }
  227. static void
  228. show_map_vma(struct seq_file *m, struct vm_area_struct *vma, int is_pid)
  229. {
  230. struct mm_struct *mm = vma->vm_mm;
  231. struct file *file = vma->vm_file;
  232. struct proc_maps_private *priv = m->private;
  233. vm_flags_t flags = vma->vm_flags;
  234. unsigned long ino = 0;
  235. unsigned long long pgoff = 0;
  236. unsigned long start, end;
  237. dev_t dev = 0;
  238. const char *name = NULL;
  239. if (file) {
  240. struct inode *inode = file_inode(vma->vm_file);
  241. dev = inode->i_sb->s_dev;
  242. ino = inode->i_ino;
  243. pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
  244. }
  245. /* We don't show the stack guard page in /proc/maps */
  246. start = vma->vm_start;
  247. if (stack_guard_page_start(vma, start))
  248. start += PAGE_SIZE;
  249. end = vma->vm_end;
  250. if (stack_guard_page_end(vma, end))
  251. end -= PAGE_SIZE;
  252. seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
  253. seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu ",
  254. start,
  255. end,
  256. flags & VM_READ ? 'r' : '-',
  257. flags & VM_WRITE ? 'w' : '-',
  258. flags & VM_EXEC ? 'x' : '-',
  259. flags & VM_MAYSHARE ? 's' : 'p',
  260. pgoff,
  261. MAJOR(dev), MINOR(dev), ino);
  262. /*
  263. * Print the dentry name for named mappings, and a
  264. * special [heap] marker for the heap:
  265. */
  266. if (file) {
  267. seq_pad(m, ' ');
  268. seq_path(m, &file->f_path, "\n");
  269. goto done;
  270. }
  271. if (vma->vm_ops && vma->vm_ops->name) {
  272. name = vma->vm_ops->name(vma);
  273. if (name)
  274. goto done;
  275. }
  276. name = arch_vma_name(vma);
  277. if (!name) {
  278. pid_t tid;
  279. if (!mm) {
  280. name = "[vdso]";
  281. goto done;
  282. }
  283. if (vma->vm_start <= mm->brk &&
  284. vma->vm_end >= mm->start_brk) {
  285. name = "[heap]";
  286. goto done;
  287. }
  288. tid = pid_of_stack(priv, vma, is_pid);
  289. if (tid != 0) {
  290. /*
  291. * Thread stack in /proc/PID/task/TID/maps or
  292. * the main process stack.
  293. */
  294. if (!is_pid || (vma->vm_start <= mm->start_stack &&
  295. vma->vm_end >= mm->start_stack)) {
  296. name = "[stack]";
  297. } else {
  298. /* Thread stack in /proc/PID/maps */
  299. seq_pad(m, ' ');
  300. seq_printf(m, "[stack:%d]", tid);
  301. }
  302. }
  303. }
  304. done:
  305. if (name) {
  306. seq_pad(m, ' ');
  307. seq_puts(m, name);
  308. }
  309. seq_putc(m, '\n');
  310. }
  311. static int show_map(struct seq_file *m, void *v, int is_pid)
  312. {
  313. show_map_vma(m, v, is_pid);
  314. m_cache_vma(m, v);
  315. return 0;
  316. }
  317. static int show_pid_map(struct seq_file *m, void *v)
  318. {
  319. return show_map(m, v, 1);
  320. }
  321. static int show_tid_map(struct seq_file *m, void *v)
  322. {
  323. return show_map(m, v, 0);
  324. }
  325. static const struct seq_operations proc_pid_maps_op = {
  326. .start = m_start,
  327. .next = m_next,
  328. .stop = m_stop,
  329. .show = show_pid_map
  330. };
  331. static const struct seq_operations proc_tid_maps_op = {
  332. .start = m_start,
  333. .next = m_next,
  334. .stop = m_stop,
  335. .show = show_tid_map
  336. };
  337. static int pid_maps_open(struct inode *inode, struct file *file)
  338. {
  339. return do_maps_open(inode, file, &proc_pid_maps_op);
  340. }
  341. static int tid_maps_open(struct inode *inode, struct file *file)
  342. {
  343. return do_maps_open(inode, file, &proc_tid_maps_op);
  344. }
  345. const struct file_operations proc_pid_maps_operations = {
  346. .open = pid_maps_open,
  347. .read = seq_read,
  348. .llseek = seq_lseek,
  349. .release = proc_map_release,
  350. };
  351. const struct file_operations proc_tid_maps_operations = {
  352. .open = tid_maps_open,
  353. .read = seq_read,
  354. .llseek = seq_lseek,
  355. .release = proc_map_release,
  356. };
  357. /*
  358. * Proportional Set Size(PSS): my share of RSS.
  359. *
  360. * PSS of a process is the count of pages it has in memory, where each
  361. * page is divided by the number of processes sharing it. So if a
  362. * process has 1000 pages all to itself, and 1000 shared with one other
  363. * process, its PSS will be 1500.
  364. *
  365. * To keep (accumulated) division errors low, we adopt a 64bit
  366. * fixed-point pss counter to minimize division errors. So (pss >>
  367. * PSS_SHIFT) would be the real byte count.
  368. *
  369. * A shift of 12 before division means (assuming 4K page size):
  370. * - 1M 3-user-pages add up to 8KB errors;
  371. * - supports mapcount up to 2^24, or 16M;
  372. * - supports PSS up to 2^52 bytes, or 4PB.
  373. */
  374. #define PSS_SHIFT 12
  375. #ifdef CONFIG_PROC_PAGE_MONITOR
  376. struct mem_size_stats {
  377. struct vm_area_struct *vma;
  378. unsigned long resident;
  379. unsigned long shared_clean;
  380. unsigned long shared_dirty;
  381. unsigned long private_clean;
  382. unsigned long private_dirty;
  383. unsigned long referenced;
  384. unsigned long anonymous;
  385. unsigned long anonymous_thp;
  386. unsigned long swap;
  387. unsigned long nonlinear;
  388. u64 pss;
  389. };
  390. static void smaps_account(struct mem_size_stats *mss, struct page *page,
  391. unsigned long size, bool young, bool dirty)
  392. {
  393. int mapcount;
  394. if (PageAnon(page))
  395. mss->anonymous += size;
  396. mss->resident += size;
  397. /* Accumulate the size in pages that have been accessed. */
  398. if (young || PageReferenced(page))
  399. mss->referenced += size;
  400. mapcount = page_mapcount(page);
  401. if (mapcount >= 2) {
  402. u64 pss_delta;
  403. if (dirty || PageDirty(page))
  404. mss->shared_dirty += size;
  405. else
  406. mss->shared_clean += size;
  407. pss_delta = (u64)size << PSS_SHIFT;
  408. do_div(pss_delta, mapcount);
  409. mss->pss += pss_delta;
  410. } else {
  411. if (dirty || PageDirty(page))
  412. mss->private_dirty += size;
  413. else
  414. mss->private_clean += size;
  415. mss->pss += (u64)size << PSS_SHIFT;
  416. }
  417. }
  418. static void smaps_pte_entry(pte_t *pte, unsigned long addr,
  419. struct mm_walk *walk)
  420. {
  421. struct mem_size_stats *mss = walk->private;
  422. struct vm_area_struct *vma = mss->vma;
  423. pgoff_t pgoff = linear_page_index(vma, addr);
  424. struct page *page = NULL;
  425. if (pte_present(*pte)) {
  426. page = vm_normal_page(vma, addr, *pte);
  427. } else if (is_swap_pte(*pte)) {
  428. swp_entry_t swpent = pte_to_swp_entry(*pte);
  429. if (!non_swap_entry(swpent))
  430. mss->swap += PAGE_SIZE;
  431. else if (is_migration_entry(swpent))
  432. page = migration_entry_to_page(swpent);
  433. } else if (pte_file(*pte)) {
  434. if (pte_to_pgoff(*pte) != pgoff)
  435. mss->nonlinear += PAGE_SIZE;
  436. }
  437. if (!page)
  438. return;
  439. if (page->index != pgoff)
  440. mss->nonlinear += PAGE_SIZE;
  441. smaps_account(mss, page, PAGE_SIZE, pte_young(*pte), pte_dirty(*pte));
  442. }
  443. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  444. static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
  445. struct mm_walk *walk)
  446. {
  447. struct mem_size_stats *mss = walk->private;
  448. struct vm_area_struct *vma = mss->vma;
  449. struct page *page;
  450. /* FOLL_DUMP will return -EFAULT on huge zero page */
  451. page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
  452. if (IS_ERR_OR_NULL(page))
  453. return;
  454. mss->anonymous_thp += HPAGE_PMD_SIZE;
  455. smaps_account(mss, page, HPAGE_PMD_SIZE,
  456. pmd_young(*pmd), pmd_dirty(*pmd));
  457. }
  458. #else
  459. static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
  460. struct mm_walk *walk)
  461. {
  462. }
  463. #endif
  464. static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
  465. struct mm_walk *walk)
  466. {
  467. struct mem_size_stats *mss = walk->private;
  468. struct vm_area_struct *vma = mss->vma;
  469. pte_t *pte;
  470. spinlock_t *ptl;
  471. if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
  472. smaps_pmd_entry(pmd, addr, walk);
  473. spin_unlock(ptl);
  474. return 0;
  475. }
  476. if (pmd_trans_unstable(pmd))
  477. return 0;
  478. /*
  479. * The mmap_sem held all the way back in m_start() is what
  480. * keeps khugepaged out of here and from collapsing things
  481. * in here.
  482. */
  483. pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
  484. for (; addr != end; pte++, addr += PAGE_SIZE)
  485. smaps_pte_entry(pte, addr, walk);
  486. pte_unmap_unlock(pte - 1, ptl);
  487. cond_resched();
  488. return 0;
  489. }
  490. static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
  491. {
  492. /*
  493. * Don't forget to update Documentation/ on changes.
  494. */
  495. static const char mnemonics[BITS_PER_LONG][2] = {
  496. /*
  497. * In case if we meet a flag we don't know about.
  498. */
  499. [0 ... (BITS_PER_LONG-1)] = "??",
  500. [ilog2(VM_READ)] = "rd",
  501. [ilog2(VM_WRITE)] = "wr",
  502. [ilog2(VM_EXEC)] = "ex",
  503. [ilog2(VM_SHARED)] = "sh",
  504. [ilog2(VM_MAYREAD)] = "mr",
  505. [ilog2(VM_MAYWRITE)] = "mw",
  506. [ilog2(VM_MAYEXEC)] = "me",
  507. [ilog2(VM_MAYSHARE)] = "ms",
  508. [ilog2(VM_GROWSDOWN)] = "gd",
  509. [ilog2(VM_PFNMAP)] = "pf",
  510. [ilog2(VM_DENYWRITE)] = "dw",
  511. #ifdef CONFIG_X86_INTEL_MPX
  512. [ilog2(VM_MPX)] = "mp",
  513. #endif
  514. [ilog2(VM_LOCKED)] = "lo",
  515. [ilog2(VM_IO)] = "io",
  516. [ilog2(VM_SEQ_READ)] = "sr",
  517. [ilog2(VM_RAND_READ)] = "rr",
  518. [ilog2(VM_DONTCOPY)] = "dc",
  519. [ilog2(VM_DONTEXPAND)] = "de",
  520. [ilog2(VM_ACCOUNT)] = "ac",
  521. [ilog2(VM_NORESERVE)] = "nr",
  522. [ilog2(VM_HUGETLB)] = "ht",
  523. [ilog2(VM_NONLINEAR)] = "nl",
  524. [ilog2(VM_ARCH_1)] = "ar",
  525. [ilog2(VM_DONTDUMP)] = "dd",
  526. #ifdef CONFIG_MEM_SOFT_DIRTY
  527. [ilog2(VM_SOFTDIRTY)] = "sd",
  528. #endif
  529. [ilog2(VM_MIXEDMAP)] = "mm",
  530. [ilog2(VM_HUGEPAGE)] = "hg",
  531. [ilog2(VM_NOHUGEPAGE)] = "nh",
  532. [ilog2(VM_MERGEABLE)] = "mg",
  533. };
  534. size_t i;
  535. seq_puts(m, "VmFlags: ");
  536. for (i = 0; i < BITS_PER_LONG; i++) {
  537. if (vma->vm_flags & (1UL << i)) {
  538. seq_printf(m, "%c%c ",
  539. mnemonics[i][0], mnemonics[i][1]);
  540. }
  541. }
  542. seq_putc(m, '\n');
  543. }
  544. static int show_smap(struct seq_file *m, void *v, int is_pid)
  545. {
  546. struct vm_area_struct *vma = v;
  547. struct mem_size_stats mss;
  548. struct mm_walk smaps_walk = {
  549. .pmd_entry = smaps_pte_range,
  550. .mm = vma->vm_mm,
  551. .private = &mss,
  552. };
  553. memset(&mss, 0, sizeof mss);
  554. mss.vma = vma;
  555. /* mmap_sem is held in m_start */
  556. if (vma->vm_mm && !is_vm_hugetlb_page(vma))
  557. walk_page_range(vma->vm_start, vma->vm_end, &smaps_walk);
  558. show_map_vma(m, vma, is_pid);
  559. seq_printf(m,
  560. "Size: %8lu kB\n"
  561. "Rss: %8lu kB\n"
  562. "Pss: %8lu kB\n"
  563. "Shared_Clean: %8lu kB\n"
  564. "Shared_Dirty: %8lu kB\n"
  565. "Private_Clean: %8lu kB\n"
  566. "Private_Dirty: %8lu kB\n"
  567. "Referenced: %8lu kB\n"
  568. "Anonymous: %8lu kB\n"
  569. "AnonHugePages: %8lu kB\n"
  570. "Swap: %8lu kB\n"
  571. "KernelPageSize: %8lu kB\n"
  572. "MMUPageSize: %8lu kB\n"
  573. "Locked: %8lu kB\n",
  574. (vma->vm_end - vma->vm_start) >> 10,
  575. mss.resident >> 10,
  576. (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
  577. mss.shared_clean >> 10,
  578. mss.shared_dirty >> 10,
  579. mss.private_clean >> 10,
  580. mss.private_dirty >> 10,
  581. mss.referenced >> 10,
  582. mss.anonymous >> 10,
  583. mss.anonymous_thp >> 10,
  584. mss.swap >> 10,
  585. vma_kernel_pagesize(vma) >> 10,
  586. vma_mmu_pagesize(vma) >> 10,
  587. (vma->vm_flags & VM_LOCKED) ?
  588. (unsigned long)(mss.pss >> (10 + PSS_SHIFT)) : 0);
  589. if (vma->vm_flags & VM_NONLINEAR)
  590. seq_printf(m, "Nonlinear: %8lu kB\n",
  591. mss.nonlinear >> 10);
  592. show_smap_vma_flags(m, vma);
  593. m_cache_vma(m, vma);
  594. return 0;
  595. }
  596. static int show_pid_smap(struct seq_file *m, void *v)
  597. {
  598. return show_smap(m, v, 1);
  599. }
  600. static int show_tid_smap(struct seq_file *m, void *v)
  601. {
  602. return show_smap(m, v, 0);
  603. }
  604. static const struct seq_operations proc_pid_smaps_op = {
  605. .start = m_start,
  606. .next = m_next,
  607. .stop = m_stop,
  608. .show = show_pid_smap
  609. };
  610. static const struct seq_operations proc_tid_smaps_op = {
  611. .start = m_start,
  612. .next = m_next,
  613. .stop = m_stop,
  614. .show = show_tid_smap
  615. };
  616. static int pid_smaps_open(struct inode *inode, struct file *file)
  617. {
  618. return do_maps_open(inode, file, &proc_pid_smaps_op);
  619. }
  620. static int tid_smaps_open(struct inode *inode, struct file *file)
  621. {
  622. return do_maps_open(inode, file, &proc_tid_smaps_op);
  623. }
  624. const struct file_operations proc_pid_smaps_operations = {
  625. .open = pid_smaps_open,
  626. .read = seq_read,
  627. .llseek = seq_lseek,
  628. .release = proc_map_release,
  629. };
  630. const struct file_operations proc_tid_smaps_operations = {
  631. .open = tid_smaps_open,
  632. .read = seq_read,
  633. .llseek = seq_lseek,
  634. .release = proc_map_release,
  635. };
  636. /*
  637. * We do not want to have constant page-shift bits sitting in
  638. * pagemap entries and are about to reuse them some time soon.
  639. *
  640. * Here's the "migration strategy":
  641. * 1. when the system boots these bits remain what they are,
  642. * but a warning about future change is printed in log;
  643. * 2. once anyone clears soft-dirty bits via clear_refs file,
  644. * these flag is set to denote, that user is aware of the
  645. * new API and those page-shift bits change their meaning.
  646. * The respective warning is printed in dmesg;
  647. * 3. In a couple of releases we will remove all the mentions
  648. * of page-shift in pagemap entries.
  649. */
  650. static bool soft_dirty_cleared __read_mostly;
  651. enum clear_refs_types {
  652. CLEAR_REFS_ALL = 1,
  653. CLEAR_REFS_ANON,
  654. CLEAR_REFS_MAPPED,
  655. CLEAR_REFS_SOFT_DIRTY,
  656. CLEAR_REFS_LAST,
  657. };
  658. struct clear_refs_private {
  659. struct vm_area_struct *vma;
  660. enum clear_refs_types type;
  661. };
  662. static inline void clear_soft_dirty(struct vm_area_struct *vma,
  663. unsigned long addr, pte_t *pte)
  664. {
  665. #ifdef CONFIG_MEM_SOFT_DIRTY
  666. /*
  667. * The soft-dirty tracker uses #PF-s to catch writes
  668. * to pages, so write-protect the pte as well. See the
  669. * Documentation/vm/soft-dirty.txt for full description
  670. * of how soft-dirty works.
  671. */
  672. pte_t ptent = *pte;
  673. if (pte_present(ptent)) {
  674. ptent = pte_wrprotect(ptent);
  675. ptent = pte_clear_flags(ptent, _PAGE_SOFT_DIRTY);
  676. } else if (is_swap_pte(ptent)) {
  677. ptent = pte_swp_clear_soft_dirty(ptent);
  678. } else if (pte_file(ptent)) {
  679. ptent = pte_file_clear_soft_dirty(ptent);
  680. }
  681. set_pte_at(vma->vm_mm, addr, pte, ptent);
  682. #endif
  683. }
  684. static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
  685. unsigned long end, struct mm_walk *walk)
  686. {
  687. struct clear_refs_private *cp = walk->private;
  688. struct vm_area_struct *vma = cp->vma;
  689. pte_t *pte, ptent;
  690. spinlock_t *ptl;
  691. struct page *page;
  692. split_huge_page_pmd(vma, addr, pmd);
  693. if (pmd_trans_unstable(pmd))
  694. return 0;
  695. pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
  696. for (; addr != end; pte++, addr += PAGE_SIZE) {
  697. ptent = *pte;
  698. if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
  699. clear_soft_dirty(vma, addr, pte);
  700. continue;
  701. }
  702. if (!pte_present(ptent))
  703. continue;
  704. page = vm_normal_page(vma, addr, ptent);
  705. if (!page)
  706. continue;
  707. /* Clear accessed and referenced bits. */
  708. ptep_test_and_clear_young(vma, addr, pte);
  709. ClearPageReferenced(page);
  710. }
  711. pte_unmap_unlock(pte - 1, ptl);
  712. cond_resched();
  713. return 0;
  714. }
  715. static ssize_t clear_refs_write(struct file *file, const char __user *buf,
  716. size_t count, loff_t *ppos)
  717. {
  718. struct task_struct *task;
  719. char buffer[PROC_NUMBUF];
  720. struct mm_struct *mm;
  721. struct vm_area_struct *vma;
  722. enum clear_refs_types type;
  723. int itype;
  724. int rv;
  725. memset(buffer, 0, sizeof(buffer));
  726. if (count > sizeof(buffer) - 1)
  727. count = sizeof(buffer) - 1;
  728. if (copy_from_user(buffer, buf, count))
  729. return -EFAULT;
  730. rv = kstrtoint(strstrip(buffer), 10, &itype);
  731. if (rv < 0)
  732. return rv;
  733. type = (enum clear_refs_types)itype;
  734. if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
  735. return -EINVAL;
  736. if (type == CLEAR_REFS_SOFT_DIRTY) {
  737. soft_dirty_cleared = true;
  738. pr_warn_once("The pagemap bits 55-60 has changed their meaning!"
  739. " See the linux/Documentation/vm/pagemap.txt for "
  740. "details.\n");
  741. }
  742. task = get_proc_task(file_inode(file));
  743. if (!task)
  744. return -ESRCH;
  745. mm = get_task_mm(task);
  746. if (mm) {
  747. struct clear_refs_private cp = {
  748. .type = type,
  749. };
  750. struct mm_walk clear_refs_walk = {
  751. .pmd_entry = clear_refs_pte_range,
  752. .mm = mm,
  753. .private = &cp,
  754. };
  755. down_read(&mm->mmap_sem);
  756. if (type == CLEAR_REFS_SOFT_DIRTY) {
  757. for (vma = mm->mmap; vma; vma = vma->vm_next) {
  758. if (!(vma->vm_flags & VM_SOFTDIRTY))
  759. continue;
  760. up_read(&mm->mmap_sem);
  761. down_write(&mm->mmap_sem);
  762. for (vma = mm->mmap; vma; vma = vma->vm_next) {
  763. vma->vm_flags &= ~VM_SOFTDIRTY;
  764. vma_set_page_prot(vma);
  765. }
  766. downgrade_write(&mm->mmap_sem);
  767. break;
  768. }
  769. mmu_notifier_invalidate_range_start(mm, 0, -1);
  770. }
  771. for (vma = mm->mmap; vma; vma = vma->vm_next) {
  772. cp.vma = vma;
  773. if (is_vm_hugetlb_page(vma))
  774. continue;
  775. /*
  776. * Writing 1 to /proc/pid/clear_refs affects all pages.
  777. *
  778. * Writing 2 to /proc/pid/clear_refs only affects
  779. * Anonymous pages.
  780. *
  781. * Writing 3 to /proc/pid/clear_refs only affects file
  782. * mapped pages.
  783. *
  784. * Writing 4 to /proc/pid/clear_refs affects all pages.
  785. */
  786. if (type == CLEAR_REFS_ANON && vma->vm_file)
  787. continue;
  788. if (type == CLEAR_REFS_MAPPED && !vma->vm_file)
  789. continue;
  790. walk_page_range(vma->vm_start, vma->vm_end,
  791. &clear_refs_walk);
  792. }
  793. if (type == CLEAR_REFS_SOFT_DIRTY)
  794. mmu_notifier_invalidate_range_end(mm, 0, -1);
  795. flush_tlb_mm(mm);
  796. up_read(&mm->mmap_sem);
  797. mmput(mm);
  798. }
  799. put_task_struct(task);
  800. return count;
  801. }
  802. const struct file_operations proc_clear_refs_operations = {
  803. .write = clear_refs_write,
  804. .llseek = noop_llseek,
  805. };
  806. typedef struct {
  807. u64 pme;
  808. } pagemap_entry_t;
  809. struct pagemapread {
  810. int pos, len; /* units: PM_ENTRY_BYTES, not bytes */
  811. pagemap_entry_t *buffer;
  812. bool v2;
  813. };
  814. #define PAGEMAP_WALK_SIZE (PMD_SIZE)
  815. #define PAGEMAP_WALK_MASK (PMD_MASK)
  816. #define PM_ENTRY_BYTES sizeof(pagemap_entry_t)
  817. #define PM_STATUS_BITS 3
  818. #define PM_STATUS_OFFSET (64 - PM_STATUS_BITS)
  819. #define PM_STATUS_MASK (((1LL << PM_STATUS_BITS) - 1) << PM_STATUS_OFFSET)
  820. #define PM_STATUS(nr) (((nr) << PM_STATUS_OFFSET) & PM_STATUS_MASK)
  821. #define PM_PSHIFT_BITS 6
  822. #define PM_PSHIFT_OFFSET (PM_STATUS_OFFSET - PM_PSHIFT_BITS)
  823. #define PM_PSHIFT_MASK (((1LL << PM_PSHIFT_BITS) - 1) << PM_PSHIFT_OFFSET)
  824. #define __PM_PSHIFT(x) (((u64) (x) << PM_PSHIFT_OFFSET) & PM_PSHIFT_MASK)
  825. #define PM_PFRAME_MASK ((1LL << PM_PSHIFT_OFFSET) - 1)
  826. #define PM_PFRAME(x) ((x) & PM_PFRAME_MASK)
  827. /* in "new" pagemap pshift bits are occupied with more status bits */
  828. #define PM_STATUS2(v2, x) (__PM_PSHIFT(v2 ? x : PAGE_SHIFT))
  829. #define __PM_SOFT_DIRTY (1LL)
  830. #define PM_PRESENT PM_STATUS(4LL)
  831. #define PM_SWAP PM_STATUS(2LL)
  832. #define PM_FILE PM_STATUS(1LL)
  833. #define PM_NOT_PRESENT(v2) PM_STATUS2(v2, 0)
  834. #define PM_END_OF_BUFFER 1
  835. static inline pagemap_entry_t make_pme(u64 val)
  836. {
  837. return (pagemap_entry_t) { .pme = val };
  838. }
  839. static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
  840. struct pagemapread *pm)
  841. {
  842. pm->buffer[pm->pos++] = *pme;
  843. if (pm->pos >= pm->len)
  844. return PM_END_OF_BUFFER;
  845. return 0;
  846. }
  847. static int pagemap_pte_hole(unsigned long start, unsigned long end,
  848. struct mm_walk *walk)
  849. {
  850. struct pagemapread *pm = walk->private;
  851. unsigned long addr = start;
  852. int err = 0;
  853. while (addr < end) {
  854. struct vm_area_struct *vma = find_vma(walk->mm, addr);
  855. pagemap_entry_t pme = make_pme(PM_NOT_PRESENT(pm->v2));
  856. /* End of address space hole, which we mark as non-present. */
  857. unsigned long hole_end;
  858. if (vma)
  859. hole_end = min(end, vma->vm_start);
  860. else
  861. hole_end = end;
  862. for (; addr < hole_end; addr += PAGE_SIZE) {
  863. err = add_to_pagemap(addr, &pme, pm);
  864. if (err)
  865. goto out;
  866. }
  867. if (!vma)
  868. break;
  869. /* Addresses in the VMA. */
  870. if (vma->vm_flags & VM_SOFTDIRTY)
  871. pme.pme |= PM_STATUS2(pm->v2, __PM_SOFT_DIRTY);
  872. for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
  873. err = add_to_pagemap(addr, &pme, pm);
  874. if (err)
  875. goto out;
  876. }
  877. }
  878. out:
  879. return err;
  880. }
  881. static void pte_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm,
  882. struct vm_area_struct *vma, unsigned long addr, pte_t pte)
  883. {
  884. u64 frame, flags;
  885. struct page *page = NULL;
  886. int flags2 = 0;
  887. if (pte_present(pte)) {
  888. frame = pte_pfn(pte);
  889. flags = PM_PRESENT;
  890. page = vm_normal_page(vma, addr, pte);
  891. if (pte_soft_dirty(pte))
  892. flags2 |= __PM_SOFT_DIRTY;
  893. } else if (is_swap_pte(pte)) {
  894. swp_entry_t entry;
  895. if (pte_swp_soft_dirty(pte))
  896. flags2 |= __PM_SOFT_DIRTY;
  897. entry = pte_to_swp_entry(pte);
  898. frame = swp_type(entry) |
  899. (swp_offset(entry) << MAX_SWAPFILES_SHIFT);
  900. flags = PM_SWAP;
  901. if (is_migration_entry(entry))
  902. page = migration_entry_to_page(entry);
  903. } else {
  904. if (vma->vm_flags & VM_SOFTDIRTY)
  905. flags2 |= __PM_SOFT_DIRTY;
  906. *pme = make_pme(PM_NOT_PRESENT(pm->v2) | PM_STATUS2(pm->v2, flags2));
  907. return;
  908. }
  909. if (page && !PageAnon(page))
  910. flags |= PM_FILE;
  911. if ((vma->vm_flags & VM_SOFTDIRTY))
  912. flags2 |= __PM_SOFT_DIRTY;
  913. *pme = make_pme(PM_PFRAME(frame) | PM_STATUS2(pm->v2, flags2) | flags);
  914. }
  915. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  916. static void thp_pmd_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm,
  917. pmd_t pmd, int offset, int pmd_flags2)
  918. {
  919. /*
  920. * Currently pmd for thp is always present because thp can not be
  921. * swapped-out, migrated, or HWPOISONed (split in such cases instead.)
  922. * This if-check is just to prepare for future implementation.
  923. */
  924. if (pmd_present(pmd))
  925. *pme = make_pme(PM_PFRAME(pmd_pfn(pmd) + offset)
  926. | PM_STATUS2(pm->v2, pmd_flags2) | PM_PRESENT);
  927. else
  928. *pme = make_pme(PM_NOT_PRESENT(pm->v2) | PM_STATUS2(pm->v2, pmd_flags2));
  929. }
  930. #else
  931. static inline void thp_pmd_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm,
  932. pmd_t pmd, int offset, int pmd_flags2)
  933. {
  934. }
  935. #endif
  936. static int pagemap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
  937. struct mm_walk *walk)
  938. {
  939. struct vm_area_struct *vma;
  940. struct pagemapread *pm = walk->private;
  941. spinlock_t *ptl;
  942. pte_t *pte;
  943. int err = 0;
  944. /* find the first VMA at or above 'addr' */
  945. vma = find_vma(walk->mm, addr);
  946. if (vma && pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
  947. int pmd_flags2;
  948. if ((vma->vm_flags & VM_SOFTDIRTY) || pmd_soft_dirty(*pmd))
  949. pmd_flags2 = __PM_SOFT_DIRTY;
  950. else
  951. pmd_flags2 = 0;
  952. for (; addr != end; addr += PAGE_SIZE) {
  953. unsigned long offset;
  954. pagemap_entry_t pme;
  955. offset = (addr & ~PAGEMAP_WALK_MASK) >>
  956. PAGE_SHIFT;
  957. thp_pmd_to_pagemap_entry(&pme, pm, *pmd, offset, pmd_flags2);
  958. err = add_to_pagemap(addr, &pme, pm);
  959. if (err)
  960. break;
  961. }
  962. spin_unlock(ptl);
  963. return err;
  964. }
  965. if (pmd_trans_unstable(pmd))
  966. return 0;
  967. while (1) {
  968. /* End of address space hole, which we mark as non-present. */
  969. unsigned long hole_end;
  970. if (vma)
  971. hole_end = min(end, vma->vm_start);
  972. else
  973. hole_end = end;
  974. for (; addr < hole_end; addr += PAGE_SIZE) {
  975. pagemap_entry_t pme = make_pme(PM_NOT_PRESENT(pm->v2));
  976. err = add_to_pagemap(addr, &pme, pm);
  977. if (err)
  978. return err;
  979. }
  980. if (!vma || vma->vm_start >= end)
  981. break;
  982. /*
  983. * We can't possibly be in a hugetlb VMA. In general,
  984. * for a mm_walk with a pmd_entry and a hugetlb_entry,
  985. * the pmd_entry can only be called on addresses in a
  986. * hugetlb if the walk starts in a non-hugetlb VMA and
  987. * spans a hugepage VMA. Since pagemap_read walks are
  988. * PMD-sized and PMD-aligned, this will never be true.
  989. */
  990. BUG_ON(is_vm_hugetlb_page(vma));
  991. /* Addresses in the VMA. */
  992. for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
  993. pagemap_entry_t pme;
  994. pte = pte_offset_map(pmd, addr);
  995. pte_to_pagemap_entry(&pme, pm, vma, addr, *pte);
  996. pte_unmap(pte);
  997. err = add_to_pagemap(addr, &pme, pm);
  998. if (err)
  999. return err;
  1000. }
  1001. if (addr == end)
  1002. break;
  1003. vma = find_vma(walk->mm, addr);
  1004. }
  1005. cond_resched();
  1006. return err;
  1007. }
  1008. #ifdef CONFIG_HUGETLB_PAGE
  1009. static void huge_pte_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm,
  1010. pte_t pte, int offset, int flags2)
  1011. {
  1012. if (pte_present(pte))
  1013. *pme = make_pme(PM_PFRAME(pte_pfn(pte) + offset) |
  1014. PM_STATUS2(pm->v2, flags2) |
  1015. PM_PRESENT);
  1016. else
  1017. *pme = make_pme(PM_NOT_PRESENT(pm->v2) |
  1018. PM_STATUS2(pm->v2, flags2));
  1019. }
  1020. /* This function walks within one hugetlb entry in the single call */
  1021. static int pagemap_hugetlb_range(pte_t *pte, unsigned long hmask,
  1022. unsigned long addr, unsigned long end,
  1023. struct mm_walk *walk)
  1024. {
  1025. struct pagemapread *pm = walk->private;
  1026. struct vm_area_struct *vma;
  1027. int err = 0;
  1028. int flags2;
  1029. pagemap_entry_t pme;
  1030. vma = find_vma(walk->mm, addr);
  1031. WARN_ON_ONCE(!vma);
  1032. if (vma && (vma->vm_flags & VM_SOFTDIRTY))
  1033. flags2 = __PM_SOFT_DIRTY;
  1034. else
  1035. flags2 = 0;
  1036. for (; addr != end; addr += PAGE_SIZE) {
  1037. int offset = (addr & ~hmask) >> PAGE_SHIFT;
  1038. huge_pte_to_pagemap_entry(&pme, pm, *pte, offset, flags2);
  1039. err = add_to_pagemap(addr, &pme, pm);
  1040. if (err)
  1041. return err;
  1042. }
  1043. cond_resched();
  1044. return err;
  1045. }
  1046. #endif /* HUGETLB_PAGE */
  1047. /*
  1048. * /proc/pid/pagemap - an array mapping virtual pages to pfns
  1049. *
  1050. * For each page in the address space, this file contains one 64-bit entry
  1051. * consisting of the following:
  1052. *
  1053. * Bits 0-54 page frame number (PFN) if present
  1054. * Bits 0-4 swap type if swapped
  1055. * Bits 5-54 swap offset if swapped
  1056. * Bits 55-60 page shift (page size = 1<<page shift)
  1057. * Bit 61 page is file-page or shared-anon
  1058. * Bit 62 page swapped
  1059. * Bit 63 page present
  1060. *
  1061. * If the page is not present but in swap, then the PFN contains an
  1062. * encoding of the swap file number and the page's offset into the
  1063. * swap. Unmapped pages return a null PFN. This allows determining
  1064. * precisely which pages are mapped (or in swap) and comparing mapped
  1065. * pages between processes.
  1066. *
  1067. * Efficient users of this interface will use /proc/pid/maps to
  1068. * determine which areas of memory are actually mapped and llseek to
  1069. * skip over unmapped regions.
  1070. */
  1071. static ssize_t pagemap_read(struct file *file, char __user *buf,
  1072. size_t count, loff_t *ppos)
  1073. {
  1074. struct task_struct *task = get_proc_task(file_inode(file));
  1075. struct mm_struct *mm;
  1076. struct pagemapread pm;
  1077. int ret = -ESRCH;
  1078. struct mm_walk pagemap_walk = {};
  1079. unsigned long src;
  1080. unsigned long svpfn;
  1081. unsigned long start_vaddr;
  1082. unsigned long end_vaddr;
  1083. int copied = 0;
  1084. if (!task)
  1085. goto out;
  1086. ret = -EINVAL;
  1087. /* file position must be aligned */
  1088. if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
  1089. goto out_task;
  1090. ret = 0;
  1091. if (!count)
  1092. goto out_task;
  1093. pm.v2 = soft_dirty_cleared;
  1094. pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
  1095. pm.buffer = kmalloc(pm.len * PM_ENTRY_BYTES, GFP_TEMPORARY);
  1096. ret = -ENOMEM;
  1097. if (!pm.buffer)
  1098. goto out_task;
  1099. mm = mm_access(task, PTRACE_MODE_READ);
  1100. ret = PTR_ERR(mm);
  1101. if (!mm || IS_ERR(mm))
  1102. goto out_free;
  1103. pagemap_walk.pmd_entry = pagemap_pte_range;
  1104. pagemap_walk.pte_hole = pagemap_pte_hole;
  1105. #ifdef CONFIG_HUGETLB_PAGE
  1106. pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
  1107. #endif
  1108. pagemap_walk.mm = mm;
  1109. pagemap_walk.private = &pm;
  1110. src = *ppos;
  1111. svpfn = src / PM_ENTRY_BYTES;
  1112. start_vaddr = svpfn << PAGE_SHIFT;
  1113. end_vaddr = TASK_SIZE_OF(task);
  1114. /* watch out for wraparound */
  1115. if (svpfn > TASK_SIZE_OF(task) >> PAGE_SHIFT)
  1116. start_vaddr = end_vaddr;
  1117. /*
  1118. * The odds are that this will stop walking way
  1119. * before end_vaddr, because the length of the
  1120. * user buffer is tracked in "pm", and the walk
  1121. * will stop when we hit the end of the buffer.
  1122. */
  1123. ret = 0;
  1124. while (count && (start_vaddr < end_vaddr)) {
  1125. int len;
  1126. unsigned long end;
  1127. pm.pos = 0;
  1128. end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
  1129. /* overflow ? */
  1130. if (end < start_vaddr || end > end_vaddr)
  1131. end = end_vaddr;
  1132. down_read(&mm->mmap_sem);
  1133. ret = walk_page_range(start_vaddr, end, &pagemap_walk);
  1134. up_read(&mm->mmap_sem);
  1135. start_vaddr = end;
  1136. len = min(count, PM_ENTRY_BYTES * pm.pos);
  1137. if (copy_to_user(buf, pm.buffer, len)) {
  1138. ret = -EFAULT;
  1139. goto out_mm;
  1140. }
  1141. copied += len;
  1142. buf += len;
  1143. count -= len;
  1144. }
  1145. *ppos += copied;
  1146. if (!ret || ret == PM_END_OF_BUFFER)
  1147. ret = copied;
  1148. out_mm:
  1149. mmput(mm);
  1150. out_free:
  1151. kfree(pm.buffer);
  1152. out_task:
  1153. put_task_struct(task);
  1154. out:
  1155. return ret;
  1156. }
  1157. static int pagemap_open(struct inode *inode, struct file *file)
  1158. {
  1159. pr_warn_once("Bits 55-60 of /proc/PID/pagemap entries are about "
  1160. "to stop being page-shift some time soon. See the "
  1161. "linux/Documentation/vm/pagemap.txt for details.\n");
  1162. return 0;
  1163. }
  1164. const struct file_operations proc_pagemap_operations = {
  1165. .llseek = mem_lseek, /* borrow this */
  1166. .read = pagemap_read,
  1167. .open = pagemap_open,
  1168. };
  1169. #endif /* CONFIG_PROC_PAGE_MONITOR */
  1170. #ifdef CONFIG_NUMA
  1171. struct numa_maps {
  1172. struct vm_area_struct *vma;
  1173. unsigned long pages;
  1174. unsigned long anon;
  1175. unsigned long active;
  1176. unsigned long writeback;
  1177. unsigned long mapcount_max;
  1178. unsigned long dirty;
  1179. unsigned long swapcache;
  1180. unsigned long node[MAX_NUMNODES];
  1181. };
  1182. struct numa_maps_private {
  1183. struct proc_maps_private proc_maps;
  1184. struct numa_maps md;
  1185. };
  1186. static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
  1187. unsigned long nr_pages)
  1188. {
  1189. int count = page_mapcount(page);
  1190. md->pages += nr_pages;
  1191. if (pte_dirty || PageDirty(page))
  1192. md->dirty += nr_pages;
  1193. if (PageSwapCache(page))
  1194. md->swapcache += nr_pages;
  1195. if (PageActive(page) || PageUnevictable(page))
  1196. md->active += nr_pages;
  1197. if (PageWriteback(page))
  1198. md->writeback += nr_pages;
  1199. if (PageAnon(page))
  1200. md->anon += nr_pages;
  1201. if (count > md->mapcount_max)
  1202. md->mapcount_max = count;
  1203. md->node[page_to_nid(page)] += nr_pages;
  1204. }
  1205. static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
  1206. unsigned long addr)
  1207. {
  1208. struct page *page;
  1209. int nid;
  1210. if (!pte_present(pte))
  1211. return NULL;
  1212. page = vm_normal_page(vma, addr, pte);
  1213. if (!page)
  1214. return NULL;
  1215. if (PageReserved(page))
  1216. return NULL;
  1217. nid = page_to_nid(page);
  1218. if (!node_isset(nid, node_states[N_MEMORY]))
  1219. return NULL;
  1220. return page;
  1221. }
  1222. static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
  1223. unsigned long end, struct mm_walk *walk)
  1224. {
  1225. struct numa_maps *md;
  1226. spinlock_t *ptl;
  1227. pte_t *orig_pte;
  1228. pte_t *pte;
  1229. md = walk->private;
  1230. if (pmd_trans_huge_lock(pmd, md->vma, &ptl) == 1) {
  1231. pte_t huge_pte = *(pte_t *)pmd;
  1232. struct page *page;
  1233. page = can_gather_numa_stats(huge_pte, md->vma, addr);
  1234. if (page)
  1235. gather_stats(page, md, pte_dirty(huge_pte),
  1236. HPAGE_PMD_SIZE/PAGE_SIZE);
  1237. spin_unlock(ptl);
  1238. return 0;
  1239. }
  1240. if (pmd_trans_unstable(pmd))
  1241. return 0;
  1242. orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
  1243. do {
  1244. struct page *page = can_gather_numa_stats(*pte, md->vma, addr);
  1245. if (!page)
  1246. continue;
  1247. gather_stats(page, md, pte_dirty(*pte), 1);
  1248. } while (pte++, addr += PAGE_SIZE, addr != end);
  1249. pte_unmap_unlock(orig_pte, ptl);
  1250. return 0;
  1251. }
  1252. #ifdef CONFIG_HUGETLB_PAGE
  1253. static int gather_hugetbl_stats(pte_t *pte, unsigned long hmask,
  1254. unsigned long addr, unsigned long end, struct mm_walk *walk)
  1255. {
  1256. struct numa_maps *md;
  1257. struct page *page;
  1258. if (!pte_present(*pte))
  1259. return 0;
  1260. page = pte_page(*pte);
  1261. if (!page)
  1262. return 0;
  1263. md = walk->private;
  1264. gather_stats(page, md, pte_dirty(*pte), 1);
  1265. return 0;
  1266. }
  1267. #else
  1268. static int gather_hugetbl_stats(pte_t *pte, unsigned long hmask,
  1269. unsigned long addr, unsigned long end, struct mm_walk *walk)
  1270. {
  1271. return 0;
  1272. }
  1273. #endif
  1274. /*
  1275. * Display pages allocated per node and memory policy via /proc.
  1276. */
  1277. static int show_numa_map(struct seq_file *m, void *v, int is_pid)
  1278. {
  1279. struct numa_maps_private *numa_priv = m->private;
  1280. struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
  1281. struct vm_area_struct *vma = v;
  1282. struct numa_maps *md = &numa_priv->md;
  1283. struct file *file = vma->vm_file;
  1284. struct mm_struct *mm = vma->vm_mm;
  1285. struct mm_walk walk = {};
  1286. struct mempolicy *pol;
  1287. char buffer[64];
  1288. int nid;
  1289. if (!mm)
  1290. return 0;
  1291. /* Ensure we start with an empty set of numa_maps statistics. */
  1292. memset(md, 0, sizeof(*md));
  1293. md->vma = vma;
  1294. walk.hugetlb_entry = gather_hugetbl_stats;
  1295. walk.pmd_entry = gather_pte_stats;
  1296. walk.private = md;
  1297. walk.mm = mm;
  1298. pol = __get_vma_policy(vma, vma->vm_start);
  1299. if (pol) {
  1300. mpol_to_str(buffer, sizeof(buffer), pol);
  1301. mpol_cond_put(pol);
  1302. } else {
  1303. mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
  1304. }
  1305. seq_printf(m, "%08lx %s", vma->vm_start, buffer);
  1306. if (file) {
  1307. seq_puts(m, " file=");
  1308. seq_path(m, &file->f_path, "\n\t= ");
  1309. } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
  1310. seq_puts(m, " heap");
  1311. } else {
  1312. pid_t tid = pid_of_stack(proc_priv, vma, is_pid);
  1313. if (tid != 0) {
  1314. /*
  1315. * Thread stack in /proc/PID/task/TID/maps or
  1316. * the main process stack.
  1317. */
  1318. if (!is_pid || (vma->vm_start <= mm->start_stack &&
  1319. vma->vm_end >= mm->start_stack))
  1320. seq_puts(m, " stack");
  1321. else
  1322. seq_printf(m, " stack:%d", tid);
  1323. }
  1324. }
  1325. if (is_vm_hugetlb_page(vma))
  1326. seq_puts(m, " huge");
  1327. walk_page_range(vma->vm_start, vma->vm_end, &walk);
  1328. if (!md->pages)
  1329. goto out;
  1330. if (md->anon)
  1331. seq_printf(m, " anon=%lu", md->anon);
  1332. if (md->dirty)
  1333. seq_printf(m, " dirty=%lu", md->dirty);
  1334. if (md->pages != md->anon && md->pages != md->dirty)
  1335. seq_printf(m, " mapped=%lu", md->pages);
  1336. if (md->mapcount_max > 1)
  1337. seq_printf(m, " mapmax=%lu", md->mapcount_max);
  1338. if (md->swapcache)
  1339. seq_printf(m, " swapcache=%lu", md->swapcache);
  1340. if (md->active < md->pages && !is_vm_hugetlb_page(vma))
  1341. seq_printf(m, " active=%lu", md->active);
  1342. if (md->writeback)
  1343. seq_printf(m, " writeback=%lu", md->writeback);
  1344. for_each_node_state(nid, N_MEMORY)
  1345. if (md->node[nid])
  1346. seq_printf(m, " N%d=%lu", nid, md->node[nid]);
  1347. out:
  1348. seq_putc(m, '\n');
  1349. m_cache_vma(m, vma);
  1350. return 0;
  1351. }
  1352. static int show_pid_numa_map(struct seq_file *m, void *v)
  1353. {
  1354. return show_numa_map(m, v, 1);
  1355. }
  1356. static int show_tid_numa_map(struct seq_file *m, void *v)
  1357. {
  1358. return show_numa_map(m, v, 0);
  1359. }
  1360. static const struct seq_operations proc_pid_numa_maps_op = {
  1361. .start = m_start,
  1362. .next = m_next,
  1363. .stop = m_stop,
  1364. .show = show_pid_numa_map,
  1365. };
  1366. static const struct seq_operations proc_tid_numa_maps_op = {
  1367. .start = m_start,
  1368. .next = m_next,
  1369. .stop = m_stop,
  1370. .show = show_tid_numa_map,
  1371. };
  1372. static int numa_maps_open(struct inode *inode, struct file *file,
  1373. const struct seq_operations *ops)
  1374. {
  1375. return proc_maps_open(inode, file, ops,
  1376. sizeof(struct numa_maps_private));
  1377. }
  1378. static int pid_numa_maps_open(struct inode *inode, struct file *file)
  1379. {
  1380. return numa_maps_open(inode, file, &proc_pid_numa_maps_op);
  1381. }
  1382. static int tid_numa_maps_open(struct inode *inode, struct file *file)
  1383. {
  1384. return numa_maps_open(inode, file, &proc_tid_numa_maps_op);
  1385. }
  1386. const struct file_operations proc_pid_numa_maps_operations = {
  1387. .open = pid_numa_maps_open,
  1388. .read = seq_read,
  1389. .llseek = seq_lseek,
  1390. .release = proc_map_release,
  1391. };
  1392. const struct file_operations proc_tid_numa_maps_operations = {
  1393. .open = tid_numa_maps_open,
  1394. .read = seq_read,
  1395. .llseek = seq_lseek,
  1396. .release = proc_map_release,
  1397. };
  1398. #endif /* CONFIG_NUMA */