spi-pxa2xx.c 40 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579
  1. /*
  2. * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
  3. * Copyright (C) 2013, Intel Corporation
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation; either version 2 of the License, or
  8. * (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  18. */
  19. #include <linux/init.h>
  20. #include <linux/module.h>
  21. #include <linux/device.h>
  22. #include <linux/ioport.h>
  23. #include <linux/errno.h>
  24. #include <linux/err.h>
  25. #include <linux/interrupt.h>
  26. #include <linux/platform_device.h>
  27. #include <linux/spi/pxa2xx_spi.h>
  28. #include <linux/spi/spi.h>
  29. #include <linux/delay.h>
  30. #include <linux/gpio.h>
  31. #include <linux/slab.h>
  32. #include <linux/clk.h>
  33. #include <linux/pm_runtime.h>
  34. #include <linux/acpi.h>
  35. #include <asm/io.h>
  36. #include <asm/irq.h>
  37. #include <asm/delay.h>
  38. #include "spi-pxa2xx.h"
  39. MODULE_AUTHOR("Stephen Street");
  40. MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
  41. MODULE_LICENSE("GPL");
  42. MODULE_ALIAS("platform:pxa2xx-spi");
  43. #define MAX_BUSES 3
  44. #define TIMOUT_DFLT 1000
  45. /*
  46. * for testing SSCR1 changes that require SSP restart, basically
  47. * everything except the service and interrupt enables, the pxa270 developer
  48. * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
  49. * list, but the PXA255 dev man says all bits without really meaning the
  50. * service and interrupt enables
  51. */
  52. #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
  53. | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
  54. | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
  55. | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
  56. | SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
  57. | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
  58. #define QUARK_X1000_SSCR1_CHANGE_MASK (QUARK_X1000_SSCR1_STRF \
  59. | QUARK_X1000_SSCR1_EFWR \
  60. | QUARK_X1000_SSCR1_RFT \
  61. | QUARK_X1000_SSCR1_TFT \
  62. | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
  63. #define LPSS_RX_THRESH_DFLT 64
  64. #define LPSS_TX_LOTHRESH_DFLT 160
  65. #define LPSS_TX_HITHRESH_DFLT 224
  66. struct quark_spi_rate {
  67. u32 bitrate;
  68. u32 dds_clk_rate;
  69. u32 clk_div;
  70. };
  71. /*
  72. * 'rate', 'dds', 'clk_div' lookup table, which is defined in
  73. * the Quark SPI datasheet.
  74. */
  75. static const struct quark_spi_rate quark_spi_rate_table[] = {
  76. /* bitrate, dds_clk_rate, clk_div */
  77. {50000000, 0x800000, 0},
  78. {40000000, 0x666666, 0},
  79. {25000000, 0x400000, 0},
  80. {20000000, 0x666666, 1},
  81. {16667000, 0x800000, 2},
  82. {13333000, 0x666666, 2},
  83. {12500000, 0x200000, 0},
  84. {10000000, 0x800000, 4},
  85. {8000000, 0x666666, 4},
  86. {6250000, 0x400000, 3},
  87. {5000000, 0x400000, 4},
  88. {4000000, 0x666666, 9},
  89. {3125000, 0x80000, 0},
  90. {2500000, 0x400000, 9},
  91. {2000000, 0x666666, 19},
  92. {1563000, 0x40000, 0},
  93. {1250000, 0x200000, 9},
  94. {1000000, 0x400000, 24},
  95. {800000, 0x666666, 49},
  96. {781250, 0x20000, 0},
  97. {625000, 0x200000, 19},
  98. {500000, 0x400000, 49},
  99. {400000, 0x666666, 99},
  100. {390625, 0x10000, 0},
  101. {250000, 0x400000, 99},
  102. {200000, 0x666666, 199},
  103. {195313, 0x8000, 0},
  104. {125000, 0x100000, 49},
  105. {100000, 0x200000, 124},
  106. {50000, 0x100000, 124},
  107. {25000, 0x80000, 124},
  108. {10016, 0x20000, 77},
  109. {5040, 0x20000, 154},
  110. {1002, 0x8000, 194},
  111. };
  112. /* Offset from drv_data->lpss_base */
  113. #define GENERAL_REG 0x08
  114. #define GENERAL_REG_RXTO_HOLDOFF_DISABLE BIT(24)
  115. #define SSP_REG 0x0c
  116. #define SPI_CS_CONTROL 0x18
  117. #define SPI_CS_CONTROL_SW_MODE BIT(0)
  118. #define SPI_CS_CONTROL_CS_HIGH BIT(1)
  119. static bool is_lpss_ssp(const struct driver_data *drv_data)
  120. {
  121. return drv_data->ssp_type == LPSS_SSP;
  122. }
  123. static bool is_quark_x1000_ssp(const struct driver_data *drv_data)
  124. {
  125. return drv_data->ssp_type == QUARK_X1000_SSP;
  126. }
  127. static u32 pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data *drv_data)
  128. {
  129. switch (drv_data->ssp_type) {
  130. case QUARK_X1000_SSP:
  131. return QUARK_X1000_SSCR1_CHANGE_MASK;
  132. default:
  133. return SSCR1_CHANGE_MASK;
  134. }
  135. }
  136. static u32
  137. pxa2xx_spi_get_rx_default_thre(const struct driver_data *drv_data)
  138. {
  139. switch (drv_data->ssp_type) {
  140. case QUARK_X1000_SSP:
  141. return RX_THRESH_QUARK_X1000_DFLT;
  142. default:
  143. return RX_THRESH_DFLT;
  144. }
  145. }
  146. static bool pxa2xx_spi_txfifo_full(const struct driver_data *drv_data)
  147. {
  148. void __iomem *reg = drv_data->ioaddr;
  149. u32 mask;
  150. switch (drv_data->ssp_type) {
  151. case QUARK_X1000_SSP:
  152. mask = QUARK_X1000_SSSR_TFL_MASK;
  153. break;
  154. default:
  155. mask = SSSR_TFL_MASK;
  156. break;
  157. }
  158. return (read_SSSR(reg) & mask) == mask;
  159. }
  160. static void pxa2xx_spi_clear_rx_thre(const struct driver_data *drv_data,
  161. u32 *sccr1_reg)
  162. {
  163. u32 mask;
  164. switch (drv_data->ssp_type) {
  165. case QUARK_X1000_SSP:
  166. mask = QUARK_X1000_SSCR1_RFT;
  167. break;
  168. default:
  169. mask = SSCR1_RFT;
  170. break;
  171. }
  172. *sccr1_reg &= ~mask;
  173. }
  174. static void pxa2xx_spi_set_rx_thre(const struct driver_data *drv_data,
  175. u32 *sccr1_reg, u32 threshold)
  176. {
  177. switch (drv_data->ssp_type) {
  178. case QUARK_X1000_SSP:
  179. *sccr1_reg |= QUARK_X1000_SSCR1_RxTresh(threshold);
  180. break;
  181. default:
  182. *sccr1_reg |= SSCR1_RxTresh(threshold);
  183. break;
  184. }
  185. }
  186. static u32 pxa2xx_configure_sscr0(const struct driver_data *drv_data,
  187. u32 clk_div, u8 bits)
  188. {
  189. switch (drv_data->ssp_type) {
  190. case QUARK_X1000_SSP:
  191. return clk_div
  192. | QUARK_X1000_SSCR0_Motorola
  193. | QUARK_X1000_SSCR0_DataSize(bits > 32 ? 8 : bits)
  194. | SSCR0_SSE;
  195. default:
  196. return clk_div
  197. | SSCR0_Motorola
  198. | SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
  199. | SSCR0_SSE
  200. | (bits > 16 ? SSCR0_EDSS : 0);
  201. }
  202. }
  203. /*
  204. * Read and write LPSS SSP private registers. Caller must first check that
  205. * is_lpss_ssp() returns true before these can be called.
  206. */
  207. static u32 __lpss_ssp_read_priv(struct driver_data *drv_data, unsigned offset)
  208. {
  209. WARN_ON(!drv_data->lpss_base);
  210. return readl(drv_data->lpss_base + offset);
  211. }
  212. static void __lpss_ssp_write_priv(struct driver_data *drv_data,
  213. unsigned offset, u32 value)
  214. {
  215. WARN_ON(!drv_data->lpss_base);
  216. writel(value, drv_data->lpss_base + offset);
  217. }
  218. /*
  219. * lpss_ssp_setup - perform LPSS SSP specific setup
  220. * @drv_data: pointer to the driver private data
  221. *
  222. * Perform LPSS SSP specific setup. This function must be called first if
  223. * one is going to use LPSS SSP private registers.
  224. */
  225. static void lpss_ssp_setup(struct driver_data *drv_data)
  226. {
  227. unsigned offset = 0x400;
  228. u32 value, orig;
  229. if (!is_lpss_ssp(drv_data))
  230. return;
  231. /*
  232. * Perform auto-detection of the LPSS SSP private registers. They
  233. * can be either at 1k or 2k offset from the base address.
  234. */
  235. orig = readl(drv_data->ioaddr + offset + SPI_CS_CONTROL);
  236. /* Test SPI_CS_CONTROL_SW_MODE bit enabling */
  237. value = orig | SPI_CS_CONTROL_SW_MODE;
  238. writel(value, drv_data->ioaddr + offset + SPI_CS_CONTROL);
  239. value = readl(drv_data->ioaddr + offset + SPI_CS_CONTROL);
  240. if (value != (orig | SPI_CS_CONTROL_SW_MODE)) {
  241. offset = 0x800;
  242. goto detection_done;
  243. }
  244. orig = readl(drv_data->ioaddr + offset + SPI_CS_CONTROL);
  245. /* Test SPI_CS_CONTROL_SW_MODE bit disabling */
  246. value = orig & ~SPI_CS_CONTROL_SW_MODE;
  247. writel(value, drv_data->ioaddr + offset + SPI_CS_CONTROL);
  248. value = readl(drv_data->ioaddr + offset + SPI_CS_CONTROL);
  249. if (value != (orig & ~SPI_CS_CONTROL_SW_MODE)) {
  250. offset = 0x800;
  251. goto detection_done;
  252. }
  253. detection_done:
  254. /* Now set the LPSS base */
  255. drv_data->lpss_base = drv_data->ioaddr + offset;
  256. /* Enable software chip select control */
  257. value = SPI_CS_CONTROL_SW_MODE | SPI_CS_CONTROL_CS_HIGH;
  258. __lpss_ssp_write_priv(drv_data, SPI_CS_CONTROL, value);
  259. /* Enable multiblock DMA transfers */
  260. if (drv_data->master_info->enable_dma) {
  261. __lpss_ssp_write_priv(drv_data, SSP_REG, 1);
  262. value = __lpss_ssp_read_priv(drv_data, GENERAL_REG);
  263. value |= GENERAL_REG_RXTO_HOLDOFF_DISABLE;
  264. __lpss_ssp_write_priv(drv_data, GENERAL_REG, value);
  265. }
  266. }
  267. static void lpss_ssp_cs_control(struct driver_data *drv_data, bool enable)
  268. {
  269. u32 value;
  270. if (!is_lpss_ssp(drv_data))
  271. return;
  272. value = __lpss_ssp_read_priv(drv_data, SPI_CS_CONTROL);
  273. if (enable)
  274. value &= ~SPI_CS_CONTROL_CS_HIGH;
  275. else
  276. value |= SPI_CS_CONTROL_CS_HIGH;
  277. __lpss_ssp_write_priv(drv_data, SPI_CS_CONTROL, value);
  278. }
  279. static void cs_assert(struct driver_data *drv_data)
  280. {
  281. struct chip_data *chip = drv_data->cur_chip;
  282. if (drv_data->ssp_type == CE4100_SSP) {
  283. write_SSSR(drv_data->cur_chip->frm, drv_data->ioaddr);
  284. return;
  285. }
  286. if (chip->cs_control) {
  287. chip->cs_control(PXA2XX_CS_ASSERT);
  288. return;
  289. }
  290. if (gpio_is_valid(chip->gpio_cs)) {
  291. gpio_set_value(chip->gpio_cs, chip->gpio_cs_inverted);
  292. return;
  293. }
  294. lpss_ssp_cs_control(drv_data, true);
  295. }
  296. static void cs_deassert(struct driver_data *drv_data)
  297. {
  298. struct chip_data *chip = drv_data->cur_chip;
  299. if (drv_data->ssp_type == CE4100_SSP)
  300. return;
  301. if (chip->cs_control) {
  302. chip->cs_control(PXA2XX_CS_DEASSERT);
  303. return;
  304. }
  305. if (gpio_is_valid(chip->gpio_cs)) {
  306. gpio_set_value(chip->gpio_cs, !chip->gpio_cs_inverted);
  307. return;
  308. }
  309. lpss_ssp_cs_control(drv_data, false);
  310. }
  311. int pxa2xx_spi_flush(struct driver_data *drv_data)
  312. {
  313. unsigned long limit = loops_per_jiffy << 1;
  314. void __iomem *reg = drv_data->ioaddr;
  315. do {
  316. while (read_SSSR(reg) & SSSR_RNE) {
  317. read_SSDR(reg);
  318. }
  319. } while ((read_SSSR(reg) & SSSR_BSY) && --limit);
  320. write_SSSR_CS(drv_data, SSSR_ROR);
  321. return limit;
  322. }
  323. static int null_writer(struct driver_data *drv_data)
  324. {
  325. void __iomem *reg = drv_data->ioaddr;
  326. u8 n_bytes = drv_data->n_bytes;
  327. if (pxa2xx_spi_txfifo_full(drv_data)
  328. || (drv_data->tx == drv_data->tx_end))
  329. return 0;
  330. write_SSDR(0, reg);
  331. drv_data->tx += n_bytes;
  332. return 1;
  333. }
  334. static int null_reader(struct driver_data *drv_data)
  335. {
  336. void __iomem *reg = drv_data->ioaddr;
  337. u8 n_bytes = drv_data->n_bytes;
  338. while ((read_SSSR(reg) & SSSR_RNE)
  339. && (drv_data->rx < drv_data->rx_end)) {
  340. read_SSDR(reg);
  341. drv_data->rx += n_bytes;
  342. }
  343. return drv_data->rx == drv_data->rx_end;
  344. }
  345. static int u8_writer(struct driver_data *drv_data)
  346. {
  347. void __iomem *reg = drv_data->ioaddr;
  348. if (pxa2xx_spi_txfifo_full(drv_data)
  349. || (drv_data->tx == drv_data->tx_end))
  350. return 0;
  351. write_SSDR(*(u8 *)(drv_data->tx), reg);
  352. ++drv_data->tx;
  353. return 1;
  354. }
  355. static int u8_reader(struct driver_data *drv_data)
  356. {
  357. void __iomem *reg = drv_data->ioaddr;
  358. while ((read_SSSR(reg) & SSSR_RNE)
  359. && (drv_data->rx < drv_data->rx_end)) {
  360. *(u8 *)(drv_data->rx) = read_SSDR(reg);
  361. ++drv_data->rx;
  362. }
  363. return drv_data->rx == drv_data->rx_end;
  364. }
  365. static int u16_writer(struct driver_data *drv_data)
  366. {
  367. void __iomem *reg = drv_data->ioaddr;
  368. if (pxa2xx_spi_txfifo_full(drv_data)
  369. || (drv_data->tx == drv_data->tx_end))
  370. return 0;
  371. write_SSDR(*(u16 *)(drv_data->tx), reg);
  372. drv_data->tx += 2;
  373. return 1;
  374. }
  375. static int u16_reader(struct driver_data *drv_data)
  376. {
  377. void __iomem *reg = drv_data->ioaddr;
  378. while ((read_SSSR(reg) & SSSR_RNE)
  379. && (drv_data->rx < drv_data->rx_end)) {
  380. *(u16 *)(drv_data->rx) = read_SSDR(reg);
  381. drv_data->rx += 2;
  382. }
  383. return drv_data->rx == drv_data->rx_end;
  384. }
  385. static int u32_writer(struct driver_data *drv_data)
  386. {
  387. void __iomem *reg = drv_data->ioaddr;
  388. if (pxa2xx_spi_txfifo_full(drv_data)
  389. || (drv_data->tx == drv_data->tx_end))
  390. return 0;
  391. write_SSDR(*(u32 *)(drv_data->tx), reg);
  392. drv_data->tx += 4;
  393. return 1;
  394. }
  395. static int u32_reader(struct driver_data *drv_data)
  396. {
  397. void __iomem *reg = drv_data->ioaddr;
  398. while ((read_SSSR(reg) & SSSR_RNE)
  399. && (drv_data->rx < drv_data->rx_end)) {
  400. *(u32 *)(drv_data->rx) = read_SSDR(reg);
  401. drv_data->rx += 4;
  402. }
  403. return drv_data->rx == drv_data->rx_end;
  404. }
  405. void *pxa2xx_spi_next_transfer(struct driver_data *drv_data)
  406. {
  407. struct spi_message *msg = drv_data->cur_msg;
  408. struct spi_transfer *trans = drv_data->cur_transfer;
  409. /* Move to next transfer */
  410. if (trans->transfer_list.next != &msg->transfers) {
  411. drv_data->cur_transfer =
  412. list_entry(trans->transfer_list.next,
  413. struct spi_transfer,
  414. transfer_list);
  415. return RUNNING_STATE;
  416. } else
  417. return DONE_STATE;
  418. }
  419. /* caller already set message->status; dma and pio irqs are blocked */
  420. static void giveback(struct driver_data *drv_data)
  421. {
  422. struct spi_transfer* last_transfer;
  423. struct spi_message *msg;
  424. msg = drv_data->cur_msg;
  425. drv_data->cur_msg = NULL;
  426. drv_data->cur_transfer = NULL;
  427. last_transfer = list_last_entry(&msg->transfers, struct spi_transfer,
  428. transfer_list);
  429. /* Delay if requested before any change in chip select */
  430. if (last_transfer->delay_usecs)
  431. udelay(last_transfer->delay_usecs);
  432. /* Drop chip select UNLESS cs_change is true or we are returning
  433. * a message with an error, or next message is for another chip
  434. */
  435. if (!last_transfer->cs_change)
  436. cs_deassert(drv_data);
  437. else {
  438. struct spi_message *next_msg;
  439. /* Holding of cs was hinted, but we need to make sure
  440. * the next message is for the same chip. Don't waste
  441. * time with the following tests unless this was hinted.
  442. *
  443. * We cannot postpone this until pump_messages, because
  444. * after calling msg->complete (below) the driver that
  445. * sent the current message could be unloaded, which
  446. * could invalidate the cs_control() callback...
  447. */
  448. /* get a pointer to the next message, if any */
  449. next_msg = spi_get_next_queued_message(drv_data->master);
  450. /* see if the next and current messages point
  451. * to the same chip
  452. */
  453. if (next_msg && next_msg->spi != msg->spi)
  454. next_msg = NULL;
  455. if (!next_msg || msg->state == ERROR_STATE)
  456. cs_deassert(drv_data);
  457. }
  458. spi_finalize_current_message(drv_data->master);
  459. drv_data->cur_chip = NULL;
  460. }
  461. static void reset_sccr1(struct driver_data *drv_data)
  462. {
  463. void __iomem *reg = drv_data->ioaddr;
  464. struct chip_data *chip = drv_data->cur_chip;
  465. u32 sccr1_reg;
  466. sccr1_reg = read_SSCR1(reg) & ~drv_data->int_cr1;
  467. sccr1_reg &= ~SSCR1_RFT;
  468. sccr1_reg |= chip->threshold;
  469. write_SSCR1(sccr1_reg, reg);
  470. }
  471. static void int_error_stop(struct driver_data *drv_data, const char* msg)
  472. {
  473. void __iomem *reg = drv_data->ioaddr;
  474. /* Stop and reset SSP */
  475. write_SSSR_CS(drv_data, drv_data->clear_sr);
  476. reset_sccr1(drv_data);
  477. if (!pxa25x_ssp_comp(drv_data))
  478. write_SSTO(0, reg);
  479. pxa2xx_spi_flush(drv_data);
  480. write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
  481. dev_err(&drv_data->pdev->dev, "%s\n", msg);
  482. drv_data->cur_msg->state = ERROR_STATE;
  483. tasklet_schedule(&drv_data->pump_transfers);
  484. }
  485. static void int_transfer_complete(struct driver_data *drv_data)
  486. {
  487. void __iomem *reg = drv_data->ioaddr;
  488. /* Stop SSP */
  489. write_SSSR_CS(drv_data, drv_data->clear_sr);
  490. reset_sccr1(drv_data);
  491. if (!pxa25x_ssp_comp(drv_data))
  492. write_SSTO(0, reg);
  493. /* Update total byte transferred return count actual bytes read */
  494. drv_data->cur_msg->actual_length += drv_data->len -
  495. (drv_data->rx_end - drv_data->rx);
  496. /* Transfer delays and chip select release are
  497. * handled in pump_transfers or giveback
  498. */
  499. /* Move to next transfer */
  500. drv_data->cur_msg->state = pxa2xx_spi_next_transfer(drv_data);
  501. /* Schedule transfer tasklet */
  502. tasklet_schedule(&drv_data->pump_transfers);
  503. }
  504. static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
  505. {
  506. void __iomem *reg = drv_data->ioaddr;
  507. u32 irq_mask = (read_SSCR1(reg) & SSCR1_TIE) ?
  508. drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS;
  509. u32 irq_status = read_SSSR(reg) & irq_mask;
  510. if (irq_status & SSSR_ROR) {
  511. int_error_stop(drv_data, "interrupt_transfer: fifo overrun");
  512. return IRQ_HANDLED;
  513. }
  514. if (irq_status & SSSR_TINT) {
  515. write_SSSR(SSSR_TINT, reg);
  516. if (drv_data->read(drv_data)) {
  517. int_transfer_complete(drv_data);
  518. return IRQ_HANDLED;
  519. }
  520. }
  521. /* Drain rx fifo, Fill tx fifo and prevent overruns */
  522. do {
  523. if (drv_data->read(drv_data)) {
  524. int_transfer_complete(drv_data);
  525. return IRQ_HANDLED;
  526. }
  527. } while (drv_data->write(drv_data));
  528. if (drv_data->read(drv_data)) {
  529. int_transfer_complete(drv_data);
  530. return IRQ_HANDLED;
  531. }
  532. if (drv_data->tx == drv_data->tx_end) {
  533. u32 bytes_left;
  534. u32 sccr1_reg;
  535. sccr1_reg = read_SSCR1(reg);
  536. sccr1_reg &= ~SSCR1_TIE;
  537. /*
  538. * PXA25x_SSP has no timeout, set up rx threshould for the
  539. * remaining RX bytes.
  540. */
  541. if (pxa25x_ssp_comp(drv_data)) {
  542. u32 rx_thre;
  543. pxa2xx_spi_clear_rx_thre(drv_data, &sccr1_reg);
  544. bytes_left = drv_data->rx_end - drv_data->rx;
  545. switch (drv_data->n_bytes) {
  546. case 4:
  547. bytes_left >>= 1;
  548. case 2:
  549. bytes_left >>= 1;
  550. }
  551. rx_thre = pxa2xx_spi_get_rx_default_thre(drv_data);
  552. if (rx_thre > bytes_left)
  553. rx_thre = bytes_left;
  554. pxa2xx_spi_set_rx_thre(drv_data, &sccr1_reg, rx_thre);
  555. }
  556. write_SSCR1(sccr1_reg, reg);
  557. }
  558. /* We did something */
  559. return IRQ_HANDLED;
  560. }
  561. static irqreturn_t ssp_int(int irq, void *dev_id)
  562. {
  563. struct driver_data *drv_data = dev_id;
  564. void __iomem *reg = drv_data->ioaddr;
  565. u32 sccr1_reg;
  566. u32 mask = drv_data->mask_sr;
  567. u32 status;
  568. /*
  569. * The IRQ might be shared with other peripherals so we must first
  570. * check that are we RPM suspended or not. If we are we assume that
  571. * the IRQ was not for us (we shouldn't be RPM suspended when the
  572. * interrupt is enabled).
  573. */
  574. if (pm_runtime_suspended(&drv_data->pdev->dev))
  575. return IRQ_NONE;
  576. /*
  577. * If the device is not yet in RPM suspended state and we get an
  578. * interrupt that is meant for another device, check if status bits
  579. * are all set to one. That means that the device is already
  580. * powered off.
  581. */
  582. status = read_SSSR(reg);
  583. if (status == ~0)
  584. return IRQ_NONE;
  585. sccr1_reg = read_SSCR1(reg);
  586. /* Ignore possible writes if we don't need to write */
  587. if (!(sccr1_reg & SSCR1_TIE))
  588. mask &= ~SSSR_TFS;
  589. if (!(status & mask))
  590. return IRQ_NONE;
  591. if (!drv_data->cur_msg) {
  592. write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
  593. write_SSCR1(read_SSCR1(reg) & ~drv_data->int_cr1, reg);
  594. if (!pxa25x_ssp_comp(drv_data))
  595. write_SSTO(0, reg);
  596. write_SSSR_CS(drv_data, drv_data->clear_sr);
  597. dev_err(&drv_data->pdev->dev,
  598. "bad message state in interrupt handler\n");
  599. /* Never fail */
  600. return IRQ_HANDLED;
  601. }
  602. return drv_data->transfer_handler(drv_data);
  603. }
  604. /*
  605. * The Quark SPI data sheet gives a table, and for the given 'rate',
  606. * the 'dds' and 'clk_div' can be found in the table.
  607. */
  608. static u32 quark_x1000_set_clk_regvals(u32 rate, u32 *dds, u32 *clk_div)
  609. {
  610. unsigned int i;
  611. for (i = 0; i < ARRAY_SIZE(quark_spi_rate_table); i++) {
  612. if (rate >= quark_spi_rate_table[i].bitrate) {
  613. *dds = quark_spi_rate_table[i].dds_clk_rate;
  614. *clk_div = quark_spi_rate_table[i].clk_div;
  615. return quark_spi_rate_table[i].bitrate;
  616. }
  617. }
  618. *dds = quark_spi_rate_table[i-1].dds_clk_rate;
  619. *clk_div = quark_spi_rate_table[i-1].clk_div;
  620. return quark_spi_rate_table[i-1].bitrate;
  621. }
  622. static unsigned int ssp_get_clk_div(struct driver_data *drv_data, int rate)
  623. {
  624. unsigned long ssp_clk = drv_data->max_clk_rate;
  625. const struct ssp_device *ssp = drv_data->ssp;
  626. rate = min_t(int, ssp_clk, rate);
  627. if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP)
  628. return ((ssp_clk / (2 * rate) - 1) & 0xff) << 8;
  629. else
  630. return ((ssp_clk / rate - 1) & 0xfff) << 8;
  631. }
  632. static unsigned int pxa2xx_ssp_get_clk_div(struct driver_data *drv_data,
  633. struct chip_data *chip, int rate)
  634. {
  635. u32 clk_div;
  636. switch (drv_data->ssp_type) {
  637. case QUARK_X1000_SSP:
  638. quark_x1000_set_clk_regvals(rate, &chip->dds_rate, &clk_div);
  639. return clk_div << 8;
  640. default:
  641. return ssp_get_clk_div(drv_data, rate);
  642. }
  643. }
  644. static void pump_transfers(unsigned long data)
  645. {
  646. struct driver_data *drv_data = (struct driver_data *)data;
  647. struct spi_message *message = NULL;
  648. struct spi_transfer *transfer = NULL;
  649. struct spi_transfer *previous = NULL;
  650. struct chip_data *chip = NULL;
  651. void __iomem *reg = drv_data->ioaddr;
  652. u32 clk_div = 0;
  653. u8 bits = 0;
  654. u32 speed = 0;
  655. u32 cr0;
  656. u32 cr1;
  657. u32 dma_thresh = drv_data->cur_chip->dma_threshold;
  658. u32 dma_burst = drv_data->cur_chip->dma_burst_size;
  659. u32 change_mask = pxa2xx_spi_get_ssrc1_change_mask(drv_data);
  660. /* Get current state information */
  661. message = drv_data->cur_msg;
  662. transfer = drv_data->cur_transfer;
  663. chip = drv_data->cur_chip;
  664. /* Handle for abort */
  665. if (message->state == ERROR_STATE) {
  666. message->status = -EIO;
  667. giveback(drv_data);
  668. return;
  669. }
  670. /* Handle end of message */
  671. if (message->state == DONE_STATE) {
  672. message->status = 0;
  673. giveback(drv_data);
  674. return;
  675. }
  676. /* Delay if requested at end of transfer before CS change */
  677. if (message->state == RUNNING_STATE) {
  678. previous = list_entry(transfer->transfer_list.prev,
  679. struct spi_transfer,
  680. transfer_list);
  681. if (previous->delay_usecs)
  682. udelay(previous->delay_usecs);
  683. /* Drop chip select only if cs_change is requested */
  684. if (previous->cs_change)
  685. cs_deassert(drv_data);
  686. }
  687. /* Check if we can DMA this transfer */
  688. if (!pxa2xx_spi_dma_is_possible(transfer->len) && chip->enable_dma) {
  689. /* reject already-mapped transfers; PIO won't always work */
  690. if (message->is_dma_mapped
  691. || transfer->rx_dma || transfer->tx_dma) {
  692. dev_err(&drv_data->pdev->dev,
  693. "pump_transfers: mapped transfer length of "
  694. "%u is greater than %d\n",
  695. transfer->len, MAX_DMA_LEN);
  696. message->status = -EINVAL;
  697. giveback(drv_data);
  698. return;
  699. }
  700. /* warn ... we force this to PIO mode */
  701. dev_warn_ratelimited(&message->spi->dev,
  702. "pump_transfers: DMA disabled for transfer length %ld "
  703. "greater than %d\n",
  704. (long)drv_data->len, MAX_DMA_LEN);
  705. }
  706. /* Setup the transfer state based on the type of transfer */
  707. if (pxa2xx_spi_flush(drv_data) == 0) {
  708. dev_err(&drv_data->pdev->dev, "pump_transfers: flush failed\n");
  709. message->status = -EIO;
  710. giveback(drv_data);
  711. return;
  712. }
  713. drv_data->n_bytes = chip->n_bytes;
  714. drv_data->tx = (void *)transfer->tx_buf;
  715. drv_data->tx_end = drv_data->tx + transfer->len;
  716. drv_data->rx = transfer->rx_buf;
  717. drv_data->rx_end = drv_data->rx + transfer->len;
  718. drv_data->rx_dma = transfer->rx_dma;
  719. drv_data->tx_dma = transfer->tx_dma;
  720. drv_data->len = transfer->len;
  721. drv_data->write = drv_data->tx ? chip->write : null_writer;
  722. drv_data->read = drv_data->rx ? chip->read : null_reader;
  723. /* Change speed and bit per word on a per transfer */
  724. cr0 = chip->cr0;
  725. if (transfer->speed_hz || transfer->bits_per_word) {
  726. bits = chip->bits_per_word;
  727. speed = chip->speed_hz;
  728. if (transfer->speed_hz)
  729. speed = transfer->speed_hz;
  730. if (transfer->bits_per_word)
  731. bits = transfer->bits_per_word;
  732. clk_div = pxa2xx_ssp_get_clk_div(drv_data, chip, speed);
  733. if (bits <= 8) {
  734. drv_data->n_bytes = 1;
  735. drv_data->read = drv_data->read != null_reader ?
  736. u8_reader : null_reader;
  737. drv_data->write = drv_data->write != null_writer ?
  738. u8_writer : null_writer;
  739. } else if (bits <= 16) {
  740. drv_data->n_bytes = 2;
  741. drv_data->read = drv_data->read != null_reader ?
  742. u16_reader : null_reader;
  743. drv_data->write = drv_data->write != null_writer ?
  744. u16_writer : null_writer;
  745. } else if (bits <= 32) {
  746. drv_data->n_bytes = 4;
  747. drv_data->read = drv_data->read != null_reader ?
  748. u32_reader : null_reader;
  749. drv_data->write = drv_data->write != null_writer ?
  750. u32_writer : null_writer;
  751. }
  752. /* if bits/word is changed in dma mode, then must check the
  753. * thresholds and burst also */
  754. if (chip->enable_dma) {
  755. if (pxa2xx_spi_set_dma_burst_and_threshold(chip,
  756. message->spi,
  757. bits, &dma_burst,
  758. &dma_thresh))
  759. dev_warn_ratelimited(&message->spi->dev,
  760. "pump_transfers: DMA burst size reduced to match bits_per_word\n");
  761. }
  762. cr0 = pxa2xx_configure_sscr0(drv_data, clk_div, bits);
  763. }
  764. message->state = RUNNING_STATE;
  765. drv_data->dma_mapped = 0;
  766. if (pxa2xx_spi_dma_is_possible(drv_data->len))
  767. drv_data->dma_mapped = pxa2xx_spi_map_dma_buffers(drv_data);
  768. if (drv_data->dma_mapped) {
  769. /* Ensure we have the correct interrupt handler */
  770. drv_data->transfer_handler = pxa2xx_spi_dma_transfer;
  771. pxa2xx_spi_dma_prepare(drv_data, dma_burst);
  772. /* Clear status and start DMA engine */
  773. cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
  774. write_SSSR(drv_data->clear_sr, reg);
  775. pxa2xx_spi_dma_start(drv_data);
  776. } else {
  777. /* Ensure we have the correct interrupt handler */
  778. drv_data->transfer_handler = interrupt_transfer;
  779. /* Clear status */
  780. cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
  781. write_SSSR_CS(drv_data, drv_data->clear_sr);
  782. }
  783. if (is_lpss_ssp(drv_data)) {
  784. if ((read_SSIRF(reg) & 0xff) != chip->lpss_rx_threshold)
  785. write_SSIRF(chip->lpss_rx_threshold, reg);
  786. if ((read_SSITF(reg) & 0xffff) != chip->lpss_tx_threshold)
  787. write_SSITF(chip->lpss_tx_threshold, reg);
  788. }
  789. if (is_quark_x1000_ssp(drv_data) &&
  790. (read_DDS_RATE(reg) != chip->dds_rate))
  791. write_DDS_RATE(chip->dds_rate, reg);
  792. /* see if we need to reload the config registers */
  793. if ((read_SSCR0(reg) != cr0) ||
  794. (read_SSCR1(reg) & change_mask) != (cr1 & change_mask)) {
  795. /* stop the SSP, and update the other bits */
  796. write_SSCR0(cr0 & ~SSCR0_SSE, reg);
  797. if (!pxa25x_ssp_comp(drv_data))
  798. write_SSTO(chip->timeout, reg);
  799. /* first set CR1 without interrupt and service enables */
  800. write_SSCR1(cr1 & change_mask, reg);
  801. /* restart the SSP */
  802. write_SSCR0(cr0, reg);
  803. } else {
  804. if (!pxa25x_ssp_comp(drv_data))
  805. write_SSTO(chip->timeout, reg);
  806. }
  807. cs_assert(drv_data);
  808. /* after chip select, release the data by enabling service
  809. * requests and interrupts, without changing any mode bits */
  810. write_SSCR1(cr1, reg);
  811. }
  812. static int pxa2xx_spi_transfer_one_message(struct spi_master *master,
  813. struct spi_message *msg)
  814. {
  815. struct driver_data *drv_data = spi_master_get_devdata(master);
  816. drv_data->cur_msg = msg;
  817. /* Initial message state*/
  818. drv_data->cur_msg->state = START_STATE;
  819. drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next,
  820. struct spi_transfer,
  821. transfer_list);
  822. /* prepare to setup the SSP, in pump_transfers, using the per
  823. * chip configuration */
  824. drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi);
  825. /* Mark as busy and launch transfers */
  826. tasklet_schedule(&drv_data->pump_transfers);
  827. return 0;
  828. }
  829. static int pxa2xx_spi_unprepare_transfer(struct spi_master *master)
  830. {
  831. struct driver_data *drv_data = spi_master_get_devdata(master);
  832. /* Disable the SSP now */
  833. write_SSCR0(read_SSCR0(drv_data->ioaddr) & ~SSCR0_SSE,
  834. drv_data->ioaddr);
  835. return 0;
  836. }
  837. static int setup_cs(struct spi_device *spi, struct chip_data *chip,
  838. struct pxa2xx_spi_chip *chip_info)
  839. {
  840. int err = 0;
  841. if (chip == NULL || chip_info == NULL)
  842. return 0;
  843. /* NOTE: setup() can be called multiple times, possibly with
  844. * different chip_info, release previously requested GPIO
  845. */
  846. if (gpio_is_valid(chip->gpio_cs))
  847. gpio_free(chip->gpio_cs);
  848. /* If (*cs_control) is provided, ignore GPIO chip select */
  849. if (chip_info->cs_control) {
  850. chip->cs_control = chip_info->cs_control;
  851. return 0;
  852. }
  853. if (gpio_is_valid(chip_info->gpio_cs)) {
  854. err = gpio_request(chip_info->gpio_cs, "SPI_CS");
  855. if (err) {
  856. dev_err(&spi->dev, "failed to request chip select GPIO%d\n",
  857. chip_info->gpio_cs);
  858. return err;
  859. }
  860. chip->gpio_cs = chip_info->gpio_cs;
  861. chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
  862. err = gpio_direction_output(chip->gpio_cs,
  863. !chip->gpio_cs_inverted);
  864. }
  865. return err;
  866. }
  867. static int setup(struct spi_device *spi)
  868. {
  869. struct pxa2xx_spi_chip *chip_info = NULL;
  870. struct chip_data *chip;
  871. struct driver_data *drv_data = spi_master_get_devdata(spi->master);
  872. unsigned int clk_div;
  873. uint tx_thres, tx_hi_thres, rx_thres;
  874. switch (drv_data->ssp_type) {
  875. case QUARK_X1000_SSP:
  876. tx_thres = TX_THRESH_QUARK_X1000_DFLT;
  877. tx_hi_thres = 0;
  878. rx_thres = RX_THRESH_QUARK_X1000_DFLT;
  879. break;
  880. case LPSS_SSP:
  881. tx_thres = LPSS_TX_LOTHRESH_DFLT;
  882. tx_hi_thres = LPSS_TX_HITHRESH_DFLT;
  883. rx_thres = LPSS_RX_THRESH_DFLT;
  884. break;
  885. default:
  886. tx_thres = TX_THRESH_DFLT;
  887. tx_hi_thres = 0;
  888. rx_thres = RX_THRESH_DFLT;
  889. break;
  890. }
  891. /* Only alloc on first setup */
  892. chip = spi_get_ctldata(spi);
  893. if (!chip) {
  894. chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
  895. if (!chip)
  896. return -ENOMEM;
  897. if (drv_data->ssp_type == CE4100_SSP) {
  898. if (spi->chip_select > 4) {
  899. dev_err(&spi->dev,
  900. "failed setup: cs number must not be > 4.\n");
  901. kfree(chip);
  902. return -EINVAL;
  903. }
  904. chip->frm = spi->chip_select;
  905. } else
  906. chip->gpio_cs = -1;
  907. chip->enable_dma = 0;
  908. chip->timeout = TIMOUT_DFLT;
  909. }
  910. /* protocol drivers may change the chip settings, so...
  911. * if chip_info exists, use it */
  912. chip_info = spi->controller_data;
  913. /* chip_info isn't always needed */
  914. chip->cr1 = 0;
  915. if (chip_info) {
  916. if (chip_info->timeout)
  917. chip->timeout = chip_info->timeout;
  918. if (chip_info->tx_threshold)
  919. tx_thres = chip_info->tx_threshold;
  920. if (chip_info->tx_hi_threshold)
  921. tx_hi_thres = chip_info->tx_hi_threshold;
  922. if (chip_info->rx_threshold)
  923. rx_thres = chip_info->rx_threshold;
  924. chip->enable_dma = drv_data->master_info->enable_dma;
  925. chip->dma_threshold = 0;
  926. if (chip_info->enable_loopback)
  927. chip->cr1 = SSCR1_LBM;
  928. } else if (ACPI_HANDLE(&spi->dev)) {
  929. /*
  930. * Slave devices enumerated from ACPI namespace don't
  931. * usually have chip_info but we still might want to use
  932. * DMA with them.
  933. */
  934. chip->enable_dma = drv_data->master_info->enable_dma;
  935. }
  936. chip->lpss_rx_threshold = SSIRF_RxThresh(rx_thres);
  937. chip->lpss_tx_threshold = SSITF_TxLoThresh(tx_thres)
  938. | SSITF_TxHiThresh(tx_hi_thres);
  939. /* set dma burst and threshold outside of chip_info path so that if
  940. * chip_info goes away after setting chip->enable_dma, the
  941. * burst and threshold can still respond to changes in bits_per_word */
  942. if (chip->enable_dma) {
  943. /* set up legal burst and threshold for dma */
  944. if (pxa2xx_spi_set_dma_burst_and_threshold(chip, spi,
  945. spi->bits_per_word,
  946. &chip->dma_burst_size,
  947. &chip->dma_threshold)) {
  948. dev_warn(&spi->dev,
  949. "in setup: DMA burst size reduced to match bits_per_word\n");
  950. }
  951. }
  952. clk_div = pxa2xx_ssp_get_clk_div(drv_data, chip, spi->max_speed_hz);
  953. chip->speed_hz = spi->max_speed_hz;
  954. chip->cr0 = pxa2xx_configure_sscr0(drv_data, clk_div,
  955. spi->bits_per_word);
  956. switch (drv_data->ssp_type) {
  957. case QUARK_X1000_SSP:
  958. chip->threshold = (QUARK_X1000_SSCR1_RxTresh(rx_thres)
  959. & QUARK_X1000_SSCR1_RFT)
  960. | (QUARK_X1000_SSCR1_TxTresh(tx_thres)
  961. & QUARK_X1000_SSCR1_TFT);
  962. break;
  963. default:
  964. chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) |
  965. (SSCR1_TxTresh(tx_thres) & SSCR1_TFT);
  966. break;
  967. }
  968. chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
  969. chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) ? SSCR1_SPH : 0)
  970. | (((spi->mode & SPI_CPOL) != 0) ? SSCR1_SPO : 0);
  971. if (spi->mode & SPI_LOOP)
  972. chip->cr1 |= SSCR1_LBM;
  973. /* NOTE: PXA25x_SSP _could_ use external clocking ... */
  974. if (!pxa25x_ssp_comp(drv_data))
  975. dev_dbg(&spi->dev, "%ld Hz actual, %s\n",
  976. drv_data->max_clk_rate
  977. / (1 + ((chip->cr0 & SSCR0_SCR(0xfff)) >> 8)),
  978. chip->enable_dma ? "DMA" : "PIO");
  979. else
  980. dev_dbg(&spi->dev, "%ld Hz actual, %s\n",
  981. drv_data->max_clk_rate / 2
  982. / (1 + ((chip->cr0 & SSCR0_SCR(0x0ff)) >> 8)),
  983. chip->enable_dma ? "DMA" : "PIO");
  984. if (spi->bits_per_word <= 8) {
  985. chip->n_bytes = 1;
  986. chip->read = u8_reader;
  987. chip->write = u8_writer;
  988. } else if (spi->bits_per_word <= 16) {
  989. chip->n_bytes = 2;
  990. chip->read = u16_reader;
  991. chip->write = u16_writer;
  992. } else if (spi->bits_per_word <= 32) {
  993. if (!is_quark_x1000_ssp(drv_data))
  994. chip->cr0 |= SSCR0_EDSS;
  995. chip->n_bytes = 4;
  996. chip->read = u32_reader;
  997. chip->write = u32_writer;
  998. }
  999. chip->bits_per_word = spi->bits_per_word;
  1000. spi_set_ctldata(spi, chip);
  1001. if (drv_data->ssp_type == CE4100_SSP)
  1002. return 0;
  1003. return setup_cs(spi, chip, chip_info);
  1004. }
  1005. static void cleanup(struct spi_device *spi)
  1006. {
  1007. struct chip_data *chip = spi_get_ctldata(spi);
  1008. struct driver_data *drv_data = spi_master_get_devdata(spi->master);
  1009. if (!chip)
  1010. return;
  1011. if (drv_data->ssp_type != CE4100_SSP && gpio_is_valid(chip->gpio_cs))
  1012. gpio_free(chip->gpio_cs);
  1013. kfree(chip);
  1014. }
  1015. #ifdef CONFIG_ACPI
  1016. static struct pxa2xx_spi_master *
  1017. pxa2xx_spi_acpi_get_pdata(struct platform_device *pdev)
  1018. {
  1019. struct pxa2xx_spi_master *pdata;
  1020. struct acpi_device *adev;
  1021. struct ssp_device *ssp;
  1022. struct resource *res;
  1023. int devid;
  1024. if (!ACPI_HANDLE(&pdev->dev) ||
  1025. acpi_bus_get_device(ACPI_HANDLE(&pdev->dev), &adev))
  1026. return NULL;
  1027. pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
  1028. if (!pdata)
  1029. return NULL;
  1030. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1031. if (!res)
  1032. return NULL;
  1033. ssp = &pdata->ssp;
  1034. ssp->phys_base = res->start;
  1035. ssp->mmio_base = devm_ioremap_resource(&pdev->dev, res);
  1036. if (IS_ERR(ssp->mmio_base))
  1037. return NULL;
  1038. ssp->clk = devm_clk_get(&pdev->dev, NULL);
  1039. ssp->irq = platform_get_irq(pdev, 0);
  1040. ssp->type = LPSS_SSP;
  1041. ssp->pdev = pdev;
  1042. ssp->port_id = -1;
  1043. if (adev->pnp.unique_id && !kstrtoint(adev->pnp.unique_id, 0, &devid))
  1044. ssp->port_id = devid;
  1045. pdata->num_chipselect = 1;
  1046. pdata->enable_dma = true;
  1047. return pdata;
  1048. }
  1049. static struct acpi_device_id pxa2xx_spi_acpi_match[] = {
  1050. { "INT33C0", 0 },
  1051. { "INT33C1", 0 },
  1052. { "INT3430", 0 },
  1053. { "INT3431", 0 },
  1054. { "80860F0E", 0 },
  1055. { "8086228E", 0 },
  1056. { },
  1057. };
  1058. MODULE_DEVICE_TABLE(acpi, pxa2xx_spi_acpi_match);
  1059. #else
  1060. static inline struct pxa2xx_spi_master *
  1061. pxa2xx_spi_acpi_get_pdata(struct platform_device *pdev)
  1062. {
  1063. return NULL;
  1064. }
  1065. #endif
  1066. static int pxa2xx_spi_probe(struct platform_device *pdev)
  1067. {
  1068. struct device *dev = &pdev->dev;
  1069. struct pxa2xx_spi_master *platform_info;
  1070. struct spi_master *master;
  1071. struct driver_data *drv_data;
  1072. struct ssp_device *ssp;
  1073. int status;
  1074. platform_info = dev_get_platdata(dev);
  1075. if (!platform_info) {
  1076. platform_info = pxa2xx_spi_acpi_get_pdata(pdev);
  1077. if (!platform_info) {
  1078. dev_err(&pdev->dev, "missing platform data\n");
  1079. return -ENODEV;
  1080. }
  1081. }
  1082. ssp = pxa_ssp_request(pdev->id, pdev->name);
  1083. if (!ssp)
  1084. ssp = &platform_info->ssp;
  1085. if (!ssp->mmio_base) {
  1086. dev_err(&pdev->dev, "failed to get ssp\n");
  1087. return -ENODEV;
  1088. }
  1089. /* Allocate master with space for drv_data and null dma buffer */
  1090. master = spi_alloc_master(dev, sizeof(struct driver_data) + 16);
  1091. if (!master) {
  1092. dev_err(&pdev->dev, "cannot alloc spi_master\n");
  1093. pxa_ssp_free(ssp);
  1094. return -ENOMEM;
  1095. }
  1096. drv_data = spi_master_get_devdata(master);
  1097. drv_data->master = master;
  1098. drv_data->master_info = platform_info;
  1099. drv_data->pdev = pdev;
  1100. drv_data->ssp = ssp;
  1101. master->dev.parent = &pdev->dev;
  1102. master->dev.of_node = pdev->dev.of_node;
  1103. /* the spi->mode bits understood by this driver: */
  1104. master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
  1105. master->bus_num = ssp->port_id;
  1106. master->num_chipselect = platform_info->num_chipselect;
  1107. master->dma_alignment = DMA_ALIGNMENT;
  1108. master->cleanup = cleanup;
  1109. master->setup = setup;
  1110. master->transfer_one_message = pxa2xx_spi_transfer_one_message;
  1111. master->unprepare_transfer_hardware = pxa2xx_spi_unprepare_transfer;
  1112. master->auto_runtime_pm = true;
  1113. drv_data->ssp_type = ssp->type;
  1114. drv_data->null_dma_buf = (u32 *)PTR_ALIGN(&drv_data[1], DMA_ALIGNMENT);
  1115. drv_data->ioaddr = ssp->mmio_base;
  1116. drv_data->ssdr_physical = ssp->phys_base + SSDR;
  1117. if (pxa25x_ssp_comp(drv_data)) {
  1118. switch (drv_data->ssp_type) {
  1119. case QUARK_X1000_SSP:
  1120. master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
  1121. break;
  1122. default:
  1123. master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
  1124. break;
  1125. }
  1126. drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
  1127. drv_data->dma_cr1 = 0;
  1128. drv_data->clear_sr = SSSR_ROR;
  1129. drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
  1130. } else {
  1131. master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
  1132. drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
  1133. drv_data->dma_cr1 = DEFAULT_DMA_CR1;
  1134. drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
  1135. drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS | SSSR_ROR;
  1136. }
  1137. status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev),
  1138. drv_data);
  1139. if (status < 0) {
  1140. dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq);
  1141. goto out_error_master_alloc;
  1142. }
  1143. /* Setup DMA if requested */
  1144. drv_data->tx_channel = -1;
  1145. drv_data->rx_channel = -1;
  1146. if (platform_info->enable_dma) {
  1147. status = pxa2xx_spi_dma_setup(drv_data);
  1148. if (status) {
  1149. dev_dbg(dev, "no DMA channels available, using PIO\n");
  1150. platform_info->enable_dma = false;
  1151. }
  1152. }
  1153. /* Enable SOC clock */
  1154. clk_prepare_enable(ssp->clk);
  1155. drv_data->max_clk_rate = clk_get_rate(ssp->clk);
  1156. /* Load default SSP configuration */
  1157. write_SSCR0(0, drv_data->ioaddr);
  1158. switch (drv_data->ssp_type) {
  1159. case QUARK_X1000_SSP:
  1160. write_SSCR1(QUARK_X1000_SSCR1_RxTresh(
  1161. RX_THRESH_QUARK_X1000_DFLT) |
  1162. QUARK_X1000_SSCR1_TxTresh(
  1163. TX_THRESH_QUARK_X1000_DFLT),
  1164. drv_data->ioaddr);
  1165. /* using the Motorola SPI protocol and use 8 bit frame */
  1166. write_SSCR0(QUARK_X1000_SSCR0_Motorola
  1167. | QUARK_X1000_SSCR0_DataSize(8),
  1168. drv_data->ioaddr);
  1169. break;
  1170. default:
  1171. write_SSCR1(SSCR1_RxTresh(RX_THRESH_DFLT) |
  1172. SSCR1_TxTresh(TX_THRESH_DFLT),
  1173. drv_data->ioaddr);
  1174. write_SSCR0(SSCR0_SCR(2)
  1175. | SSCR0_Motorola
  1176. | SSCR0_DataSize(8),
  1177. drv_data->ioaddr);
  1178. break;
  1179. }
  1180. if (!pxa25x_ssp_comp(drv_data))
  1181. write_SSTO(0, drv_data->ioaddr);
  1182. if (!is_quark_x1000_ssp(drv_data))
  1183. write_SSPSP(0, drv_data->ioaddr);
  1184. lpss_ssp_setup(drv_data);
  1185. tasklet_init(&drv_data->pump_transfers, pump_transfers,
  1186. (unsigned long)drv_data);
  1187. pm_runtime_set_autosuspend_delay(&pdev->dev, 50);
  1188. pm_runtime_use_autosuspend(&pdev->dev);
  1189. pm_runtime_set_active(&pdev->dev);
  1190. pm_runtime_enable(&pdev->dev);
  1191. /* Register with the SPI framework */
  1192. platform_set_drvdata(pdev, drv_data);
  1193. status = devm_spi_register_master(&pdev->dev, master);
  1194. if (status != 0) {
  1195. dev_err(&pdev->dev, "problem registering spi master\n");
  1196. goto out_error_clock_enabled;
  1197. }
  1198. return status;
  1199. out_error_clock_enabled:
  1200. clk_disable_unprepare(ssp->clk);
  1201. pxa2xx_spi_dma_release(drv_data);
  1202. free_irq(ssp->irq, drv_data);
  1203. out_error_master_alloc:
  1204. spi_master_put(master);
  1205. pxa_ssp_free(ssp);
  1206. return status;
  1207. }
  1208. static int pxa2xx_spi_remove(struct platform_device *pdev)
  1209. {
  1210. struct driver_data *drv_data = platform_get_drvdata(pdev);
  1211. struct ssp_device *ssp;
  1212. if (!drv_data)
  1213. return 0;
  1214. ssp = drv_data->ssp;
  1215. pm_runtime_get_sync(&pdev->dev);
  1216. /* Disable the SSP at the peripheral and SOC level */
  1217. write_SSCR0(0, drv_data->ioaddr);
  1218. clk_disable_unprepare(ssp->clk);
  1219. /* Release DMA */
  1220. if (drv_data->master_info->enable_dma)
  1221. pxa2xx_spi_dma_release(drv_data);
  1222. pm_runtime_put_noidle(&pdev->dev);
  1223. pm_runtime_disable(&pdev->dev);
  1224. /* Release IRQ */
  1225. free_irq(ssp->irq, drv_data);
  1226. /* Release SSP */
  1227. pxa_ssp_free(ssp);
  1228. return 0;
  1229. }
  1230. static void pxa2xx_spi_shutdown(struct platform_device *pdev)
  1231. {
  1232. int status = 0;
  1233. if ((status = pxa2xx_spi_remove(pdev)) != 0)
  1234. dev_err(&pdev->dev, "shutdown failed with %d\n", status);
  1235. }
  1236. #ifdef CONFIG_PM_SLEEP
  1237. static int pxa2xx_spi_suspend(struct device *dev)
  1238. {
  1239. struct driver_data *drv_data = dev_get_drvdata(dev);
  1240. struct ssp_device *ssp = drv_data->ssp;
  1241. int status = 0;
  1242. status = spi_master_suspend(drv_data->master);
  1243. if (status != 0)
  1244. return status;
  1245. write_SSCR0(0, drv_data->ioaddr);
  1246. if (!pm_runtime_suspended(dev))
  1247. clk_disable_unprepare(ssp->clk);
  1248. return 0;
  1249. }
  1250. static int pxa2xx_spi_resume(struct device *dev)
  1251. {
  1252. struct driver_data *drv_data = dev_get_drvdata(dev);
  1253. struct ssp_device *ssp = drv_data->ssp;
  1254. int status = 0;
  1255. pxa2xx_spi_dma_resume(drv_data);
  1256. /* Enable the SSP clock */
  1257. if (!pm_runtime_suspended(dev))
  1258. clk_prepare_enable(ssp->clk);
  1259. /* Restore LPSS private register bits */
  1260. lpss_ssp_setup(drv_data);
  1261. /* Start the queue running */
  1262. status = spi_master_resume(drv_data->master);
  1263. if (status != 0) {
  1264. dev_err(dev, "problem starting queue (%d)\n", status);
  1265. return status;
  1266. }
  1267. return 0;
  1268. }
  1269. #endif
  1270. #ifdef CONFIG_PM
  1271. static int pxa2xx_spi_runtime_suspend(struct device *dev)
  1272. {
  1273. struct driver_data *drv_data = dev_get_drvdata(dev);
  1274. clk_disable_unprepare(drv_data->ssp->clk);
  1275. return 0;
  1276. }
  1277. static int pxa2xx_spi_runtime_resume(struct device *dev)
  1278. {
  1279. struct driver_data *drv_data = dev_get_drvdata(dev);
  1280. clk_prepare_enable(drv_data->ssp->clk);
  1281. return 0;
  1282. }
  1283. #endif
  1284. static const struct dev_pm_ops pxa2xx_spi_pm_ops = {
  1285. SET_SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend, pxa2xx_spi_resume)
  1286. SET_RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend,
  1287. pxa2xx_spi_runtime_resume, NULL)
  1288. };
  1289. static struct platform_driver driver = {
  1290. .driver = {
  1291. .name = "pxa2xx-spi",
  1292. .pm = &pxa2xx_spi_pm_ops,
  1293. .acpi_match_table = ACPI_PTR(pxa2xx_spi_acpi_match),
  1294. },
  1295. .probe = pxa2xx_spi_probe,
  1296. .remove = pxa2xx_spi_remove,
  1297. .shutdown = pxa2xx_spi_shutdown,
  1298. };
  1299. static int __init pxa2xx_spi_init(void)
  1300. {
  1301. return platform_driver_register(&driver);
  1302. }
  1303. subsys_initcall(pxa2xx_spi_init);
  1304. static void __exit pxa2xx_spi_exit(void)
  1305. {
  1306. platform_driver_unregister(&driver);
  1307. }
  1308. module_exit(pxa2xx_spi_exit);