md.c 222 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561
  1. /*
  2. md.c : Multiple Devices driver for Linux
  3. Copyright (C) 1998, 1999, 2000 Ingo Molnar
  4. completely rewritten, based on the MD driver code from Marc Zyngier
  5. Changes:
  6. - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
  7. - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
  8. - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
  9. - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
  10. - kmod support by: Cyrus Durgin
  11. - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
  12. - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
  13. - lots of fixes and improvements to the RAID1/RAID5 and generic
  14. RAID code (such as request based resynchronization):
  15. Neil Brown <neilb@cse.unsw.edu.au>.
  16. - persistent bitmap code
  17. Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
  18. This program is free software; you can redistribute it and/or modify
  19. it under the terms of the GNU General Public License as published by
  20. the Free Software Foundation; either version 2, or (at your option)
  21. any later version.
  22. You should have received a copy of the GNU General Public License
  23. (for example /usr/src/linux/COPYING); if not, write to the Free
  24. Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  25. */
  26. #include <linux/kthread.h>
  27. #include <linux/blkdev.h>
  28. #include <linux/sysctl.h>
  29. #include <linux/seq_file.h>
  30. #include <linux/fs.h>
  31. #include <linux/poll.h>
  32. #include <linux/ctype.h>
  33. #include <linux/string.h>
  34. #include <linux/hdreg.h>
  35. #include <linux/proc_fs.h>
  36. #include <linux/random.h>
  37. #include <linux/module.h>
  38. #include <linux/reboot.h>
  39. #include <linux/file.h>
  40. #include <linux/compat.h>
  41. #include <linux/delay.h>
  42. #include <linux/raid/md_p.h>
  43. #include <linux/raid/md_u.h>
  44. #include <linux/slab.h>
  45. #include "md.h"
  46. #include "bitmap.h"
  47. #ifndef MODULE
  48. static void autostart_arrays(int part);
  49. #endif
  50. /* pers_list is a list of registered personalities protected
  51. * by pers_lock.
  52. * pers_lock does extra service to protect accesses to
  53. * mddev->thread when the mutex cannot be held.
  54. */
  55. static LIST_HEAD(pers_list);
  56. static DEFINE_SPINLOCK(pers_lock);
  57. static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
  58. static struct workqueue_struct *md_wq;
  59. static struct workqueue_struct *md_misc_wq;
  60. static int remove_and_add_spares(struct mddev *mddev,
  61. struct md_rdev *this);
  62. /*
  63. * Default number of read corrections we'll attempt on an rdev
  64. * before ejecting it from the array. We divide the read error
  65. * count by 2 for every hour elapsed between read errors.
  66. */
  67. #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
  68. /*
  69. * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
  70. * is 1000 KB/sec, so the extra system load does not show up that much.
  71. * Increase it if you want to have more _guaranteed_ speed. Note that
  72. * the RAID driver will use the maximum available bandwidth if the IO
  73. * subsystem is idle. There is also an 'absolute maximum' reconstruction
  74. * speed limit - in case reconstruction slows down your system despite
  75. * idle IO detection.
  76. *
  77. * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
  78. * or /sys/block/mdX/md/sync_speed_{min,max}
  79. */
  80. static int sysctl_speed_limit_min = 1000;
  81. static int sysctl_speed_limit_max = 200000;
  82. static inline int speed_min(struct mddev *mddev)
  83. {
  84. return mddev->sync_speed_min ?
  85. mddev->sync_speed_min : sysctl_speed_limit_min;
  86. }
  87. static inline int speed_max(struct mddev *mddev)
  88. {
  89. return mddev->sync_speed_max ?
  90. mddev->sync_speed_max : sysctl_speed_limit_max;
  91. }
  92. static struct ctl_table_header *raid_table_header;
  93. static struct ctl_table raid_table[] = {
  94. {
  95. .procname = "speed_limit_min",
  96. .data = &sysctl_speed_limit_min,
  97. .maxlen = sizeof(int),
  98. .mode = S_IRUGO|S_IWUSR,
  99. .proc_handler = proc_dointvec,
  100. },
  101. {
  102. .procname = "speed_limit_max",
  103. .data = &sysctl_speed_limit_max,
  104. .maxlen = sizeof(int),
  105. .mode = S_IRUGO|S_IWUSR,
  106. .proc_handler = proc_dointvec,
  107. },
  108. { }
  109. };
  110. static struct ctl_table raid_dir_table[] = {
  111. {
  112. .procname = "raid",
  113. .maxlen = 0,
  114. .mode = S_IRUGO|S_IXUGO,
  115. .child = raid_table,
  116. },
  117. { }
  118. };
  119. static struct ctl_table raid_root_table[] = {
  120. {
  121. .procname = "dev",
  122. .maxlen = 0,
  123. .mode = 0555,
  124. .child = raid_dir_table,
  125. },
  126. { }
  127. };
  128. static const struct block_device_operations md_fops;
  129. static int start_readonly;
  130. /* bio_clone_mddev
  131. * like bio_clone, but with a local bio set
  132. */
  133. struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
  134. struct mddev *mddev)
  135. {
  136. struct bio *b;
  137. if (!mddev || !mddev->bio_set)
  138. return bio_alloc(gfp_mask, nr_iovecs);
  139. b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
  140. if (!b)
  141. return NULL;
  142. return b;
  143. }
  144. EXPORT_SYMBOL_GPL(bio_alloc_mddev);
  145. struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
  146. struct mddev *mddev)
  147. {
  148. if (!mddev || !mddev->bio_set)
  149. return bio_clone(bio, gfp_mask);
  150. return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
  151. }
  152. EXPORT_SYMBOL_GPL(bio_clone_mddev);
  153. /*
  154. * We have a system wide 'event count' that is incremented
  155. * on any 'interesting' event, and readers of /proc/mdstat
  156. * can use 'poll' or 'select' to find out when the event
  157. * count increases.
  158. *
  159. * Events are:
  160. * start array, stop array, error, add device, remove device,
  161. * start build, activate spare
  162. */
  163. static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
  164. static atomic_t md_event_count;
  165. void md_new_event(struct mddev *mddev)
  166. {
  167. atomic_inc(&md_event_count);
  168. wake_up(&md_event_waiters);
  169. }
  170. EXPORT_SYMBOL_GPL(md_new_event);
  171. /* Alternate version that can be called from interrupts
  172. * when calling sysfs_notify isn't needed.
  173. */
  174. static void md_new_event_inintr(struct mddev *mddev)
  175. {
  176. atomic_inc(&md_event_count);
  177. wake_up(&md_event_waiters);
  178. }
  179. /*
  180. * Enables to iterate over all existing md arrays
  181. * all_mddevs_lock protects this list.
  182. */
  183. static LIST_HEAD(all_mddevs);
  184. static DEFINE_SPINLOCK(all_mddevs_lock);
  185. /*
  186. * iterates through all used mddevs in the system.
  187. * We take care to grab the all_mddevs_lock whenever navigating
  188. * the list, and to always hold a refcount when unlocked.
  189. * Any code which breaks out of this loop while own
  190. * a reference to the current mddev and must mddev_put it.
  191. */
  192. #define for_each_mddev(_mddev,_tmp) \
  193. \
  194. for (({ spin_lock(&all_mddevs_lock); \
  195. _tmp = all_mddevs.next; \
  196. _mddev = NULL;}); \
  197. ({ if (_tmp != &all_mddevs) \
  198. mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
  199. spin_unlock(&all_mddevs_lock); \
  200. if (_mddev) mddev_put(_mddev); \
  201. _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
  202. _tmp != &all_mddevs;}); \
  203. ({ spin_lock(&all_mddevs_lock); \
  204. _tmp = _tmp->next;}) \
  205. )
  206. /* Rather than calling directly into the personality make_request function,
  207. * IO requests come here first so that we can check if the device is
  208. * being suspended pending a reconfiguration.
  209. * We hold a refcount over the call to ->make_request. By the time that
  210. * call has finished, the bio has been linked into some internal structure
  211. * and so is visible to ->quiesce(), so we don't need the refcount any more.
  212. */
  213. static void md_make_request(struct request_queue *q, struct bio *bio)
  214. {
  215. const int rw = bio_data_dir(bio);
  216. struct mddev *mddev = q->queuedata;
  217. unsigned int sectors;
  218. if (mddev == NULL || mddev->pers == NULL
  219. || !mddev->ready) {
  220. bio_io_error(bio);
  221. return;
  222. }
  223. if (mddev->ro == 1 && unlikely(rw == WRITE)) {
  224. bio_endio(bio, bio_sectors(bio) == 0 ? 0 : -EROFS);
  225. return;
  226. }
  227. smp_rmb(); /* Ensure implications of 'active' are visible */
  228. rcu_read_lock();
  229. if (mddev->suspended) {
  230. DEFINE_WAIT(__wait);
  231. for (;;) {
  232. prepare_to_wait(&mddev->sb_wait, &__wait,
  233. TASK_UNINTERRUPTIBLE);
  234. if (!mddev->suspended)
  235. break;
  236. rcu_read_unlock();
  237. schedule();
  238. rcu_read_lock();
  239. }
  240. finish_wait(&mddev->sb_wait, &__wait);
  241. }
  242. atomic_inc(&mddev->active_io);
  243. rcu_read_unlock();
  244. /*
  245. * save the sectors now since our bio can
  246. * go away inside make_request
  247. */
  248. sectors = bio_sectors(bio);
  249. mddev->pers->make_request(mddev, bio);
  250. generic_start_io_acct(rw, sectors, &mddev->gendisk->part0);
  251. if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
  252. wake_up(&mddev->sb_wait);
  253. }
  254. /* mddev_suspend makes sure no new requests are submitted
  255. * to the device, and that any requests that have been submitted
  256. * are completely handled.
  257. * Once ->stop is called and completes, the module will be completely
  258. * unused.
  259. */
  260. void mddev_suspend(struct mddev *mddev)
  261. {
  262. BUG_ON(mddev->suspended);
  263. mddev->suspended = 1;
  264. synchronize_rcu();
  265. wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
  266. mddev->pers->quiesce(mddev, 1);
  267. del_timer_sync(&mddev->safemode_timer);
  268. }
  269. EXPORT_SYMBOL_GPL(mddev_suspend);
  270. void mddev_resume(struct mddev *mddev)
  271. {
  272. mddev->suspended = 0;
  273. wake_up(&mddev->sb_wait);
  274. mddev->pers->quiesce(mddev, 0);
  275. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  276. md_wakeup_thread(mddev->thread);
  277. md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
  278. }
  279. EXPORT_SYMBOL_GPL(mddev_resume);
  280. int mddev_congested(struct mddev *mddev, int bits)
  281. {
  282. return mddev->suspended;
  283. }
  284. EXPORT_SYMBOL(mddev_congested);
  285. /*
  286. * Generic flush handling for md
  287. */
  288. static void md_end_flush(struct bio *bio, int err)
  289. {
  290. struct md_rdev *rdev = bio->bi_private;
  291. struct mddev *mddev = rdev->mddev;
  292. rdev_dec_pending(rdev, mddev);
  293. if (atomic_dec_and_test(&mddev->flush_pending)) {
  294. /* The pre-request flush has finished */
  295. queue_work(md_wq, &mddev->flush_work);
  296. }
  297. bio_put(bio);
  298. }
  299. static void md_submit_flush_data(struct work_struct *ws);
  300. static void submit_flushes(struct work_struct *ws)
  301. {
  302. struct mddev *mddev = container_of(ws, struct mddev, flush_work);
  303. struct md_rdev *rdev;
  304. INIT_WORK(&mddev->flush_work, md_submit_flush_data);
  305. atomic_set(&mddev->flush_pending, 1);
  306. rcu_read_lock();
  307. rdev_for_each_rcu(rdev, mddev)
  308. if (rdev->raid_disk >= 0 &&
  309. !test_bit(Faulty, &rdev->flags)) {
  310. /* Take two references, one is dropped
  311. * when request finishes, one after
  312. * we reclaim rcu_read_lock
  313. */
  314. struct bio *bi;
  315. atomic_inc(&rdev->nr_pending);
  316. atomic_inc(&rdev->nr_pending);
  317. rcu_read_unlock();
  318. bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
  319. bi->bi_end_io = md_end_flush;
  320. bi->bi_private = rdev;
  321. bi->bi_bdev = rdev->bdev;
  322. atomic_inc(&mddev->flush_pending);
  323. submit_bio(WRITE_FLUSH, bi);
  324. rcu_read_lock();
  325. rdev_dec_pending(rdev, mddev);
  326. }
  327. rcu_read_unlock();
  328. if (atomic_dec_and_test(&mddev->flush_pending))
  329. queue_work(md_wq, &mddev->flush_work);
  330. }
  331. static void md_submit_flush_data(struct work_struct *ws)
  332. {
  333. struct mddev *mddev = container_of(ws, struct mddev, flush_work);
  334. struct bio *bio = mddev->flush_bio;
  335. if (bio->bi_iter.bi_size == 0)
  336. /* an empty barrier - all done */
  337. bio_endio(bio, 0);
  338. else {
  339. bio->bi_rw &= ~REQ_FLUSH;
  340. mddev->pers->make_request(mddev, bio);
  341. }
  342. mddev->flush_bio = NULL;
  343. wake_up(&mddev->sb_wait);
  344. }
  345. void md_flush_request(struct mddev *mddev, struct bio *bio)
  346. {
  347. spin_lock_irq(&mddev->write_lock);
  348. wait_event_lock_irq(mddev->sb_wait,
  349. !mddev->flush_bio,
  350. mddev->write_lock);
  351. mddev->flush_bio = bio;
  352. spin_unlock_irq(&mddev->write_lock);
  353. INIT_WORK(&mddev->flush_work, submit_flushes);
  354. queue_work(md_wq, &mddev->flush_work);
  355. }
  356. EXPORT_SYMBOL(md_flush_request);
  357. void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
  358. {
  359. struct mddev *mddev = cb->data;
  360. md_wakeup_thread(mddev->thread);
  361. kfree(cb);
  362. }
  363. EXPORT_SYMBOL(md_unplug);
  364. static inline struct mddev *mddev_get(struct mddev *mddev)
  365. {
  366. atomic_inc(&mddev->active);
  367. return mddev;
  368. }
  369. static void mddev_delayed_delete(struct work_struct *ws);
  370. static void mddev_put(struct mddev *mddev)
  371. {
  372. struct bio_set *bs = NULL;
  373. if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
  374. return;
  375. if (!mddev->raid_disks && list_empty(&mddev->disks) &&
  376. mddev->ctime == 0 && !mddev->hold_active) {
  377. /* Array is not configured at all, and not held active,
  378. * so destroy it */
  379. list_del_init(&mddev->all_mddevs);
  380. bs = mddev->bio_set;
  381. mddev->bio_set = NULL;
  382. if (mddev->gendisk) {
  383. /* We did a probe so need to clean up. Call
  384. * queue_work inside the spinlock so that
  385. * flush_workqueue() after mddev_find will
  386. * succeed in waiting for the work to be done.
  387. */
  388. INIT_WORK(&mddev->del_work, mddev_delayed_delete);
  389. queue_work(md_misc_wq, &mddev->del_work);
  390. } else
  391. kfree(mddev);
  392. }
  393. spin_unlock(&all_mddevs_lock);
  394. if (bs)
  395. bioset_free(bs);
  396. }
  397. void mddev_init(struct mddev *mddev)
  398. {
  399. mutex_init(&mddev->open_mutex);
  400. mutex_init(&mddev->reconfig_mutex);
  401. mutex_init(&mddev->bitmap_info.mutex);
  402. INIT_LIST_HEAD(&mddev->disks);
  403. INIT_LIST_HEAD(&mddev->all_mddevs);
  404. init_timer(&mddev->safemode_timer);
  405. atomic_set(&mddev->active, 1);
  406. atomic_set(&mddev->openers, 0);
  407. atomic_set(&mddev->active_io, 0);
  408. spin_lock_init(&mddev->write_lock);
  409. atomic_set(&mddev->flush_pending, 0);
  410. init_waitqueue_head(&mddev->sb_wait);
  411. init_waitqueue_head(&mddev->recovery_wait);
  412. mddev->reshape_position = MaxSector;
  413. mddev->reshape_backwards = 0;
  414. mddev->last_sync_action = "none";
  415. mddev->resync_min = 0;
  416. mddev->resync_max = MaxSector;
  417. mddev->level = LEVEL_NONE;
  418. }
  419. EXPORT_SYMBOL_GPL(mddev_init);
  420. static struct mddev *mddev_find(dev_t unit)
  421. {
  422. struct mddev *mddev, *new = NULL;
  423. if (unit && MAJOR(unit) != MD_MAJOR)
  424. unit &= ~((1<<MdpMinorShift)-1);
  425. retry:
  426. spin_lock(&all_mddevs_lock);
  427. if (unit) {
  428. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  429. if (mddev->unit == unit) {
  430. mddev_get(mddev);
  431. spin_unlock(&all_mddevs_lock);
  432. kfree(new);
  433. return mddev;
  434. }
  435. if (new) {
  436. list_add(&new->all_mddevs, &all_mddevs);
  437. spin_unlock(&all_mddevs_lock);
  438. new->hold_active = UNTIL_IOCTL;
  439. return new;
  440. }
  441. } else if (new) {
  442. /* find an unused unit number */
  443. static int next_minor = 512;
  444. int start = next_minor;
  445. int is_free = 0;
  446. int dev = 0;
  447. while (!is_free) {
  448. dev = MKDEV(MD_MAJOR, next_minor);
  449. next_minor++;
  450. if (next_minor > MINORMASK)
  451. next_minor = 0;
  452. if (next_minor == start) {
  453. /* Oh dear, all in use. */
  454. spin_unlock(&all_mddevs_lock);
  455. kfree(new);
  456. return NULL;
  457. }
  458. is_free = 1;
  459. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  460. if (mddev->unit == dev) {
  461. is_free = 0;
  462. break;
  463. }
  464. }
  465. new->unit = dev;
  466. new->md_minor = MINOR(dev);
  467. new->hold_active = UNTIL_STOP;
  468. list_add(&new->all_mddevs, &all_mddevs);
  469. spin_unlock(&all_mddevs_lock);
  470. return new;
  471. }
  472. spin_unlock(&all_mddevs_lock);
  473. new = kzalloc(sizeof(*new), GFP_KERNEL);
  474. if (!new)
  475. return NULL;
  476. new->unit = unit;
  477. if (MAJOR(unit) == MD_MAJOR)
  478. new->md_minor = MINOR(unit);
  479. else
  480. new->md_minor = MINOR(unit) >> MdpMinorShift;
  481. mddev_init(new);
  482. goto retry;
  483. }
  484. static inline int __must_check mddev_lock(struct mddev *mddev)
  485. {
  486. return mutex_lock_interruptible(&mddev->reconfig_mutex);
  487. }
  488. /* Sometimes we need to take the lock in a situation where
  489. * failure due to interrupts is not acceptable.
  490. */
  491. static inline void mddev_lock_nointr(struct mddev *mddev)
  492. {
  493. mutex_lock(&mddev->reconfig_mutex);
  494. }
  495. static inline int mddev_is_locked(struct mddev *mddev)
  496. {
  497. return mutex_is_locked(&mddev->reconfig_mutex);
  498. }
  499. static inline int mddev_trylock(struct mddev *mddev)
  500. {
  501. return mutex_trylock(&mddev->reconfig_mutex);
  502. }
  503. static struct attribute_group md_redundancy_group;
  504. static void mddev_unlock(struct mddev *mddev)
  505. {
  506. if (mddev->to_remove) {
  507. /* These cannot be removed under reconfig_mutex as
  508. * an access to the files will try to take reconfig_mutex
  509. * while holding the file unremovable, which leads to
  510. * a deadlock.
  511. * So hold set sysfs_active while the remove in happeing,
  512. * and anything else which might set ->to_remove or my
  513. * otherwise change the sysfs namespace will fail with
  514. * -EBUSY if sysfs_active is still set.
  515. * We set sysfs_active under reconfig_mutex and elsewhere
  516. * test it under the same mutex to ensure its correct value
  517. * is seen.
  518. */
  519. struct attribute_group *to_remove = mddev->to_remove;
  520. mddev->to_remove = NULL;
  521. mddev->sysfs_active = 1;
  522. mutex_unlock(&mddev->reconfig_mutex);
  523. if (mddev->kobj.sd) {
  524. if (to_remove != &md_redundancy_group)
  525. sysfs_remove_group(&mddev->kobj, to_remove);
  526. if (mddev->pers == NULL ||
  527. mddev->pers->sync_request == NULL) {
  528. sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
  529. if (mddev->sysfs_action)
  530. sysfs_put(mddev->sysfs_action);
  531. mddev->sysfs_action = NULL;
  532. }
  533. }
  534. mddev->sysfs_active = 0;
  535. } else
  536. mutex_unlock(&mddev->reconfig_mutex);
  537. /* As we've dropped the mutex we need a spinlock to
  538. * make sure the thread doesn't disappear
  539. */
  540. spin_lock(&pers_lock);
  541. md_wakeup_thread(mddev->thread);
  542. spin_unlock(&pers_lock);
  543. }
  544. static struct md_rdev *find_rdev_nr_rcu(struct mddev *mddev, int nr)
  545. {
  546. struct md_rdev *rdev;
  547. rdev_for_each_rcu(rdev, mddev)
  548. if (rdev->desc_nr == nr)
  549. return rdev;
  550. return NULL;
  551. }
  552. static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
  553. {
  554. struct md_rdev *rdev;
  555. rdev_for_each(rdev, mddev)
  556. if (rdev->bdev->bd_dev == dev)
  557. return rdev;
  558. return NULL;
  559. }
  560. static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
  561. {
  562. struct md_rdev *rdev;
  563. rdev_for_each_rcu(rdev, mddev)
  564. if (rdev->bdev->bd_dev == dev)
  565. return rdev;
  566. return NULL;
  567. }
  568. static struct md_personality *find_pers(int level, char *clevel)
  569. {
  570. struct md_personality *pers;
  571. list_for_each_entry(pers, &pers_list, list) {
  572. if (level != LEVEL_NONE && pers->level == level)
  573. return pers;
  574. if (strcmp(pers->name, clevel)==0)
  575. return pers;
  576. }
  577. return NULL;
  578. }
  579. /* return the offset of the super block in 512byte sectors */
  580. static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
  581. {
  582. sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
  583. return MD_NEW_SIZE_SECTORS(num_sectors);
  584. }
  585. static int alloc_disk_sb(struct md_rdev *rdev)
  586. {
  587. rdev->sb_page = alloc_page(GFP_KERNEL);
  588. if (!rdev->sb_page) {
  589. printk(KERN_ALERT "md: out of memory.\n");
  590. return -ENOMEM;
  591. }
  592. return 0;
  593. }
  594. void md_rdev_clear(struct md_rdev *rdev)
  595. {
  596. if (rdev->sb_page) {
  597. put_page(rdev->sb_page);
  598. rdev->sb_loaded = 0;
  599. rdev->sb_page = NULL;
  600. rdev->sb_start = 0;
  601. rdev->sectors = 0;
  602. }
  603. if (rdev->bb_page) {
  604. put_page(rdev->bb_page);
  605. rdev->bb_page = NULL;
  606. }
  607. kfree(rdev->badblocks.page);
  608. rdev->badblocks.page = NULL;
  609. }
  610. EXPORT_SYMBOL_GPL(md_rdev_clear);
  611. static void super_written(struct bio *bio, int error)
  612. {
  613. struct md_rdev *rdev = bio->bi_private;
  614. struct mddev *mddev = rdev->mddev;
  615. if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
  616. printk("md: super_written gets error=%d, uptodate=%d\n",
  617. error, test_bit(BIO_UPTODATE, &bio->bi_flags));
  618. WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
  619. md_error(mddev, rdev);
  620. }
  621. if (atomic_dec_and_test(&mddev->pending_writes))
  622. wake_up(&mddev->sb_wait);
  623. bio_put(bio);
  624. }
  625. void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
  626. sector_t sector, int size, struct page *page)
  627. {
  628. /* write first size bytes of page to sector of rdev
  629. * Increment mddev->pending_writes before returning
  630. * and decrement it on completion, waking up sb_wait
  631. * if zero is reached.
  632. * If an error occurred, call md_error
  633. */
  634. struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
  635. bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
  636. bio->bi_iter.bi_sector = sector;
  637. bio_add_page(bio, page, size, 0);
  638. bio->bi_private = rdev;
  639. bio->bi_end_io = super_written;
  640. atomic_inc(&mddev->pending_writes);
  641. submit_bio(WRITE_FLUSH_FUA, bio);
  642. }
  643. void md_super_wait(struct mddev *mddev)
  644. {
  645. /* wait for all superblock writes that were scheduled to complete */
  646. wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
  647. }
  648. int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
  649. struct page *page, int rw, bool metadata_op)
  650. {
  651. struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
  652. int ret;
  653. bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
  654. rdev->meta_bdev : rdev->bdev;
  655. if (metadata_op)
  656. bio->bi_iter.bi_sector = sector + rdev->sb_start;
  657. else if (rdev->mddev->reshape_position != MaxSector &&
  658. (rdev->mddev->reshape_backwards ==
  659. (sector >= rdev->mddev->reshape_position)))
  660. bio->bi_iter.bi_sector = sector + rdev->new_data_offset;
  661. else
  662. bio->bi_iter.bi_sector = sector + rdev->data_offset;
  663. bio_add_page(bio, page, size, 0);
  664. submit_bio_wait(rw, bio);
  665. ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
  666. bio_put(bio);
  667. return ret;
  668. }
  669. EXPORT_SYMBOL_GPL(sync_page_io);
  670. static int read_disk_sb(struct md_rdev *rdev, int size)
  671. {
  672. char b[BDEVNAME_SIZE];
  673. if (rdev->sb_loaded)
  674. return 0;
  675. if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
  676. goto fail;
  677. rdev->sb_loaded = 1;
  678. return 0;
  679. fail:
  680. printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
  681. bdevname(rdev->bdev,b));
  682. return -EINVAL;
  683. }
  684. static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  685. {
  686. return sb1->set_uuid0 == sb2->set_uuid0 &&
  687. sb1->set_uuid1 == sb2->set_uuid1 &&
  688. sb1->set_uuid2 == sb2->set_uuid2 &&
  689. sb1->set_uuid3 == sb2->set_uuid3;
  690. }
  691. static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  692. {
  693. int ret;
  694. mdp_super_t *tmp1, *tmp2;
  695. tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
  696. tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
  697. if (!tmp1 || !tmp2) {
  698. ret = 0;
  699. printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
  700. goto abort;
  701. }
  702. *tmp1 = *sb1;
  703. *tmp2 = *sb2;
  704. /*
  705. * nr_disks is not constant
  706. */
  707. tmp1->nr_disks = 0;
  708. tmp2->nr_disks = 0;
  709. ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
  710. abort:
  711. kfree(tmp1);
  712. kfree(tmp2);
  713. return ret;
  714. }
  715. static u32 md_csum_fold(u32 csum)
  716. {
  717. csum = (csum & 0xffff) + (csum >> 16);
  718. return (csum & 0xffff) + (csum >> 16);
  719. }
  720. static unsigned int calc_sb_csum(mdp_super_t *sb)
  721. {
  722. u64 newcsum = 0;
  723. u32 *sb32 = (u32*)sb;
  724. int i;
  725. unsigned int disk_csum, csum;
  726. disk_csum = sb->sb_csum;
  727. sb->sb_csum = 0;
  728. for (i = 0; i < MD_SB_BYTES/4 ; i++)
  729. newcsum += sb32[i];
  730. csum = (newcsum & 0xffffffff) + (newcsum>>32);
  731. #ifdef CONFIG_ALPHA
  732. /* This used to use csum_partial, which was wrong for several
  733. * reasons including that different results are returned on
  734. * different architectures. It isn't critical that we get exactly
  735. * the same return value as before (we always csum_fold before
  736. * testing, and that removes any differences). However as we
  737. * know that csum_partial always returned a 16bit value on
  738. * alphas, do a fold to maximise conformity to previous behaviour.
  739. */
  740. sb->sb_csum = md_csum_fold(disk_csum);
  741. #else
  742. sb->sb_csum = disk_csum;
  743. #endif
  744. return csum;
  745. }
  746. /*
  747. * Handle superblock details.
  748. * We want to be able to handle multiple superblock formats
  749. * so we have a common interface to them all, and an array of
  750. * different handlers.
  751. * We rely on user-space to write the initial superblock, and support
  752. * reading and updating of superblocks.
  753. * Interface methods are:
  754. * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
  755. * loads and validates a superblock on dev.
  756. * if refdev != NULL, compare superblocks on both devices
  757. * Return:
  758. * 0 - dev has a superblock that is compatible with refdev
  759. * 1 - dev has a superblock that is compatible and newer than refdev
  760. * so dev should be used as the refdev in future
  761. * -EINVAL superblock incompatible or invalid
  762. * -othererror e.g. -EIO
  763. *
  764. * int validate_super(struct mddev *mddev, struct md_rdev *dev)
  765. * Verify that dev is acceptable into mddev.
  766. * The first time, mddev->raid_disks will be 0, and data from
  767. * dev should be merged in. Subsequent calls check that dev
  768. * is new enough. Return 0 or -EINVAL
  769. *
  770. * void sync_super(struct mddev *mddev, struct md_rdev *dev)
  771. * Update the superblock for rdev with data in mddev
  772. * This does not write to disc.
  773. *
  774. */
  775. struct super_type {
  776. char *name;
  777. struct module *owner;
  778. int (*load_super)(struct md_rdev *rdev,
  779. struct md_rdev *refdev,
  780. int minor_version);
  781. int (*validate_super)(struct mddev *mddev,
  782. struct md_rdev *rdev);
  783. void (*sync_super)(struct mddev *mddev,
  784. struct md_rdev *rdev);
  785. unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
  786. sector_t num_sectors);
  787. int (*allow_new_offset)(struct md_rdev *rdev,
  788. unsigned long long new_offset);
  789. };
  790. /*
  791. * Check that the given mddev has no bitmap.
  792. *
  793. * This function is called from the run method of all personalities that do not
  794. * support bitmaps. It prints an error message and returns non-zero if mddev
  795. * has a bitmap. Otherwise, it returns 0.
  796. *
  797. */
  798. int md_check_no_bitmap(struct mddev *mddev)
  799. {
  800. if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
  801. return 0;
  802. printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
  803. mdname(mddev), mddev->pers->name);
  804. return 1;
  805. }
  806. EXPORT_SYMBOL(md_check_no_bitmap);
  807. /*
  808. * load_super for 0.90.0
  809. */
  810. static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
  811. {
  812. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  813. mdp_super_t *sb;
  814. int ret;
  815. /*
  816. * Calculate the position of the superblock (512byte sectors),
  817. * it's at the end of the disk.
  818. *
  819. * It also happens to be a multiple of 4Kb.
  820. */
  821. rdev->sb_start = calc_dev_sboffset(rdev);
  822. ret = read_disk_sb(rdev, MD_SB_BYTES);
  823. if (ret) return ret;
  824. ret = -EINVAL;
  825. bdevname(rdev->bdev, b);
  826. sb = page_address(rdev->sb_page);
  827. if (sb->md_magic != MD_SB_MAGIC) {
  828. printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
  829. b);
  830. goto abort;
  831. }
  832. if (sb->major_version != 0 ||
  833. sb->minor_version < 90 ||
  834. sb->minor_version > 91) {
  835. printk(KERN_WARNING "Bad version number %d.%d on %s\n",
  836. sb->major_version, sb->minor_version,
  837. b);
  838. goto abort;
  839. }
  840. if (sb->raid_disks <= 0)
  841. goto abort;
  842. if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
  843. printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
  844. b);
  845. goto abort;
  846. }
  847. rdev->preferred_minor = sb->md_minor;
  848. rdev->data_offset = 0;
  849. rdev->new_data_offset = 0;
  850. rdev->sb_size = MD_SB_BYTES;
  851. rdev->badblocks.shift = -1;
  852. if (sb->level == LEVEL_MULTIPATH)
  853. rdev->desc_nr = -1;
  854. else
  855. rdev->desc_nr = sb->this_disk.number;
  856. if (!refdev) {
  857. ret = 1;
  858. } else {
  859. __u64 ev1, ev2;
  860. mdp_super_t *refsb = page_address(refdev->sb_page);
  861. if (!uuid_equal(refsb, sb)) {
  862. printk(KERN_WARNING "md: %s has different UUID to %s\n",
  863. b, bdevname(refdev->bdev,b2));
  864. goto abort;
  865. }
  866. if (!sb_equal(refsb, sb)) {
  867. printk(KERN_WARNING "md: %s has same UUID"
  868. " but different superblock to %s\n",
  869. b, bdevname(refdev->bdev, b2));
  870. goto abort;
  871. }
  872. ev1 = md_event(sb);
  873. ev2 = md_event(refsb);
  874. if (ev1 > ev2)
  875. ret = 1;
  876. else
  877. ret = 0;
  878. }
  879. rdev->sectors = rdev->sb_start;
  880. /* Limit to 4TB as metadata cannot record more than that.
  881. * (not needed for Linear and RAID0 as metadata doesn't
  882. * record this size)
  883. */
  884. if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
  885. rdev->sectors = (2ULL << 32) - 2;
  886. if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
  887. /* "this cannot possibly happen" ... */
  888. ret = -EINVAL;
  889. abort:
  890. return ret;
  891. }
  892. /*
  893. * validate_super for 0.90.0
  894. */
  895. static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
  896. {
  897. mdp_disk_t *desc;
  898. mdp_super_t *sb = page_address(rdev->sb_page);
  899. __u64 ev1 = md_event(sb);
  900. rdev->raid_disk = -1;
  901. clear_bit(Faulty, &rdev->flags);
  902. clear_bit(In_sync, &rdev->flags);
  903. clear_bit(Bitmap_sync, &rdev->flags);
  904. clear_bit(WriteMostly, &rdev->flags);
  905. if (mddev->raid_disks == 0) {
  906. mddev->major_version = 0;
  907. mddev->minor_version = sb->minor_version;
  908. mddev->patch_version = sb->patch_version;
  909. mddev->external = 0;
  910. mddev->chunk_sectors = sb->chunk_size >> 9;
  911. mddev->ctime = sb->ctime;
  912. mddev->utime = sb->utime;
  913. mddev->level = sb->level;
  914. mddev->clevel[0] = 0;
  915. mddev->layout = sb->layout;
  916. mddev->raid_disks = sb->raid_disks;
  917. mddev->dev_sectors = ((sector_t)sb->size) * 2;
  918. mddev->events = ev1;
  919. mddev->bitmap_info.offset = 0;
  920. mddev->bitmap_info.space = 0;
  921. /* bitmap can use 60 K after the 4K superblocks */
  922. mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
  923. mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
  924. mddev->reshape_backwards = 0;
  925. if (mddev->minor_version >= 91) {
  926. mddev->reshape_position = sb->reshape_position;
  927. mddev->delta_disks = sb->delta_disks;
  928. mddev->new_level = sb->new_level;
  929. mddev->new_layout = sb->new_layout;
  930. mddev->new_chunk_sectors = sb->new_chunk >> 9;
  931. if (mddev->delta_disks < 0)
  932. mddev->reshape_backwards = 1;
  933. } else {
  934. mddev->reshape_position = MaxSector;
  935. mddev->delta_disks = 0;
  936. mddev->new_level = mddev->level;
  937. mddev->new_layout = mddev->layout;
  938. mddev->new_chunk_sectors = mddev->chunk_sectors;
  939. }
  940. if (sb->state & (1<<MD_SB_CLEAN))
  941. mddev->recovery_cp = MaxSector;
  942. else {
  943. if (sb->events_hi == sb->cp_events_hi &&
  944. sb->events_lo == sb->cp_events_lo) {
  945. mddev->recovery_cp = sb->recovery_cp;
  946. } else
  947. mddev->recovery_cp = 0;
  948. }
  949. memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
  950. memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
  951. memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
  952. memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
  953. mddev->max_disks = MD_SB_DISKS;
  954. if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
  955. mddev->bitmap_info.file == NULL) {
  956. mddev->bitmap_info.offset =
  957. mddev->bitmap_info.default_offset;
  958. mddev->bitmap_info.space =
  959. mddev->bitmap_info.default_space;
  960. }
  961. } else if (mddev->pers == NULL) {
  962. /* Insist on good event counter while assembling, except
  963. * for spares (which don't need an event count) */
  964. ++ev1;
  965. if (sb->disks[rdev->desc_nr].state & (
  966. (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
  967. if (ev1 < mddev->events)
  968. return -EINVAL;
  969. } else if (mddev->bitmap) {
  970. /* if adding to array with a bitmap, then we can accept an
  971. * older device ... but not too old.
  972. */
  973. if (ev1 < mddev->bitmap->events_cleared)
  974. return 0;
  975. if (ev1 < mddev->events)
  976. set_bit(Bitmap_sync, &rdev->flags);
  977. } else {
  978. if (ev1 < mddev->events)
  979. /* just a hot-add of a new device, leave raid_disk at -1 */
  980. return 0;
  981. }
  982. if (mddev->level != LEVEL_MULTIPATH) {
  983. desc = sb->disks + rdev->desc_nr;
  984. if (desc->state & (1<<MD_DISK_FAULTY))
  985. set_bit(Faulty, &rdev->flags);
  986. else if (desc->state & (1<<MD_DISK_SYNC) /* &&
  987. desc->raid_disk < mddev->raid_disks */) {
  988. set_bit(In_sync, &rdev->flags);
  989. rdev->raid_disk = desc->raid_disk;
  990. rdev->saved_raid_disk = desc->raid_disk;
  991. } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
  992. /* active but not in sync implies recovery up to
  993. * reshape position. We don't know exactly where
  994. * that is, so set to zero for now */
  995. if (mddev->minor_version >= 91) {
  996. rdev->recovery_offset = 0;
  997. rdev->raid_disk = desc->raid_disk;
  998. }
  999. }
  1000. if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
  1001. set_bit(WriteMostly, &rdev->flags);
  1002. } else /* MULTIPATH are always insync */
  1003. set_bit(In_sync, &rdev->flags);
  1004. return 0;
  1005. }
  1006. /*
  1007. * sync_super for 0.90.0
  1008. */
  1009. static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
  1010. {
  1011. mdp_super_t *sb;
  1012. struct md_rdev *rdev2;
  1013. int next_spare = mddev->raid_disks;
  1014. /* make rdev->sb match mddev data..
  1015. *
  1016. * 1/ zero out disks
  1017. * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
  1018. * 3/ any empty disks < next_spare become removed
  1019. *
  1020. * disks[0] gets initialised to REMOVED because
  1021. * we cannot be sure from other fields if it has
  1022. * been initialised or not.
  1023. */
  1024. int i;
  1025. int active=0, working=0,failed=0,spare=0,nr_disks=0;
  1026. rdev->sb_size = MD_SB_BYTES;
  1027. sb = page_address(rdev->sb_page);
  1028. memset(sb, 0, sizeof(*sb));
  1029. sb->md_magic = MD_SB_MAGIC;
  1030. sb->major_version = mddev->major_version;
  1031. sb->patch_version = mddev->patch_version;
  1032. sb->gvalid_words = 0; /* ignored */
  1033. memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
  1034. memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
  1035. memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
  1036. memcpy(&sb->set_uuid3, mddev->uuid+12,4);
  1037. sb->ctime = mddev->ctime;
  1038. sb->level = mddev->level;
  1039. sb->size = mddev->dev_sectors / 2;
  1040. sb->raid_disks = mddev->raid_disks;
  1041. sb->md_minor = mddev->md_minor;
  1042. sb->not_persistent = 0;
  1043. sb->utime = mddev->utime;
  1044. sb->state = 0;
  1045. sb->events_hi = (mddev->events>>32);
  1046. sb->events_lo = (u32)mddev->events;
  1047. if (mddev->reshape_position == MaxSector)
  1048. sb->minor_version = 90;
  1049. else {
  1050. sb->minor_version = 91;
  1051. sb->reshape_position = mddev->reshape_position;
  1052. sb->new_level = mddev->new_level;
  1053. sb->delta_disks = mddev->delta_disks;
  1054. sb->new_layout = mddev->new_layout;
  1055. sb->new_chunk = mddev->new_chunk_sectors << 9;
  1056. }
  1057. mddev->minor_version = sb->minor_version;
  1058. if (mddev->in_sync)
  1059. {
  1060. sb->recovery_cp = mddev->recovery_cp;
  1061. sb->cp_events_hi = (mddev->events>>32);
  1062. sb->cp_events_lo = (u32)mddev->events;
  1063. if (mddev->recovery_cp == MaxSector)
  1064. sb->state = (1<< MD_SB_CLEAN);
  1065. } else
  1066. sb->recovery_cp = 0;
  1067. sb->layout = mddev->layout;
  1068. sb->chunk_size = mddev->chunk_sectors << 9;
  1069. if (mddev->bitmap && mddev->bitmap_info.file == NULL)
  1070. sb->state |= (1<<MD_SB_BITMAP_PRESENT);
  1071. sb->disks[0].state = (1<<MD_DISK_REMOVED);
  1072. rdev_for_each(rdev2, mddev) {
  1073. mdp_disk_t *d;
  1074. int desc_nr;
  1075. int is_active = test_bit(In_sync, &rdev2->flags);
  1076. if (rdev2->raid_disk >= 0 &&
  1077. sb->minor_version >= 91)
  1078. /* we have nowhere to store the recovery_offset,
  1079. * but if it is not below the reshape_position,
  1080. * we can piggy-back on that.
  1081. */
  1082. is_active = 1;
  1083. if (rdev2->raid_disk < 0 ||
  1084. test_bit(Faulty, &rdev2->flags))
  1085. is_active = 0;
  1086. if (is_active)
  1087. desc_nr = rdev2->raid_disk;
  1088. else
  1089. desc_nr = next_spare++;
  1090. rdev2->desc_nr = desc_nr;
  1091. d = &sb->disks[rdev2->desc_nr];
  1092. nr_disks++;
  1093. d->number = rdev2->desc_nr;
  1094. d->major = MAJOR(rdev2->bdev->bd_dev);
  1095. d->minor = MINOR(rdev2->bdev->bd_dev);
  1096. if (is_active)
  1097. d->raid_disk = rdev2->raid_disk;
  1098. else
  1099. d->raid_disk = rdev2->desc_nr; /* compatibility */
  1100. if (test_bit(Faulty, &rdev2->flags))
  1101. d->state = (1<<MD_DISK_FAULTY);
  1102. else if (is_active) {
  1103. d->state = (1<<MD_DISK_ACTIVE);
  1104. if (test_bit(In_sync, &rdev2->flags))
  1105. d->state |= (1<<MD_DISK_SYNC);
  1106. active++;
  1107. working++;
  1108. } else {
  1109. d->state = 0;
  1110. spare++;
  1111. working++;
  1112. }
  1113. if (test_bit(WriteMostly, &rdev2->flags))
  1114. d->state |= (1<<MD_DISK_WRITEMOSTLY);
  1115. }
  1116. /* now set the "removed" and "faulty" bits on any missing devices */
  1117. for (i=0 ; i < mddev->raid_disks ; i++) {
  1118. mdp_disk_t *d = &sb->disks[i];
  1119. if (d->state == 0 && d->number == 0) {
  1120. d->number = i;
  1121. d->raid_disk = i;
  1122. d->state = (1<<MD_DISK_REMOVED);
  1123. d->state |= (1<<MD_DISK_FAULTY);
  1124. failed++;
  1125. }
  1126. }
  1127. sb->nr_disks = nr_disks;
  1128. sb->active_disks = active;
  1129. sb->working_disks = working;
  1130. sb->failed_disks = failed;
  1131. sb->spare_disks = spare;
  1132. sb->this_disk = sb->disks[rdev->desc_nr];
  1133. sb->sb_csum = calc_sb_csum(sb);
  1134. }
  1135. /*
  1136. * rdev_size_change for 0.90.0
  1137. */
  1138. static unsigned long long
  1139. super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
  1140. {
  1141. if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
  1142. return 0; /* component must fit device */
  1143. if (rdev->mddev->bitmap_info.offset)
  1144. return 0; /* can't move bitmap */
  1145. rdev->sb_start = calc_dev_sboffset(rdev);
  1146. if (!num_sectors || num_sectors > rdev->sb_start)
  1147. num_sectors = rdev->sb_start;
  1148. /* Limit to 4TB as metadata cannot record more than that.
  1149. * 4TB == 2^32 KB, or 2*2^32 sectors.
  1150. */
  1151. if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
  1152. num_sectors = (2ULL << 32) - 2;
  1153. md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
  1154. rdev->sb_page);
  1155. md_super_wait(rdev->mddev);
  1156. return num_sectors;
  1157. }
  1158. static int
  1159. super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
  1160. {
  1161. /* non-zero offset changes not possible with v0.90 */
  1162. return new_offset == 0;
  1163. }
  1164. /*
  1165. * version 1 superblock
  1166. */
  1167. static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
  1168. {
  1169. __le32 disk_csum;
  1170. u32 csum;
  1171. unsigned long long newcsum;
  1172. int size = 256 + le32_to_cpu(sb->max_dev)*2;
  1173. __le32 *isuper = (__le32*)sb;
  1174. disk_csum = sb->sb_csum;
  1175. sb->sb_csum = 0;
  1176. newcsum = 0;
  1177. for (; size >= 4; size -= 4)
  1178. newcsum += le32_to_cpu(*isuper++);
  1179. if (size == 2)
  1180. newcsum += le16_to_cpu(*(__le16*) isuper);
  1181. csum = (newcsum & 0xffffffff) + (newcsum >> 32);
  1182. sb->sb_csum = disk_csum;
  1183. return cpu_to_le32(csum);
  1184. }
  1185. static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
  1186. int acknowledged);
  1187. static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
  1188. {
  1189. struct mdp_superblock_1 *sb;
  1190. int ret;
  1191. sector_t sb_start;
  1192. sector_t sectors;
  1193. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  1194. int bmask;
  1195. /*
  1196. * Calculate the position of the superblock in 512byte sectors.
  1197. * It is always aligned to a 4K boundary and
  1198. * depeding on minor_version, it can be:
  1199. * 0: At least 8K, but less than 12K, from end of device
  1200. * 1: At start of device
  1201. * 2: 4K from start of device.
  1202. */
  1203. switch(minor_version) {
  1204. case 0:
  1205. sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
  1206. sb_start -= 8*2;
  1207. sb_start &= ~(sector_t)(4*2-1);
  1208. break;
  1209. case 1:
  1210. sb_start = 0;
  1211. break;
  1212. case 2:
  1213. sb_start = 8;
  1214. break;
  1215. default:
  1216. return -EINVAL;
  1217. }
  1218. rdev->sb_start = sb_start;
  1219. /* superblock is rarely larger than 1K, but it can be larger,
  1220. * and it is safe to read 4k, so we do that
  1221. */
  1222. ret = read_disk_sb(rdev, 4096);
  1223. if (ret) return ret;
  1224. sb = page_address(rdev->sb_page);
  1225. if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
  1226. sb->major_version != cpu_to_le32(1) ||
  1227. le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
  1228. le64_to_cpu(sb->super_offset) != rdev->sb_start ||
  1229. (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
  1230. return -EINVAL;
  1231. if (calc_sb_1_csum(sb) != sb->sb_csum) {
  1232. printk("md: invalid superblock checksum on %s\n",
  1233. bdevname(rdev->bdev,b));
  1234. return -EINVAL;
  1235. }
  1236. if (le64_to_cpu(sb->data_size) < 10) {
  1237. printk("md: data_size too small on %s\n",
  1238. bdevname(rdev->bdev,b));
  1239. return -EINVAL;
  1240. }
  1241. if (sb->pad0 ||
  1242. sb->pad3[0] ||
  1243. memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
  1244. /* Some padding is non-zero, might be a new feature */
  1245. return -EINVAL;
  1246. rdev->preferred_minor = 0xffff;
  1247. rdev->data_offset = le64_to_cpu(sb->data_offset);
  1248. rdev->new_data_offset = rdev->data_offset;
  1249. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
  1250. (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
  1251. rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
  1252. atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
  1253. rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
  1254. bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
  1255. if (rdev->sb_size & bmask)
  1256. rdev->sb_size = (rdev->sb_size | bmask) + 1;
  1257. if (minor_version
  1258. && rdev->data_offset < sb_start + (rdev->sb_size/512))
  1259. return -EINVAL;
  1260. if (minor_version
  1261. && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
  1262. return -EINVAL;
  1263. if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
  1264. rdev->desc_nr = -1;
  1265. else
  1266. rdev->desc_nr = le32_to_cpu(sb->dev_number);
  1267. if (!rdev->bb_page) {
  1268. rdev->bb_page = alloc_page(GFP_KERNEL);
  1269. if (!rdev->bb_page)
  1270. return -ENOMEM;
  1271. }
  1272. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
  1273. rdev->badblocks.count == 0) {
  1274. /* need to load the bad block list.
  1275. * Currently we limit it to one page.
  1276. */
  1277. s32 offset;
  1278. sector_t bb_sector;
  1279. u64 *bbp;
  1280. int i;
  1281. int sectors = le16_to_cpu(sb->bblog_size);
  1282. if (sectors > (PAGE_SIZE / 512))
  1283. return -EINVAL;
  1284. offset = le32_to_cpu(sb->bblog_offset);
  1285. if (offset == 0)
  1286. return -EINVAL;
  1287. bb_sector = (long long)offset;
  1288. if (!sync_page_io(rdev, bb_sector, sectors << 9,
  1289. rdev->bb_page, READ, true))
  1290. return -EIO;
  1291. bbp = (u64 *)page_address(rdev->bb_page);
  1292. rdev->badblocks.shift = sb->bblog_shift;
  1293. for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
  1294. u64 bb = le64_to_cpu(*bbp);
  1295. int count = bb & (0x3ff);
  1296. u64 sector = bb >> 10;
  1297. sector <<= sb->bblog_shift;
  1298. count <<= sb->bblog_shift;
  1299. if (bb + 1 == 0)
  1300. break;
  1301. if (md_set_badblocks(&rdev->badblocks,
  1302. sector, count, 1) == 0)
  1303. return -EINVAL;
  1304. }
  1305. } else if (sb->bblog_offset != 0)
  1306. rdev->badblocks.shift = 0;
  1307. if (!refdev) {
  1308. ret = 1;
  1309. } else {
  1310. __u64 ev1, ev2;
  1311. struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
  1312. if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
  1313. sb->level != refsb->level ||
  1314. sb->layout != refsb->layout ||
  1315. sb->chunksize != refsb->chunksize) {
  1316. printk(KERN_WARNING "md: %s has strangely different"
  1317. " superblock to %s\n",
  1318. bdevname(rdev->bdev,b),
  1319. bdevname(refdev->bdev,b2));
  1320. return -EINVAL;
  1321. }
  1322. ev1 = le64_to_cpu(sb->events);
  1323. ev2 = le64_to_cpu(refsb->events);
  1324. if (ev1 > ev2)
  1325. ret = 1;
  1326. else
  1327. ret = 0;
  1328. }
  1329. if (minor_version) {
  1330. sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
  1331. sectors -= rdev->data_offset;
  1332. } else
  1333. sectors = rdev->sb_start;
  1334. if (sectors < le64_to_cpu(sb->data_size))
  1335. return -EINVAL;
  1336. rdev->sectors = le64_to_cpu(sb->data_size);
  1337. return ret;
  1338. }
  1339. static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
  1340. {
  1341. struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
  1342. __u64 ev1 = le64_to_cpu(sb->events);
  1343. rdev->raid_disk = -1;
  1344. clear_bit(Faulty, &rdev->flags);
  1345. clear_bit(In_sync, &rdev->flags);
  1346. clear_bit(Bitmap_sync, &rdev->flags);
  1347. clear_bit(WriteMostly, &rdev->flags);
  1348. if (mddev->raid_disks == 0) {
  1349. mddev->major_version = 1;
  1350. mddev->patch_version = 0;
  1351. mddev->external = 0;
  1352. mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
  1353. mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
  1354. mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
  1355. mddev->level = le32_to_cpu(sb->level);
  1356. mddev->clevel[0] = 0;
  1357. mddev->layout = le32_to_cpu(sb->layout);
  1358. mddev->raid_disks = le32_to_cpu(sb->raid_disks);
  1359. mddev->dev_sectors = le64_to_cpu(sb->size);
  1360. mddev->events = ev1;
  1361. mddev->bitmap_info.offset = 0;
  1362. mddev->bitmap_info.space = 0;
  1363. /* Default location for bitmap is 1K after superblock
  1364. * using 3K - total of 4K
  1365. */
  1366. mddev->bitmap_info.default_offset = 1024 >> 9;
  1367. mddev->bitmap_info.default_space = (4096-1024) >> 9;
  1368. mddev->reshape_backwards = 0;
  1369. mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
  1370. memcpy(mddev->uuid, sb->set_uuid, 16);
  1371. mddev->max_disks = (4096-256)/2;
  1372. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
  1373. mddev->bitmap_info.file == NULL) {
  1374. mddev->bitmap_info.offset =
  1375. (__s32)le32_to_cpu(sb->bitmap_offset);
  1376. /* Metadata doesn't record how much space is available.
  1377. * For 1.0, we assume we can use up to the superblock
  1378. * if before, else to 4K beyond superblock.
  1379. * For others, assume no change is possible.
  1380. */
  1381. if (mddev->minor_version > 0)
  1382. mddev->bitmap_info.space = 0;
  1383. else if (mddev->bitmap_info.offset > 0)
  1384. mddev->bitmap_info.space =
  1385. 8 - mddev->bitmap_info.offset;
  1386. else
  1387. mddev->bitmap_info.space =
  1388. -mddev->bitmap_info.offset;
  1389. }
  1390. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
  1391. mddev->reshape_position = le64_to_cpu(sb->reshape_position);
  1392. mddev->delta_disks = le32_to_cpu(sb->delta_disks);
  1393. mddev->new_level = le32_to_cpu(sb->new_level);
  1394. mddev->new_layout = le32_to_cpu(sb->new_layout);
  1395. mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
  1396. if (mddev->delta_disks < 0 ||
  1397. (mddev->delta_disks == 0 &&
  1398. (le32_to_cpu(sb->feature_map)
  1399. & MD_FEATURE_RESHAPE_BACKWARDS)))
  1400. mddev->reshape_backwards = 1;
  1401. } else {
  1402. mddev->reshape_position = MaxSector;
  1403. mddev->delta_disks = 0;
  1404. mddev->new_level = mddev->level;
  1405. mddev->new_layout = mddev->layout;
  1406. mddev->new_chunk_sectors = mddev->chunk_sectors;
  1407. }
  1408. } else if (mddev->pers == NULL) {
  1409. /* Insist of good event counter while assembling, except for
  1410. * spares (which don't need an event count) */
  1411. ++ev1;
  1412. if (rdev->desc_nr >= 0 &&
  1413. rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
  1414. le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
  1415. if (ev1 < mddev->events)
  1416. return -EINVAL;
  1417. } else if (mddev->bitmap) {
  1418. /* If adding to array with a bitmap, then we can accept an
  1419. * older device, but not too old.
  1420. */
  1421. if (ev1 < mddev->bitmap->events_cleared)
  1422. return 0;
  1423. if (ev1 < mddev->events)
  1424. set_bit(Bitmap_sync, &rdev->flags);
  1425. } else {
  1426. if (ev1 < mddev->events)
  1427. /* just a hot-add of a new device, leave raid_disk at -1 */
  1428. return 0;
  1429. }
  1430. if (mddev->level != LEVEL_MULTIPATH) {
  1431. int role;
  1432. if (rdev->desc_nr < 0 ||
  1433. rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
  1434. role = 0xffff;
  1435. rdev->desc_nr = -1;
  1436. } else
  1437. role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
  1438. switch(role) {
  1439. case 0xffff: /* spare */
  1440. break;
  1441. case 0xfffe: /* faulty */
  1442. set_bit(Faulty, &rdev->flags);
  1443. break;
  1444. default:
  1445. rdev->saved_raid_disk = role;
  1446. if ((le32_to_cpu(sb->feature_map) &
  1447. MD_FEATURE_RECOVERY_OFFSET)) {
  1448. rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
  1449. if (!(le32_to_cpu(sb->feature_map) &
  1450. MD_FEATURE_RECOVERY_BITMAP))
  1451. rdev->saved_raid_disk = -1;
  1452. } else
  1453. set_bit(In_sync, &rdev->flags);
  1454. rdev->raid_disk = role;
  1455. break;
  1456. }
  1457. if (sb->devflags & WriteMostly1)
  1458. set_bit(WriteMostly, &rdev->flags);
  1459. if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
  1460. set_bit(Replacement, &rdev->flags);
  1461. } else /* MULTIPATH are always insync */
  1462. set_bit(In_sync, &rdev->flags);
  1463. return 0;
  1464. }
  1465. static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
  1466. {
  1467. struct mdp_superblock_1 *sb;
  1468. struct md_rdev *rdev2;
  1469. int max_dev, i;
  1470. /* make rdev->sb match mddev and rdev data. */
  1471. sb = page_address(rdev->sb_page);
  1472. sb->feature_map = 0;
  1473. sb->pad0 = 0;
  1474. sb->recovery_offset = cpu_to_le64(0);
  1475. memset(sb->pad3, 0, sizeof(sb->pad3));
  1476. sb->utime = cpu_to_le64((__u64)mddev->utime);
  1477. sb->events = cpu_to_le64(mddev->events);
  1478. if (mddev->in_sync)
  1479. sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
  1480. else
  1481. sb->resync_offset = cpu_to_le64(0);
  1482. sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
  1483. sb->raid_disks = cpu_to_le32(mddev->raid_disks);
  1484. sb->size = cpu_to_le64(mddev->dev_sectors);
  1485. sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
  1486. sb->level = cpu_to_le32(mddev->level);
  1487. sb->layout = cpu_to_le32(mddev->layout);
  1488. if (test_bit(WriteMostly, &rdev->flags))
  1489. sb->devflags |= WriteMostly1;
  1490. else
  1491. sb->devflags &= ~WriteMostly1;
  1492. sb->data_offset = cpu_to_le64(rdev->data_offset);
  1493. sb->data_size = cpu_to_le64(rdev->sectors);
  1494. if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
  1495. sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
  1496. sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
  1497. }
  1498. if (rdev->raid_disk >= 0 &&
  1499. !test_bit(In_sync, &rdev->flags)) {
  1500. sb->feature_map |=
  1501. cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
  1502. sb->recovery_offset =
  1503. cpu_to_le64(rdev->recovery_offset);
  1504. if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
  1505. sb->feature_map |=
  1506. cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
  1507. }
  1508. if (test_bit(Replacement, &rdev->flags))
  1509. sb->feature_map |=
  1510. cpu_to_le32(MD_FEATURE_REPLACEMENT);
  1511. if (mddev->reshape_position != MaxSector) {
  1512. sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
  1513. sb->reshape_position = cpu_to_le64(mddev->reshape_position);
  1514. sb->new_layout = cpu_to_le32(mddev->new_layout);
  1515. sb->delta_disks = cpu_to_le32(mddev->delta_disks);
  1516. sb->new_level = cpu_to_le32(mddev->new_level);
  1517. sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
  1518. if (mddev->delta_disks == 0 &&
  1519. mddev->reshape_backwards)
  1520. sb->feature_map
  1521. |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
  1522. if (rdev->new_data_offset != rdev->data_offset) {
  1523. sb->feature_map
  1524. |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
  1525. sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
  1526. - rdev->data_offset));
  1527. }
  1528. }
  1529. if (rdev->badblocks.count == 0)
  1530. /* Nothing to do for bad blocks*/ ;
  1531. else if (sb->bblog_offset == 0)
  1532. /* Cannot record bad blocks on this device */
  1533. md_error(mddev, rdev);
  1534. else {
  1535. struct badblocks *bb = &rdev->badblocks;
  1536. u64 *bbp = (u64 *)page_address(rdev->bb_page);
  1537. u64 *p = bb->page;
  1538. sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
  1539. if (bb->changed) {
  1540. unsigned seq;
  1541. retry:
  1542. seq = read_seqbegin(&bb->lock);
  1543. memset(bbp, 0xff, PAGE_SIZE);
  1544. for (i = 0 ; i < bb->count ; i++) {
  1545. u64 internal_bb = p[i];
  1546. u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
  1547. | BB_LEN(internal_bb));
  1548. bbp[i] = cpu_to_le64(store_bb);
  1549. }
  1550. bb->changed = 0;
  1551. if (read_seqretry(&bb->lock, seq))
  1552. goto retry;
  1553. bb->sector = (rdev->sb_start +
  1554. (int)le32_to_cpu(sb->bblog_offset));
  1555. bb->size = le16_to_cpu(sb->bblog_size);
  1556. }
  1557. }
  1558. max_dev = 0;
  1559. rdev_for_each(rdev2, mddev)
  1560. if (rdev2->desc_nr+1 > max_dev)
  1561. max_dev = rdev2->desc_nr+1;
  1562. if (max_dev > le32_to_cpu(sb->max_dev)) {
  1563. int bmask;
  1564. sb->max_dev = cpu_to_le32(max_dev);
  1565. rdev->sb_size = max_dev * 2 + 256;
  1566. bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
  1567. if (rdev->sb_size & bmask)
  1568. rdev->sb_size = (rdev->sb_size | bmask) + 1;
  1569. } else
  1570. max_dev = le32_to_cpu(sb->max_dev);
  1571. for (i=0; i<max_dev;i++)
  1572. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  1573. rdev_for_each(rdev2, mddev) {
  1574. i = rdev2->desc_nr;
  1575. if (test_bit(Faulty, &rdev2->flags))
  1576. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  1577. else if (test_bit(In_sync, &rdev2->flags))
  1578. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1579. else if (rdev2->raid_disk >= 0)
  1580. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1581. else
  1582. sb->dev_roles[i] = cpu_to_le16(0xffff);
  1583. }
  1584. sb->sb_csum = calc_sb_1_csum(sb);
  1585. }
  1586. static unsigned long long
  1587. super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
  1588. {
  1589. struct mdp_superblock_1 *sb;
  1590. sector_t max_sectors;
  1591. if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
  1592. return 0; /* component must fit device */
  1593. if (rdev->data_offset != rdev->new_data_offset)
  1594. return 0; /* too confusing */
  1595. if (rdev->sb_start < rdev->data_offset) {
  1596. /* minor versions 1 and 2; superblock before data */
  1597. max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
  1598. max_sectors -= rdev->data_offset;
  1599. if (!num_sectors || num_sectors > max_sectors)
  1600. num_sectors = max_sectors;
  1601. } else if (rdev->mddev->bitmap_info.offset) {
  1602. /* minor version 0 with bitmap we can't move */
  1603. return 0;
  1604. } else {
  1605. /* minor version 0; superblock after data */
  1606. sector_t sb_start;
  1607. sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
  1608. sb_start &= ~(sector_t)(4*2 - 1);
  1609. max_sectors = rdev->sectors + sb_start - rdev->sb_start;
  1610. if (!num_sectors || num_sectors > max_sectors)
  1611. num_sectors = max_sectors;
  1612. rdev->sb_start = sb_start;
  1613. }
  1614. sb = page_address(rdev->sb_page);
  1615. sb->data_size = cpu_to_le64(num_sectors);
  1616. sb->super_offset = rdev->sb_start;
  1617. sb->sb_csum = calc_sb_1_csum(sb);
  1618. md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
  1619. rdev->sb_page);
  1620. md_super_wait(rdev->mddev);
  1621. return num_sectors;
  1622. }
  1623. static int
  1624. super_1_allow_new_offset(struct md_rdev *rdev,
  1625. unsigned long long new_offset)
  1626. {
  1627. /* All necessary checks on new >= old have been done */
  1628. struct bitmap *bitmap;
  1629. if (new_offset >= rdev->data_offset)
  1630. return 1;
  1631. /* with 1.0 metadata, there is no metadata to tread on
  1632. * so we can always move back */
  1633. if (rdev->mddev->minor_version == 0)
  1634. return 1;
  1635. /* otherwise we must be sure not to step on
  1636. * any metadata, so stay:
  1637. * 36K beyond start of superblock
  1638. * beyond end of badblocks
  1639. * beyond write-intent bitmap
  1640. */
  1641. if (rdev->sb_start + (32+4)*2 > new_offset)
  1642. return 0;
  1643. bitmap = rdev->mddev->bitmap;
  1644. if (bitmap && !rdev->mddev->bitmap_info.file &&
  1645. rdev->sb_start + rdev->mddev->bitmap_info.offset +
  1646. bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
  1647. return 0;
  1648. if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
  1649. return 0;
  1650. return 1;
  1651. }
  1652. static struct super_type super_types[] = {
  1653. [0] = {
  1654. .name = "0.90.0",
  1655. .owner = THIS_MODULE,
  1656. .load_super = super_90_load,
  1657. .validate_super = super_90_validate,
  1658. .sync_super = super_90_sync,
  1659. .rdev_size_change = super_90_rdev_size_change,
  1660. .allow_new_offset = super_90_allow_new_offset,
  1661. },
  1662. [1] = {
  1663. .name = "md-1",
  1664. .owner = THIS_MODULE,
  1665. .load_super = super_1_load,
  1666. .validate_super = super_1_validate,
  1667. .sync_super = super_1_sync,
  1668. .rdev_size_change = super_1_rdev_size_change,
  1669. .allow_new_offset = super_1_allow_new_offset,
  1670. },
  1671. };
  1672. static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
  1673. {
  1674. if (mddev->sync_super) {
  1675. mddev->sync_super(mddev, rdev);
  1676. return;
  1677. }
  1678. BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
  1679. super_types[mddev->major_version].sync_super(mddev, rdev);
  1680. }
  1681. static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
  1682. {
  1683. struct md_rdev *rdev, *rdev2;
  1684. rcu_read_lock();
  1685. rdev_for_each_rcu(rdev, mddev1)
  1686. rdev_for_each_rcu(rdev2, mddev2)
  1687. if (rdev->bdev->bd_contains ==
  1688. rdev2->bdev->bd_contains) {
  1689. rcu_read_unlock();
  1690. return 1;
  1691. }
  1692. rcu_read_unlock();
  1693. return 0;
  1694. }
  1695. static LIST_HEAD(pending_raid_disks);
  1696. /*
  1697. * Try to register data integrity profile for an mddev
  1698. *
  1699. * This is called when an array is started and after a disk has been kicked
  1700. * from the array. It only succeeds if all working and active component devices
  1701. * are integrity capable with matching profiles.
  1702. */
  1703. int md_integrity_register(struct mddev *mddev)
  1704. {
  1705. struct md_rdev *rdev, *reference = NULL;
  1706. if (list_empty(&mddev->disks))
  1707. return 0; /* nothing to do */
  1708. if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
  1709. return 0; /* shouldn't register, or already is */
  1710. rdev_for_each(rdev, mddev) {
  1711. /* skip spares and non-functional disks */
  1712. if (test_bit(Faulty, &rdev->flags))
  1713. continue;
  1714. if (rdev->raid_disk < 0)
  1715. continue;
  1716. if (!reference) {
  1717. /* Use the first rdev as the reference */
  1718. reference = rdev;
  1719. continue;
  1720. }
  1721. /* does this rdev's profile match the reference profile? */
  1722. if (blk_integrity_compare(reference->bdev->bd_disk,
  1723. rdev->bdev->bd_disk) < 0)
  1724. return -EINVAL;
  1725. }
  1726. if (!reference || !bdev_get_integrity(reference->bdev))
  1727. return 0;
  1728. /*
  1729. * All component devices are integrity capable and have matching
  1730. * profiles, register the common profile for the md device.
  1731. */
  1732. if (blk_integrity_register(mddev->gendisk,
  1733. bdev_get_integrity(reference->bdev)) != 0) {
  1734. printk(KERN_ERR "md: failed to register integrity for %s\n",
  1735. mdname(mddev));
  1736. return -EINVAL;
  1737. }
  1738. printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
  1739. if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
  1740. printk(KERN_ERR "md: failed to create integrity pool for %s\n",
  1741. mdname(mddev));
  1742. return -EINVAL;
  1743. }
  1744. return 0;
  1745. }
  1746. EXPORT_SYMBOL(md_integrity_register);
  1747. /* Disable data integrity if non-capable/non-matching disk is being added */
  1748. void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
  1749. {
  1750. struct blk_integrity *bi_rdev;
  1751. struct blk_integrity *bi_mddev;
  1752. if (!mddev->gendisk)
  1753. return;
  1754. bi_rdev = bdev_get_integrity(rdev->bdev);
  1755. bi_mddev = blk_get_integrity(mddev->gendisk);
  1756. if (!bi_mddev) /* nothing to do */
  1757. return;
  1758. if (rdev->raid_disk < 0) /* skip spares */
  1759. return;
  1760. if (bi_rdev && blk_integrity_compare(mddev->gendisk,
  1761. rdev->bdev->bd_disk) >= 0)
  1762. return;
  1763. printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
  1764. blk_integrity_unregister(mddev->gendisk);
  1765. }
  1766. EXPORT_SYMBOL(md_integrity_add_rdev);
  1767. static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
  1768. {
  1769. char b[BDEVNAME_SIZE];
  1770. struct kobject *ko;
  1771. char *s;
  1772. int err;
  1773. /* prevent duplicates */
  1774. if (find_rdev(mddev, rdev->bdev->bd_dev))
  1775. return -EEXIST;
  1776. /* make sure rdev->sectors exceeds mddev->dev_sectors */
  1777. if (rdev->sectors && (mddev->dev_sectors == 0 ||
  1778. rdev->sectors < mddev->dev_sectors)) {
  1779. if (mddev->pers) {
  1780. /* Cannot change size, so fail
  1781. * If mddev->level <= 0, then we don't care
  1782. * about aligning sizes (e.g. linear)
  1783. */
  1784. if (mddev->level > 0)
  1785. return -ENOSPC;
  1786. } else
  1787. mddev->dev_sectors = rdev->sectors;
  1788. }
  1789. /* Verify rdev->desc_nr is unique.
  1790. * If it is -1, assign a free number, else
  1791. * check number is not in use
  1792. */
  1793. rcu_read_lock();
  1794. if (rdev->desc_nr < 0) {
  1795. int choice = 0;
  1796. if (mddev->pers)
  1797. choice = mddev->raid_disks;
  1798. while (find_rdev_nr_rcu(mddev, choice))
  1799. choice++;
  1800. rdev->desc_nr = choice;
  1801. } else {
  1802. if (find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
  1803. rcu_read_unlock();
  1804. return -EBUSY;
  1805. }
  1806. }
  1807. rcu_read_unlock();
  1808. if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
  1809. printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
  1810. mdname(mddev), mddev->max_disks);
  1811. return -EBUSY;
  1812. }
  1813. bdevname(rdev->bdev,b);
  1814. while ( (s=strchr(b, '/')) != NULL)
  1815. *s = '!';
  1816. rdev->mddev = mddev;
  1817. printk(KERN_INFO "md: bind<%s>\n", b);
  1818. if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
  1819. goto fail;
  1820. ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
  1821. if (sysfs_create_link(&rdev->kobj, ko, "block"))
  1822. /* failure here is OK */;
  1823. rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
  1824. list_add_rcu(&rdev->same_set, &mddev->disks);
  1825. bd_link_disk_holder(rdev->bdev, mddev->gendisk);
  1826. /* May as well allow recovery to be retried once */
  1827. mddev->recovery_disabled++;
  1828. return 0;
  1829. fail:
  1830. printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
  1831. b, mdname(mddev));
  1832. return err;
  1833. }
  1834. static void md_delayed_delete(struct work_struct *ws)
  1835. {
  1836. struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
  1837. kobject_del(&rdev->kobj);
  1838. kobject_put(&rdev->kobj);
  1839. }
  1840. static void unbind_rdev_from_array(struct md_rdev *rdev)
  1841. {
  1842. char b[BDEVNAME_SIZE];
  1843. bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
  1844. list_del_rcu(&rdev->same_set);
  1845. printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
  1846. rdev->mddev = NULL;
  1847. sysfs_remove_link(&rdev->kobj, "block");
  1848. sysfs_put(rdev->sysfs_state);
  1849. rdev->sysfs_state = NULL;
  1850. rdev->badblocks.count = 0;
  1851. /* We need to delay this, otherwise we can deadlock when
  1852. * writing to 'remove' to "dev/state". We also need
  1853. * to delay it due to rcu usage.
  1854. */
  1855. synchronize_rcu();
  1856. INIT_WORK(&rdev->del_work, md_delayed_delete);
  1857. kobject_get(&rdev->kobj);
  1858. queue_work(md_misc_wq, &rdev->del_work);
  1859. }
  1860. /*
  1861. * prevent the device from being mounted, repartitioned or
  1862. * otherwise reused by a RAID array (or any other kernel
  1863. * subsystem), by bd_claiming the device.
  1864. */
  1865. static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
  1866. {
  1867. int err = 0;
  1868. struct block_device *bdev;
  1869. char b[BDEVNAME_SIZE];
  1870. bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
  1871. shared ? (struct md_rdev *)lock_rdev : rdev);
  1872. if (IS_ERR(bdev)) {
  1873. printk(KERN_ERR "md: could not open %s.\n",
  1874. __bdevname(dev, b));
  1875. return PTR_ERR(bdev);
  1876. }
  1877. rdev->bdev = bdev;
  1878. return err;
  1879. }
  1880. static void unlock_rdev(struct md_rdev *rdev)
  1881. {
  1882. struct block_device *bdev = rdev->bdev;
  1883. rdev->bdev = NULL;
  1884. blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
  1885. }
  1886. void md_autodetect_dev(dev_t dev);
  1887. static void export_rdev(struct md_rdev *rdev)
  1888. {
  1889. char b[BDEVNAME_SIZE];
  1890. printk(KERN_INFO "md: export_rdev(%s)\n",
  1891. bdevname(rdev->bdev,b));
  1892. md_rdev_clear(rdev);
  1893. #ifndef MODULE
  1894. if (test_bit(AutoDetected, &rdev->flags))
  1895. md_autodetect_dev(rdev->bdev->bd_dev);
  1896. #endif
  1897. unlock_rdev(rdev);
  1898. kobject_put(&rdev->kobj);
  1899. }
  1900. static void kick_rdev_from_array(struct md_rdev *rdev)
  1901. {
  1902. unbind_rdev_from_array(rdev);
  1903. export_rdev(rdev);
  1904. }
  1905. static void export_array(struct mddev *mddev)
  1906. {
  1907. struct md_rdev *rdev;
  1908. while (!list_empty(&mddev->disks)) {
  1909. rdev = list_first_entry(&mddev->disks, struct md_rdev,
  1910. same_set);
  1911. kick_rdev_from_array(rdev);
  1912. }
  1913. mddev->raid_disks = 0;
  1914. mddev->major_version = 0;
  1915. }
  1916. static void sync_sbs(struct mddev *mddev, int nospares)
  1917. {
  1918. /* Update each superblock (in-memory image), but
  1919. * if we are allowed to, skip spares which already
  1920. * have the right event counter, or have one earlier
  1921. * (which would mean they aren't being marked as dirty
  1922. * with the rest of the array)
  1923. */
  1924. struct md_rdev *rdev;
  1925. rdev_for_each(rdev, mddev) {
  1926. if (rdev->sb_events == mddev->events ||
  1927. (nospares &&
  1928. rdev->raid_disk < 0 &&
  1929. rdev->sb_events+1 == mddev->events)) {
  1930. /* Don't update this superblock */
  1931. rdev->sb_loaded = 2;
  1932. } else {
  1933. sync_super(mddev, rdev);
  1934. rdev->sb_loaded = 1;
  1935. }
  1936. }
  1937. }
  1938. static void md_update_sb(struct mddev *mddev, int force_change)
  1939. {
  1940. struct md_rdev *rdev;
  1941. int sync_req;
  1942. int nospares = 0;
  1943. int any_badblocks_changed = 0;
  1944. if (mddev->ro) {
  1945. if (force_change)
  1946. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  1947. return;
  1948. }
  1949. repeat:
  1950. /* First make sure individual recovery_offsets are correct */
  1951. rdev_for_each(rdev, mddev) {
  1952. if (rdev->raid_disk >= 0 &&
  1953. mddev->delta_disks >= 0 &&
  1954. !test_bit(In_sync, &rdev->flags) &&
  1955. mddev->curr_resync_completed > rdev->recovery_offset)
  1956. rdev->recovery_offset = mddev->curr_resync_completed;
  1957. }
  1958. if (!mddev->persistent) {
  1959. clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
  1960. clear_bit(MD_CHANGE_DEVS, &mddev->flags);
  1961. if (!mddev->external) {
  1962. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  1963. rdev_for_each(rdev, mddev) {
  1964. if (rdev->badblocks.changed) {
  1965. rdev->badblocks.changed = 0;
  1966. md_ack_all_badblocks(&rdev->badblocks);
  1967. md_error(mddev, rdev);
  1968. }
  1969. clear_bit(Blocked, &rdev->flags);
  1970. clear_bit(BlockedBadBlocks, &rdev->flags);
  1971. wake_up(&rdev->blocked_wait);
  1972. }
  1973. }
  1974. wake_up(&mddev->sb_wait);
  1975. return;
  1976. }
  1977. spin_lock_irq(&mddev->write_lock);
  1978. mddev->utime = get_seconds();
  1979. if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
  1980. force_change = 1;
  1981. if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
  1982. /* just a clean<-> dirty transition, possibly leave spares alone,
  1983. * though if events isn't the right even/odd, we will have to do
  1984. * spares after all
  1985. */
  1986. nospares = 1;
  1987. if (force_change)
  1988. nospares = 0;
  1989. if (mddev->degraded)
  1990. /* If the array is degraded, then skipping spares is both
  1991. * dangerous and fairly pointless.
  1992. * Dangerous because a device that was removed from the array
  1993. * might have a event_count that still looks up-to-date,
  1994. * so it can be re-added without a resync.
  1995. * Pointless because if there are any spares to skip,
  1996. * then a recovery will happen and soon that array won't
  1997. * be degraded any more and the spare can go back to sleep then.
  1998. */
  1999. nospares = 0;
  2000. sync_req = mddev->in_sync;
  2001. /* If this is just a dirty<->clean transition, and the array is clean
  2002. * and 'events' is odd, we can roll back to the previous clean state */
  2003. if (nospares
  2004. && (mddev->in_sync && mddev->recovery_cp == MaxSector)
  2005. && mddev->can_decrease_events
  2006. && mddev->events != 1) {
  2007. mddev->events--;
  2008. mddev->can_decrease_events = 0;
  2009. } else {
  2010. /* otherwise we have to go forward and ... */
  2011. mddev->events ++;
  2012. mddev->can_decrease_events = nospares;
  2013. }
  2014. /*
  2015. * This 64-bit counter should never wrap.
  2016. * Either we are in around ~1 trillion A.C., assuming
  2017. * 1 reboot per second, or we have a bug...
  2018. */
  2019. WARN_ON(mddev->events == 0);
  2020. rdev_for_each(rdev, mddev) {
  2021. if (rdev->badblocks.changed)
  2022. any_badblocks_changed++;
  2023. if (test_bit(Faulty, &rdev->flags))
  2024. set_bit(FaultRecorded, &rdev->flags);
  2025. }
  2026. sync_sbs(mddev, nospares);
  2027. spin_unlock_irq(&mddev->write_lock);
  2028. pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
  2029. mdname(mddev), mddev->in_sync);
  2030. bitmap_update_sb(mddev->bitmap);
  2031. rdev_for_each(rdev, mddev) {
  2032. char b[BDEVNAME_SIZE];
  2033. if (rdev->sb_loaded != 1)
  2034. continue; /* no noise on spare devices */
  2035. if (!test_bit(Faulty, &rdev->flags)) {
  2036. md_super_write(mddev,rdev,
  2037. rdev->sb_start, rdev->sb_size,
  2038. rdev->sb_page);
  2039. pr_debug("md: (write) %s's sb offset: %llu\n",
  2040. bdevname(rdev->bdev, b),
  2041. (unsigned long long)rdev->sb_start);
  2042. rdev->sb_events = mddev->events;
  2043. if (rdev->badblocks.size) {
  2044. md_super_write(mddev, rdev,
  2045. rdev->badblocks.sector,
  2046. rdev->badblocks.size << 9,
  2047. rdev->bb_page);
  2048. rdev->badblocks.size = 0;
  2049. }
  2050. } else
  2051. pr_debug("md: %s (skipping faulty)\n",
  2052. bdevname(rdev->bdev, b));
  2053. if (mddev->level == LEVEL_MULTIPATH)
  2054. /* only need to write one superblock... */
  2055. break;
  2056. }
  2057. md_super_wait(mddev);
  2058. /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
  2059. spin_lock_irq(&mddev->write_lock);
  2060. if (mddev->in_sync != sync_req ||
  2061. test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
  2062. /* have to write it out again */
  2063. spin_unlock_irq(&mddev->write_lock);
  2064. goto repeat;
  2065. }
  2066. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  2067. spin_unlock_irq(&mddev->write_lock);
  2068. wake_up(&mddev->sb_wait);
  2069. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  2070. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  2071. rdev_for_each(rdev, mddev) {
  2072. if (test_and_clear_bit(FaultRecorded, &rdev->flags))
  2073. clear_bit(Blocked, &rdev->flags);
  2074. if (any_badblocks_changed)
  2075. md_ack_all_badblocks(&rdev->badblocks);
  2076. clear_bit(BlockedBadBlocks, &rdev->flags);
  2077. wake_up(&rdev->blocked_wait);
  2078. }
  2079. }
  2080. /* words written to sysfs files may, or may not, be \n terminated.
  2081. * We want to accept with case. For this we use cmd_match.
  2082. */
  2083. static int cmd_match(const char *cmd, const char *str)
  2084. {
  2085. /* See if cmd, written into a sysfs file, matches
  2086. * str. They must either be the same, or cmd can
  2087. * have a trailing newline
  2088. */
  2089. while (*cmd && *str && *cmd == *str) {
  2090. cmd++;
  2091. str++;
  2092. }
  2093. if (*cmd == '\n')
  2094. cmd++;
  2095. if (*str || *cmd)
  2096. return 0;
  2097. return 1;
  2098. }
  2099. struct rdev_sysfs_entry {
  2100. struct attribute attr;
  2101. ssize_t (*show)(struct md_rdev *, char *);
  2102. ssize_t (*store)(struct md_rdev *, const char *, size_t);
  2103. };
  2104. static ssize_t
  2105. state_show(struct md_rdev *rdev, char *page)
  2106. {
  2107. char *sep = "";
  2108. size_t len = 0;
  2109. if (test_bit(Faulty, &rdev->flags) ||
  2110. rdev->badblocks.unacked_exist) {
  2111. len+= sprintf(page+len, "%sfaulty",sep);
  2112. sep = ",";
  2113. }
  2114. if (test_bit(In_sync, &rdev->flags)) {
  2115. len += sprintf(page+len, "%sin_sync",sep);
  2116. sep = ",";
  2117. }
  2118. if (test_bit(WriteMostly, &rdev->flags)) {
  2119. len += sprintf(page+len, "%swrite_mostly",sep);
  2120. sep = ",";
  2121. }
  2122. if (test_bit(Blocked, &rdev->flags) ||
  2123. (rdev->badblocks.unacked_exist
  2124. && !test_bit(Faulty, &rdev->flags))) {
  2125. len += sprintf(page+len, "%sblocked", sep);
  2126. sep = ",";
  2127. }
  2128. if (!test_bit(Faulty, &rdev->flags) &&
  2129. !test_bit(In_sync, &rdev->flags)) {
  2130. len += sprintf(page+len, "%sspare", sep);
  2131. sep = ",";
  2132. }
  2133. if (test_bit(WriteErrorSeen, &rdev->flags)) {
  2134. len += sprintf(page+len, "%swrite_error", sep);
  2135. sep = ",";
  2136. }
  2137. if (test_bit(WantReplacement, &rdev->flags)) {
  2138. len += sprintf(page+len, "%swant_replacement", sep);
  2139. sep = ",";
  2140. }
  2141. if (test_bit(Replacement, &rdev->flags)) {
  2142. len += sprintf(page+len, "%sreplacement", sep);
  2143. sep = ",";
  2144. }
  2145. return len+sprintf(page+len, "\n");
  2146. }
  2147. static ssize_t
  2148. state_store(struct md_rdev *rdev, const char *buf, size_t len)
  2149. {
  2150. /* can write
  2151. * faulty - simulates an error
  2152. * remove - disconnects the device
  2153. * writemostly - sets write_mostly
  2154. * -writemostly - clears write_mostly
  2155. * blocked - sets the Blocked flags
  2156. * -blocked - clears the Blocked and possibly simulates an error
  2157. * insync - sets Insync providing device isn't active
  2158. * -insync - clear Insync for a device with a slot assigned,
  2159. * so that it gets rebuilt based on bitmap
  2160. * write_error - sets WriteErrorSeen
  2161. * -write_error - clears WriteErrorSeen
  2162. */
  2163. int err = -EINVAL;
  2164. if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
  2165. md_error(rdev->mddev, rdev);
  2166. if (test_bit(Faulty, &rdev->flags))
  2167. err = 0;
  2168. else
  2169. err = -EBUSY;
  2170. } else if (cmd_match(buf, "remove")) {
  2171. if (rdev->raid_disk >= 0)
  2172. err = -EBUSY;
  2173. else {
  2174. struct mddev *mddev = rdev->mddev;
  2175. kick_rdev_from_array(rdev);
  2176. if (mddev->pers)
  2177. md_update_sb(mddev, 1);
  2178. md_new_event(mddev);
  2179. err = 0;
  2180. }
  2181. } else if (cmd_match(buf, "writemostly")) {
  2182. set_bit(WriteMostly, &rdev->flags);
  2183. err = 0;
  2184. } else if (cmd_match(buf, "-writemostly")) {
  2185. clear_bit(WriteMostly, &rdev->flags);
  2186. err = 0;
  2187. } else if (cmd_match(buf, "blocked")) {
  2188. set_bit(Blocked, &rdev->flags);
  2189. err = 0;
  2190. } else if (cmd_match(buf, "-blocked")) {
  2191. if (!test_bit(Faulty, &rdev->flags) &&
  2192. rdev->badblocks.unacked_exist) {
  2193. /* metadata handler doesn't understand badblocks,
  2194. * so we need to fail the device
  2195. */
  2196. md_error(rdev->mddev, rdev);
  2197. }
  2198. clear_bit(Blocked, &rdev->flags);
  2199. clear_bit(BlockedBadBlocks, &rdev->flags);
  2200. wake_up(&rdev->blocked_wait);
  2201. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  2202. md_wakeup_thread(rdev->mddev->thread);
  2203. err = 0;
  2204. } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
  2205. set_bit(In_sync, &rdev->flags);
  2206. err = 0;
  2207. } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0) {
  2208. if (rdev->mddev->pers == NULL) {
  2209. clear_bit(In_sync, &rdev->flags);
  2210. rdev->saved_raid_disk = rdev->raid_disk;
  2211. rdev->raid_disk = -1;
  2212. err = 0;
  2213. }
  2214. } else if (cmd_match(buf, "write_error")) {
  2215. set_bit(WriteErrorSeen, &rdev->flags);
  2216. err = 0;
  2217. } else if (cmd_match(buf, "-write_error")) {
  2218. clear_bit(WriteErrorSeen, &rdev->flags);
  2219. err = 0;
  2220. } else if (cmd_match(buf, "want_replacement")) {
  2221. /* Any non-spare device that is not a replacement can
  2222. * become want_replacement at any time, but we then need to
  2223. * check if recovery is needed.
  2224. */
  2225. if (rdev->raid_disk >= 0 &&
  2226. !test_bit(Replacement, &rdev->flags))
  2227. set_bit(WantReplacement, &rdev->flags);
  2228. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  2229. md_wakeup_thread(rdev->mddev->thread);
  2230. err = 0;
  2231. } else if (cmd_match(buf, "-want_replacement")) {
  2232. /* Clearing 'want_replacement' is always allowed.
  2233. * Once replacements starts it is too late though.
  2234. */
  2235. err = 0;
  2236. clear_bit(WantReplacement, &rdev->flags);
  2237. } else if (cmd_match(buf, "replacement")) {
  2238. /* Can only set a device as a replacement when array has not
  2239. * yet been started. Once running, replacement is automatic
  2240. * from spares, or by assigning 'slot'.
  2241. */
  2242. if (rdev->mddev->pers)
  2243. err = -EBUSY;
  2244. else {
  2245. set_bit(Replacement, &rdev->flags);
  2246. err = 0;
  2247. }
  2248. } else if (cmd_match(buf, "-replacement")) {
  2249. /* Similarly, can only clear Replacement before start */
  2250. if (rdev->mddev->pers)
  2251. err = -EBUSY;
  2252. else {
  2253. clear_bit(Replacement, &rdev->flags);
  2254. err = 0;
  2255. }
  2256. }
  2257. if (!err)
  2258. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2259. return err ? err : len;
  2260. }
  2261. static struct rdev_sysfs_entry rdev_state =
  2262. __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
  2263. static ssize_t
  2264. errors_show(struct md_rdev *rdev, char *page)
  2265. {
  2266. return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
  2267. }
  2268. static ssize_t
  2269. errors_store(struct md_rdev *rdev, const char *buf, size_t len)
  2270. {
  2271. char *e;
  2272. unsigned long n = simple_strtoul(buf, &e, 10);
  2273. if (*buf && (*e == 0 || *e == '\n')) {
  2274. atomic_set(&rdev->corrected_errors, n);
  2275. return len;
  2276. }
  2277. return -EINVAL;
  2278. }
  2279. static struct rdev_sysfs_entry rdev_errors =
  2280. __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
  2281. static ssize_t
  2282. slot_show(struct md_rdev *rdev, char *page)
  2283. {
  2284. if (rdev->raid_disk < 0)
  2285. return sprintf(page, "none\n");
  2286. else
  2287. return sprintf(page, "%d\n", rdev->raid_disk);
  2288. }
  2289. static ssize_t
  2290. slot_store(struct md_rdev *rdev, const char *buf, size_t len)
  2291. {
  2292. char *e;
  2293. int err;
  2294. int slot = simple_strtoul(buf, &e, 10);
  2295. if (strncmp(buf, "none", 4)==0)
  2296. slot = -1;
  2297. else if (e==buf || (*e && *e!= '\n'))
  2298. return -EINVAL;
  2299. if (rdev->mddev->pers && slot == -1) {
  2300. /* Setting 'slot' on an active array requires also
  2301. * updating the 'rd%d' link, and communicating
  2302. * with the personality with ->hot_*_disk.
  2303. * For now we only support removing
  2304. * failed/spare devices. This normally happens automatically,
  2305. * but not when the metadata is externally managed.
  2306. */
  2307. if (rdev->raid_disk == -1)
  2308. return -EEXIST;
  2309. /* personality does all needed checks */
  2310. if (rdev->mddev->pers->hot_remove_disk == NULL)
  2311. return -EINVAL;
  2312. clear_bit(Blocked, &rdev->flags);
  2313. remove_and_add_spares(rdev->mddev, rdev);
  2314. if (rdev->raid_disk >= 0)
  2315. return -EBUSY;
  2316. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  2317. md_wakeup_thread(rdev->mddev->thread);
  2318. } else if (rdev->mddev->pers) {
  2319. /* Activating a spare .. or possibly reactivating
  2320. * if we ever get bitmaps working here.
  2321. */
  2322. if (rdev->raid_disk != -1)
  2323. return -EBUSY;
  2324. if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
  2325. return -EBUSY;
  2326. if (rdev->mddev->pers->hot_add_disk == NULL)
  2327. return -EINVAL;
  2328. if (slot >= rdev->mddev->raid_disks &&
  2329. slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
  2330. return -ENOSPC;
  2331. rdev->raid_disk = slot;
  2332. if (test_bit(In_sync, &rdev->flags))
  2333. rdev->saved_raid_disk = slot;
  2334. else
  2335. rdev->saved_raid_disk = -1;
  2336. clear_bit(In_sync, &rdev->flags);
  2337. clear_bit(Bitmap_sync, &rdev->flags);
  2338. err = rdev->mddev->pers->
  2339. hot_add_disk(rdev->mddev, rdev);
  2340. if (err) {
  2341. rdev->raid_disk = -1;
  2342. return err;
  2343. } else
  2344. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2345. if (sysfs_link_rdev(rdev->mddev, rdev))
  2346. /* failure here is OK */;
  2347. /* don't wakeup anyone, leave that to userspace. */
  2348. } else {
  2349. if (slot >= rdev->mddev->raid_disks &&
  2350. slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
  2351. return -ENOSPC;
  2352. rdev->raid_disk = slot;
  2353. /* assume it is working */
  2354. clear_bit(Faulty, &rdev->flags);
  2355. clear_bit(WriteMostly, &rdev->flags);
  2356. set_bit(In_sync, &rdev->flags);
  2357. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2358. }
  2359. return len;
  2360. }
  2361. static struct rdev_sysfs_entry rdev_slot =
  2362. __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
  2363. static ssize_t
  2364. offset_show(struct md_rdev *rdev, char *page)
  2365. {
  2366. return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
  2367. }
  2368. static ssize_t
  2369. offset_store(struct md_rdev *rdev, const char *buf, size_t len)
  2370. {
  2371. unsigned long long offset;
  2372. if (kstrtoull(buf, 10, &offset) < 0)
  2373. return -EINVAL;
  2374. if (rdev->mddev->pers && rdev->raid_disk >= 0)
  2375. return -EBUSY;
  2376. if (rdev->sectors && rdev->mddev->external)
  2377. /* Must set offset before size, so overlap checks
  2378. * can be sane */
  2379. return -EBUSY;
  2380. rdev->data_offset = offset;
  2381. rdev->new_data_offset = offset;
  2382. return len;
  2383. }
  2384. static struct rdev_sysfs_entry rdev_offset =
  2385. __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
  2386. static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
  2387. {
  2388. return sprintf(page, "%llu\n",
  2389. (unsigned long long)rdev->new_data_offset);
  2390. }
  2391. static ssize_t new_offset_store(struct md_rdev *rdev,
  2392. const char *buf, size_t len)
  2393. {
  2394. unsigned long long new_offset;
  2395. struct mddev *mddev = rdev->mddev;
  2396. if (kstrtoull(buf, 10, &new_offset) < 0)
  2397. return -EINVAL;
  2398. if (mddev->sync_thread ||
  2399. test_bit(MD_RECOVERY_RUNNING,&mddev->recovery))
  2400. return -EBUSY;
  2401. if (new_offset == rdev->data_offset)
  2402. /* reset is always permitted */
  2403. ;
  2404. else if (new_offset > rdev->data_offset) {
  2405. /* must not push array size beyond rdev_sectors */
  2406. if (new_offset - rdev->data_offset
  2407. + mddev->dev_sectors > rdev->sectors)
  2408. return -E2BIG;
  2409. }
  2410. /* Metadata worries about other space details. */
  2411. /* decreasing the offset is inconsistent with a backwards
  2412. * reshape.
  2413. */
  2414. if (new_offset < rdev->data_offset &&
  2415. mddev->reshape_backwards)
  2416. return -EINVAL;
  2417. /* Increasing offset is inconsistent with forwards
  2418. * reshape. reshape_direction should be set to
  2419. * 'backwards' first.
  2420. */
  2421. if (new_offset > rdev->data_offset &&
  2422. !mddev->reshape_backwards)
  2423. return -EINVAL;
  2424. if (mddev->pers && mddev->persistent &&
  2425. !super_types[mddev->major_version]
  2426. .allow_new_offset(rdev, new_offset))
  2427. return -E2BIG;
  2428. rdev->new_data_offset = new_offset;
  2429. if (new_offset > rdev->data_offset)
  2430. mddev->reshape_backwards = 1;
  2431. else if (new_offset < rdev->data_offset)
  2432. mddev->reshape_backwards = 0;
  2433. return len;
  2434. }
  2435. static struct rdev_sysfs_entry rdev_new_offset =
  2436. __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
  2437. static ssize_t
  2438. rdev_size_show(struct md_rdev *rdev, char *page)
  2439. {
  2440. return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
  2441. }
  2442. static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
  2443. {
  2444. /* check if two start/length pairs overlap */
  2445. if (s1+l1 <= s2)
  2446. return 0;
  2447. if (s2+l2 <= s1)
  2448. return 0;
  2449. return 1;
  2450. }
  2451. static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
  2452. {
  2453. unsigned long long blocks;
  2454. sector_t new;
  2455. if (kstrtoull(buf, 10, &blocks) < 0)
  2456. return -EINVAL;
  2457. if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
  2458. return -EINVAL; /* sector conversion overflow */
  2459. new = blocks * 2;
  2460. if (new != blocks * 2)
  2461. return -EINVAL; /* unsigned long long to sector_t overflow */
  2462. *sectors = new;
  2463. return 0;
  2464. }
  2465. static ssize_t
  2466. rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
  2467. {
  2468. struct mddev *my_mddev = rdev->mddev;
  2469. sector_t oldsectors = rdev->sectors;
  2470. sector_t sectors;
  2471. if (strict_blocks_to_sectors(buf, &sectors) < 0)
  2472. return -EINVAL;
  2473. if (rdev->data_offset != rdev->new_data_offset)
  2474. return -EINVAL; /* too confusing */
  2475. if (my_mddev->pers && rdev->raid_disk >= 0) {
  2476. if (my_mddev->persistent) {
  2477. sectors = super_types[my_mddev->major_version].
  2478. rdev_size_change(rdev, sectors);
  2479. if (!sectors)
  2480. return -EBUSY;
  2481. } else if (!sectors)
  2482. sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
  2483. rdev->data_offset;
  2484. if (!my_mddev->pers->resize)
  2485. /* Cannot change size for RAID0 or Linear etc */
  2486. return -EINVAL;
  2487. }
  2488. if (sectors < my_mddev->dev_sectors)
  2489. return -EINVAL; /* component must fit device */
  2490. rdev->sectors = sectors;
  2491. if (sectors > oldsectors && my_mddev->external) {
  2492. /* Need to check that all other rdevs with the same
  2493. * ->bdev do not overlap. 'rcu' is sufficient to walk
  2494. * the rdev lists safely.
  2495. * This check does not provide a hard guarantee, it
  2496. * just helps avoid dangerous mistakes.
  2497. */
  2498. struct mddev *mddev;
  2499. int overlap = 0;
  2500. struct list_head *tmp;
  2501. rcu_read_lock();
  2502. for_each_mddev(mddev, tmp) {
  2503. struct md_rdev *rdev2;
  2504. rdev_for_each(rdev2, mddev)
  2505. if (rdev->bdev == rdev2->bdev &&
  2506. rdev != rdev2 &&
  2507. overlaps(rdev->data_offset, rdev->sectors,
  2508. rdev2->data_offset,
  2509. rdev2->sectors)) {
  2510. overlap = 1;
  2511. break;
  2512. }
  2513. if (overlap) {
  2514. mddev_put(mddev);
  2515. break;
  2516. }
  2517. }
  2518. rcu_read_unlock();
  2519. if (overlap) {
  2520. /* Someone else could have slipped in a size
  2521. * change here, but doing so is just silly.
  2522. * We put oldsectors back because we *know* it is
  2523. * safe, and trust userspace not to race with
  2524. * itself
  2525. */
  2526. rdev->sectors = oldsectors;
  2527. return -EBUSY;
  2528. }
  2529. }
  2530. return len;
  2531. }
  2532. static struct rdev_sysfs_entry rdev_size =
  2533. __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
  2534. static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
  2535. {
  2536. unsigned long long recovery_start = rdev->recovery_offset;
  2537. if (test_bit(In_sync, &rdev->flags) ||
  2538. recovery_start == MaxSector)
  2539. return sprintf(page, "none\n");
  2540. return sprintf(page, "%llu\n", recovery_start);
  2541. }
  2542. static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
  2543. {
  2544. unsigned long long recovery_start;
  2545. if (cmd_match(buf, "none"))
  2546. recovery_start = MaxSector;
  2547. else if (kstrtoull(buf, 10, &recovery_start))
  2548. return -EINVAL;
  2549. if (rdev->mddev->pers &&
  2550. rdev->raid_disk >= 0)
  2551. return -EBUSY;
  2552. rdev->recovery_offset = recovery_start;
  2553. if (recovery_start == MaxSector)
  2554. set_bit(In_sync, &rdev->flags);
  2555. else
  2556. clear_bit(In_sync, &rdev->flags);
  2557. return len;
  2558. }
  2559. static struct rdev_sysfs_entry rdev_recovery_start =
  2560. __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
  2561. static ssize_t
  2562. badblocks_show(struct badblocks *bb, char *page, int unack);
  2563. static ssize_t
  2564. badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
  2565. static ssize_t bb_show(struct md_rdev *rdev, char *page)
  2566. {
  2567. return badblocks_show(&rdev->badblocks, page, 0);
  2568. }
  2569. static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
  2570. {
  2571. int rv = badblocks_store(&rdev->badblocks, page, len, 0);
  2572. /* Maybe that ack was all we needed */
  2573. if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
  2574. wake_up(&rdev->blocked_wait);
  2575. return rv;
  2576. }
  2577. static struct rdev_sysfs_entry rdev_bad_blocks =
  2578. __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
  2579. static ssize_t ubb_show(struct md_rdev *rdev, char *page)
  2580. {
  2581. return badblocks_show(&rdev->badblocks, page, 1);
  2582. }
  2583. static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
  2584. {
  2585. return badblocks_store(&rdev->badblocks, page, len, 1);
  2586. }
  2587. static struct rdev_sysfs_entry rdev_unack_bad_blocks =
  2588. __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
  2589. static struct attribute *rdev_default_attrs[] = {
  2590. &rdev_state.attr,
  2591. &rdev_errors.attr,
  2592. &rdev_slot.attr,
  2593. &rdev_offset.attr,
  2594. &rdev_new_offset.attr,
  2595. &rdev_size.attr,
  2596. &rdev_recovery_start.attr,
  2597. &rdev_bad_blocks.attr,
  2598. &rdev_unack_bad_blocks.attr,
  2599. NULL,
  2600. };
  2601. static ssize_t
  2602. rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  2603. {
  2604. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  2605. struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
  2606. struct mddev *mddev = rdev->mddev;
  2607. ssize_t rv;
  2608. if (!entry->show)
  2609. return -EIO;
  2610. rv = mddev ? mddev_lock(mddev) : -EBUSY;
  2611. if (!rv) {
  2612. if (rdev->mddev == NULL)
  2613. rv = -EBUSY;
  2614. else
  2615. rv = entry->show(rdev, page);
  2616. mddev_unlock(mddev);
  2617. }
  2618. return rv;
  2619. }
  2620. static ssize_t
  2621. rdev_attr_store(struct kobject *kobj, struct attribute *attr,
  2622. const char *page, size_t length)
  2623. {
  2624. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  2625. struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
  2626. ssize_t rv;
  2627. struct mddev *mddev = rdev->mddev;
  2628. if (!entry->store)
  2629. return -EIO;
  2630. if (!capable(CAP_SYS_ADMIN))
  2631. return -EACCES;
  2632. rv = mddev ? mddev_lock(mddev): -EBUSY;
  2633. if (!rv) {
  2634. if (rdev->mddev == NULL)
  2635. rv = -EBUSY;
  2636. else
  2637. rv = entry->store(rdev, page, length);
  2638. mddev_unlock(mddev);
  2639. }
  2640. return rv;
  2641. }
  2642. static void rdev_free(struct kobject *ko)
  2643. {
  2644. struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
  2645. kfree(rdev);
  2646. }
  2647. static const struct sysfs_ops rdev_sysfs_ops = {
  2648. .show = rdev_attr_show,
  2649. .store = rdev_attr_store,
  2650. };
  2651. static struct kobj_type rdev_ktype = {
  2652. .release = rdev_free,
  2653. .sysfs_ops = &rdev_sysfs_ops,
  2654. .default_attrs = rdev_default_attrs,
  2655. };
  2656. int md_rdev_init(struct md_rdev *rdev)
  2657. {
  2658. rdev->desc_nr = -1;
  2659. rdev->saved_raid_disk = -1;
  2660. rdev->raid_disk = -1;
  2661. rdev->flags = 0;
  2662. rdev->data_offset = 0;
  2663. rdev->new_data_offset = 0;
  2664. rdev->sb_events = 0;
  2665. rdev->last_read_error.tv_sec = 0;
  2666. rdev->last_read_error.tv_nsec = 0;
  2667. rdev->sb_loaded = 0;
  2668. rdev->bb_page = NULL;
  2669. atomic_set(&rdev->nr_pending, 0);
  2670. atomic_set(&rdev->read_errors, 0);
  2671. atomic_set(&rdev->corrected_errors, 0);
  2672. INIT_LIST_HEAD(&rdev->same_set);
  2673. init_waitqueue_head(&rdev->blocked_wait);
  2674. /* Add space to store bad block list.
  2675. * This reserves the space even on arrays where it cannot
  2676. * be used - I wonder if that matters
  2677. */
  2678. rdev->badblocks.count = 0;
  2679. rdev->badblocks.shift = -1; /* disabled until explicitly enabled */
  2680. rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2681. seqlock_init(&rdev->badblocks.lock);
  2682. if (rdev->badblocks.page == NULL)
  2683. return -ENOMEM;
  2684. return 0;
  2685. }
  2686. EXPORT_SYMBOL_GPL(md_rdev_init);
  2687. /*
  2688. * Import a device. If 'super_format' >= 0, then sanity check the superblock
  2689. *
  2690. * mark the device faulty if:
  2691. *
  2692. * - the device is nonexistent (zero size)
  2693. * - the device has no valid superblock
  2694. *
  2695. * a faulty rdev _never_ has rdev->sb set.
  2696. */
  2697. static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
  2698. {
  2699. char b[BDEVNAME_SIZE];
  2700. int err;
  2701. struct md_rdev *rdev;
  2702. sector_t size;
  2703. rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
  2704. if (!rdev) {
  2705. printk(KERN_ERR "md: could not alloc mem for new device!\n");
  2706. return ERR_PTR(-ENOMEM);
  2707. }
  2708. err = md_rdev_init(rdev);
  2709. if (err)
  2710. goto abort_free;
  2711. err = alloc_disk_sb(rdev);
  2712. if (err)
  2713. goto abort_free;
  2714. err = lock_rdev(rdev, newdev, super_format == -2);
  2715. if (err)
  2716. goto abort_free;
  2717. kobject_init(&rdev->kobj, &rdev_ktype);
  2718. size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
  2719. if (!size) {
  2720. printk(KERN_WARNING
  2721. "md: %s has zero or unknown size, marking faulty!\n",
  2722. bdevname(rdev->bdev,b));
  2723. err = -EINVAL;
  2724. goto abort_free;
  2725. }
  2726. if (super_format >= 0) {
  2727. err = super_types[super_format].
  2728. load_super(rdev, NULL, super_minor);
  2729. if (err == -EINVAL) {
  2730. printk(KERN_WARNING
  2731. "md: %s does not have a valid v%d.%d "
  2732. "superblock, not importing!\n",
  2733. bdevname(rdev->bdev,b),
  2734. super_format, super_minor);
  2735. goto abort_free;
  2736. }
  2737. if (err < 0) {
  2738. printk(KERN_WARNING
  2739. "md: could not read %s's sb, not importing!\n",
  2740. bdevname(rdev->bdev,b));
  2741. goto abort_free;
  2742. }
  2743. }
  2744. return rdev;
  2745. abort_free:
  2746. if (rdev->bdev)
  2747. unlock_rdev(rdev);
  2748. md_rdev_clear(rdev);
  2749. kfree(rdev);
  2750. return ERR_PTR(err);
  2751. }
  2752. /*
  2753. * Check a full RAID array for plausibility
  2754. */
  2755. static void analyze_sbs(struct mddev *mddev)
  2756. {
  2757. int i;
  2758. struct md_rdev *rdev, *freshest, *tmp;
  2759. char b[BDEVNAME_SIZE];
  2760. freshest = NULL;
  2761. rdev_for_each_safe(rdev, tmp, mddev)
  2762. switch (super_types[mddev->major_version].
  2763. load_super(rdev, freshest, mddev->minor_version)) {
  2764. case 1:
  2765. freshest = rdev;
  2766. break;
  2767. case 0:
  2768. break;
  2769. default:
  2770. printk( KERN_ERR \
  2771. "md: fatal superblock inconsistency in %s"
  2772. " -- removing from array\n",
  2773. bdevname(rdev->bdev,b));
  2774. kick_rdev_from_array(rdev);
  2775. }
  2776. super_types[mddev->major_version].
  2777. validate_super(mddev, freshest);
  2778. i = 0;
  2779. rdev_for_each_safe(rdev, tmp, mddev) {
  2780. if (mddev->max_disks &&
  2781. (rdev->desc_nr >= mddev->max_disks ||
  2782. i > mddev->max_disks)) {
  2783. printk(KERN_WARNING
  2784. "md: %s: %s: only %d devices permitted\n",
  2785. mdname(mddev), bdevname(rdev->bdev, b),
  2786. mddev->max_disks);
  2787. kick_rdev_from_array(rdev);
  2788. continue;
  2789. }
  2790. if (rdev != freshest)
  2791. if (super_types[mddev->major_version].
  2792. validate_super(mddev, rdev)) {
  2793. printk(KERN_WARNING "md: kicking non-fresh %s"
  2794. " from array!\n",
  2795. bdevname(rdev->bdev,b));
  2796. kick_rdev_from_array(rdev);
  2797. continue;
  2798. }
  2799. if (mddev->level == LEVEL_MULTIPATH) {
  2800. rdev->desc_nr = i++;
  2801. rdev->raid_disk = rdev->desc_nr;
  2802. set_bit(In_sync, &rdev->flags);
  2803. } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
  2804. rdev->raid_disk = -1;
  2805. clear_bit(In_sync, &rdev->flags);
  2806. }
  2807. }
  2808. }
  2809. /* Read a fixed-point number.
  2810. * Numbers in sysfs attributes should be in "standard" units where
  2811. * possible, so time should be in seconds.
  2812. * However we internally use a a much smaller unit such as
  2813. * milliseconds or jiffies.
  2814. * This function takes a decimal number with a possible fractional
  2815. * component, and produces an integer which is the result of
  2816. * multiplying that number by 10^'scale'.
  2817. * all without any floating-point arithmetic.
  2818. */
  2819. int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
  2820. {
  2821. unsigned long result = 0;
  2822. long decimals = -1;
  2823. while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
  2824. if (*cp == '.')
  2825. decimals = 0;
  2826. else if (decimals < scale) {
  2827. unsigned int value;
  2828. value = *cp - '0';
  2829. result = result * 10 + value;
  2830. if (decimals >= 0)
  2831. decimals++;
  2832. }
  2833. cp++;
  2834. }
  2835. if (*cp == '\n')
  2836. cp++;
  2837. if (*cp)
  2838. return -EINVAL;
  2839. if (decimals < 0)
  2840. decimals = 0;
  2841. while (decimals < scale) {
  2842. result *= 10;
  2843. decimals ++;
  2844. }
  2845. *res = result;
  2846. return 0;
  2847. }
  2848. static void md_safemode_timeout(unsigned long data);
  2849. static ssize_t
  2850. safe_delay_show(struct mddev *mddev, char *page)
  2851. {
  2852. int msec = (mddev->safemode_delay*1000)/HZ;
  2853. return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
  2854. }
  2855. static ssize_t
  2856. safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
  2857. {
  2858. unsigned long msec;
  2859. if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
  2860. return -EINVAL;
  2861. if (msec == 0)
  2862. mddev->safemode_delay = 0;
  2863. else {
  2864. unsigned long old_delay = mddev->safemode_delay;
  2865. mddev->safemode_delay = (msec*HZ)/1000;
  2866. if (mddev->safemode_delay == 0)
  2867. mddev->safemode_delay = 1;
  2868. if (mddev->safemode_delay < old_delay || old_delay == 0)
  2869. md_safemode_timeout((unsigned long)mddev);
  2870. }
  2871. return len;
  2872. }
  2873. static struct md_sysfs_entry md_safe_delay =
  2874. __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
  2875. static ssize_t
  2876. level_show(struct mddev *mddev, char *page)
  2877. {
  2878. struct md_personality *p = mddev->pers;
  2879. if (p)
  2880. return sprintf(page, "%s\n", p->name);
  2881. else if (mddev->clevel[0])
  2882. return sprintf(page, "%s\n", mddev->clevel);
  2883. else if (mddev->level != LEVEL_NONE)
  2884. return sprintf(page, "%d\n", mddev->level);
  2885. else
  2886. return 0;
  2887. }
  2888. static ssize_t
  2889. level_store(struct mddev *mddev, const char *buf, size_t len)
  2890. {
  2891. char clevel[16];
  2892. ssize_t rv = len;
  2893. struct md_personality *pers;
  2894. long level;
  2895. void *priv;
  2896. struct md_rdev *rdev;
  2897. if (mddev->pers == NULL) {
  2898. if (len == 0)
  2899. return 0;
  2900. if (len >= sizeof(mddev->clevel))
  2901. return -ENOSPC;
  2902. strncpy(mddev->clevel, buf, len);
  2903. if (mddev->clevel[len-1] == '\n')
  2904. len--;
  2905. mddev->clevel[len] = 0;
  2906. mddev->level = LEVEL_NONE;
  2907. return rv;
  2908. }
  2909. if (mddev->ro)
  2910. return -EROFS;
  2911. /* request to change the personality. Need to ensure:
  2912. * - array is not engaged in resync/recovery/reshape
  2913. * - old personality can be suspended
  2914. * - new personality will access other array.
  2915. */
  2916. if (mddev->sync_thread ||
  2917. test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  2918. mddev->reshape_position != MaxSector ||
  2919. mddev->sysfs_active)
  2920. return -EBUSY;
  2921. if (!mddev->pers->quiesce) {
  2922. printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
  2923. mdname(mddev), mddev->pers->name);
  2924. return -EINVAL;
  2925. }
  2926. /* Now find the new personality */
  2927. if (len == 0 || len >= sizeof(clevel))
  2928. return -EINVAL;
  2929. strncpy(clevel, buf, len);
  2930. if (clevel[len-1] == '\n')
  2931. len--;
  2932. clevel[len] = 0;
  2933. if (kstrtol(clevel, 10, &level))
  2934. level = LEVEL_NONE;
  2935. if (request_module("md-%s", clevel) != 0)
  2936. request_module("md-level-%s", clevel);
  2937. spin_lock(&pers_lock);
  2938. pers = find_pers(level, clevel);
  2939. if (!pers || !try_module_get(pers->owner)) {
  2940. spin_unlock(&pers_lock);
  2941. printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
  2942. return -EINVAL;
  2943. }
  2944. spin_unlock(&pers_lock);
  2945. if (pers == mddev->pers) {
  2946. /* Nothing to do! */
  2947. module_put(pers->owner);
  2948. return rv;
  2949. }
  2950. if (!pers->takeover) {
  2951. module_put(pers->owner);
  2952. printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
  2953. mdname(mddev), clevel);
  2954. return -EINVAL;
  2955. }
  2956. rdev_for_each(rdev, mddev)
  2957. rdev->new_raid_disk = rdev->raid_disk;
  2958. /* ->takeover must set new_* and/or delta_disks
  2959. * if it succeeds, and may set them when it fails.
  2960. */
  2961. priv = pers->takeover(mddev);
  2962. if (IS_ERR(priv)) {
  2963. mddev->new_level = mddev->level;
  2964. mddev->new_layout = mddev->layout;
  2965. mddev->new_chunk_sectors = mddev->chunk_sectors;
  2966. mddev->raid_disks -= mddev->delta_disks;
  2967. mddev->delta_disks = 0;
  2968. mddev->reshape_backwards = 0;
  2969. module_put(pers->owner);
  2970. printk(KERN_WARNING "md: %s: %s would not accept array\n",
  2971. mdname(mddev), clevel);
  2972. return PTR_ERR(priv);
  2973. }
  2974. /* Looks like we have a winner */
  2975. mddev_suspend(mddev);
  2976. mddev->pers->stop(mddev);
  2977. if (mddev->pers->sync_request == NULL &&
  2978. pers->sync_request != NULL) {
  2979. /* need to add the md_redundancy_group */
  2980. if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
  2981. printk(KERN_WARNING
  2982. "md: cannot register extra attributes for %s\n",
  2983. mdname(mddev));
  2984. mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
  2985. }
  2986. if (mddev->pers->sync_request != NULL &&
  2987. pers->sync_request == NULL) {
  2988. /* need to remove the md_redundancy_group */
  2989. if (mddev->to_remove == NULL)
  2990. mddev->to_remove = &md_redundancy_group;
  2991. }
  2992. if (mddev->pers->sync_request == NULL &&
  2993. mddev->external) {
  2994. /* We are converting from a no-redundancy array
  2995. * to a redundancy array and metadata is managed
  2996. * externally so we need to be sure that writes
  2997. * won't block due to a need to transition
  2998. * clean->dirty
  2999. * until external management is started.
  3000. */
  3001. mddev->in_sync = 0;
  3002. mddev->safemode_delay = 0;
  3003. mddev->safemode = 0;
  3004. }
  3005. rdev_for_each(rdev, mddev) {
  3006. if (rdev->raid_disk < 0)
  3007. continue;
  3008. if (rdev->new_raid_disk >= mddev->raid_disks)
  3009. rdev->new_raid_disk = -1;
  3010. if (rdev->new_raid_disk == rdev->raid_disk)
  3011. continue;
  3012. sysfs_unlink_rdev(mddev, rdev);
  3013. }
  3014. rdev_for_each(rdev, mddev) {
  3015. if (rdev->raid_disk < 0)
  3016. continue;
  3017. if (rdev->new_raid_disk == rdev->raid_disk)
  3018. continue;
  3019. rdev->raid_disk = rdev->new_raid_disk;
  3020. if (rdev->raid_disk < 0)
  3021. clear_bit(In_sync, &rdev->flags);
  3022. else {
  3023. if (sysfs_link_rdev(mddev, rdev))
  3024. printk(KERN_WARNING "md: cannot register rd%d"
  3025. " for %s after level change\n",
  3026. rdev->raid_disk, mdname(mddev));
  3027. }
  3028. }
  3029. module_put(mddev->pers->owner);
  3030. mddev->pers = pers;
  3031. mddev->private = priv;
  3032. strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
  3033. mddev->level = mddev->new_level;
  3034. mddev->layout = mddev->new_layout;
  3035. mddev->chunk_sectors = mddev->new_chunk_sectors;
  3036. mddev->delta_disks = 0;
  3037. mddev->reshape_backwards = 0;
  3038. mddev->degraded = 0;
  3039. if (mddev->pers->sync_request == NULL) {
  3040. /* this is now an array without redundancy, so
  3041. * it must always be in_sync
  3042. */
  3043. mddev->in_sync = 1;
  3044. del_timer_sync(&mddev->safemode_timer);
  3045. }
  3046. blk_set_stacking_limits(&mddev->queue->limits);
  3047. pers->run(mddev);
  3048. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  3049. mddev_resume(mddev);
  3050. if (!mddev->thread)
  3051. md_update_sb(mddev, 1);
  3052. sysfs_notify(&mddev->kobj, NULL, "level");
  3053. md_new_event(mddev);
  3054. return rv;
  3055. }
  3056. static struct md_sysfs_entry md_level =
  3057. __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
  3058. static ssize_t
  3059. layout_show(struct mddev *mddev, char *page)
  3060. {
  3061. /* just a number, not meaningful for all levels */
  3062. if (mddev->reshape_position != MaxSector &&
  3063. mddev->layout != mddev->new_layout)
  3064. return sprintf(page, "%d (%d)\n",
  3065. mddev->new_layout, mddev->layout);
  3066. return sprintf(page, "%d\n", mddev->layout);
  3067. }
  3068. static ssize_t
  3069. layout_store(struct mddev *mddev, const char *buf, size_t len)
  3070. {
  3071. char *e;
  3072. unsigned long n = simple_strtoul(buf, &e, 10);
  3073. if (!*buf || (*e && *e != '\n'))
  3074. return -EINVAL;
  3075. if (mddev->pers) {
  3076. int err;
  3077. if (mddev->pers->check_reshape == NULL)
  3078. return -EBUSY;
  3079. if (mddev->ro)
  3080. return -EROFS;
  3081. mddev->new_layout = n;
  3082. err = mddev->pers->check_reshape(mddev);
  3083. if (err) {
  3084. mddev->new_layout = mddev->layout;
  3085. return err;
  3086. }
  3087. } else {
  3088. mddev->new_layout = n;
  3089. if (mddev->reshape_position == MaxSector)
  3090. mddev->layout = n;
  3091. }
  3092. return len;
  3093. }
  3094. static struct md_sysfs_entry md_layout =
  3095. __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
  3096. static ssize_t
  3097. raid_disks_show(struct mddev *mddev, char *page)
  3098. {
  3099. if (mddev->raid_disks == 0)
  3100. return 0;
  3101. if (mddev->reshape_position != MaxSector &&
  3102. mddev->delta_disks != 0)
  3103. return sprintf(page, "%d (%d)\n", mddev->raid_disks,
  3104. mddev->raid_disks - mddev->delta_disks);
  3105. return sprintf(page, "%d\n", mddev->raid_disks);
  3106. }
  3107. static int update_raid_disks(struct mddev *mddev, int raid_disks);
  3108. static ssize_t
  3109. raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
  3110. {
  3111. char *e;
  3112. int rv = 0;
  3113. unsigned long n = simple_strtoul(buf, &e, 10);
  3114. if (!*buf || (*e && *e != '\n'))
  3115. return -EINVAL;
  3116. if (mddev->pers)
  3117. rv = update_raid_disks(mddev, n);
  3118. else if (mddev->reshape_position != MaxSector) {
  3119. struct md_rdev *rdev;
  3120. int olddisks = mddev->raid_disks - mddev->delta_disks;
  3121. rdev_for_each(rdev, mddev) {
  3122. if (olddisks < n &&
  3123. rdev->data_offset < rdev->new_data_offset)
  3124. return -EINVAL;
  3125. if (olddisks > n &&
  3126. rdev->data_offset > rdev->new_data_offset)
  3127. return -EINVAL;
  3128. }
  3129. mddev->delta_disks = n - olddisks;
  3130. mddev->raid_disks = n;
  3131. mddev->reshape_backwards = (mddev->delta_disks < 0);
  3132. } else
  3133. mddev->raid_disks = n;
  3134. return rv ? rv : len;
  3135. }
  3136. static struct md_sysfs_entry md_raid_disks =
  3137. __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
  3138. static ssize_t
  3139. chunk_size_show(struct mddev *mddev, char *page)
  3140. {
  3141. if (mddev->reshape_position != MaxSector &&
  3142. mddev->chunk_sectors != mddev->new_chunk_sectors)
  3143. return sprintf(page, "%d (%d)\n",
  3144. mddev->new_chunk_sectors << 9,
  3145. mddev->chunk_sectors << 9);
  3146. return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
  3147. }
  3148. static ssize_t
  3149. chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
  3150. {
  3151. char *e;
  3152. unsigned long n = simple_strtoul(buf, &e, 10);
  3153. if (!*buf || (*e && *e != '\n'))
  3154. return -EINVAL;
  3155. if (mddev->pers) {
  3156. int err;
  3157. if (mddev->pers->check_reshape == NULL)
  3158. return -EBUSY;
  3159. if (mddev->ro)
  3160. return -EROFS;
  3161. mddev->new_chunk_sectors = n >> 9;
  3162. err = mddev->pers->check_reshape(mddev);
  3163. if (err) {
  3164. mddev->new_chunk_sectors = mddev->chunk_sectors;
  3165. return err;
  3166. }
  3167. } else {
  3168. mddev->new_chunk_sectors = n >> 9;
  3169. if (mddev->reshape_position == MaxSector)
  3170. mddev->chunk_sectors = n >> 9;
  3171. }
  3172. return len;
  3173. }
  3174. static struct md_sysfs_entry md_chunk_size =
  3175. __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
  3176. static ssize_t
  3177. resync_start_show(struct mddev *mddev, char *page)
  3178. {
  3179. if (mddev->recovery_cp == MaxSector)
  3180. return sprintf(page, "none\n");
  3181. return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
  3182. }
  3183. static ssize_t
  3184. resync_start_store(struct mddev *mddev, const char *buf, size_t len)
  3185. {
  3186. char *e;
  3187. unsigned long long n = simple_strtoull(buf, &e, 10);
  3188. if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  3189. return -EBUSY;
  3190. if (cmd_match(buf, "none"))
  3191. n = MaxSector;
  3192. else if (!*buf || (*e && *e != '\n'))
  3193. return -EINVAL;
  3194. mddev->recovery_cp = n;
  3195. if (mddev->pers)
  3196. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  3197. return len;
  3198. }
  3199. static struct md_sysfs_entry md_resync_start =
  3200. __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
  3201. /*
  3202. * The array state can be:
  3203. *
  3204. * clear
  3205. * No devices, no size, no level
  3206. * Equivalent to STOP_ARRAY ioctl
  3207. * inactive
  3208. * May have some settings, but array is not active
  3209. * all IO results in error
  3210. * When written, doesn't tear down array, but just stops it
  3211. * suspended (not supported yet)
  3212. * All IO requests will block. The array can be reconfigured.
  3213. * Writing this, if accepted, will block until array is quiescent
  3214. * readonly
  3215. * no resync can happen. no superblocks get written.
  3216. * write requests fail
  3217. * read-auto
  3218. * like readonly, but behaves like 'clean' on a write request.
  3219. *
  3220. * clean - no pending writes, but otherwise active.
  3221. * When written to inactive array, starts without resync
  3222. * If a write request arrives then
  3223. * if metadata is known, mark 'dirty' and switch to 'active'.
  3224. * if not known, block and switch to write-pending
  3225. * If written to an active array that has pending writes, then fails.
  3226. * active
  3227. * fully active: IO and resync can be happening.
  3228. * When written to inactive array, starts with resync
  3229. *
  3230. * write-pending
  3231. * clean, but writes are blocked waiting for 'active' to be written.
  3232. *
  3233. * active-idle
  3234. * like active, but no writes have been seen for a while (100msec).
  3235. *
  3236. */
  3237. enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
  3238. write_pending, active_idle, bad_word};
  3239. static char *array_states[] = {
  3240. "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
  3241. "write-pending", "active-idle", NULL };
  3242. static int match_word(const char *word, char **list)
  3243. {
  3244. int n;
  3245. for (n=0; list[n]; n++)
  3246. if (cmd_match(word, list[n]))
  3247. break;
  3248. return n;
  3249. }
  3250. static ssize_t
  3251. array_state_show(struct mddev *mddev, char *page)
  3252. {
  3253. enum array_state st = inactive;
  3254. if (mddev->pers)
  3255. switch(mddev->ro) {
  3256. case 1:
  3257. st = readonly;
  3258. break;
  3259. case 2:
  3260. st = read_auto;
  3261. break;
  3262. case 0:
  3263. if (mddev->in_sync)
  3264. st = clean;
  3265. else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
  3266. st = write_pending;
  3267. else if (mddev->safemode)
  3268. st = active_idle;
  3269. else
  3270. st = active;
  3271. }
  3272. else {
  3273. if (list_empty(&mddev->disks) &&
  3274. mddev->raid_disks == 0 &&
  3275. mddev->dev_sectors == 0)
  3276. st = clear;
  3277. else
  3278. st = inactive;
  3279. }
  3280. return sprintf(page, "%s\n", array_states[st]);
  3281. }
  3282. static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
  3283. static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
  3284. static int do_md_run(struct mddev *mddev);
  3285. static int restart_array(struct mddev *mddev);
  3286. static ssize_t
  3287. array_state_store(struct mddev *mddev, const char *buf, size_t len)
  3288. {
  3289. int err = -EINVAL;
  3290. enum array_state st = match_word(buf, array_states);
  3291. switch(st) {
  3292. case bad_word:
  3293. break;
  3294. case clear:
  3295. /* stopping an active array */
  3296. err = do_md_stop(mddev, 0, NULL);
  3297. break;
  3298. case inactive:
  3299. /* stopping an active array */
  3300. if (mddev->pers)
  3301. err = do_md_stop(mddev, 2, NULL);
  3302. else
  3303. err = 0; /* already inactive */
  3304. break;
  3305. case suspended:
  3306. break; /* not supported yet */
  3307. case readonly:
  3308. if (mddev->pers)
  3309. err = md_set_readonly(mddev, NULL);
  3310. else {
  3311. mddev->ro = 1;
  3312. set_disk_ro(mddev->gendisk, 1);
  3313. err = do_md_run(mddev);
  3314. }
  3315. break;
  3316. case read_auto:
  3317. if (mddev->pers) {
  3318. if (mddev->ro == 0)
  3319. err = md_set_readonly(mddev, NULL);
  3320. else if (mddev->ro == 1)
  3321. err = restart_array(mddev);
  3322. if (err == 0) {
  3323. mddev->ro = 2;
  3324. set_disk_ro(mddev->gendisk, 0);
  3325. }
  3326. } else {
  3327. mddev->ro = 2;
  3328. err = do_md_run(mddev);
  3329. }
  3330. break;
  3331. case clean:
  3332. if (mddev->pers) {
  3333. restart_array(mddev);
  3334. spin_lock_irq(&mddev->write_lock);
  3335. if (atomic_read(&mddev->writes_pending) == 0) {
  3336. if (mddev->in_sync == 0) {
  3337. mddev->in_sync = 1;
  3338. if (mddev->safemode == 1)
  3339. mddev->safemode = 0;
  3340. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  3341. }
  3342. err = 0;
  3343. } else
  3344. err = -EBUSY;
  3345. spin_unlock_irq(&mddev->write_lock);
  3346. } else
  3347. err = -EINVAL;
  3348. break;
  3349. case active:
  3350. if (mddev->pers) {
  3351. restart_array(mddev);
  3352. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  3353. wake_up(&mddev->sb_wait);
  3354. err = 0;
  3355. } else {
  3356. mddev->ro = 0;
  3357. set_disk_ro(mddev->gendisk, 0);
  3358. err = do_md_run(mddev);
  3359. }
  3360. break;
  3361. case write_pending:
  3362. case active_idle:
  3363. /* these cannot be set */
  3364. break;
  3365. }
  3366. if (err)
  3367. return err;
  3368. else {
  3369. if (mddev->hold_active == UNTIL_IOCTL)
  3370. mddev->hold_active = 0;
  3371. sysfs_notify_dirent_safe(mddev->sysfs_state);
  3372. return len;
  3373. }
  3374. }
  3375. static struct md_sysfs_entry md_array_state =
  3376. __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
  3377. static ssize_t
  3378. max_corrected_read_errors_show(struct mddev *mddev, char *page) {
  3379. return sprintf(page, "%d\n",
  3380. atomic_read(&mddev->max_corr_read_errors));
  3381. }
  3382. static ssize_t
  3383. max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
  3384. {
  3385. char *e;
  3386. unsigned long n = simple_strtoul(buf, &e, 10);
  3387. if (*buf && (*e == 0 || *e == '\n')) {
  3388. atomic_set(&mddev->max_corr_read_errors, n);
  3389. return len;
  3390. }
  3391. return -EINVAL;
  3392. }
  3393. static struct md_sysfs_entry max_corr_read_errors =
  3394. __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
  3395. max_corrected_read_errors_store);
  3396. static ssize_t
  3397. null_show(struct mddev *mddev, char *page)
  3398. {
  3399. return -EINVAL;
  3400. }
  3401. static ssize_t
  3402. new_dev_store(struct mddev *mddev, const char *buf, size_t len)
  3403. {
  3404. /* buf must be %d:%d\n? giving major and minor numbers */
  3405. /* The new device is added to the array.
  3406. * If the array has a persistent superblock, we read the
  3407. * superblock to initialise info and check validity.
  3408. * Otherwise, only checking done is that in bind_rdev_to_array,
  3409. * which mainly checks size.
  3410. */
  3411. char *e;
  3412. int major = simple_strtoul(buf, &e, 10);
  3413. int minor;
  3414. dev_t dev;
  3415. struct md_rdev *rdev;
  3416. int err;
  3417. if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
  3418. return -EINVAL;
  3419. minor = simple_strtoul(e+1, &e, 10);
  3420. if (*e && *e != '\n')
  3421. return -EINVAL;
  3422. dev = MKDEV(major, minor);
  3423. if (major != MAJOR(dev) ||
  3424. minor != MINOR(dev))
  3425. return -EOVERFLOW;
  3426. if (mddev->persistent) {
  3427. rdev = md_import_device(dev, mddev->major_version,
  3428. mddev->minor_version);
  3429. if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
  3430. struct md_rdev *rdev0
  3431. = list_entry(mddev->disks.next,
  3432. struct md_rdev, same_set);
  3433. err = super_types[mddev->major_version]
  3434. .load_super(rdev, rdev0, mddev->minor_version);
  3435. if (err < 0)
  3436. goto out;
  3437. }
  3438. } else if (mddev->external)
  3439. rdev = md_import_device(dev, -2, -1);
  3440. else
  3441. rdev = md_import_device(dev, -1, -1);
  3442. if (IS_ERR(rdev))
  3443. return PTR_ERR(rdev);
  3444. err = bind_rdev_to_array(rdev, mddev);
  3445. out:
  3446. if (err)
  3447. export_rdev(rdev);
  3448. return err ? err : len;
  3449. }
  3450. static struct md_sysfs_entry md_new_device =
  3451. __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
  3452. static ssize_t
  3453. bitmap_store(struct mddev *mddev, const char *buf, size_t len)
  3454. {
  3455. char *end;
  3456. unsigned long chunk, end_chunk;
  3457. if (!mddev->bitmap)
  3458. goto out;
  3459. /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
  3460. while (*buf) {
  3461. chunk = end_chunk = simple_strtoul(buf, &end, 0);
  3462. if (buf == end) break;
  3463. if (*end == '-') { /* range */
  3464. buf = end + 1;
  3465. end_chunk = simple_strtoul(buf, &end, 0);
  3466. if (buf == end) break;
  3467. }
  3468. if (*end && !isspace(*end)) break;
  3469. bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
  3470. buf = skip_spaces(end);
  3471. }
  3472. bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
  3473. out:
  3474. return len;
  3475. }
  3476. static struct md_sysfs_entry md_bitmap =
  3477. __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
  3478. static ssize_t
  3479. size_show(struct mddev *mddev, char *page)
  3480. {
  3481. return sprintf(page, "%llu\n",
  3482. (unsigned long long)mddev->dev_sectors / 2);
  3483. }
  3484. static int update_size(struct mddev *mddev, sector_t num_sectors);
  3485. static ssize_t
  3486. size_store(struct mddev *mddev, const char *buf, size_t len)
  3487. {
  3488. /* If array is inactive, we can reduce the component size, but
  3489. * not increase it (except from 0).
  3490. * If array is active, we can try an on-line resize
  3491. */
  3492. sector_t sectors;
  3493. int err = strict_blocks_to_sectors(buf, &sectors);
  3494. if (err < 0)
  3495. return err;
  3496. if (mddev->pers) {
  3497. err = update_size(mddev, sectors);
  3498. md_update_sb(mddev, 1);
  3499. } else {
  3500. if (mddev->dev_sectors == 0 ||
  3501. mddev->dev_sectors > sectors)
  3502. mddev->dev_sectors = sectors;
  3503. else
  3504. err = -ENOSPC;
  3505. }
  3506. return err ? err : len;
  3507. }
  3508. static struct md_sysfs_entry md_size =
  3509. __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
  3510. /* Metadata version.
  3511. * This is one of
  3512. * 'none' for arrays with no metadata (good luck...)
  3513. * 'external' for arrays with externally managed metadata,
  3514. * or N.M for internally known formats
  3515. */
  3516. static ssize_t
  3517. metadata_show(struct mddev *mddev, char *page)
  3518. {
  3519. if (mddev->persistent)
  3520. return sprintf(page, "%d.%d\n",
  3521. mddev->major_version, mddev->minor_version);
  3522. else if (mddev->external)
  3523. return sprintf(page, "external:%s\n", mddev->metadata_type);
  3524. else
  3525. return sprintf(page, "none\n");
  3526. }
  3527. static ssize_t
  3528. metadata_store(struct mddev *mddev, const char *buf, size_t len)
  3529. {
  3530. int major, minor;
  3531. char *e;
  3532. /* Changing the details of 'external' metadata is
  3533. * always permitted. Otherwise there must be
  3534. * no devices attached to the array.
  3535. */
  3536. if (mddev->external && strncmp(buf, "external:", 9) == 0)
  3537. ;
  3538. else if (!list_empty(&mddev->disks))
  3539. return -EBUSY;
  3540. if (cmd_match(buf, "none")) {
  3541. mddev->persistent = 0;
  3542. mddev->external = 0;
  3543. mddev->major_version = 0;
  3544. mddev->minor_version = 90;
  3545. return len;
  3546. }
  3547. if (strncmp(buf, "external:", 9) == 0) {
  3548. size_t namelen = len-9;
  3549. if (namelen >= sizeof(mddev->metadata_type))
  3550. namelen = sizeof(mddev->metadata_type)-1;
  3551. strncpy(mddev->metadata_type, buf+9, namelen);
  3552. mddev->metadata_type[namelen] = 0;
  3553. if (namelen && mddev->metadata_type[namelen-1] == '\n')
  3554. mddev->metadata_type[--namelen] = 0;
  3555. mddev->persistent = 0;
  3556. mddev->external = 1;
  3557. mddev->major_version = 0;
  3558. mddev->minor_version = 90;
  3559. return len;
  3560. }
  3561. major = simple_strtoul(buf, &e, 10);
  3562. if (e==buf || *e != '.')
  3563. return -EINVAL;
  3564. buf = e+1;
  3565. minor = simple_strtoul(buf, &e, 10);
  3566. if (e==buf || (*e && *e != '\n') )
  3567. return -EINVAL;
  3568. if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
  3569. return -ENOENT;
  3570. mddev->major_version = major;
  3571. mddev->minor_version = minor;
  3572. mddev->persistent = 1;
  3573. mddev->external = 0;
  3574. return len;
  3575. }
  3576. static struct md_sysfs_entry md_metadata =
  3577. __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
  3578. static ssize_t
  3579. action_show(struct mddev *mddev, char *page)
  3580. {
  3581. char *type = "idle";
  3582. if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  3583. type = "frozen";
  3584. else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  3585. (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
  3586. if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  3587. type = "reshape";
  3588. else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  3589. if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  3590. type = "resync";
  3591. else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
  3592. type = "check";
  3593. else
  3594. type = "repair";
  3595. } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
  3596. type = "recover";
  3597. }
  3598. return sprintf(page, "%s\n", type);
  3599. }
  3600. static ssize_t
  3601. action_store(struct mddev *mddev, const char *page, size_t len)
  3602. {
  3603. if (!mddev->pers || !mddev->pers->sync_request)
  3604. return -EINVAL;
  3605. if (cmd_match(page, "frozen"))
  3606. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3607. else
  3608. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3609. if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
  3610. flush_workqueue(md_misc_wq);
  3611. if (mddev->sync_thread) {
  3612. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  3613. md_reap_sync_thread(mddev);
  3614. }
  3615. } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  3616. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
  3617. return -EBUSY;
  3618. else if (cmd_match(page, "resync"))
  3619. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3620. else if (cmd_match(page, "recover")) {
  3621. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  3622. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3623. } else if (cmd_match(page, "reshape")) {
  3624. int err;
  3625. if (mddev->pers->start_reshape == NULL)
  3626. return -EINVAL;
  3627. err = mddev->pers->start_reshape(mddev);
  3628. if (err)
  3629. return err;
  3630. sysfs_notify(&mddev->kobj, NULL, "degraded");
  3631. } else {
  3632. if (cmd_match(page, "check"))
  3633. set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  3634. else if (!cmd_match(page, "repair"))
  3635. return -EINVAL;
  3636. set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  3637. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  3638. }
  3639. if (mddev->ro == 2) {
  3640. /* A write to sync_action is enough to justify
  3641. * canceling read-auto mode
  3642. */
  3643. mddev->ro = 0;
  3644. md_wakeup_thread(mddev->sync_thread);
  3645. }
  3646. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3647. md_wakeup_thread(mddev->thread);
  3648. sysfs_notify_dirent_safe(mddev->sysfs_action);
  3649. return len;
  3650. }
  3651. static struct md_sysfs_entry md_scan_mode =
  3652. __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
  3653. static ssize_t
  3654. last_sync_action_show(struct mddev *mddev, char *page)
  3655. {
  3656. return sprintf(page, "%s\n", mddev->last_sync_action);
  3657. }
  3658. static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
  3659. static ssize_t
  3660. mismatch_cnt_show(struct mddev *mddev, char *page)
  3661. {
  3662. return sprintf(page, "%llu\n",
  3663. (unsigned long long)
  3664. atomic64_read(&mddev->resync_mismatches));
  3665. }
  3666. static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
  3667. static ssize_t
  3668. sync_min_show(struct mddev *mddev, char *page)
  3669. {
  3670. return sprintf(page, "%d (%s)\n", speed_min(mddev),
  3671. mddev->sync_speed_min ? "local": "system");
  3672. }
  3673. static ssize_t
  3674. sync_min_store(struct mddev *mddev, const char *buf, size_t len)
  3675. {
  3676. int min;
  3677. char *e;
  3678. if (strncmp(buf, "system", 6)==0) {
  3679. mddev->sync_speed_min = 0;
  3680. return len;
  3681. }
  3682. min = simple_strtoul(buf, &e, 10);
  3683. if (buf == e || (*e && *e != '\n') || min <= 0)
  3684. return -EINVAL;
  3685. mddev->sync_speed_min = min;
  3686. return len;
  3687. }
  3688. static struct md_sysfs_entry md_sync_min =
  3689. __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
  3690. static ssize_t
  3691. sync_max_show(struct mddev *mddev, char *page)
  3692. {
  3693. return sprintf(page, "%d (%s)\n", speed_max(mddev),
  3694. mddev->sync_speed_max ? "local": "system");
  3695. }
  3696. static ssize_t
  3697. sync_max_store(struct mddev *mddev, const char *buf, size_t len)
  3698. {
  3699. int max;
  3700. char *e;
  3701. if (strncmp(buf, "system", 6)==0) {
  3702. mddev->sync_speed_max = 0;
  3703. return len;
  3704. }
  3705. max = simple_strtoul(buf, &e, 10);
  3706. if (buf == e || (*e && *e != '\n') || max <= 0)
  3707. return -EINVAL;
  3708. mddev->sync_speed_max = max;
  3709. return len;
  3710. }
  3711. static struct md_sysfs_entry md_sync_max =
  3712. __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
  3713. static ssize_t
  3714. degraded_show(struct mddev *mddev, char *page)
  3715. {
  3716. return sprintf(page, "%d\n", mddev->degraded);
  3717. }
  3718. static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
  3719. static ssize_t
  3720. sync_force_parallel_show(struct mddev *mddev, char *page)
  3721. {
  3722. return sprintf(page, "%d\n", mddev->parallel_resync);
  3723. }
  3724. static ssize_t
  3725. sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
  3726. {
  3727. long n;
  3728. if (kstrtol(buf, 10, &n))
  3729. return -EINVAL;
  3730. if (n != 0 && n != 1)
  3731. return -EINVAL;
  3732. mddev->parallel_resync = n;
  3733. if (mddev->sync_thread)
  3734. wake_up(&resync_wait);
  3735. return len;
  3736. }
  3737. /* force parallel resync, even with shared block devices */
  3738. static struct md_sysfs_entry md_sync_force_parallel =
  3739. __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
  3740. sync_force_parallel_show, sync_force_parallel_store);
  3741. static ssize_t
  3742. sync_speed_show(struct mddev *mddev, char *page)
  3743. {
  3744. unsigned long resync, dt, db;
  3745. if (mddev->curr_resync == 0)
  3746. return sprintf(page, "none\n");
  3747. resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
  3748. dt = (jiffies - mddev->resync_mark) / HZ;
  3749. if (!dt) dt++;
  3750. db = resync - mddev->resync_mark_cnt;
  3751. return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
  3752. }
  3753. static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
  3754. static ssize_t
  3755. sync_completed_show(struct mddev *mddev, char *page)
  3756. {
  3757. unsigned long long max_sectors, resync;
  3758. if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3759. return sprintf(page, "none\n");
  3760. if (mddev->curr_resync == 1 ||
  3761. mddev->curr_resync == 2)
  3762. return sprintf(page, "delayed\n");
  3763. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
  3764. test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  3765. max_sectors = mddev->resync_max_sectors;
  3766. else
  3767. max_sectors = mddev->dev_sectors;
  3768. resync = mddev->curr_resync_completed;
  3769. return sprintf(page, "%llu / %llu\n", resync, max_sectors);
  3770. }
  3771. static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
  3772. static ssize_t
  3773. min_sync_show(struct mddev *mddev, char *page)
  3774. {
  3775. return sprintf(page, "%llu\n",
  3776. (unsigned long long)mddev->resync_min);
  3777. }
  3778. static ssize_t
  3779. min_sync_store(struct mddev *mddev, const char *buf, size_t len)
  3780. {
  3781. unsigned long long min;
  3782. if (kstrtoull(buf, 10, &min))
  3783. return -EINVAL;
  3784. if (min > mddev->resync_max)
  3785. return -EINVAL;
  3786. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3787. return -EBUSY;
  3788. /* Must be a multiple of chunk_size */
  3789. if (mddev->chunk_sectors) {
  3790. sector_t temp = min;
  3791. if (sector_div(temp, mddev->chunk_sectors))
  3792. return -EINVAL;
  3793. }
  3794. mddev->resync_min = min;
  3795. return len;
  3796. }
  3797. static struct md_sysfs_entry md_min_sync =
  3798. __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
  3799. static ssize_t
  3800. max_sync_show(struct mddev *mddev, char *page)
  3801. {
  3802. if (mddev->resync_max == MaxSector)
  3803. return sprintf(page, "max\n");
  3804. else
  3805. return sprintf(page, "%llu\n",
  3806. (unsigned long long)mddev->resync_max);
  3807. }
  3808. static ssize_t
  3809. max_sync_store(struct mddev *mddev, const char *buf, size_t len)
  3810. {
  3811. if (strncmp(buf, "max", 3) == 0)
  3812. mddev->resync_max = MaxSector;
  3813. else {
  3814. unsigned long long max;
  3815. if (kstrtoull(buf, 10, &max))
  3816. return -EINVAL;
  3817. if (max < mddev->resync_min)
  3818. return -EINVAL;
  3819. if (max < mddev->resync_max &&
  3820. mddev->ro == 0 &&
  3821. test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3822. return -EBUSY;
  3823. /* Must be a multiple of chunk_size */
  3824. if (mddev->chunk_sectors) {
  3825. sector_t temp = max;
  3826. if (sector_div(temp, mddev->chunk_sectors))
  3827. return -EINVAL;
  3828. }
  3829. mddev->resync_max = max;
  3830. }
  3831. wake_up(&mddev->recovery_wait);
  3832. return len;
  3833. }
  3834. static struct md_sysfs_entry md_max_sync =
  3835. __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
  3836. static ssize_t
  3837. suspend_lo_show(struct mddev *mddev, char *page)
  3838. {
  3839. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
  3840. }
  3841. static ssize_t
  3842. suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
  3843. {
  3844. char *e;
  3845. unsigned long long new = simple_strtoull(buf, &e, 10);
  3846. unsigned long long old = mddev->suspend_lo;
  3847. if (mddev->pers == NULL ||
  3848. mddev->pers->quiesce == NULL)
  3849. return -EINVAL;
  3850. if (buf == e || (*e && *e != '\n'))
  3851. return -EINVAL;
  3852. mddev->suspend_lo = new;
  3853. if (new >= old)
  3854. /* Shrinking suspended region */
  3855. mddev->pers->quiesce(mddev, 2);
  3856. else {
  3857. /* Expanding suspended region - need to wait */
  3858. mddev->pers->quiesce(mddev, 1);
  3859. mddev->pers->quiesce(mddev, 0);
  3860. }
  3861. return len;
  3862. }
  3863. static struct md_sysfs_entry md_suspend_lo =
  3864. __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
  3865. static ssize_t
  3866. suspend_hi_show(struct mddev *mddev, char *page)
  3867. {
  3868. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
  3869. }
  3870. static ssize_t
  3871. suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
  3872. {
  3873. char *e;
  3874. unsigned long long new = simple_strtoull(buf, &e, 10);
  3875. unsigned long long old = mddev->suspend_hi;
  3876. if (mddev->pers == NULL ||
  3877. mddev->pers->quiesce == NULL)
  3878. return -EINVAL;
  3879. if (buf == e || (*e && *e != '\n'))
  3880. return -EINVAL;
  3881. mddev->suspend_hi = new;
  3882. if (new <= old)
  3883. /* Shrinking suspended region */
  3884. mddev->pers->quiesce(mddev, 2);
  3885. else {
  3886. /* Expanding suspended region - need to wait */
  3887. mddev->pers->quiesce(mddev, 1);
  3888. mddev->pers->quiesce(mddev, 0);
  3889. }
  3890. return len;
  3891. }
  3892. static struct md_sysfs_entry md_suspend_hi =
  3893. __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
  3894. static ssize_t
  3895. reshape_position_show(struct mddev *mddev, char *page)
  3896. {
  3897. if (mddev->reshape_position != MaxSector)
  3898. return sprintf(page, "%llu\n",
  3899. (unsigned long long)mddev->reshape_position);
  3900. strcpy(page, "none\n");
  3901. return 5;
  3902. }
  3903. static ssize_t
  3904. reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
  3905. {
  3906. struct md_rdev *rdev;
  3907. char *e;
  3908. unsigned long long new = simple_strtoull(buf, &e, 10);
  3909. if (mddev->pers)
  3910. return -EBUSY;
  3911. if (buf == e || (*e && *e != '\n'))
  3912. return -EINVAL;
  3913. mddev->reshape_position = new;
  3914. mddev->delta_disks = 0;
  3915. mddev->reshape_backwards = 0;
  3916. mddev->new_level = mddev->level;
  3917. mddev->new_layout = mddev->layout;
  3918. mddev->new_chunk_sectors = mddev->chunk_sectors;
  3919. rdev_for_each(rdev, mddev)
  3920. rdev->new_data_offset = rdev->data_offset;
  3921. return len;
  3922. }
  3923. static struct md_sysfs_entry md_reshape_position =
  3924. __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
  3925. reshape_position_store);
  3926. static ssize_t
  3927. reshape_direction_show(struct mddev *mddev, char *page)
  3928. {
  3929. return sprintf(page, "%s\n",
  3930. mddev->reshape_backwards ? "backwards" : "forwards");
  3931. }
  3932. static ssize_t
  3933. reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
  3934. {
  3935. int backwards = 0;
  3936. if (cmd_match(buf, "forwards"))
  3937. backwards = 0;
  3938. else if (cmd_match(buf, "backwards"))
  3939. backwards = 1;
  3940. else
  3941. return -EINVAL;
  3942. if (mddev->reshape_backwards == backwards)
  3943. return len;
  3944. /* check if we are allowed to change */
  3945. if (mddev->delta_disks)
  3946. return -EBUSY;
  3947. if (mddev->persistent &&
  3948. mddev->major_version == 0)
  3949. return -EINVAL;
  3950. mddev->reshape_backwards = backwards;
  3951. return len;
  3952. }
  3953. static struct md_sysfs_entry md_reshape_direction =
  3954. __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
  3955. reshape_direction_store);
  3956. static ssize_t
  3957. array_size_show(struct mddev *mddev, char *page)
  3958. {
  3959. if (mddev->external_size)
  3960. return sprintf(page, "%llu\n",
  3961. (unsigned long long)mddev->array_sectors/2);
  3962. else
  3963. return sprintf(page, "default\n");
  3964. }
  3965. static ssize_t
  3966. array_size_store(struct mddev *mddev, const char *buf, size_t len)
  3967. {
  3968. sector_t sectors;
  3969. if (strncmp(buf, "default", 7) == 0) {
  3970. if (mddev->pers)
  3971. sectors = mddev->pers->size(mddev, 0, 0);
  3972. else
  3973. sectors = mddev->array_sectors;
  3974. mddev->external_size = 0;
  3975. } else {
  3976. if (strict_blocks_to_sectors(buf, &sectors) < 0)
  3977. return -EINVAL;
  3978. if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
  3979. return -E2BIG;
  3980. mddev->external_size = 1;
  3981. }
  3982. mddev->array_sectors = sectors;
  3983. if (mddev->pers) {
  3984. set_capacity(mddev->gendisk, mddev->array_sectors);
  3985. revalidate_disk(mddev->gendisk);
  3986. }
  3987. return len;
  3988. }
  3989. static struct md_sysfs_entry md_array_size =
  3990. __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
  3991. array_size_store);
  3992. static struct attribute *md_default_attrs[] = {
  3993. &md_level.attr,
  3994. &md_layout.attr,
  3995. &md_raid_disks.attr,
  3996. &md_chunk_size.attr,
  3997. &md_size.attr,
  3998. &md_resync_start.attr,
  3999. &md_metadata.attr,
  4000. &md_new_device.attr,
  4001. &md_safe_delay.attr,
  4002. &md_array_state.attr,
  4003. &md_reshape_position.attr,
  4004. &md_reshape_direction.attr,
  4005. &md_array_size.attr,
  4006. &max_corr_read_errors.attr,
  4007. NULL,
  4008. };
  4009. static struct attribute *md_redundancy_attrs[] = {
  4010. &md_scan_mode.attr,
  4011. &md_last_scan_mode.attr,
  4012. &md_mismatches.attr,
  4013. &md_sync_min.attr,
  4014. &md_sync_max.attr,
  4015. &md_sync_speed.attr,
  4016. &md_sync_force_parallel.attr,
  4017. &md_sync_completed.attr,
  4018. &md_min_sync.attr,
  4019. &md_max_sync.attr,
  4020. &md_suspend_lo.attr,
  4021. &md_suspend_hi.attr,
  4022. &md_bitmap.attr,
  4023. &md_degraded.attr,
  4024. NULL,
  4025. };
  4026. static struct attribute_group md_redundancy_group = {
  4027. .name = NULL,
  4028. .attrs = md_redundancy_attrs,
  4029. };
  4030. static ssize_t
  4031. md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  4032. {
  4033. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  4034. struct mddev *mddev = container_of(kobj, struct mddev, kobj);
  4035. ssize_t rv;
  4036. if (!entry->show)
  4037. return -EIO;
  4038. spin_lock(&all_mddevs_lock);
  4039. if (list_empty(&mddev->all_mddevs)) {
  4040. spin_unlock(&all_mddevs_lock);
  4041. return -EBUSY;
  4042. }
  4043. mddev_get(mddev);
  4044. spin_unlock(&all_mddevs_lock);
  4045. rv = mddev_lock(mddev);
  4046. if (!rv) {
  4047. rv = entry->show(mddev, page);
  4048. mddev_unlock(mddev);
  4049. }
  4050. mddev_put(mddev);
  4051. return rv;
  4052. }
  4053. static ssize_t
  4054. md_attr_store(struct kobject *kobj, struct attribute *attr,
  4055. const char *page, size_t length)
  4056. {
  4057. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  4058. struct mddev *mddev = container_of(kobj, struct mddev, kobj);
  4059. ssize_t rv;
  4060. if (!entry->store)
  4061. return -EIO;
  4062. if (!capable(CAP_SYS_ADMIN))
  4063. return -EACCES;
  4064. spin_lock(&all_mddevs_lock);
  4065. if (list_empty(&mddev->all_mddevs)) {
  4066. spin_unlock(&all_mddevs_lock);
  4067. return -EBUSY;
  4068. }
  4069. mddev_get(mddev);
  4070. spin_unlock(&all_mddevs_lock);
  4071. if (entry->store == new_dev_store)
  4072. flush_workqueue(md_misc_wq);
  4073. rv = mddev_lock(mddev);
  4074. if (!rv) {
  4075. rv = entry->store(mddev, page, length);
  4076. mddev_unlock(mddev);
  4077. }
  4078. mddev_put(mddev);
  4079. return rv;
  4080. }
  4081. static void md_free(struct kobject *ko)
  4082. {
  4083. struct mddev *mddev = container_of(ko, struct mddev, kobj);
  4084. if (mddev->sysfs_state)
  4085. sysfs_put(mddev->sysfs_state);
  4086. if (mddev->gendisk) {
  4087. del_gendisk(mddev->gendisk);
  4088. put_disk(mddev->gendisk);
  4089. }
  4090. if (mddev->queue)
  4091. blk_cleanup_queue(mddev->queue);
  4092. kfree(mddev);
  4093. }
  4094. static const struct sysfs_ops md_sysfs_ops = {
  4095. .show = md_attr_show,
  4096. .store = md_attr_store,
  4097. };
  4098. static struct kobj_type md_ktype = {
  4099. .release = md_free,
  4100. .sysfs_ops = &md_sysfs_ops,
  4101. .default_attrs = md_default_attrs,
  4102. };
  4103. int mdp_major = 0;
  4104. static void mddev_delayed_delete(struct work_struct *ws)
  4105. {
  4106. struct mddev *mddev = container_of(ws, struct mddev, del_work);
  4107. sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
  4108. kobject_del(&mddev->kobj);
  4109. kobject_put(&mddev->kobj);
  4110. }
  4111. static int md_alloc(dev_t dev, char *name)
  4112. {
  4113. static DEFINE_MUTEX(disks_mutex);
  4114. struct mddev *mddev = mddev_find(dev);
  4115. struct gendisk *disk;
  4116. int partitioned;
  4117. int shift;
  4118. int unit;
  4119. int error;
  4120. if (!mddev)
  4121. return -ENODEV;
  4122. partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
  4123. shift = partitioned ? MdpMinorShift : 0;
  4124. unit = MINOR(mddev->unit) >> shift;
  4125. /* wait for any previous instance of this device to be
  4126. * completely removed (mddev_delayed_delete).
  4127. */
  4128. flush_workqueue(md_misc_wq);
  4129. mutex_lock(&disks_mutex);
  4130. error = -EEXIST;
  4131. if (mddev->gendisk)
  4132. goto abort;
  4133. if (name) {
  4134. /* Need to ensure that 'name' is not a duplicate.
  4135. */
  4136. struct mddev *mddev2;
  4137. spin_lock(&all_mddevs_lock);
  4138. list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
  4139. if (mddev2->gendisk &&
  4140. strcmp(mddev2->gendisk->disk_name, name) == 0) {
  4141. spin_unlock(&all_mddevs_lock);
  4142. goto abort;
  4143. }
  4144. spin_unlock(&all_mddevs_lock);
  4145. }
  4146. error = -ENOMEM;
  4147. mddev->queue = blk_alloc_queue(GFP_KERNEL);
  4148. if (!mddev->queue)
  4149. goto abort;
  4150. mddev->queue->queuedata = mddev;
  4151. blk_queue_make_request(mddev->queue, md_make_request);
  4152. blk_set_stacking_limits(&mddev->queue->limits);
  4153. disk = alloc_disk(1 << shift);
  4154. if (!disk) {
  4155. blk_cleanup_queue(mddev->queue);
  4156. mddev->queue = NULL;
  4157. goto abort;
  4158. }
  4159. disk->major = MAJOR(mddev->unit);
  4160. disk->first_minor = unit << shift;
  4161. if (name)
  4162. strcpy(disk->disk_name, name);
  4163. else if (partitioned)
  4164. sprintf(disk->disk_name, "md_d%d", unit);
  4165. else
  4166. sprintf(disk->disk_name, "md%d", unit);
  4167. disk->fops = &md_fops;
  4168. disk->private_data = mddev;
  4169. disk->queue = mddev->queue;
  4170. blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
  4171. /* Allow extended partitions. This makes the
  4172. * 'mdp' device redundant, but we can't really
  4173. * remove it now.
  4174. */
  4175. disk->flags |= GENHD_FL_EXT_DEVT;
  4176. mddev->gendisk = disk;
  4177. /* As soon as we call add_disk(), another thread could get
  4178. * through to md_open, so make sure it doesn't get too far
  4179. */
  4180. mutex_lock(&mddev->open_mutex);
  4181. add_disk(disk);
  4182. error = kobject_init_and_add(&mddev->kobj, &md_ktype,
  4183. &disk_to_dev(disk)->kobj, "%s", "md");
  4184. if (error) {
  4185. /* This isn't possible, but as kobject_init_and_add is marked
  4186. * __must_check, we must do something with the result
  4187. */
  4188. printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
  4189. disk->disk_name);
  4190. error = 0;
  4191. }
  4192. if (mddev->kobj.sd &&
  4193. sysfs_create_group(&mddev->kobj, &md_bitmap_group))
  4194. printk(KERN_DEBUG "pointless warning\n");
  4195. mutex_unlock(&mddev->open_mutex);
  4196. abort:
  4197. mutex_unlock(&disks_mutex);
  4198. if (!error && mddev->kobj.sd) {
  4199. kobject_uevent(&mddev->kobj, KOBJ_ADD);
  4200. mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
  4201. }
  4202. mddev_put(mddev);
  4203. return error;
  4204. }
  4205. static struct kobject *md_probe(dev_t dev, int *part, void *data)
  4206. {
  4207. md_alloc(dev, NULL);
  4208. return NULL;
  4209. }
  4210. static int add_named_array(const char *val, struct kernel_param *kp)
  4211. {
  4212. /* val must be "md_*" where * is not all digits.
  4213. * We allocate an array with a large free minor number, and
  4214. * set the name to val. val must not already be an active name.
  4215. */
  4216. int len = strlen(val);
  4217. char buf[DISK_NAME_LEN];
  4218. while (len && val[len-1] == '\n')
  4219. len--;
  4220. if (len >= DISK_NAME_LEN)
  4221. return -E2BIG;
  4222. strlcpy(buf, val, len+1);
  4223. if (strncmp(buf, "md_", 3) != 0)
  4224. return -EINVAL;
  4225. return md_alloc(0, buf);
  4226. }
  4227. static void md_safemode_timeout(unsigned long data)
  4228. {
  4229. struct mddev *mddev = (struct mddev *) data;
  4230. if (!atomic_read(&mddev->writes_pending)) {
  4231. mddev->safemode = 1;
  4232. if (mddev->external)
  4233. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4234. }
  4235. md_wakeup_thread(mddev->thread);
  4236. }
  4237. static int start_dirty_degraded;
  4238. int md_run(struct mddev *mddev)
  4239. {
  4240. int err;
  4241. struct md_rdev *rdev;
  4242. struct md_personality *pers;
  4243. if (list_empty(&mddev->disks))
  4244. /* cannot run an array with no devices.. */
  4245. return -EINVAL;
  4246. if (mddev->pers)
  4247. return -EBUSY;
  4248. /* Cannot run until previous stop completes properly */
  4249. if (mddev->sysfs_active)
  4250. return -EBUSY;
  4251. /*
  4252. * Analyze all RAID superblock(s)
  4253. */
  4254. if (!mddev->raid_disks) {
  4255. if (!mddev->persistent)
  4256. return -EINVAL;
  4257. analyze_sbs(mddev);
  4258. }
  4259. if (mddev->level != LEVEL_NONE)
  4260. request_module("md-level-%d", mddev->level);
  4261. else if (mddev->clevel[0])
  4262. request_module("md-%s", mddev->clevel);
  4263. /*
  4264. * Drop all container device buffers, from now on
  4265. * the only valid external interface is through the md
  4266. * device.
  4267. */
  4268. rdev_for_each(rdev, mddev) {
  4269. if (test_bit(Faulty, &rdev->flags))
  4270. continue;
  4271. sync_blockdev(rdev->bdev);
  4272. invalidate_bdev(rdev->bdev);
  4273. /* perform some consistency tests on the device.
  4274. * We don't want the data to overlap the metadata,
  4275. * Internal Bitmap issues have been handled elsewhere.
  4276. */
  4277. if (rdev->meta_bdev) {
  4278. /* Nothing to check */;
  4279. } else if (rdev->data_offset < rdev->sb_start) {
  4280. if (mddev->dev_sectors &&
  4281. rdev->data_offset + mddev->dev_sectors
  4282. > rdev->sb_start) {
  4283. printk("md: %s: data overlaps metadata\n",
  4284. mdname(mddev));
  4285. return -EINVAL;
  4286. }
  4287. } else {
  4288. if (rdev->sb_start + rdev->sb_size/512
  4289. > rdev->data_offset) {
  4290. printk("md: %s: metadata overlaps data\n",
  4291. mdname(mddev));
  4292. return -EINVAL;
  4293. }
  4294. }
  4295. sysfs_notify_dirent_safe(rdev->sysfs_state);
  4296. }
  4297. if (mddev->bio_set == NULL)
  4298. mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
  4299. spin_lock(&pers_lock);
  4300. pers = find_pers(mddev->level, mddev->clevel);
  4301. if (!pers || !try_module_get(pers->owner)) {
  4302. spin_unlock(&pers_lock);
  4303. if (mddev->level != LEVEL_NONE)
  4304. printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
  4305. mddev->level);
  4306. else
  4307. printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
  4308. mddev->clevel);
  4309. return -EINVAL;
  4310. }
  4311. mddev->pers = pers;
  4312. spin_unlock(&pers_lock);
  4313. if (mddev->level != pers->level) {
  4314. mddev->level = pers->level;
  4315. mddev->new_level = pers->level;
  4316. }
  4317. strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
  4318. if (mddev->reshape_position != MaxSector &&
  4319. pers->start_reshape == NULL) {
  4320. /* This personality cannot handle reshaping... */
  4321. mddev->pers = NULL;
  4322. module_put(pers->owner);
  4323. return -EINVAL;
  4324. }
  4325. if (pers->sync_request) {
  4326. /* Warn if this is a potentially silly
  4327. * configuration.
  4328. */
  4329. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  4330. struct md_rdev *rdev2;
  4331. int warned = 0;
  4332. rdev_for_each(rdev, mddev)
  4333. rdev_for_each(rdev2, mddev) {
  4334. if (rdev < rdev2 &&
  4335. rdev->bdev->bd_contains ==
  4336. rdev2->bdev->bd_contains) {
  4337. printk(KERN_WARNING
  4338. "%s: WARNING: %s appears to be"
  4339. " on the same physical disk as"
  4340. " %s.\n",
  4341. mdname(mddev),
  4342. bdevname(rdev->bdev,b),
  4343. bdevname(rdev2->bdev,b2));
  4344. warned = 1;
  4345. }
  4346. }
  4347. if (warned)
  4348. printk(KERN_WARNING
  4349. "True protection against single-disk"
  4350. " failure might be compromised.\n");
  4351. }
  4352. mddev->recovery = 0;
  4353. /* may be over-ridden by personality */
  4354. mddev->resync_max_sectors = mddev->dev_sectors;
  4355. mddev->ok_start_degraded = start_dirty_degraded;
  4356. if (start_readonly && mddev->ro == 0)
  4357. mddev->ro = 2; /* read-only, but switch on first write */
  4358. err = mddev->pers->run(mddev);
  4359. if (err)
  4360. printk(KERN_ERR "md: pers->run() failed ...\n");
  4361. else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
  4362. WARN_ONCE(!mddev->external_size, "%s: default size too small,"
  4363. " but 'external_size' not in effect?\n", __func__);
  4364. printk(KERN_ERR
  4365. "md: invalid array_size %llu > default size %llu\n",
  4366. (unsigned long long)mddev->array_sectors / 2,
  4367. (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
  4368. err = -EINVAL;
  4369. mddev->pers->stop(mddev);
  4370. }
  4371. if (err == 0 && mddev->pers->sync_request &&
  4372. (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
  4373. err = bitmap_create(mddev);
  4374. if (err) {
  4375. printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
  4376. mdname(mddev), err);
  4377. mddev->pers->stop(mddev);
  4378. }
  4379. }
  4380. if (err) {
  4381. module_put(mddev->pers->owner);
  4382. mddev->pers = NULL;
  4383. bitmap_destroy(mddev);
  4384. return err;
  4385. }
  4386. if (mddev->pers->sync_request) {
  4387. if (mddev->kobj.sd &&
  4388. sysfs_create_group(&mddev->kobj, &md_redundancy_group))
  4389. printk(KERN_WARNING
  4390. "md: cannot register extra attributes for %s\n",
  4391. mdname(mddev));
  4392. mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
  4393. } else if (mddev->ro == 2) /* auto-readonly not meaningful */
  4394. mddev->ro = 0;
  4395. atomic_set(&mddev->writes_pending,0);
  4396. atomic_set(&mddev->max_corr_read_errors,
  4397. MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
  4398. mddev->safemode = 0;
  4399. mddev->safemode_timer.function = md_safemode_timeout;
  4400. mddev->safemode_timer.data = (unsigned long) mddev;
  4401. mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
  4402. mddev->in_sync = 1;
  4403. smp_wmb();
  4404. mddev->ready = 1;
  4405. rdev_for_each(rdev, mddev)
  4406. if (rdev->raid_disk >= 0)
  4407. if (sysfs_link_rdev(mddev, rdev))
  4408. /* failure here is OK */;
  4409. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4410. if (mddev->flags & MD_UPDATE_SB_FLAGS)
  4411. md_update_sb(mddev, 0);
  4412. md_new_event(mddev);
  4413. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4414. sysfs_notify_dirent_safe(mddev->sysfs_action);
  4415. sysfs_notify(&mddev->kobj, NULL, "degraded");
  4416. return 0;
  4417. }
  4418. EXPORT_SYMBOL_GPL(md_run);
  4419. static int do_md_run(struct mddev *mddev)
  4420. {
  4421. int err;
  4422. err = md_run(mddev);
  4423. if (err)
  4424. goto out;
  4425. err = bitmap_load(mddev);
  4426. if (err) {
  4427. bitmap_destroy(mddev);
  4428. goto out;
  4429. }
  4430. md_wakeup_thread(mddev->thread);
  4431. md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
  4432. set_capacity(mddev->gendisk, mddev->array_sectors);
  4433. revalidate_disk(mddev->gendisk);
  4434. mddev->changed = 1;
  4435. kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
  4436. out:
  4437. return err;
  4438. }
  4439. static int restart_array(struct mddev *mddev)
  4440. {
  4441. struct gendisk *disk = mddev->gendisk;
  4442. /* Complain if it has no devices */
  4443. if (list_empty(&mddev->disks))
  4444. return -ENXIO;
  4445. if (!mddev->pers)
  4446. return -EINVAL;
  4447. if (!mddev->ro)
  4448. return -EBUSY;
  4449. mddev->safemode = 0;
  4450. mddev->ro = 0;
  4451. set_disk_ro(disk, 0);
  4452. printk(KERN_INFO "md: %s switched to read-write mode.\n",
  4453. mdname(mddev));
  4454. /* Kick recovery or resync if necessary */
  4455. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4456. md_wakeup_thread(mddev->thread);
  4457. md_wakeup_thread(mddev->sync_thread);
  4458. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4459. return 0;
  4460. }
  4461. static void md_clean(struct mddev *mddev)
  4462. {
  4463. mddev->array_sectors = 0;
  4464. mddev->external_size = 0;
  4465. mddev->dev_sectors = 0;
  4466. mddev->raid_disks = 0;
  4467. mddev->recovery_cp = 0;
  4468. mddev->resync_min = 0;
  4469. mddev->resync_max = MaxSector;
  4470. mddev->reshape_position = MaxSector;
  4471. mddev->external = 0;
  4472. mddev->persistent = 0;
  4473. mddev->level = LEVEL_NONE;
  4474. mddev->clevel[0] = 0;
  4475. mddev->flags = 0;
  4476. mddev->ro = 0;
  4477. mddev->metadata_type[0] = 0;
  4478. mddev->chunk_sectors = 0;
  4479. mddev->ctime = mddev->utime = 0;
  4480. mddev->layout = 0;
  4481. mddev->max_disks = 0;
  4482. mddev->events = 0;
  4483. mddev->can_decrease_events = 0;
  4484. mddev->delta_disks = 0;
  4485. mddev->reshape_backwards = 0;
  4486. mddev->new_level = LEVEL_NONE;
  4487. mddev->new_layout = 0;
  4488. mddev->new_chunk_sectors = 0;
  4489. mddev->curr_resync = 0;
  4490. atomic64_set(&mddev->resync_mismatches, 0);
  4491. mddev->suspend_lo = mddev->suspend_hi = 0;
  4492. mddev->sync_speed_min = mddev->sync_speed_max = 0;
  4493. mddev->recovery = 0;
  4494. mddev->in_sync = 0;
  4495. mddev->changed = 0;
  4496. mddev->degraded = 0;
  4497. mddev->safemode = 0;
  4498. mddev->merge_check_needed = 0;
  4499. mddev->bitmap_info.offset = 0;
  4500. mddev->bitmap_info.default_offset = 0;
  4501. mddev->bitmap_info.default_space = 0;
  4502. mddev->bitmap_info.chunksize = 0;
  4503. mddev->bitmap_info.daemon_sleep = 0;
  4504. mddev->bitmap_info.max_write_behind = 0;
  4505. }
  4506. static void __md_stop_writes(struct mddev *mddev)
  4507. {
  4508. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4509. flush_workqueue(md_misc_wq);
  4510. if (mddev->sync_thread) {
  4511. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  4512. md_reap_sync_thread(mddev);
  4513. }
  4514. del_timer_sync(&mddev->safemode_timer);
  4515. bitmap_flush(mddev);
  4516. md_super_wait(mddev);
  4517. if (mddev->ro == 0 &&
  4518. (!mddev->in_sync || (mddev->flags & MD_UPDATE_SB_FLAGS))) {
  4519. /* mark array as shutdown cleanly */
  4520. mddev->in_sync = 1;
  4521. md_update_sb(mddev, 1);
  4522. }
  4523. }
  4524. void md_stop_writes(struct mddev *mddev)
  4525. {
  4526. mddev_lock_nointr(mddev);
  4527. __md_stop_writes(mddev);
  4528. mddev_unlock(mddev);
  4529. }
  4530. EXPORT_SYMBOL_GPL(md_stop_writes);
  4531. static void __md_stop(struct mddev *mddev)
  4532. {
  4533. mddev->ready = 0;
  4534. mddev->pers->stop(mddev);
  4535. if (mddev->pers->sync_request && mddev->to_remove == NULL)
  4536. mddev->to_remove = &md_redundancy_group;
  4537. module_put(mddev->pers->owner);
  4538. mddev->pers = NULL;
  4539. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4540. }
  4541. void md_stop(struct mddev *mddev)
  4542. {
  4543. /* stop the array and free an attached data structures.
  4544. * This is called from dm-raid
  4545. */
  4546. __md_stop(mddev);
  4547. bitmap_destroy(mddev);
  4548. if (mddev->bio_set)
  4549. bioset_free(mddev->bio_set);
  4550. }
  4551. EXPORT_SYMBOL_GPL(md_stop);
  4552. static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
  4553. {
  4554. int err = 0;
  4555. int did_freeze = 0;
  4556. if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
  4557. did_freeze = 1;
  4558. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4559. md_wakeup_thread(mddev->thread);
  4560. }
  4561. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  4562. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  4563. if (mddev->sync_thread)
  4564. /* Thread might be blocked waiting for metadata update
  4565. * which will now never happen */
  4566. wake_up_process(mddev->sync_thread->tsk);
  4567. mddev_unlock(mddev);
  4568. wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING,
  4569. &mddev->recovery));
  4570. mddev_lock_nointr(mddev);
  4571. mutex_lock(&mddev->open_mutex);
  4572. if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
  4573. mddev->sync_thread ||
  4574. test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  4575. (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
  4576. printk("md: %s still in use.\n",mdname(mddev));
  4577. if (did_freeze) {
  4578. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4579. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4580. md_wakeup_thread(mddev->thread);
  4581. }
  4582. err = -EBUSY;
  4583. goto out;
  4584. }
  4585. if (mddev->pers) {
  4586. __md_stop_writes(mddev);
  4587. err = -ENXIO;
  4588. if (mddev->ro==1)
  4589. goto out;
  4590. mddev->ro = 1;
  4591. set_disk_ro(mddev->gendisk, 1);
  4592. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4593. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4594. md_wakeup_thread(mddev->thread);
  4595. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4596. err = 0;
  4597. }
  4598. out:
  4599. mutex_unlock(&mddev->open_mutex);
  4600. return err;
  4601. }
  4602. /* mode:
  4603. * 0 - completely stop and dis-assemble array
  4604. * 2 - stop but do not disassemble array
  4605. */
  4606. static int do_md_stop(struct mddev *mddev, int mode,
  4607. struct block_device *bdev)
  4608. {
  4609. struct gendisk *disk = mddev->gendisk;
  4610. struct md_rdev *rdev;
  4611. int did_freeze = 0;
  4612. if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
  4613. did_freeze = 1;
  4614. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4615. md_wakeup_thread(mddev->thread);
  4616. }
  4617. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  4618. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  4619. if (mddev->sync_thread)
  4620. /* Thread might be blocked waiting for metadata update
  4621. * which will now never happen */
  4622. wake_up_process(mddev->sync_thread->tsk);
  4623. mddev_unlock(mddev);
  4624. wait_event(resync_wait, (mddev->sync_thread == NULL &&
  4625. !test_bit(MD_RECOVERY_RUNNING,
  4626. &mddev->recovery)));
  4627. mddev_lock_nointr(mddev);
  4628. mutex_lock(&mddev->open_mutex);
  4629. if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
  4630. mddev->sysfs_active ||
  4631. mddev->sync_thread ||
  4632. test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  4633. (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
  4634. printk("md: %s still in use.\n",mdname(mddev));
  4635. mutex_unlock(&mddev->open_mutex);
  4636. if (did_freeze) {
  4637. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4638. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4639. md_wakeup_thread(mddev->thread);
  4640. }
  4641. return -EBUSY;
  4642. }
  4643. if (mddev->pers) {
  4644. if (mddev->ro)
  4645. set_disk_ro(disk, 0);
  4646. __md_stop_writes(mddev);
  4647. __md_stop(mddev);
  4648. mddev->queue->merge_bvec_fn = NULL;
  4649. mddev->queue->backing_dev_info.congested_fn = NULL;
  4650. /* tell userspace to handle 'inactive' */
  4651. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4652. rdev_for_each(rdev, mddev)
  4653. if (rdev->raid_disk >= 0)
  4654. sysfs_unlink_rdev(mddev, rdev);
  4655. set_capacity(disk, 0);
  4656. mutex_unlock(&mddev->open_mutex);
  4657. mddev->changed = 1;
  4658. revalidate_disk(disk);
  4659. if (mddev->ro)
  4660. mddev->ro = 0;
  4661. } else
  4662. mutex_unlock(&mddev->open_mutex);
  4663. /*
  4664. * Free resources if final stop
  4665. */
  4666. if (mode == 0) {
  4667. printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
  4668. bitmap_destroy(mddev);
  4669. if (mddev->bitmap_info.file) {
  4670. fput(mddev->bitmap_info.file);
  4671. mddev->bitmap_info.file = NULL;
  4672. }
  4673. mddev->bitmap_info.offset = 0;
  4674. export_array(mddev);
  4675. md_clean(mddev);
  4676. kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
  4677. if (mddev->hold_active == UNTIL_STOP)
  4678. mddev->hold_active = 0;
  4679. }
  4680. blk_integrity_unregister(disk);
  4681. md_new_event(mddev);
  4682. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4683. return 0;
  4684. }
  4685. #ifndef MODULE
  4686. static void autorun_array(struct mddev *mddev)
  4687. {
  4688. struct md_rdev *rdev;
  4689. int err;
  4690. if (list_empty(&mddev->disks))
  4691. return;
  4692. printk(KERN_INFO "md: running: ");
  4693. rdev_for_each(rdev, mddev) {
  4694. char b[BDEVNAME_SIZE];
  4695. printk("<%s>", bdevname(rdev->bdev,b));
  4696. }
  4697. printk("\n");
  4698. err = do_md_run(mddev);
  4699. if (err) {
  4700. printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
  4701. do_md_stop(mddev, 0, NULL);
  4702. }
  4703. }
  4704. /*
  4705. * lets try to run arrays based on all disks that have arrived
  4706. * until now. (those are in pending_raid_disks)
  4707. *
  4708. * the method: pick the first pending disk, collect all disks with
  4709. * the same UUID, remove all from the pending list and put them into
  4710. * the 'same_array' list. Then order this list based on superblock
  4711. * update time (freshest comes first), kick out 'old' disks and
  4712. * compare superblocks. If everything's fine then run it.
  4713. *
  4714. * If "unit" is allocated, then bump its reference count
  4715. */
  4716. static void autorun_devices(int part)
  4717. {
  4718. struct md_rdev *rdev0, *rdev, *tmp;
  4719. struct mddev *mddev;
  4720. char b[BDEVNAME_SIZE];
  4721. printk(KERN_INFO "md: autorun ...\n");
  4722. while (!list_empty(&pending_raid_disks)) {
  4723. int unit;
  4724. dev_t dev;
  4725. LIST_HEAD(candidates);
  4726. rdev0 = list_entry(pending_raid_disks.next,
  4727. struct md_rdev, same_set);
  4728. printk(KERN_INFO "md: considering %s ...\n",
  4729. bdevname(rdev0->bdev,b));
  4730. INIT_LIST_HEAD(&candidates);
  4731. rdev_for_each_list(rdev, tmp, &pending_raid_disks)
  4732. if (super_90_load(rdev, rdev0, 0) >= 0) {
  4733. printk(KERN_INFO "md: adding %s ...\n",
  4734. bdevname(rdev->bdev,b));
  4735. list_move(&rdev->same_set, &candidates);
  4736. }
  4737. /*
  4738. * now we have a set of devices, with all of them having
  4739. * mostly sane superblocks. It's time to allocate the
  4740. * mddev.
  4741. */
  4742. if (part) {
  4743. dev = MKDEV(mdp_major,
  4744. rdev0->preferred_minor << MdpMinorShift);
  4745. unit = MINOR(dev) >> MdpMinorShift;
  4746. } else {
  4747. dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
  4748. unit = MINOR(dev);
  4749. }
  4750. if (rdev0->preferred_minor != unit) {
  4751. printk(KERN_INFO "md: unit number in %s is bad: %d\n",
  4752. bdevname(rdev0->bdev, b), rdev0->preferred_minor);
  4753. break;
  4754. }
  4755. md_probe(dev, NULL, NULL);
  4756. mddev = mddev_find(dev);
  4757. if (!mddev || !mddev->gendisk) {
  4758. if (mddev)
  4759. mddev_put(mddev);
  4760. printk(KERN_ERR
  4761. "md: cannot allocate memory for md drive.\n");
  4762. break;
  4763. }
  4764. if (mddev_lock(mddev))
  4765. printk(KERN_WARNING "md: %s locked, cannot run\n",
  4766. mdname(mddev));
  4767. else if (mddev->raid_disks || mddev->major_version
  4768. || !list_empty(&mddev->disks)) {
  4769. printk(KERN_WARNING
  4770. "md: %s already running, cannot run %s\n",
  4771. mdname(mddev), bdevname(rdev0->bdev,b));
  4772. mddev_unlock(mddev);
  4773. } else {
  4774. printk(KERN_INFO "md: created %s\n", mdname(mddev));
  4775. mddev->persistent = 1;
  4776. rdev_for_each_list(rdev, tmp, &candidates) {
  4777. list_del_init(&rdev->same_set);
  4778. if (bind_rdev_to_array(rdev, mddev))
  4779. export_rdev(rdev);
  4780. }
  4781. autorun_array(mddev);
  4782. mddev_unlock(mddev);
  4783. }
  4784. /* on success, candidates will be empty, on error
  4785. * it won't...
  4786. */
  4787. rdev_for_each_list(rdev, tmp, &candidates) {
  4788. list_del_init(&rdev->same_set);
  4789. export_rdev(rdev);
  4790. }
  4791. mddev_put(mddev);
  4792. }
  4793. printk(KERN_INFO "md: ... autorun DONE.\n");
  4794. }
  4795. #endif /* !MODULE */
  4796. static int get_version(void __user *arg)
  4797. {
  4798. mdu_version_t ver;
  4799. ver.major = MD_MAJOR_VERSION;
  4800. ver.minor = MD_MINOR_VERSION;
  4801. ver.patchlevel = MD_PATCHLEVEL_VERSION;
  4802. if (copy_to_user(arg, &ver, sizeof(ver)))
  4803. return -EFAULT;
  4804. return 0;
  4805. }
  4806. static int get_array_info(struct mddev *mddev, void __user *arg)
  4807. {
  4808. mdu_array_info_t info;
  4809. int nr,working,insync,failed,spare;
  4810. struct md_rdev *rdev;
  4811. nr = working = insync = failed = spare = 0;
  4812. rcu_read_lock();
  4813. rdev_for_each_rcu(rdev, mddev) {
  4814. nr++;
  4815. if (test_bit(Faulty, &rdev->flags))
  4816. failed++;
  4817. else {
  4818. working++;
  4819. if (test_bit(In_sync, &rdev->flags))
  4820. insync++;
  4821. else
  4822. spare++;
  4823. }
  4824. }
  4825. rcu_read_unlock();
  4826. info.major_version = mddev->major_version;
  4827. info.minor_version = mddev->minor_version;
  4828. info.patch_version = MD_PATCHLEVEL_VERSION;
  4829. info.ctime = mddev->ctime;
  4830. info.level = mddev->level;
  4831. info.size = mddev->dev_sectors / 2;
  4832. if (info.size != mddev->dev_sectors / 2) /* overflow */
  4833. info.size = -1;
  4834. info.nr_disks = nr;
  4835. info.raid_disks = mddev->raid_disks;
  4836. info.md_minor = mddev->md_minor;
  4837. info.not_persistent= !mddev->persistent;
  4838. info.utime = mddev->utime;
  4839. info.state = 0;
  4840. if (mddev->in_sync)
  4841. info.state = (1<<MD_SB_CLEAN);
  4842. if (mddev->bitmap && mddev->bitmap_info.offset)
  4843. info.state |= (1<<MD_SB_BITMAP_PRESENT);
  4844. info.active_disks = insync;
  4845. info.working_disks = working;
  4846. info.failed_disks = failed;
  4847. info.spare_disks = spare;
  4848. info.layout = mddev->layout;
  4849. info.chunk_size = mddev->chunk_sectors << 9;
  4850. if (copy_to_user(arg, &info, sizeof(info)))
  4851. return -EFAULT;
  4852. return 0;
  4853. }
  4854. static int get_bitmap_file(struct mddev *mddev, void __user * arg)
  4855. {
  4856. mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
  4857. char *ptr, *buf = NULL;
  4858. int err = -ENOMEM;
  4859. file = kmalloc(sizeof(*file), GFP_NOIO);
  4860. if (!file)
  4861. goto out;
  4862. /* bitmap disabled, zero the first byte and copy out */
  4863. if (!mddev->bitmap || !mddev->bitmap->storage.file) {
  4864. file->pathname[0] = '\0';
  4865. goto copy_out;
  4866. }
  4867. buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
  4868. if (!buf)
  4869. goto out;
  4870. ptr = d_path(&mddev->bitmap->storage.file->f_path,
  4871. buf, sizeof(file->pathname));
  4872. if (IS_ERR(ptr))
  4873. goto out;
  4874. strcpy(file->pathname, ptr);
  4875. copy_out:
  4876. err = 0;
  4877. if (copy_to_user(arg, file, sizeof(*file)))
  4878. err = -EFAULT;
  4879. out:
  4880. kfree(buf);
  4881. kfree(file);
  4882. return err;
  4883. }
  4884. static int get_disk_info(struct mddev *mddev, void __user * arg)
  4885. {
  4886. mdu_disk_info_t info;
  4887. struct md_rdev *rdev;
  4888. if (copy_from_user(&info, arg, sizeof(info)))
  4889. return -EFAULT;
  4890. rcu_read_lock();
  4891. rdev = find_rdev_nr_rcu(mddev, info.number);
  4892. if (rdev) {
  4893. info.major = MAJOR(rdev->bdev->bd_dev);
  4894. info.minor = MINOR(rdev->bdev->bd_dev);
  4895. info.raid_disk = rdev->raid_disk;
  4896. info.state = 0;
  4897. if (test_bit(Faulty, &rdev->flags))
  4898. info.state |= (1<<MD_DISK_FAULTY);
  4899. else if (test_bit(In_sync, &rdev->flags)) {
  4900. info.state |= (1<<MD_DISK_ACTIVE);
  4901. info.state |= (1<<MD_DISK_SYNC);
  4902. }
  4903. if (test_bit(WriteMostly, &rdev->flags))
  4904. info.state |= (1<<MD_DISK_WRITEMOSTLY);
  4905. } else {
  4906. info.major = info.minor = 0;
  4907. info.raid_disk = -1;
  4908. info.state = (1<<MD_DISK_REMOVED);
  4909. }
  4910. rcu_read_unlock();
  4911. if (copy_to_user(arg, &info, sizeof(info)))
  4912. return -EFAULT;
  4913. return 0;
  4914. }
  4915. static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info)
  4916. {
  4917. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  4918. struct md_rdev *rdev;
  4919. dev_t dev = MKDEV(info->major,info->minor);
  4920. if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
  4921. return -EOVERFLOW;
  4922. if (!mddev->raid_disks) {
  4923. int err;
  4924. /* expecting a device which has a superblock */
  4925. rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
  4926. if (IS_ERR(rdev)) {
  4927. printk(KERN_WARNING
  4928. "md: md_import_device returned %ld\n",
  4929. PTR_ERR(rdev));
  4930. return PTR_ERR(rdev);
  4931. }
  4932. if (!list_empty(&mddev->disks)) {
  4933. struct md_rdev *rdev0
  4934. = list_entry(mddev->disks.next,
  4935. struct md_rdev, same_set);
  4936. err = super_types[mddev->major_version]
  4937. .load_super(rdev, rdev0, mddev->minor_version);
  4938. if (err < 0) {
  4939. printk(KERN_WARNING
  4940. "md: %s has different UUID to %s\n",
  4941. bdevname(rdev->bdev,b),
  4942. bdevname(rdev0->bdev,b2));
  4943. export_rdev(rdev);
  4944. return -EINVAL;
  4945. }
  4946. }
  4947. err = bind_rdev_to_array(rdev, mddev);
  4948. if (err)
  4949. export_rdev(rdev);
  4950. return err;
  4951. }
  4952. /*
  4953. * add_new_disk can be used once the array is assembled
  4954. * to add "hot spares". They must already have a superblock
  4955. * written
  4956. */
  4957. if (mddev->pers) {
  4958. int err;
  4959. if (!mddev->pers->hot_add_disk) {
  4960. printk(KERN_WARNING
  4961. "%s: personality does not support diskops!\n",
  4962. mdname(mddev));
  4963. return -EINVAL;
  4964. }
  4965. if (mddev->persistent)
  4966. rdev = md_import_device(dev, mddev->major_version,
  4967. mddev->minor_version);
  4968. else
  4969. rdev = md_import_device(dev, -1, -1);
  4970. if (IS_ERR(rdev)) {
  4971. printk(KERN_WARNING
  4972. "md: md_import_device returned %ld\n",
  4973. PTR_ERR(rdev));
  4974. return PTR_ERR(rdev);
  4975. }
  4976. /* set saved_raid_disk if appropriate */
  4977. if (!mddev->persistent) {
  4978. if (info->state & (1<<MD_DISK_SYNC) &&
  4979. info->raid_disk < mddev->raid_disks) {
  4980. rdev->raid_disk = info->raid_disk;
  4981. set_bit(In_sync, &rdev->flags);
  4982. clear_bit(Bitmap_sync, &rdev->flags);
  4983. } else
  4984. rdev->raid_disk = -1;
  4985. rdev->saved_raid_disk = rdev->raid_disk;
  4986. } else
  4987. super_types[mddev->major_version].
  4988. validate_super(mddev, rdev);
  4989. if ((info->state & (1<<MD_DISK_SYNC)) &&
  4990. rdev->raid_disk != info->raid_disk) {
  4991. /* This was a hot-add request, but events doesn't
  4992. * match, so reject it.
  4993. */
  4994. export_rdev(rdev);
  4995. return -EINVAL;
  4996. }
  4997. clear_bit(In_sync, &rdev->flags); /* just to be sure */
  4998. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  4999. set_bit(WriteMostly, &rdev->flags);
  5000. else
  5001. clear_bit(WriteMostly, &rdev->flags);
  5002. rdev->raid_disk = -1;
  5003. err = bind_rdev_to_array(rdev, mddev);
  5004. if (!err && !mddev->pers->hot_remove_disk) {
  5005. /* If there is hot_add_disk but no hot_remove_disk
  5006. * then added disks for geometry changes,
  5007. * and should be added immediately.
  5008. */
  5009. super_types[mddev->major_version].
  5010. validate_super(mddev, rdev);
  5011. err = mddev->pers->hot_add_disk(mddev, rdev);
  5012. if (err)
  5013. unbind_rdev_from_array(rdev);
  5014. }
  5015. if (err)
  5016. export_rdev(rdev);
  5017. else
  5018. sysfs_notify_dirent_safe(rdev->sysfs_state);
  5019. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  5020. if (mddev->degraded)
  5021. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  5022. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5023. if (!err)
  5024. md_new_event(mddev);
  5025. md_wakeup_thread(mddev->thread);
  5026. return err;
  5027. }
  5028. /* otherwise, add_new_disk is only allowed
  5029. * for major_version==0 superblocks
  5030. */
  5031. if (mddev->major_version != 0) {
  5032. printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
  5033. mdname(mddev));
  5034. return -EINVAL;
  5035. }
  5036. if (!(info->state & (1<<MD_DISK_FAULTY))) {
  5037. int err;
  5038. rdev = md_import_device(dev, -1, 0);
  5039. if (IS_ERR(rdev)) {
  5040. printk(KERN_WARNING
  5041. "md: error, md_import_device() returned %ld\n",
  5042. PTR_ERR(rdev));
  5043. return PTR_ERR(rdev);
  5044. }
  5045. rdev->desc_nr = info->number;
  5046. if (info->raid_disk < mddev->raid_disks)
  5047. rdev->raid_disk = info->raid_disk;
  5048. else
  5049. rdev->raid_disk = -1;
  5050. if (rdev->raid_disk < mddev->raid_disks)
  5051. if (info->state & (1<<MD_DISK_SYNC))
  5052. set_bit(In_sync, &rdev->flags);
  5053. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  5054. set_bit(WriteMostly, &rdev->flags);
  5055. if (!mddev->persistent) {
  5056. printk(KERN_INFO "md: nonpersistent superblock ...\n");
  5057. rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
  5058. } else
  5059. rdev->sb_start = calc_dev_sboffset(rdev);
  5060. rdev->sectors = rdev->sb_start;
  5061. err = bind_rdev_to_array(rdev, mddev);
  5062. if (err) {
  5063. export_rdev(rdev);
  5064. return err;
  5065. }
  5066. }
  5067. return 0;
  5068. }
  5069. static int hot_remove_disk(struct mddev *mddev, dev_t dev)
  5070. {
  5071. char b[BDEVNAME_SIZE];
  5072. struct md_rdev *rdev;
  5073. rdev = find_rdev(mddev, dev);
  5074. if (!rdev)
  5075. return -ENXIO;
  5076. clear_bit(Blocked, &rdev->flags);
  5077. remove_and_add_spares(mddev, rdev);
  5078. if (rdev->raid_disk >= 0)
  5079. goto busy;
  5080. kick_rdev_from_array(rdev);
  5081. md_update_sb(mddev, 1);
  5082. md_new_event(mddev);
  5083. return 0;
  5084. busy:
  5085. printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
  5086. bdevname(rdev->bdev,b), mdname(mddev));
  5087. return -EBUSY;
  5088. }
  5089. static int hot_add_disk(struct mddev *mddev, dev_t dev)
  5090. {
  5091. char b[BDEVNAME_SIZE];
  5092. int err;
  5093. struct md_rdev *rdev;
  5094. if (!mddev->pers)
  5095. return -ENODEV;
  5096. if (mddev->major_version != 0) {
  5097. printk(KERN_WARNING "%s: HOT_ADD may only be used with"
  5098. " version-0 superblocks.\n",
  5099. mdname(mddev));
  5100. return -EINVAL;
  5101. }
  5102. if (!mddev->pers->hot_add_disk) {
  5103. printk(KERN_WARNING
  5104. "%s: personality does not support diskops!\n",
  5105. mdname(mddev));
  5106. return -EINVAL;
  5107. }
  5108. rdev = md_import_device(dev, -1, 0);
  5109. if (IS_ERR(rdev)) {
  5110. printk(KERN_WARNING
  5111. "md: error, md_import_device() returned %ld\n",
  5112. PTR_ERR(rdev));
  5113. return -EINVAL;
  5114. }
  5115. if (mddev->persistent)
  5116. rdev->sb_start = calc_dev_sboffset(rdev);
  5117. else
  5118. rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
  5119. rdev->sectors = rdev->sb_start;
  5120. if (test_bit(Faulty, &rdev->flags)) {
  5121. printk(KERN_WARNING
  5122. "md: can not hot-add faulty %s disk to %s!\n",
  5123. bdevname(rdev->bdev,b), mdname(mddev));
  5124. err = -EINVAL;
  5125. goto abort_export;
  5126. }
  5127. clear_bit(In_sync, &rdev->flags);
  5128. rdev->desc_nr = -1;
  5129. rdev->saved_raid_disk = -1;
  5130. err = bind_rdev_to_array(rdev, mddev);
  5131. if (err)
  5132. goto abort_export;
  5133. /*
  5134. * The rest should better be atomic, we can have disk failures
  5135. * noticed in interrupt contexts ...
  5136. */
  5137. rdev->raid_disk = -1;
  5138. md_update_sb(mddev, 1);
  5139. /*
  5140. * Kick recovery, maybe this spare has to be added to the
  5141. * array immediately.
  5142. */
  5143. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5144. md_wakeup_thread(mddev->thread);
  5145. md_new_event(mddev);
  5146. return 0;
  5147. abort_export:
  5148. export_rdev(rdev);
  5149. return err;
  5150. }
  5151. static int set_bitmap_file(struct mddev *mddev, int fd)
  5152. {
  5153. int err = 0;
  5154. if (mddev->pers) {
  5155. if (!mddev->pers->quiesce || !mddev->thread)
  5156. return -EBUSY;
  5157. if (mddev->recovery || mddev->sync_thread)
  5158. return -EBUSY;
  5159. /* we should be able to change the bitmap.. */
  5160. }
  5161. if (fd >= 0) {
  5162. struct inode *inode;
  5163. if (mddev->bitmap)
  5164. return -EEXIST; /* cannot add when bitmap is present */
  5165. mddev->bitmap_info.file = fget(fd);
  5166. if (mddev->bitmap_info.file == NULL) {
  5167. printk(KERN_ERR "%s: error: failed to get bitmap file\n",
  5168. mdname(mddev));
  5169. return -EBADF;
  5170. }
  5171. inode = mddev->bitmap_info.file->f_mapping->host;
  5172. if (!S_ISREG(inode->i_mode)) {
  5173. printk(KERN_ERR "%s: error: bitmap file must be a regular file\n",
  5174. mdname(mddev));
  5175. err = -EBADF;
  5176. } else if (!(mddev->bitmap_info.file->f_mode & FMODE_WRITE)) {
  5177. printk(KERN_ERR "%s: error: bitmap file must open for write\n",
  5178. mdname(mddev));
  5179. err = -EBADF;
  5180. } else if (atomic_read(&inode->i_writecount) != 1) {
  5181. printk(KERN_ERR "%s: error: bitmap file is already in use\n",
  5182. mdname(mddev));
  5183. err = -EBUSY;
  5184. }
  5185. if (err) {
  5186. fput(mddev->bitmap_info.file);
  5187. mddev->bitmap_info.file = NULL;
  5188. return err;
  5189. }
  5190. mddev->bitmap_info.offset = 0; /* file overrides offset */
  5191. } else if (mddev->bitmap == NULL)
  5192. return -ENOENT; /* cannot remove what isn't there */
  5193. err = 0;
  5194. if (mddev->pers) {
  5195. mddev->pers->quiesce(mddev, 1);
  5196. if (fd >= 0) {
  5197. err = bitmap_create(mddev);
  5198. if (!err)
  5199. err = bitmap_load(mddev);
  5200. }
  5201. if (fd < 0 || err) {
  5202. bitmap_destroy(mddev);
  5203. fd = -1; /* make sure to put the file */
  5204. }
  5205. mddev->pers->quiesce(mddev, 0);
  5206. }
  5207. if (fd < 0) {
  5208. if (mddev->bitmap_info.file)
  5209. fput(mddev->bitmap_info.file);
  5210. mddev->bitmap_info.file = NULL;
  5211. }
  5212. return err;
  5213. }
  5214. /*
  5215. * set_array_info is used two different ways
  5216. * The original usage is when creating a new array.
  5217. * In this usage, raid_disks is > 0 and it together with
  5218. * level, size, not_persistent,layout,chunksize determine the
  5219. * shape of the array.
  5220. * This will always create an array with a type-0.90.0 superblock.
  5221. * The newer usage is when assembling an array.
  5222. * In this case raid_disks will be 0, and the major_version field is
  5223. * use to determine which style super-blocks are to be found on the devices.
  5224. * The minor and patch _version numbers are also kept incase the
  5225. * super_block handler wishes to interpret them.
  5226. */
  5227. static int set_array_info(struct mddev *mddev, mdu_array_info_t *info)
  5228. {
  5229. if (info->raid_disks == 0) {
  5230. /* just setting version number for superblock loading */
  5231. if (info->major_version < 0 ||
  5232. info->major_version >= ARRAY_SIZE(super_types) ||
  5233. super_types[info->major_version].name == NULL) {
  5234. /* maybe try to auto-load a module? */
  5235. printk(KERN_INFO
  5236. "md: superblock version %d not known\n",
  5237. info->major_version);
  5238. return -EINVAL;
  5239. }
  5240. mddev->major_version = info->major_version;
  5241. mddev->minor_version = info->minor_version;
  5242. mddev->patch_version = info->patch_version;
  5243. mddev->persistent = !info->not_persistent;
  5244. /* ensure mddev_put doesn't delete this now that there
  5245. * is some minimal configuration.
  5246. */
  5247. mddev->ctime = get_seconds();
  5248. return 0;
  5249. }
  5250. mddev->major_version = MD_MAJOR_VERSION;
  5251. mddev->minor_version = MD_MINOR_VERSION;
  5252. mddev->patch_version = MD_PATCHLEVEL_VERSION;
  5253. mddev->ctime = get_seconds();
  5254. mddev->level = info->level;
  5255. mddev->clevel[0] = 0;
  5256. mddev->dev_sectors = 2 * (sector_t)info->size;
  5257. mddev->raid_disks = info->raid_disks;
  5258. /* don't set md_minor, it is determined by which /dev/md* was
  5259. * openned
  5260. */
  5261. if (info->state & (1<<MD_SB_CLEAN))
  5262. mddev->recovery_cp = MaxSector;
  5263. else
  5264. mddev->recovery_cp = 0;
  5265. mddev->persistent = ! info->not_persistent;
  5266. mddev->external = 0;
  5267. mddev->layout = info->layout;
  5268. mddev->chunk_sectors = info->chunk_size >> 9;
  5269. mddev->max_disks = MD_SB_DISKS;
  5270. if (mddev->persistent)
  5271. mddev->flags = 0;
  5272. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  5273. mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
  5274. mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
  5275. mddev->bitmap_info.offset = 0;
  5276. mddev->reshape_position = MaxSector;
  5277. /*
  5278. * Generate a 128 bit UUID
  5279. */
  5280. get_random_bytes(mddev->uuid, 16);
  5281. mddev->new_level = mddev->level;
  5282. mddev->new_chunk_sectors = mddev->chunk_sectors;
  5283. mddev->new_layout = mddev->layout;
  5284. mddev->delta_disks = 0;
  5285. mddev->reshape_backwards = 0;
  5286. return 0;
  5287. }
  5288. void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
  5289. {
  5290. WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
  5291. if (mddev->external_size)
  5292. return;
  5293. mddev->array_sectors = array_sectors;
  5294. }
  5295. EXPORT_SYMBOL(md_set_array_sectors);
  5296. static int update_size(struct mddev *mddev, sector_t num_sectors)
  5297. {
  5298. struct md_rdev *rdev;
  5299. int rv;
  5300. int fit = (num_sectors == 0);
  5301. if (mddev->pers->resize == NULL)
  5302. return -EINVAL;
  5303. /* The "num_sectors" is the number of sectors of each device that
  5304. * is used. This can only make sense for arrays with redundancy.
  5305. * linear and raid0 always use whatever space is available. We can only
  5306. * consider changing this number if no resync or reconstruction is
  5307. * happening, and if the new size is acceptable. It must fit before the
  5308. * sb_start or, if that is <data_offset, it must fit before the size
  5309. * of each device. If num_sectors is zero, we find the largest size
  5310. * that fits.
  5311. */
  5312. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  5313. mddev->sync_thread)
  5314. return -EBUSY;
  5315. if (mddev->ro)
  5316. return -EROFS;
  5317. rdev_for_each(rdev, mddev) {
  5318. sector_t avail = rdev->sectors;
  5319. if (fit && (num_sectors == 0 || num_sectors > avail))
  5320. num_sectors = avail;
  5321. if (avail < num_sectors)
  5322. return -ENOSPC;
  5323. }
  5324. rv = mddev->pers->resize(mddev, num_sectors);
  5325. if (!rv)
  5326. revalidate_disk(mddev->gendisk);
  5327. return rv;
  5328. }
  5329. static int update_raid_disks(struct mddev *mddev, int raid_disks)
  5330. {
  5331. int rv;
  5332. struct md_rdev *rdev;
  5333. /* change the number of raid disks */
  5334. if (mddev->pers->check_reshape == NULL)
  5335. return -EINVAL;
  5336. if (mddev->ro)
  5337. return -EROFS;
  5338. if (raid_disks <= 0 ||
  5339. (mddev->max_disks && raid_disks >= mddev->max_disks))
  5340. return -EINVAL;
  5341. if (mddev->sync_thread ||
  5342. test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  5343. mddev->reshape_position != MaxSector)
  5344. return -EBUSY;
  5345. rdev_for_each(rdev, mddev) {
  5346. if (mddev->raid_disks < raid_disks &&
  5347. rdev->data_offset < rdev->new_data_offset)
  5348. return -EINVAL;
  5349. if (mddev->raid_disks > raid_disks &&
  5350. rdev->data_offset > rdev->new_data_offset)
  5351. return -EINVAL;
  5352. }
  5353. mddev->delta_disks = raid_disks - mddev->raid_disks;
  5354. if (mddev->delta_disks < 0)
  5355. mddev->reshape_backwards = 1;
  5356. else if (mddev->delta_disks > 0)
  5357. mddev->reshape_backwards = 0;
  5358. rv = mddev->pers->check_reshape(mddev);
  5359. if (rv < 0) {
  5360. mddev->delta_disks = 0;
  5361. mddev->reshape_backwards = 0;
  5362. }
  5363. return rv;
  5364. }
  5365. /*
  5366. * update_array_info is used to change the configuration of an
  5367. * on-line array.
  5368. * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
  5369. * fields in the info are checked against the array.
  5370. * Any differences that cannot be handled will cause an error.
  5371. * Normally, only one change can be managed at a time.
  5372. */
  5373. static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
  5374. {
  5375. int rv = 0;
  5376. int cnt = 0;
  5377. int state = 0;
  5378. /* calculate expected state,ignoring low bits */
  5379. if (mddev->bitmap && mddev->bitmap_info.offset)
  5380. state |= (1 << MD_SB_BITMAP_PRESENT);
  5381. if (mddev->major_version != info->major_version ||
  5382. mddev->minor_version != info->minor_version ||
  5383. /* mddev->patch_version != info->patch_version || */
  5384. mddev->ctime != info->ctime ||
  5385. mddev->level != info->level ||
  5386. /* mddev->layout != info->layout || */
  5387. !mddev->persistent != info->not_persistent||
  5388. mddev->chunk_sectors != info->chunk_size >> 9 ||
  5389. /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
  5390. ((state^info->state) & 0xfffffe00)
  5391. )
  5392. return -EINVAL;
  5393. /* Check there is only one change */
  5394. if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
  5395. cnt++;
  5396. if (mddev->raid_disks != info->raid_disks)
  5397. cnt++;
  5398. if (mddev->layout != info->layout)
  5399. cnt++;
  5400. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
  5401. cnt++;
  5402. if (cnt == 0)
  5403. return 0;
  5404. if (cnt > 1)
  5405. return -EINVAL;
  5406. if (mddev->layout != info->layout) {
  5407. /* Change layout
  5408. * we don't need to do anything at the md level, the
  5409. * personality will take care of it all.
  5410. */
  5411. if (mddev->pers->check_reshape == NULL)
  5412. return -EINVAL;
  5413. else {
  5414. mddev->new_layout = info->layout;
  5415. rv = mddev->pers->check_reshape(mddev);
  5416. if (rv)
  5417. mddev->new_layout = mddev->layout;
  5418. return rv;
  5419. }
  5420. }
  5421. if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
  5422. rv = update_size(mddev, (sector_t)info->size * 2);
  5423. if (mddev->raid_disks != info->raid_disks)
  5424. rv = update_raid_disks(mddev, info->raid_disks);
  5425. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
  5426. if (mddev->pers->quiesce == NULL || mddev->thread == NULL)
  5427. return -EINVAL;
  5428. if (mddev->recovery || mddev->sync_thread)
  5429. return -EBUSY;
  5430. if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
  5431. /* add the bitmap */
  5432. if (mddev->bitmap)
  5433. return -EEXIST;
  5434. if (mddev->bitmap_info.default_offset == 0)
  5435. return -EINVAL;
  5436. mddev->bitmap_info.offset =
  5437. mddev->bitmap_info.default_offset;
  5438. mddev->bitmap_info.space =
  5439. mddev->bitmap_info.default_space;
  5440. mddev->pers->quiesce(mddev, 1);
  5441. rv = bitmap_create(mddev);
  5442. if (!rv)
  5443. rv = bitmap_load(mddev);
  5444. if (rv)
  5445. bitmap_destroy(mddev);
  5446. mddev->pers->quiesce(mddev, 0);
  5447. } else {
  5448. /* remove the bitmap */
  5449. if (!mddev->bitmap)
  5450. return -ENOENT;
  5451. if (mddev->bitmap->storage.file)
  5452. return -EINVAL;
  5453. mddev->pers->quiesce(mddev, 1);
  5454. bitmap_destroy(mddev);
  5455. mddev->pers->quiesce(mddev, 0);
  5456. mddev->bitmap_info.offset = 0;
  5457. }
  5458. }
  5459. md_update_sb(mddev, 1);
  5460. return rv;
  5461. }
  5462. static int set_disk_faulty(struct mddev *mddev, dev_t dev)
  5463. {
  5464. struct md_rdev *rdev;
  5465. int err = 0;
  5466. if (mddev->pers == NULL)
  5467. return -ENODEV;
  5468. rcu_read_lock();
  5469. rdev = find_rdev_rcu(mddev, dev);
  5470. if (!rdev)
  5471. err = -ENODEV;
  5472. else {
  5473. md_error(mddev, rdev);
  5474. if (!test_bit(Faulty, &rdev->flags))
  5475. err = -EBUSY;
  5476. }
  5477. rcu_read_unlock();
  5478. return err;
  5479. }
  5480. /*
  5481. * We have a problem here : there is no easy way to give a CHS
  5482. * virtual geometry. We currently pretend that we have a 2 heads
  5483. * 4 sectors (with a BIG number of cylinders...). This drives
  5484. * dosfs just mad... ;-)
  5485. */
  5486. static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
  5487. {
  5488. struct mddev *mddev = bdev->bd_disk->private_data;
  5489. geo->heads = 2;
  5490. geo->sectors = 4;
  5491. geo->cylinders = mddev->array_sectors / 8;
  5492. return 0;
  5493. }
  5494. static inline bool md_ioctl_valid(unsigned int cmd)
  5495. {
  5496. switch (cmd) {
  5497. case ADD_NEW_DISK:
  5498. case BLKROSET:
  5499. case GET_ARRAY_INFO:
  5500. case GET_BITMAP_FILE:
  5501. case GET_DISK_INFO:
  5502. case HOT_ADD_DISK:
  5503. case HOT_REMOVE_DISK:
  5504. case RAID_AUTORUN:
  5505. case RAID_VERSION:
  5506. case RESTART_ARRAY_RW:
  5507. case RUN_ARRAY:
  5508. case SET_ARRAY_INFO:
  5509. case SET_BITMAP_FILE:
  5510. case SET_DISK_FAULTY:
  5511. case STOP_ARRAY:
  5512. case STOP_ARRAY_RO:
  5513. return true;
  5514. default:
  5515. return false;
  5516. }
  5517. }
  5518. static int md_ioctl(struct block_device *bdev, fmode_t mode,
  5519. unsigned int cmd, unsigned long arg)
  5520. {
  5521. int err = 0;
  5522. void __user *argp = (void __user *)arg;
  5523. struct mddev *mddev = NULL;
  5524. int ro;
  5525. if (!md_ioctl_valid(cmd))
  5526. return -ENOTTY;
  5527. switch (cmd) {
  5528. case RAID_VERSION:
  5529. case GET_ARRAY_INFO:
  5530. case GET_DISK_INFO:
  5531. break;
  5532. default:
  5533. if (!capable(CAP_SYS_ADMIN))
  5534. return -EACCES;
  5535. }
  5536. /*
  5537. * Commands dealing with the RAID driver but not any
  5538. * particular array:
  5539. */
  5540. switch (cmd) {
  5541. case RAID_VERSION:
  5542. err = get_version(argp);
  5543. goto out;
  5544. #ifndef MODULE
  5545. case RAID_AUTORUN:
  5546. err = 0;
  5547. autostart_arrays(arg);
  5548. goto out;
  5549. #endif
  5550. default:;
  5551. }
  5552. /*
  5553. * Commands creating/starting a new array:
  5554. */
  5555. mddev = bdev->bd_disk->private_data;
  5556. if (!mddev) {
  5557. BUG();
  5558. goto out;
  5559. }
  5560. /* Some actions do not requires the mutex */
  5561. switch (cmd) {
  5562. case GET_ARRAY_INFO:
  5563. if (!mddev->raid_disks && !mddev->external)
  5564. err = -ENODEV;
  5565. else
  5566. err = get_array_info(mddev, argp);
  5567. goto out;
  5568. case GET_DISK_INFO:
  5569. if (!mddev->raid_disks && !mddev->external)
  5570. err = -ENODEV;
  5571. else
  5572. err = get_disk_info(mddev, argp);
  5573. goto out;
  5574. case SET_DISK_FAULTY:
  5575. err = set_disk_faulty(mddev, new_decode_dev(arg));
  5576. goto out;
  5577. }
  5578. if (cmd == ADD_NEW_DISK)
  5579. /* need to ensure md_delayed_delete() has completed */
  5580. flush_workqueue(md_misc_wq);
  5581. if (cmd == HOT_REMOVE_DISK)
  5582. /* need to ensure recovery thread has run */
  5583. wait_event_interruptible_timeout(mddev->sb_wait,
  5584. !test_bit(MD_RECOVERY_NEEDED,
  5585. &mddev->flags),
  5586. msecs_to_jiffies(5000));
  5587. if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
  5588. /* Need to flush page cache, and ensure no-one else opens
  5589. * and writes
  5590. */
  5591. mutex_lock(&mddev->open_mutex);
  5592. if (mddev->pers && atomic_read(&mddev->openers) > 1) {
  5593. mutex_unlock(&mddev->open_mutex);
  5594. err = -EBUSY;
  5595. goto out;
  5596. }
  5597. set_bit(MD_STILL_CLOSED, &mddev->flags);
  5598. mutex_unlock(&mddev->open_mutex);
  5599. sync_blockdev(bdev);
  5600. }
  5601. err = mddev_lock(mddev);
  5602. if (err) {
  5603. printk(KERN_INFO
  5604. "md: ioctl lock interrupted, reason %d, cmd %d\n",
  5605. err, cmd);
  5606. goto out;
  5607. }
  5608. if (cmd == SET_ARRAY_INFO) {
  5609. mdu_array_info_t info;
  5610. if (!arg)
  5611. memset(&info, 0, sizeof(info));
  5612. else if (copy_from_user(&info, argp, sizeof(info))) {
  5613. err = -EFAULT;
  5614. goto unlock;
  5615. }
  5616. if (mddev->pers) {
  5617. err = update_array_info(mddev, &info);
  5618. if (err) {
  5619. printk(KERN_WARNING "md: couldn't update"
  5620. " array info. %d\n", err);
  5621. goto unlock;
  5622. }
  5623. goto unlock;
  5624. }
  5625. if (!list_empty(&mddev->disks)) {
  5626. printk(KERN_WARNING
  5627. "md: array %s already has disks!\n",
  5628. mdname(mddev));
  5629. err = -EBUSY;
  5630. goto unlock;
  5631. }
  5632. if (mddev->raid_disks) {
  5633. printk(KERN_WARNING
  5634. "md: array %s already initialised!\n",
  5635. mdname(mddev));
  5636. err = -EBUSY;
  5637. goto unlock;
  5638. }
  5639. err = set_array_info(mddev, &info);
  5640. if (err) {
  5641. printk(KERN_WARNING "md: couldn't set"
  5642. " array info. %d\n", err);
  5643. goto unlock;
  5644. }
  5645. goto unlock;
  5646. }
  5647. /*
  5648. * Commands querying/configuring an existing array:
  5649. */
  5650. /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
  5651. * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
  5652. if ((!mddev->raid_disks && !mddev->external)
  5653. && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
  5654. && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
  5655. && cmd != GET_BITMAP_FILE) {
  5656. err = -ENODEV;
  5657. goto unlock;
  5658. }
  5659. /*
  5660. * Commands even a read-only array can execute:
  5661. */
  5662. switch (cmd) {
  5663. case GET_BITMAP_FILE:
  5664. err = get_bitmap_file(mddev, argp);
  5665. goto unlock;
  5666. case RESTART_ARRAY_RW:
  5667. err = restart_array(mddev);
  5668. goto unlock;
  5669. case STOP_ARRAY:
  5670. err = do_md_stop(mddev, 0, bdev);
  5671. goto unlock;
  5672. case STOP_ARRAY_RO:
  5673. err = md_set_readonly(mddev, bdev);
  5674. goto unlock;
  5675. case HOT_REMOVE_DISK:
  5676. err = hot_remove_disk(mddev, new_decode_dev(arg));
  5677. goto unlock;
  5678. case ADD_NEW_DISK:
  5679. /* We can support ADD_NEW_DISK on read-only arrays
  5680. * on if we are re-adding a preexisting device.
  5681. * So require mddev->pers and MD_DISK_SYNC.
  5682. */
  5683. if (mddev->pers) {
  5684. mdu_disk_info_t info;
  5685. if (copy_from_user(&info, argp, sizeof(info)))
  5686. err = -EFAULT;
  5687. else if (!(info.state & (1<<MD_DISK_SYNC)))
  5688. /* Need to clear read-only for this */
  5689. break;
  5690. else
  5691. err = add_new_disk(mddev, &info);
  5692. goto unlock;
  5693. }
  5694. break;
  5695. case BLKROSET:
  5696. if (get_user(ro, (int __user *)(arg))) {
  5697. err = -EFAULT;
  5698. goto unlock;
  5699. }
  5700. err = -EINVAL;
  5701. /* if the bdev is going readonly the value of mddev->ro
  5702. * does not matter, no writes are coming
  5703. */
  5704. if (ro)
  5705. goto unlock;
  5706. /* are we are already prepared for writes? */
  5707. if (mddev->ro != 1)
  5708. goto unlock;
  5709. /* transitioning to readauto need only happen for
  5710. * arrays that call md_write_start
  5711. */
  5712. if (mddev->pers) {
  5713. err = restart_array(mddev);
  5714. if (err == 0) {
  5715. mddev->ro = 2;
  5716. set_disk_ro(mddev->gendisk, 0);
  5717. }
  5718. }
  5719. goto unlock;
  5720. }
  5721. /*
  5722. * The remaining ioctls are changing the state of the
  5723. * superblock, so we do not allow them on read-only arrays.
  5724. */
  5725. if (mddev->ro && mddev->pers) {
  5726. if (mddev->ro == 2) {
  5727. mddev->ro = 0;
  5728. sysfs_notify_dirent_safe(mddev->sysfs_state);
  5729. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5730. /* mddev_unlock will wake thread */
  5731. /* If a device failed while we were read-only, we
  5732. * need to make sure the metadata is updated now.
  5733. */
  5734. if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
  5735. mddev_unlock(mddev);
  5736. wait_event(mddev->sb_wait,
  5737. !test_bit(MD_CHANGE_DEVS, &mddev->flags) &&
  5738. !test_bit(MD_CHANGE_PENDING, &mddev->flags));
  5739. mddev_lock_nointr(mddev);
  5740. }
  5741. } else {
  5742. err = -EROFS;
  5743. goto unlock;
  5744. }
  5745. }
  5746. switch (cmd) {
  5747. case ADD_NEW_DISK:
  5748. {
  5749. mdu_disk_info_t info;
  5750. if (copy_from_user(&info, argp, sizeof(info)))
  5751. err = -EFAULT;
  5752. else
  5753. err = add_new_disk(mddev, &info);
  5754. goto unlock;
  5755. }
  5756. case HOT_ADD_DISK:
  5757. err = hot_add_disk(mddev, new_decode_dev(arg));
  5758. goto unlock;
  5759. case RUN_ARRAY:
  5760. err = do_md_run(mddev);
  5761. goto unlock;
  5762. case SET_BITMAP_FILE:
  5763. err = set_bitmap_file(mddev, (int)arg);
  5764. goto unlock;
  5765. default:
  5766. err = -EINVAL;
  5767. goto unlock;
  5768. }
  5769. unlock:
  5770. if (mddev->hold_active == UNTIL_IOCTL &&
  5771. err != -EINVAL)
  5772. mddev->hold_active = 0;
  5773. mddev_unlock(mddev);
  5774. out:
  5775. return err;
  5776. }
  5777. #ifdef CONFIG_COMPAT
  5778. static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
  5779. unsigned int cmd, unsigned long arg)
  5780. {
  5781. switch (cmd) {
  5782. case HOT_REMOVE_DISK:
  5783. case HOT_ADD_DISK:
  5784. case SET_DISK_FAULTY:
  5785. case SET_BITMAP_FILE:
  5786. /* These take in integer arg, do not convert */
  5787. break;
  5788. default:
  5789. arg = (unsigned long)compat_ptr(arg);
  5790. break;
  5791. }
  5792. return md_ioctl(bdev, mode, cmd, arg);
  5793. }
  5794. #endif /* CONFIG_COMPAT */
  5795. static int md_open(struct block_device *bdev, fmode_t mode)
  5796. {
  5797. /*
  5798. * Succeed if we can lock the mddev, which confirms that
  5799. * it isn't being stopped right now.
  5800. */
  5801. struct mddev *mddev = mddev_find(bdev->bd_dev);
  5802. int err;
  5803. if (!mddev)
  5804. return -ENODEV;
  5805. if (mddev->gendisk != bdev->bd_disk) {
  5806. /* we are racing with mddev_put which is discarding this
  5807. * bd_disk.
  5808. */
  5809. mddev_put(mddev);
  5810. /* Wait until bdev->bd_disk is definitely gone */
  5811. flush_workqueue(md_misc_wq);
  5812. /* Then retry the open from the top */
  5813. return -ERESTARTSYS;
  5814. }
  5815. BUG_ON(mddev != bdev->bd_disk->private_data);
  5816. if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
  5817. goto out;
  5818. err = 0;
  5819. atomic_inc(&mddev->openers);
  5820. clear_bit(MD_STILL_CLOSED, &mddev->flags);
  5821. mutex_unlock(&mddev->open_mutex);
  5822. check_disk_change(bdev);
  5823. out:
  5824. return err;
  5825. }
  5826. static void md_release(struct gendisk *disk, fmode_t mode)
  5827. {
  5828. struct mddev *mddev = disk->private_data;
  5829. BUG_ON(!mddev);
  5830. atomic_dec(&mddev->openers);
  5831. mddev_put(mddev);
  5832. }
  5833. static int md_media_changed(struct gendisk *disk)
  5834. {
  5835. struct mddev *mddev = disk->private_data;
  5836. return mddev->changed;
  5837. }
  5838. static int md_revalidate(struct gendisk *disk)
  5839. {
  5840. struct mddev *mddev = disk->private_data;
  5841. mddev->changed = 0;
  5842. return 0;
  5843. }
  5844. static const struct block_device_operations md_fops =
  5845. {
  5846. .owner = THIS_MODULE,
  5847. .open = md_open,
  5848. .release = md_release,
  5849. .ioctl = md_ioctl,
  5850. #ifdef CONFIG_COMPAT
  5851. .compat_ioctl = md_compat_ioctl,
  5852. #endif
  5853. .getgeo = md_getgeo,
  5854. .media_changed = md_media_changed,
  5855. .revalidate_disk= md_revalidate,
  5856. };
  5857. static int md_thread(void *arg)
  5858. {
  5859. struct md_thread *thread = arg;
  5860. /*
  5861. * md_thread is a 'system-thread', it's priority should be very
  5862. * high. We avoid resource deadlocks individually in each
  5863. * raid personality. (RAID5 does preallocation) We also use RR and
  5864. * the very same RT priority as kswapd, thus we will never get
  5865. * into a priority inversion deadlock.
  5866. *
  5867. * we definitely have to have equal or higher priority than
  5868. * bdflush, otherwise bdflush will deadlock if there are too
  5869. * many dirty RAID5 blocks.
  5870. */
  5871. allow_signal(SIGKILL);
  5872. while (!kthread_should_stop()) {
  5873. /* We need to wait INTERRUPTIBLE so that
  5874. * we don't add to the load-average.
  5875. * That means we need to be sure no signals are
  5876. * pending
  5877. */
  5878. if (signal_pending(current))
  5879. flush_signals(current);
  5880. wait_event_interruptible_timeout
  5881. (thread->wqueue,
  5882. test_bit(THREAD_WAKEUP, &thread->flags)
  5883. || kthread_should_stop(),
  5884. thread->timeout);
  5885. clear_bit(THREAD_WAKEUP, &thread->flags);
  5886. if (!kthread_should_stop())
  5887. thread->run(thread);
  5888. }
  5889. return 0;
  5890. }
  5891. void md_wakeup_thread(struct md_thread *thread)
  5892. {
  5893. if (thread) {
  5894. pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
  5895. set_bit(THREAD_WAKEUP, &thread->flags);
  5896. wake_up(&thread->wqueue);
  5897. }
  5898. }
  5899. EXPORT_SYMBOL(md_wakeup_thread);
  5900. struct md_thread *md_register_thread(void (*run) (struct md_thread *),
  5901. struct mddev *mddev, const char *name)
  5902. {
  5903. struct md_thread *thread;
  5904. thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
  5905. if (!thread)
  5906. return NULL;
  5907. init_waitqueue_head(&thread->wqueue);
  5908. thread->run = run;
  5909. thread->mddev = mddev;
  5910. thread->timeout = MAX_SCHEDULE_TIMEOUT;
  5911. thread->tsk = kthread_run(md_thread, thread,
  5912. "%s_%s",
  5913. mdname(thread->mddev),
  5914. name);
  5915. if (IS_ERR(thread->tsk)) {
  5916. kfree(thread);
  5917. return NULL;
  5918. }
  5919. return thread;
  5920. }
  5921. EXPORT_SYMBOL(md_register_thread);
  5922. void md_unregister_thread(struct md_thread **threadp)
  5923. {
  5924. struct md_thread *thread = *threadp;
  5925. if (!thread)
  5926. return;
  5927. pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
  5928. /* Locking ensures that mddev_unlock does not wake_up a
  5929. * non-existent thread
  5930. */
  5931. spin_lock(&pers_lock);
  5932. *threadp = NULL;
  5933. spin_unlock(&pers_lock);
  5934. kthread_stop(thread->tsk);
  5935. kfree(thread);
  5936. }
  5937. EXPORT_SYMBOL(md_unregister_thread);
  5938. void md_error(struct mddev *mddev, struct md_rdev *rdev)
  5939. {
  5940. if (!rdev || test_bit(Faulty, &rdev->flags))
  5941. return;
  5942. if (!mddev->pers || !mddev->pers->error_handler)
  5943. return;
  5944. mddev->pers->error_handler(mddev,rdev);
  5945. if (mddev->degraded)
  5946. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  5947. sysfs_notify_dirent_safe(rdev->sysfs_state);
  5948. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  5949. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5950. md_wakeup_thread(mddev->thread);
  5951. if (mddev->event_work.func)
  5952. queue_work(md_misc_wq, &mddev->event_work);
  5953. md_new_event_inintr(mddev);
  5954. }
  5955. EXPORT_SYMBOL(md_error);
  5956. /* seq_file implementation /proc/mdstat */
  5957. static void status_unused(struct seq_file *seq)
  5958. {
  5959. int i = 0;
  5960. struct md_rdev *rdev;
  5961. seq_printf(seq, "unused devices: ");
  5962. list_for_each_entry(rdev, &pending_raid_disks, same_set) {
  5963. char b[BDEVNAME_SIZE];
  5964. i++;
  5965. seq_printf(seq, "%s ",
  5966. bdevname(rdev->bdev,b));
  5967. }
  5968. if (!i)
  5969. seq_printf(seq, "<none>");
  5970. seq_printf(seq, "\n");
  5971. }
  5972. static void status_resync(struct seq_file *seq, struct mddev *mddev)
  5973. {
  5974. sector_t max_sectors, resync, res;
  5975. unsigned long dt, db;
  5976. sector_t rt;
  5977. int scale;
  5978. unsigned int per_milli;
  5979. if (mddev->curr_resync <= 3)
  5980. resync = 0;
  5981. else
  5982. resync = mddev->curr_resync
  5983. - atomic_read(&mddev->recovery_active);
  5984. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
  5985. test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  5986. max_sectors = mddev->resync_max_sectors;
  5987. else
  5988. max_sectors = mddev->dev_sectors;
  5989. WARN_ON(max_sectors == 0);
  5990. /* Pick 'scale' such that (resync>>scale)*1000 will fit
  5991. * in a sector_t, and (max_sectors>>scale) will fit in a
  5992. * u32, as those are the requirements for sector_div.
  5993. * Thus 'scale' must be at least 10
  5994. */
  5995. scale = 10;
  5996. if (sizeof(sector_t) > sizeof(unsigned long)) {
  5997. while ( max_sectors/2 > (1ULL<<(scale+32)))
  5998. scale++;
  5999. }
  6000. res = (resync>>scale)*1000;
  6001. sector_div(res, (u32)((max_sectors>>scale)+1));
  6002. per_milli = res;
  6003. {
  6004. int i, x = per_milli/50, y = 20-x;
  6005. seq_printf(seq, "[");
  6006. for (i = 0; i < x; i++)
  6007. seq_printf(seq, "=");
  6008. seq_printf(seq, ">");
  6009. for (i = 0; i < y; i++)
  6010. seq_printf(seq, ".");
  6011. seq_printf(seq, "] ");
  6012. }
  6013. seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
  6014. (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
  6015. "reshape" :
  6016. (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
  6017. "check" :
  6018. (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
  6019. "resync" : "recovery"))),
  6020. per_milli/10, per_milli % 10,
  6021. (unsigned long long) resync/2,
  6022. (unsigned long long) max_sectors/2);
  6023. /*
  6024. * dt: time from mark until now
  6025. * db: blocks written from mark until now
  6026. * rt: remaining time
  6027. *
  6028. * rt is a sector_t, so could be 32bit or 64bit.
  6029. * So we divide before multiply in case it is 32bit and close
  6030. * to the limit.
  6031. * We scale the divisor (db) by 32 to avoid losing precision
  6032. * near the end of resync when the number of remaining sectors
  6033. * is close to 'db'.
  6034. * We then divide rt by 32 after multiplying by db to compensate.
  6035. * The '+1' avoids division by zero if db is very small.
  6036. */
  6037. dt = ((jiffies - mddev->resync_mark) / HZ);
  6038. if (!dt) dt++;
  6039. db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
  6040. - mddev->resync_mark_cnt;
  6041. rt = max_sectors - resync; /* number of remaining sectors */
  6042. sector_div(rt, db/32+1);
  6043. rt *= dt;
  6044. rt >>= 5;
  6045. seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
  6046. ((unsigned long)rt % 60)/6);
  6047. seq_printf(seq, " speed=%ldK/sec", db/2/dt);
  6048. }
  6049. static void *md_seq_start(struct seq_file *seq, loff_t *pos)
  6050. {
  6051. struct list_head *tmp;
  6052. loff_t l = *pos;
  6053. struct mddev *mddev;
  6054. if (l >= 0x10000)
  6055. return NULL;
  6056. if (!l--)
  6057. /* header */
  6058. return (void*)1;
  6059. spin_lock(&all_mddevs_lock);
  6060. list_for_each(tmp,&all_mddevs)
  6061. if (!l--) {
  6062. mddev = list_entry(tmp, struct mddev, all_mddevs);
  6063. mddev_get(mddev);
  6064. spin_unlock(&all_mddevs_lock);
  6065. return mddev;
  6066. }
  6067. spin_unlock(&all_mddevs_lock);
  6068. if (!l--)
  6069. return (void*)2;/* tail */
  6070. return NULL;
  6071. }
  6072. static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  6073. {
  6074. struct list_head *tmp;
  6075. struct mddev *next_mddev, *mddev = v;
  6076. ++*pos;
  6077. if (v == (void*)2)
  6078. return NULL;
  6079. spin_lock(&all_mddevs_lock);
  6080. if (v == (void*)1)
  6081. tmp = all_mddevs.next;
  6082. else
  6083. tmp = mddev->all_mddevs.next;
  6084. if (tmp != &all_mddevs)
  6085. next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
  6086. else {
  6087. next_mddev = (void*)2;
  6088. *pos = 0x10000;
  6089. }
  6090. spin_unlock(&all_mddevs_lock);
  6091. if (v != (void*)1)
  6092. mddev_put(mddev);
  6093. return next_mddev;
  6094. }
  6095. static void md_seq_stop(struct seq_file *seq, void *v)
  6096. {
  6097. struct mddev *mddev = v;
  6098. if (mddev && v != (void*)1 && v != (void*)2)
  6099. mddev_put(mddev);
  6100. }
  6101. static int md_seq_show(struct seq_file *seq, void *v)
  6102. {
  6103. struct mddev *mddev = v;
  6104. sector_t sectors;
  6105. struct md_rdev *rdev;
  6106. if (v == (void*)1) {
  6107. struct md_personality *pers;
  6108. seq_printf(seq, "Personalities : ");
  6109. spin_lock(&pers_lock);
  6110. list_for_each_entry(pers, &pers_list, list)
  6111. seq_printf(seq, "[%s] ", pers->name);
  6112. spin_unlock(&pers_lock);
  6113. seq_printf(seq, "\n");
  6114. seq->poll_event = atomic_read(&md_event_count);
  6115. return 0;
  6116. }
  6117. if (v == (void*)2) {
  6118. status_unused(seq);
  6119. return 0;
  6120. }
  6121. if (mddev_lock(mddev) < 0)
  6122. return -EINTR;
  6123. if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
  6124. seq_printf(seq, "%s : %sactive", mdname(mddev),
  6125. mddev->pers ? "" : "in");
  6126. if (mddev->pers) {
  6127. if (mddev->ro==1)
  6128. seq_printf(seq, " (read-only)");
  6129. if (mddev->ro==2)
  6130. seq_printf(seq, " (auto-read-only)");
  6131. seq_printf(seq, " %s", mddev->pers->name);
  6132. }
  6133. sectors = 0;
  6134. rdev_for_each(rdev, mddev) {
  6135. char b[BDEVNAME_SIZE];
  6136. seq_printf(seq, " %s[%d]",
  6137. bdevname(rdev->bdev,b), rdev->desc_nr);
  6138. if (test_bit(WriteMostly, &rdev->flags))
  6139. seq_printf(seq, "(W)");
  6140. if (test_bit(Faulty, &rdev->flags)) {
  6141. seq_printf(seq, "(F)");
  6142. continue;
  6143. }
  6144. if (rdev->raid_disk < 0)
  6145. seq_printf(seq, "(S)"); /* spare */
  6146. if (test_bit(Replacement, &rdev->flags))
  6147. seq_printf(seq, "(R)");
  6148. sectors += rdev->sectors;
  6149. }
  6150. if (!list_empty(&mddev->disks)) {
  6151. if (mddev->pers)
  6152. seq_printf(seq, "\n %llu blocks",
  6153. (unsigned long long)
  6154. mddev->array_sectors / 2);
  6155. else
  6156. seq_printf(seq, "\n %llu blocks",
  6157. (unsigned long long)sectors / 2);
  6158. }
  6159. if (mddev->persistent) {
  6160. if (mddev->major_version != 0 ||
  6161. mddev->minor_version != 90) {
  6162. seq_printf(seq," super %d.%d",
  6163. mddev->major_version,
  6164. mddev->minor_version);
  6165. }
  6166. } else if (mddev->external)
  6167. seq_printf(seq, " super external:%s",
  6168. mddev->metadata_type);
  6169. else
  6170. seq_printf(seq, " super non-persistent");
  6171. if (mddev->pers) {
  6172. mddev->pers->status(seq, mddev);
  6173. seq_printf(seq, "\n ");
  6174. if (mddev->pers->sync_request) {
  6175. if (mddev->curr_resync > 2) {
  6176. status_resync(seq, mddev);
  6177. seq_printf(seq, "\n ");
  6178. } else if (mddev->curr_resync >= 1)
  6179. seq_printf(seq, "\tresync=DELAYED\n ");
  6180. else if (mddev->recovery_cp < MaxSector)
  6181. seq_printf(seq, "\tresync=PENDING\n ");
  6182. }
  6183. } else
  6184. seq_printf(seq, "\n ");
  6185. bitmap_status(seq, mddev->bitmap);
  6186. seq_printf(seq, "\n");
  6187. }
  6188. mddev_unlock(mddev);
  6189. return 0;
  6190. }
  6191. static const struct seq_operations md_seq_ops = {
  6192. .start = md_seq_start,
  6193. .next = md_seq_next,
  6194. .stop = md_seq_stop,
  6195. .show = md_seq_show,
  6196. };
  6197. static int md_seq_open(struct inode *inode, struct file *file)
  6198. {
  6199. struct seq_file *seq;
  6200. int error;
  6201. error = seq_open(file, &md_seq_ops);
  6202. if (error)
  6203. return error;
  6204. seq = file->private_data;
  6205. seq->poll_event = atomic_read(&md_event_count);
  6206. return error;
  6207. }
  6208. static int md_unloading;
  6209. static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
  6210. {
  6211. struct seq_file *seq = filp->private_data;
  6212. int mask;
  6213. if (md_unloading)
  6214. return POLLIN|POLLRDNORM|POLLERR|POLLPRI;
  6215. poll_wait(filp, &md_event_waiters, wait);
  6216. /* always allow read */
  6217. mask = POLLIN | POLLRDNORM;
  6218. if (seq->poll_event != atomic_read(&md_event_count))
  6219. mask |= POLLERR | POLLPRI;
  6220. return mask;
  6221. }
  6222. static const struct file_operations md_seq_fops = {
  6223. .owner = THIS_MODULE,
  6224. .open = md_seq_open,
  6225. .read = seq_read,
  6226. .llseek = seq_lseek,
  6227. .release = seq_release_private,
  6228. .poll = mdstat_poll,
  6229. };
  6230. int register_md_personality(struct md_personality *p)
  6231. {
  6232. printk(KERN_INFO "md: %s personality registered for level %d\n",
  6233. p->name, p->level);
  6234. spin_lock(&pers_lock);
  6235. list_add_tail(&p->list, &pers_list);
  6236. spin_unlock(&pers_lock);
  6237. return 0;
  6238. }
  6239. EXPORT_SYMBOL(register_md_personality);
  6240. int unregister_md_personality(struct md_personality *p)
  6241. {
  6242. printk(KERN_INFO "md: %s personality unregistered\n", p->name);
  6243. spin_lock(&pers_lock);
  6244. list_del_init(&p->list);
  6245. spin_unlock(&pers_lock);
  6246. return 0;
  6247. }
  6248. EXPORT_SYMBOL(unregister_md_personality);
  6249. static int is_mddev_idle(struct mddev *mddev, int init)
  6250. {
  6251. struct md_rdev *rdev;
  6252. int idle;
  6253. int curr_events;
  6254. idle = 1;
  6255. rcu_read_lock();
  6256. rdev_for_each_rcu(rdev, mddev) {
  6257. struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
  6258. curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
  6259. (int)part_stat_read(&disk->part0, sectors[1]) -
  6260. atomic_read(&disk->sync_io);
  6261. /* sync IO will cause sync_io to increase before the disk_stats
  6262. * as sync_io is counted when a request starts, and
  6263. * disk_stats is counted when it completes.
  6264. * So resync activity will cause curr_events to be smaller than
  6265. * when there was no such activity.
  6266. * non-sync IO will cause disk_stat to increase without
  6267. * increasing sync_io so curr_events will (eventually)
  6268. * be larger than it was before. Once it becomes
  6269. * substantially larger, the test below will cause
  6270. * the array to appear non-idle, and resync will slow
  6271. * down.
  6272. * If there is a lot of outstanding resync activity when
  6273. * we set last_event to curr_events, then all that activity
  6274. * completing might cause the array to appear non-idle
  6275. * and resync will be slowed down even though there might
  6276. * not have been non-resync activity. This will only
  6277. * happen once though. 'last_events' will soon reflect
  6278. * the state where there is little or no outstanding
  6279. * resync requests, and further resync activity will
  6280. * always make curr_events less than last_events.
  6281. *
  6282. */
  6283. if (init || curr_events - rdev->last_events > 64) {
  6284. rdev->last_events = curr_events;
  6285. idle = 0;
  6286. }
  6287. }
  6288. rcu_read_unlock();
  6289. return idle;
  6290. }
  6291. void md_done_sync(struct mddev *mddev, int blocks, int ok)
  6292. {
  6293. /* another "blocks" (512byte) blocks have been synced */
  6294. atomic_sub(blocks, &mddev->recovery_active);
  6295. wake_up(&mddev->recovery_wait);
  6296. if (!ok) {
  6297. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6298. set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
  6299. md_wakeup_thread(mddev->thread);
  6300. // stop recovery, signal do_sync ....
  6301. }
  6302. }
  6303. EXPORT_SYMBOL(md_done_sync);
  6304. /* md_write_start(mddev, bi)
  6305. * If we need to update some array metadata (e.g. 'active' flag
  6306. * in superblock) before writing, schedule a superblock update
  6307. * and wait for it to complete.
  6308. */
  6309. void md_write_start(struct mddev *mddev, struct bio *bi)
  6310. {
  6311. int did_change = 0;
  6312. if (bio_data_dir(bi) != WRITE)
  6313. return;
  6314. BUG_ON(mddev->ro == 1);
  6315. if (mddev->ro == 2) {
  6316. /* need to switch to read/write */
  6317. mddev->ro = 0;
  6318. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6319. md_wakeup_thread(mddev->thread);
  6320. md_wakeup_thread(mddev->sync_thread);
  6321. did_change = 1;
  6322. }
  6323. atomic_inc(&mddev->writes_pending);
  6324. if (mddev->safemode == 1)
  6325. mddev->safemode = 0;
  6326. if (mddev->in_sync) {
  6327. spin_lock_irq(&mddev->write_lock);
  6328. if (mddev->in_sync) {
  6329. mddev->in_sync = 0;
  6330. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6331. set_bit(MD_CHANGE_PENDING, &mddev->flags);
  6332. md_wakeup_thread(mddev->thread);
  6333. did_change = 1;
  6334. }
  6335. spin_unlock_irq(&mddev->write_lock);
  6336. }
  6337. if (did_change)
  6338. sysfs_notify_dirent_safe(mddev->sysfs_state);
  6339. wait_event(mddev->sb_wait,
  6340. !test_bit(MD_CHANGE_PENDING, &mddev->flags));
  6341. }
  6342. EXPORT_SYMBOL(md_write_start);
  6343. void md_write_end(struct mddev *mddev)
  6344. {
  6345. if (atomic_dec_and_test(&mddev->writes_pending)) {
  6346. if (mddev->safemode == 2)
  6347. md_wakeup_thread(mddev->thread);
  6348. else if (mddev->safemode_delay)
  6349. mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
  6350. }
  6351. }
  6352. EXPORT_SYMBOL(md_write_end);
  6353. /* md_allow_write(mddev)
  6354. * Calling this ensures that the array is marked 'active' so that writes
  6355. * may proceed without blocking. It is important to call this before
  6356. * attempting a GFP_KERNEL allocation while holding the mddev lock.
  6357. * Must be called with mddev_lock held.
  6358. *
  6359. * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
  6360. * is dropped, so return -EAGAIN after notifying userspace.
  6361. */
  6362. int md_allow_write(struct mddev *mddev)
  6363. {
  6364. if (!mddev->pers)
  6365. return 0;
  6366. if (mddev->ro)
  6367. return 0;
  6368. if (!mddev->pers->sync_request)
  6369. return 0;
  6370. spin_lock_irq(&mddev->write_lock);
  6371. if (mddev->in_sync) {
  6372. mddev->in_sync = 0;
  6373. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6374. set_bit(MD_CHANGE_PENDING, &mddev->flags);
  6375. if (mddev->safemode_delay &&
  6376. mddev->safemode == 0)
  6377. mddev->safemode = 1;
  6378. spin_unlock_irq(&mddev->write_lock);
  6379. md_update_sb(mddev, 0);
  6380. sysfs_notify_dirent_safe(mddev->sysfs_state);
  6381. } else
  6382. spin_unlock_irq(&mddev->write_lock);
  6383. if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
  6384. return -EAGAIN;
  6385. else
  6386. return 0;
  6387. }
  6388. EXPORT_SYMBOL_GPL(md_allow_write);
  6389. #define SYNC_MARKS 10
  6390. #define SYNC_MARK_STEP (3*HZ)
  6391. #define UPDATE_FREQUENCY (5*60*HZ)
  6392. void md_do_sync(struct md_thread *thread)
  6393. {
  6394. struct mddev *mddev = thread->mddev;
  6395. struct mddev *mddev2;
  6396. unsigned int currspeed = 0,
  6397. window;
  6398. sector_t max_sectors,j, io_sectors, recovery_done;
  6399. unsigned long mark[SYNC_MARKS];
  6400. unsigned long update_time;
  6401. sector_t mark_cnt[SYNC_MARKS];
  6402. int last_mark,m;
  6403. struct list_head *tmp;
  6404. sector_t last_check;
  6405. int skipped = 0;
  6406. struct md_rdev *rdev;
  6407. char *desc, *action = NULL;
  6408. struct blk_plug plug;
  6409. /* just incase thread restarts... */
  6410. if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
  6411. return;
  6412. if (mddev->ro) {/* never try to sync a read-only array */
  6413. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6414. return;
  6415. }
  6416. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  6417. if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
  6418. desc = "data-check";
  6419. action = "check";
  6420. } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
  6421. desc = "requested-resync";
  6422. action = "repair";
  6423. } else
  6424. desc = "resync";
  6425. } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  6426. desc = "reshape";
  6427. else
  6428. desc = "recovery";
  6429. mddev->last_sync_action = action ?: desc;
  6430. /* we overload curr_resync somewhat here.
  6431. * 0 == not engaged in resync at all
  6432. * 2 == checking that there is no conflict with another sync
  6433. * 1 == like 2, but have yielded to allow conflicting resync to
  6434. * commense
  6435. * other == active in resync - this many blocks
  6436. *
  6437. * Before starting a resync we must have set curr_resync to
  6438. * 2, and then checked that every "conflicting" array has curr_resync
  6439. * less than ours. When we find one that is the same or higher
  6440. * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
  6441. * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
  6442. * This will mean we have to start checking from the beginning again.
  6443. *
  6444. */
  6445. do {
  6446. mddev->curr_resync = 2;
  6447. try_again:
  6448. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  6449. goto skip;
  6450. for_each_mddev(mddev2, tmp) {
  6451. if (mddev2 == mddev)
  6452. continue;
  6453. if (!mddev->parallel_resync
  6454. && mddev2->curr_resync
  6455. && match_mddev_units(mddev, mddev2)) {
  6456. DEFINE_WAIT(wq);
  6457. if (mddev < mddev2 && mddev->curr_resync == 2) {
  6458. /* arbitrarily yield */
  6459. mddev->curr_resync = 1;
  6460. wake_up(&resync_wait);
  6461. }
  6462. if (mddev > mddev2 && mddev->curr_resync == 1)
  6463. /* no need to wait here, we can wait the next
  6464. * time 'round when curr_resync == 2
  6465. */
  6466. continue;
  6467. /* We need to wait 'interruptible' so as not to
  6468. * contribute to the load average, and not to
  6469. * be caught by 'softlockup'
  6470. */
  6471. prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
  6472. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
  6473. mddev2->curr_resync >= mddev->curr_resync) {
  6474. printk(KERN_INFO "md: delaying %s of %s"
  6475. " until %s has finished (they"
  6476. " share one or more physical units)\n",
  6477. desc, mdname(mddev), mdname(mddev2));
  6478. mddev_put(mddev2);
  6479. if (signal_pending(current))
  6480. flush_signals(current);
  6481. schedule();
  6482. finish_wait(&resync_wait, &wq);
  6483. goto try_again;
  6484. }
  6485. finish_wait(&resync_wait, &wq);
  6486. }
  6487. }
  6488. } while (mddev->curr_resync < 2);
  6489. j = 0;
  6490. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  6491. /* resync follows the size requested by the personality,
  6492. * which defaults to physical size, but can be virtual size
  6493. */
  6494. max_sectors = mddev->resync_max_sectors;
  6495. atomic64_set(&mddev->resync_mismatches, 0);
  6496. /* we don't use the checkpoint if there's a bitmap */
  6497. if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6498. j = mddev->resync_min;
  6499. else if (!mddev->bitmap)
  6500. j = mddev->recovery_cp;
  6501. } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  6502. max_sectors = mddev->resync_max_sectors;
  6503. else {
  6504. /* recovery follows the physical size of devices */
  6505. max_sectors = mddev->dev_sectors;
  6506. j = MaxSector;
  6507. rcu_read_lock();
  6508. rdev_for_each_rcu(rdev, mddev)
  6509. if (rdev->raid_disk >= 0 &&
  6510. !test_bit(Faulty, &rdev->flags) &&
  6511. !test_bit(In_sync, &rdev->flags) &&
  6512. rdev->recovery_offset < j)
  6513. j = rdev->recovery_offset;
  6514. rcu_read_unlock();
  6515. /* If there is a bitmap, we need to make sure all
  6516. * writes that started before we added a spare
  6517. * complete before we start doing a recovery.
  6518. * Otherwise the write might complete and (via
  6519. * bitmap_endwrite) set a bit in the bitmap after the
  6520. * recovery has checked that bit and skipped that
  6521. * region.
  6522. */
  6523. if (mddev->bitmap) {
  6524. mddev->pers->quiesce(mddev, 1);
  6525. mddev->pers->quiesce(mddev, 0);
  6526. }
  6527. }
  6528. printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
  6529. printk(KERN_INFO "md: minimum _guaranteed_ speed:"
  6530. " %d KB/sec/disk.\n", speed_min(mddev));
  6531. printk(KERN_INFO "md: using maximum available idle IO bandwidth "
  6532. "(but not more than %d KB/sec) for %s.\n",
  6533. speed_max(mddev), desc);
  6534. is_mddev_idle(mddev, 1); /* this initializes IO event counters */
  6535. io_sectors = 0;
  6536. for (m = 0; m < SYNC_MARKS; m++) {
  6537. mark[m] = jiffies;
  6538. mark_cnt[m] = io_sectors;
  6539. }
  6540. last_mark = 0;
  6541. mddev->resync_mark = mark[last_mark];
  6542. mddev->resync_mark_cnt = mark_cnt[last_mark];
  6543. /*
  6544. * Tune reconstruction:
  6545. */
  6546. window = 32*(PAGE_SIZE/512);
  6547. printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
  6548. window/2, (unsigned long long)max_sectors/2);
  6549. atomic_set(&mddev->recovery_active, 0);
  6550. last_check = 0;
  6551. if (j>2) {
  6552. printk(KERN_INFO
  6553. "md: resuming %s of %s from checkpoint.\n",
  6554. desc, mdname(mddev));
  6555. mddev->curr_resync = j;
  6556. } else
  6557. mddev->curr_resync = 3; /* no longer delayed */
  6558. mddev->curr_resync_completed = j;
  6559. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  6560. md_new_event(mddev);
  6561. update_time = jiffies;
  6562. blk_start_plug(&plug);
  6563. while (j < max_sectors) {
  6564. sector_t sectors;
  6565. skipped = 0;
  6566. if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
  6567. ((mddev->curr_resync > mddev->curr_resync_completed &&
  6568. (mddev->curr_resync - mddev->curr_resync_completed)
  6569. > (max_sectors >> 4)) ||
  6570. time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
  6571. (j - mddev->curr_resync_completed)*2
  6572. >= mddev->resync_max - mddev->curr_resync_completed
  6573. )) {
  6574. /* time to update curr_resync_completed */
  6575. wait_event(mddev->recovery_wait,
  6576. atomic_read(&mddev->recovery_active) == 0);
  6577. mddev->curr_resync_completed = j;
  6578. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
  6579. j > mddev->recovery_cp)
  6580. mddev->recovery_cp = j;
  6581. update_time = jiffies;
  6582. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6583. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  6584. }
  6585. while (j >= mddev->resync_max &&
  6586. !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  6587. /* As this condition is controlled by user-space,
  6588. * we can block indefinitely, so use '_interruptible'
  6589. * to avoid triggering warnings.
  6590. */
  6591. flush_signals(current); /* just in case */
  6592. wait_event_interruptible(mddev->recovery_wait,
  6593. mddev->resync_max > j
  6594. || test_bit(MD_RECOVERY_INTR,
  6595. &mddev->recovery));
  6596. }
  6597. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  6598. break;
  6599. sectors = mddev->pers->sync_request(mddev, j, &skipped,
  6600. currspeed < speed_min(mddev));
  6601. if (sectors == 0) {
  6602. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6603. break;
  6604. }
  6605. if (!skipped) { /* actual IO requested */
  6606. io_sectors += sectors;
  6607. atomic_add(sectors, &mddev->recovery_active);
  6608. }
  6609. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  6610. break;
  6611. j += sectors;
  6612. if (j > 2)
  6613. mddev->curr_resync = j;
  6614. mddev->curr_mark_cnt = io_sectors;
  6615. if (last_check == 0)
  6616. /* this is the earliest that rebuild will be
  6617. * visible in /proc/mdstat
  6618. */
  6619. md_new_event(mddev);
  6620. if (last_check + window > io_sectors || j == max_sectors)
  6621. continue;
  6622. last_check = io_sectors;
  6623. repeat:
  6624. if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
  6625. /* step marks */
  6626. int next = (last_mark+1) % SYNC_MARKS;
  6627. mddev->resync_mark = mark[next];
  6628. mddev->resync_mark_cnt = mark_cnt[next];
  6629. mark[next] = jiffies;
  6630. mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
  6631. last_mark = next;
  6632. }
  6633. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  6634. break;
  6635. /*
  6636. * this loop exits only if either when we are slower than
  6637. * the 'hard' speed limit, or the system was IO-idle for
  6638. * a jiffy.
  6639. * the system might be non-idle CPU-wise, but we only care
  6640. * about not overloading the IO subsystem. (things like an
  6641. * e2fsck being done on the RAID array should execute fast)
  6642. */
  6643. cond_resched();
  6644. recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
  6645. currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
  6646. /((jiffies-mddev->resync_mark)/HZ +1) +1;
  6647. if (currspeed > speed_min(mddev)) {
  6648. if ((currspeed > speed_max(mddev)) ||
  6649. !is_mddev_idle(mddev, 0)) {
  6650. msleep(500);
  6651. goto repeat;
  6652. }
  6653. }
  6654. }
  6655. printk(KERN_INFO "md: %s: %s %s.\n",mdname(mddev), desc,
  6656. test_bit(MD_RECOVERY_INTR, &mddev->recovery)
  6657. ? "interrupted" : "done");
  6658. /*
  6659. * this also signals 'finished resyncing' to md_stop
  6660. */
  6661. blk_finish_plug(&plug);
  6662. wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
  6663. /* tell personality that we are finished */
  6664. mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
  6665. if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
  6666. mddev->curr_resync > 2) {
  6667. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  6668. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  6669. if (mddev->curr_resync >= mddev->recovery_cp) {
  6670. printk(KERN_INFO
  6671. "md: checkpointing %s of %s.\n",
  6672. desc, mdname(mddev));
  6673. if (test_bit(MD_RECOVERY_ERROR,
  6674. &mddev->recovery))
  6675. mddev->recovery_cp =
  6676. mddev->curr_resync_completed;
  6677. else
  6678. mddev->recovery_cp =
  6679. mddev->curr_resync;
  6680. }
  6681. } else
  6682. mddev->recovery_cp = MaxSector;
  6683. } else {
  6684. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  6685. mddev->curr_resync = MaxSector;
  6686. rcu_read_lock();
  6687. rdev_for_each_rcu(rdev, mddev)
  6688. if (rdev->raid_disk >= 0 &&
  6689. mddev->delta_disks >= 0 &&
  6690. !test_bit(Faulty, &rdev->flags) &&
  6691. !test_bit(In_sync, &rdev->flags) &&
  6692. rdev->recovery_offset < mddev->curr_resync)
  6693. rdev->recovery_offset = mddev->curr_resync;
  6694. rcu_read_unlock();
  6695. }
  6696. }
  6697. skip:
  6698. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  6699. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  6700. /* We completed so min/max setting can be forgotten if used. */
  6701. if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6702. mddev->resync_min = 0;
  6703. mddev->resync_max = MaxSector;
  6704. } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6705. mddev->resync_min = mddev->curr_resync_completed;
  6706. mddev->curr_resync = 0;
  6707. wake_up(&resync_wait);
  6708. set_bit(MD_RECOVERY_DONE, &mddev->recovery);
  6709. md_wakeup_thread(mddev->thread);
  6710. return;
  6711. }
  6712. EXPORT_SYMBOL_GPL(md_do_sync);
  6713. static int remove_and_add_spares(struct mddev *mddev,
  6714. struct md_rdev *this)
  6715. {
  6716. struct md_rdev *rdev;
  6717. int spares = 0;
  6718. int removed = 0;
  6719. rdev_for_each(rdev, mddev)
  6720. if ((this == NULL || rdev == this) &&
  6721. rdev->raid_disk >= 0 &&
  6722. !test_bit(Blocked, &rdev->flags) &&
  6723. (test_bit(Faulty, &rdev->flags) ||
  6724. ! test_bit(In_sync, &rdev->flags)) &&
  6725. atomic_read(&rdev->nr_pending)==0) {
  6726. if (mddev->pers->hot_remove_disk(
  6727. mddev, rdev) == 0) {
  6728. sysfs_unlink_rdev(mddev, rdev);
  6729. rdev->raid_disk = -1;
  6730. removed++;
  6731. }
  6732. }
  6733. if (removed && mddev->kobj.sd)
  6734. sysfs_notify(&mddev->kobj, NULL, "degraded");
  6735. if (this)
  6736. goto no_add;
  6737. rdev_for_each(rdev, mddev) {
  6738. if (rdev->raid_disk >= 0 &&
  6739. !test_bit(In_sync, &rdev->flags) &&
  6740. !test_bit(Faulty, &rdev->flags))
  6741. spares++;
  6742. if (rdev->raid_disk >= 0)
  6743. continue;
  6744. if (test_bit(Faulty, &rdev->flags))
  6745. continue;
  6746. if (mddev->ro &&
  6747. ! (rdev->saved_raid_disk >= 0 &&
  6748. !test_bit(Bitmap_sync, &rdev->flags)))
  6749. continue;
  6750. if (rdev->saved_raid_disk < 0)
  6751. rdev->recovery_offset = 0;
  6752. if (mddev->pers->
  6753. hot_add_disk(mddev, rdev) == 0) {
  6754. if (sysfs_link_rdev(mddev, rdev))
  6755. /* failure here is OK */;
  6756. spares++;
  6757. md_new_event(mddev);
  6758. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  6759. }
  6760. }
  6761. no_add:
  6762. if (removed)
  6763. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  6764. return spares;
  6765. }
  6766. static void md_start_sync(struct work_struct *ws)
  6767. {
  6768. struct mddev *mddev = container_of(ws, struct mddev, del_work);
  6769. mddev->sync_thread = md_register_thread(md_do_sync,
  6770. mddev,
  6771. "resync");
  6772. if (!mddev->sync_thread) {
  6773. printk(KERN_ERR "%s: could not start resync"
  6774. " thread...\n",
  6775. mdname(mddev));
  6776. /* leave the spares where they are, it shouldn't hurt */
  6777. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  6778. clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  6779. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  6780. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  6781. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  6782. wake_up(&resync_wait);
  6783. if (test_and_clear_bit(MD_RECOVERY_RECOVER,
  6784. &mddev->recovery))
  6785. if (mddev->sysfs_action)
  6786. sysfs_notify_dirent_safe(mddev->sysfs_action);
  6787. } else
  6788. md_wakeup_thread(mddev->sync_thread);
  6789. sysfs_notify_dirent_safe(mddev->sysfs_action);
  6790. md_new_event(mddev);
  6791. }
  6792. /*
  6793. * This routine is regularly called by all per-raid-array threads to
  6794. * deal with generic issues like resync and super-block update.
  6795. * Raid personalities that don't have a thread (linear/raid0) do not
  6796. * need this as they never do any recovery or update the superblock.
  6797. *
  6798. * It does not do any resync itself, but rather "forks" off other threads
  6799. * to do that as needed.
  6800. * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
  6801. * "->recovery" and create a thread at ->sync_thread.
  6802. * When the thread finishes it sets MD_RECOVERY_DONE
  6803. * and wakeups up this thread which will reap the thread and finish up.
  6804. * This thread also removes any faulty devices (with nr_pending == 0).
  6805. *
  6806. * The overall approach is:
  6807. * 1/ if the superblock needs updating, update it.
  6808. * 2/ If a recovery thread is running, don't do anything else.
  6809. * 3/ If recovery has finished, clean up, possibly marking spares active.
  6810. * 4/ If there are any faulty devices, remove them.
  6811. * 5/ If array is degraded, try to add spares devices
  6812. * 6/ If array has spares or is not in-sync, start a resync thread.
  6813. */
  6814. void md_check_recovery(struct mddev *mddev)
  6815. {
  6816. if (mddev->suspended)
  6817. return;
  6818. if (mddev->bitmap)
  6819. bitmap_daemon_work(mddev);
  6820. if (signal_pending(current)) {
  6821. if (mddev->pers->sync_request && !mddev->external) {
  6822. printk(KERN_INFO "md: %s in immediate safe mode\n",
  6823. mdname(mddev));
  6824. mddev->safemode = 2;
  6825. }
  6826. flush_signals(current);
  6827. }
  6828. if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
  6829. return;
  6830. if ( ! (
  6831. (mddev->flags & MD_UPDATE_SB_FLAGS & ~ (1<<MD_CHANGE_PENDING)) ||
  6832. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
  6833. test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
  6834. (mddev->external == 0 && mddev->safemode == 1) ||
  6835. (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
  6836. && !mddev->in_sync && mddev->recovery_cp == MaxSector)
  6837. ))
  6838. return;
  6839. if (mddev_trylock(mddev)) {
  6840. int spares = 0;
  6841. if (mddev->ro) {
  6842. /* On a read-only array we can:
  6843. * - remove failed devices
  6844. * - add already-in_sync devices if the array itself
  6845. * is in-sync.
  6846. * As we only add devices that are already in-sync,
  6847. * we can activate the spares immediately.
  6848. */
  6849. remove_and_add_spares(mddev, NULL);
  6850. /* There is no thread, but we need to call
  6851. * ->spare_active and clear saved_raid_disk
  6852. */
  6853. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6854. md_reap_sync_thread(mddev);
  6855. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6856. goto unlock;
  6857. }
  6858. if (!mddev->external) {
  6859. int did_change = 0;
  6860. spin_lock_irq(&mddev->write_lock);
  6861. if (mddev->safemode &&
  6862. !atomic_read(&mddev->writes_pending) &&
  6863. !mddev->in_sync &&
  6864. mddev->recovery_cp == MaxSector) {
  6865. mddev->in_sync = 1;
  6866. did_change = 1;
  6867. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6868. }
  6869. if (mddev->safemode == 1)
  6870. mddev->safemode = 0;
  6871. spin_unlock_irq(&mddev->write_lock);
  6872. if (did_change)
  6873. sysfs_notify_dirent_safe(mddev->sysfs_state);
  6874. }
  6875. if (mddev->flags & MD_UPDATE_SB_FLAGS)
  6876. md_update_sb(mddev, 0);
  6877. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
  6878. !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
  6879. /* resync/recovery still happening */
  6880. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6881. goto unlock;
  6882. }
  6883. if (mddev->sync_thread) {
  6884. md_reap_sync_thread(mddev);
  6885. goto unlock;
  6886. }
  6887. /* Set RUNNING before clearing NEEDED to avoid
  6888. * any transients in the value of "sync_action".
  6889. */
  6890. mddev->curr_resync_completed = 0;
  6891. set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  6892. /* Clear some bits that don't mean anything, but
  6893. * might be left set
  6894. */
  6895. clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6896. clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
  6897. if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
  6898. test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  6899. goto not_running;
  6900. /* no recovery is running.
  6901. * remove any failed drives, then
  6902. * add spares if possible.
  6903. * Spares are also removed and re-added, to allow
  6904. * the personality to fail the re-add.
  6905. */
  6906. if (mddev->reshape_position != MaxSector) {
  6907. if (mddev->pers->check_reshape == NULL ||
  6908. mddev->pers->check_reshape(mddev) != 0)
  6909. /* Cannot proceed */
  6910. goto not_running;
  6911. set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  6912. clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  6913. } else if ((spares = remove_and_add_spares(mddev, NULL))) {
  6914. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  6915. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  6916. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  6917. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  6918. } else if (mddev->recovery_cp < MaxSector) {
  6919. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  6920. clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  6921. } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  6922. /* nothing to be done ... */
  6923. goto not_running;
  6924. if (mddev->pers->sync_request) {
  6925. if (spares) {
  6926. /* We are adding a device or devices to an array
  6927. * which has the bitmap stored on all devices.
  6928. * So make sure all bitmap pages get written
  6929. */
  6930. bitmap_write_all(mddev->bitmap);
  6931. }
  6932. INIT_WORK(&mddev->del_work, md_start_sync);
  6933. queue_work(md_misc_wq, &mddev->del_work);
  6934. goto unlock;
  6935. }
  6936. not_running:
  6937. if (!mddev->sync_thread) {
  6938. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  6939. wake_up(&resync_wait);
  6940. if (test_and_clear_bit(MD_RECOVERY_RECOVER,
  6941. &mddev->recovery))
  6942. if (mddev->sysfs_action)
  6943. sysfs_notify_dirent_safe(mddev->sysfs_action);
  6944. }
  6945. unlock:
  6946. wake_up(&mddev->sb_wait);
  6947. mddev_unlock(mddev);
  6948. }
  6949. }
  6950. EXPORT_SYMBOL(md_check_recovery);
  6951. void md_reap_sync_thread(struct mddev *mddev)
  6952. {
  6953. struct md_rdev *rdev;
  6954. /* resync has finished, collect result */
  6955. md_unregister_thread(&mddev->sync_thread);
  6956. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
  6957. !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
  6958. /* success...*/
  6959. /* activate any spares */
  6960. if (mddev->pers->spare_active(mddev)) {
  6961. sysfs_notify(&mddev->kobj, NULL,
  6962. "degraded");
  6963. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  6964. }
  6965. }
  6966. if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
  6967. mddev->pers->finish_reshape)
  6968. mddev->pers->finish_reshape(mddev);
  6969. /* If array is no-longer degraded, then any saved_raid_disk
  6970. * information must be scrapped.
  6971. */
  6972. if (!mddev->degraded)
  6973. rdev_for_each(rdev, mddev)
  6974. rdev->saved_raid_disk = -1;
  6975. md_update_sb(mddev, 1);
  6976. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  6977. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  6978. clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  6979. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  6980. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  6981. wake_up(&resync_wait);
  6982. /* flag recovery needed just to double check */
  6983. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6984. sysfs_notify_dirent_safe(mddev->sysfs_action);
  6985. md_new_event(mddev);
  6986. if (mddev->event_work.func)
  6987. queue_work(md_misc_wq, &mddev->event_work);
  6988. }
  6989. EXPORT_SYMBOL(md_reap_sync_thread);
  6990. void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
  6991. {
  6992. sysfs_notify_dirent_safe(rdev->sysfs_state);
  6993. wait_event_timeout(rdev->blocked_wait,
  6994. !test_bit(Blocked, &rdev->flags) &&
  6995. !test_bit(BlockedBadBlocks, &rdev->flags),
  6996. msecs_to_jiffies(5000));
  6997. rdev_dec_pending(rdev, mddev);
  6998. }
  6999. EXPORT_SYMBOL(md_wait_for_blocked_rdev);
  7000. void md_finish_reshape(struct mddev *mddev)
  7001. {
  7002. /* called be personality module when reshape completes. */
  7003. struct md_rdev *rdev;
  7004. rdev_for_each(rdev, mddev) {
  7005. if (rdev->data_offset > rdev->new_data_offset)
  7006. rdev->sectors += rdev->data_offset - rdev->new_data_offset;
  7007. else
  7008. rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
  7009. rdev->data_offset = rdev->new_data_offset;
  7010. }
  7011. }
  7012. EXPORT_SYMBOL(md_finish_reshape);
  7013. /* Bad block management.
  7014. * We can record which blocks on each device are 'bad' and so just
  7015. * fail those blocks, or that stripe, rather than the whole device.
  7016. * Entries in the bad-block table are 64bits wide. This comprises:
  7017. * Length of bad-range, in sectors: 0-511 for lengths 1-512
  7018. * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
  7019. * A 'shift' can be set so that larger blocks are tracked and
  7020. * consequently larger devices can be covered.
  7021. * 'Acknowledged' flag - 1 bit. - the most significant bit.
  7022. *
  7023. * Locking of the bad-block table uses a seqlock so md_is_badblock
  7024. * might need to retry if it is very unlucky.
  7025. * We will sometimes want to check for bad blocks in a bi_end_io function,
  7026. * so we use the write_seqlock_irq variant.
  7027. *
  7028. * When looking for a bad block we specify a range and want to
  7029. * know if any block in the range is bad. So we binary-search
  7030. * to the last range that starts at-or-before the given endpoint,
  7031. * (or "before the sector after the target range")
  7032. * then see if it ends after the given start.
  7033. * We return
  7034. * 0 if there are no known bad blocks in the range
  7035. * 1 if there are known bad block which are all acknowledged
  7036. * -1 if there are bad blocks which have not yet been acknowledged in metadata.
  7037. * plus the start/length of the first bad section we overlap.
  7038. */
  7039. int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
  7040. sector_t *first_bad, int *bad_sectors)
  7041. {
  7042. int hi;
  7043. int lo;
  7044. u64 *p = bb->page;
  7045. int rv;
  7046. sector_t target = s + sectors;
  7047. unsigned seq;
  7048. if (bb->shift > 0) {
  7049. /* round the start down, and the end up */
  7050. s >>= bb->shift;
  7051. target += (1<<bb->shift) - 1;
  7052. target >>= bb->shift;
  7053. sectors = target - s;
  7054. }
  7055. /* 'target' is now the first block after the bad range */
  7056. retry:
  7057. seq = read_seqbegin(&bb->lock);
  7058. lo = 0;
  7059. rv = 0;
  7060. hi = bb->count;
  7061. /* Binary search between lo and hi for 'target'
  7062. * i.e. for the last range that starts before 'target'
  7063. */
  7064. /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
  7065. * are known not to be the last range before target.
  7066. * VARIANT: hi-lo is the number of possible
  7067. * ranges, and decreases until it reaches 1
  7068. */
  7069. while (hi - lo > 1) {
  7070. int mid = (lo + hi) / 2;
  7071. sector_t a = BB_OFFSET(p[mid]);
  7072. if (a < target)
  7073. /* This could still be the one, earlier ranges
  7074. * could not. */
  7075. lo = mid;
  7076. else
  7077. /* This and later ranges are definitely out. */
  7078. hi = mid;
  7079. }
  7080. /* 'lo' might be the last that started before target, but 'hi' isn't */
  7081. if (hi > lo) {
  7082. /* need to check all range that end after 's' to see if
  7083. * any are unacknowledged.
  7084. */
  7085. while (lo >= 0 &&
  7086. BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
  7087. if (BB_OFFSET(p[lo]) < target) {
  7088. /* starts before the end, and finishes after
  7089. * the start, so they must overlap
  7090. */
  7091. if (rv != -1 && BB_ACK(p[lo]))
  7092. rv = 1;
  7093. else
  7094. rv = -1;
  7095. *first_bad = BB_OFFSET(p[lo]);
  7096. *bad_sectors = BB_LEN(p[lo]);
  7097. }
  7098. lo--;
  7099. }
  7100. }
  7101. if (read_seqretry(&bb->lock, seq))
  7102. goto retry;
  7103. return rv;
  7104. }
  7105. EXPORT_SYMBOL_GPL(md_is_badblock);
  7106. /*
  7107. * Add a range of bad blocks to the table.
  7108. * This might extend the table, or might contract it
  7109. * if two adjacent ranges can be merged.
  7110. * We binary-search to find the 'insertion' point, then
  7111. * decide how best to handle it.
  7112. */
  7113. static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
  7114. int acknowledged)
  7115. {
  7116. u64 *p;
  7117. int lo, hi;
  7118. int rv = 1;
  7119. unsigned long flags;
  7120. if (bb->shift < 0)
  7121. /* badblocks are disabled */
  7122. return 0;
  7123. if (bb->shift) {
  7124. /* round the start down, and the end up */
  7125. sector_t next = s + sectors;
  7126. s >>= bb->shift;
  7127. next += (1<<bb->shift) - 1;
  7128. next >>= bb->shift;
  7129. sectors = next - s;
  7130. }
  7131. write_seqlock_irqsave(&bb->lock, flags);
  7132. p = bb->page;
  7133. lo = 0;
  7134. hi = bb->count;
  7135. /* Find the last range that starts at-or-before 's' */
  7136. while (hi - lo > 1) {
  7137. int mid = (lo + hi) / 2;
  7138. sector_t a = BB_OFFSET(p[mid]);
  7139. if (a <= s)
  7140. lo = mid;
  7141. else
  7142. hi = mid;
  7143. }
  7144. if (hi > lo && BB_OFFSET(p[lo]) > s)
  7145. hi = lo;
  7146. if (hi > lo) {
  7147. /* we found a range that might merge with the start
  7148. * of our new range
  7149. */
  7150. sector_t a = BB_OFFSET(p[lo]);
  7151. sector_t e = a + BB_LEN(p[lo]);
  7152. int ack = BB_ACK(p[lo]);
  7153. if (e >= s) {
  7154. /* Yes, we can merge with a previous range */
  7155. if (s == a && s + sectors >= e)
  7156. /* new range covers old */
  7157. ack = acknowledged;
  7158. else
  7159. ack = ack && acknowledged;
  7160. if (e < s + sectors)
  7161. e = s + sectors;
  7162. if (e - a <= BB_MAX_LEN) {
  7163. p[lo] = BB_MAKE(a, e-a, ack);
  7164. s = e;
  7165. } else {
  7166. /* does not all fit in one range,
  7167. * make p[lo] maximal
  7168. */
  7169. if (BB_LEN(p[lo]) != BB_MAX_LEN)
  7170. p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
  7171. s = a + BB_MAX_LEN;
  7172. }
  7173. sectors = e - s;
  7174. }
  7175. }
  7176. if (sectors && hi < bb->count) {
  7177. /* 'hi' points to the first range that starts after 's'.
  7178. * Maybe we can merge with the start of that range */
  7179. sector_t a = BB_OFFSET(p[hi]);
  7180. sector_t e = a + BB_LEN(p[hi]);
  7181. int ack = BB_ACK(p[hi]);
  7182. if (a <= s + sectors) {
  7183. /* merging is possible */
  7184. if (e <= s + sectors) {
  7185. /* full overlap */
  7186. e = s + sectors;
  7187. ack = acknowledged;
  7188. } else
  7189. ack = ack && acknowledged;
  7190. a = s;
  7191. if (e - a <= BB_MAX_LEN) {
  7192. p[hi] = BB_MAKE(a, e-a, ack);
  7193. s = e;
  7194. } else {
  7195. p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
  7196. s = a + BB_MAX_LEN;
  7197. }
  7198. sectors = e - s;
  7199. lo = hi;
  7200. hi++;
  7201. }
  7202. }
  7203. if (sectors == 0 && hi < bb->count) {
  7204. /* we might be able to combine lo and hi */
  7205. /* Note: 's' is at the end of 'lo' */
  7206. sector_t a = BB_OFFSET(p[hi]);
  7207. int lolen = BB_LEN(p[lo]);
  7208. int hilen = BB_LEN(p[hi]);
  7209. int newlen = lolen + hilen - (s - a);
  7210. if (s >= a && newlen < BB_MAX_LEN) {
  7211. /* yes, we can combine them */
  7212. int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
  7213. p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
  7214. memmove(p + hi, p + hi + 1,
  7215. (bb->count - hi - 1) * 8);
  7216. bb->count--;
  7217. }
  7218. }
  7219. while (sectors) {
  7220. /* didn't merge (it all).
  7221. * Need to add a range just before 'hi' */
  7222. if (bb->count >= MD_MAX_BADBLOCKS) {
  7223. /* No room for more */
  7224. rv = 0;
  7225. break;
  7226. } else {
  7227. int this_sectors = sectors;
  7228. memmove(p + hi + 1, p + hi,
  7229. (bb->count - hi) * 8);
  7230. bb->count++;
  7231. if (this_sectors > BB_MAX_LEN)
  7232. this_sectors = BB_MAX_LEN;
  7233. p[hi] = BB_MAKE(s, this_sectors, acknowledged);
  7234. sectors -= this_sectors;
  7235. s += this_sectors;
  7236. }
  7237. }
  7238. bb->changed = 1;
  7239. if (!acknowledged)
  7240. bb->unacked_exist = 1;
  7241. write_sequnlock_irqrestore(&bb->lock, flags);
  7242. return rv;
  7243. }
  7244. int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
  7245. int is_new)
  7246. {
  7247. int rv;
  7248. if (is_new)
  7249. s += rdev->new_data_offset;
  7250. else
  7251. s += rdev->data_offset;
  7252. rv = md_set_badblocks(&rdev->badblocks,
  7253. s, sectors, 0);
  7254. if (rv) {
  7255. /* Make sure they get written out promptly */
  7256. sysfs_notify_dirent_safe(rdev->sysfs_state);
  7257. set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
  7258. md_wakeup_thread(rdev->mddev->thread);
  7259. }
  7260. return rv;
  7261. }
  7262. EXPORT_SYMBOL_GPL(rdev_set_badblocks);
  7263. /*
  7264. * Remove a range of bad blocks from the table.
  7265. * This may involve extending the table if we spilt a region,
  7266. * but it must not fail. So if the table becomes full, we just
  7267. * drop the remove request.
  7268. */
  7269. static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
  7270. {
  7271. u64 *p;
  7272. int lo, hi;
  7273. sector_t target = s + sectors;
  7274. int rv = 0;
  7275. if (bb->shift > 0) {
  7276. /* When clearing we round the start up and the end down.
  7277. * This should not matter as the shift should align with
  7278. * the block size and no rounding should ever be needed.
  7279. * However it is better the think a block is bad when it
  7280. * isn't than to think a block is not bad when it is.
  7281. */
  7282. s += (1<<bb->shift) - 1;
  7283. s >>= bb->shift;
  7284. target >>= bb->shift;
  7285. sectors = target - s;
  7286. }
  7287. write_seqlock_irq(&bb->lock);
  7288. p = bb->page;
  7289. lo = 0;
  7290. hi = bb->count;
  7291. /* Find the last range that starts before 'target' */
  7292. while (hi - lo > 1) {
  7293. int mid = (lo + hi) / 2;
  7294. sector_t a = BB_OFFSET(p[mid]);
  7295. if (a < target)
  7296. lo = mid;
  7297. else
  7298. hi = mid;
  7299. }
  7300. if (hi > lo) {
  7301. /* p[lo] is the last range that could overlap the
  7302. * current range. Earlier ranges could also overlap,
  7303. * but only this one can overlap the end of the range.
  7304. */
  7305. if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
  7306. /* Partial overlap, leave the tail of this range */
  7307. int ack = BB_ACK(p[lo]);
  7308. sector_t a = BB_OFFSET(p[lo]);
  7309. sector_t end = a + BB_LEN(p[lo]);
  7310. if (a < s) {
  7311. /* we need to split this range */
  7312. if (bb->count >= MD_MAX_BADBLOCKS) {
  7313. rv = -ENOSPC;
  7314. goto out;
  7315. }
  7316. memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
  7317. bb->count++;
  7318. p[lo] = BB_MAKE(a, s-a, ack);
  7319. lo++;
  7320. }
  7321. p[lo] = BB_MAKE(target, end - target, ack);
  7322. /* there is no longer an overlap */
  7323. hi = lo;
  7324. lo--;
  7325. }
  7326. while (lo >= 0 &&
  7327. BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
  7328. /* This range does overlap */
  7329. if (BB_OFFSET(p[lo]) < s) {
  7330. /* Keep the early parts of this range. */
  7331. int ack = BB_ACK(p[lo]);
  7332. sector_t start = BB_OFFSET(p[lo]);
  7333. p[lo] = BB_MAKE(start, s - start, ack);
  7334. /* now low doesn't overlap, so.. */
  7335. break;
  7336. }
  7337. lo--;
  7338. }
  7339. /* 'lo' is strictly before, 'hi' is strictly after,
  7340. * anything between needs to be discarded
  7341. */
  7342. if (hi - lo > 1) {
  7343. memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
  7344. bb->count -= (hi - lo - 1);
  7345. }
  7346. }
  7347. bb->changed = 1;
  7348. out:
  7349. write_sequnlock_irq(&bb->lock);
  7350. return rv;
  7351. }
  7352. int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
  7353. int is_new)
  7354. {
  7355. if (is_new)
  7356. s += rdev->new_data_offset;
  7357. else
  7358. s += rdev->data_offset;
  7359. return md_clear_badblocks(&rdev->badblocks,
  7360. s, sectors);
  7361. }
  7362. EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
  7363. /*
  7364. * Acknowledge all bad blocks in a list.
  7365. * This only succeeds if ->changed is clear. It is used by
  7366. * in-kernel metadata updates
  7367. */
  7368. void md_ack_all_badblocks(struct badblocks *bb)
  7369. {
  7370. if (bb->page == NULL || bb->changed)
  7371. /* no point even trying */
  7372. return;
  7373. write_seqlock_irq(&bb->lock);
  7374. if (bb->changed == 0 && bb->unacked_exist) {
  7375. u64 *p = bb->page;
  7376. int i;
  7377. for (i = 0; i < bb->count ; i++) {
  7378. if (!BB_ACK(p[i])) {
  7379. sector_t start = BB_OFFSET(p[i]);
  7380. int len = BB_LEN(p[i]);
  7381. p[i] = BB_MAKE(start, len, 1);
  7382. }
  7383. }
  7384. bb->unacked_exist = 0;
  7385. }
  7386. write_sequnlock_irq(&bb->lock);
  7387. }
  7388. EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
  7389. /* sysfs access to bad-blocks list.
  7390. * We present two files.
  7391. * 'bad-blocks' lists sector numbers and lengths of ranges that
  7392. * are recorded as bad. The list is truncated to fit within
  7393. * the one-page limit of sysfs.
  7394. * Writing "sector length" to this file adds an acknowledged
  7395. * bad block list.
  7396. * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
  7397. * been acknowledged. Writing to this file adds bad blocks
  7398. * without acknowledging them. This is largely for testing.
  7399. */
  7400. static ssize_t
  7401. badblocks_show(struct badblocks *bb, char *page, int unack)
  7402. {
  7403. size_t len;
  7404. int i;
  7405. u64 *p = bb->page;
  7406. unsigned seq;
  7407. if (bb->shift < 0)
  7408. return 0;
  7409. retry:
  7410. seq = read_seqbegin(&bb->lock);
  7411. len = 0;
  7412. i = 0;
  7413. while (len < PAGE_SIZE && i < bb->count) {
  7414. sector_t s = BB_OFFSET(p[i]);
  7415. unsigned int length = BB_LEN(p[i]);
  7416. int ack = BB_ACK(p[i]);
  7417. i++;
  7418. if (unack && ack)
  7419. continue;
  7420. len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
  7421. (unsigned long long)s << bb->shift,
  7422. length << bb->shift);
  7423. }
  7424. if (unack && len == 0)
  7425. bb->unacked_exist = 0;
  7426. if (read_seqretry(&bb->lock, seq))
  7427. goto retry;
  7428. return len;
  7429. }
  7430. #define DO_DEBUG 1
  7431. static ssize_t
  7432. badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
  7433. {
  7434. unsigned long long sector;
  7435. int length;
  7436. char newline;
  7437. #ifdef DO_DEBUG
  7438. /* Allow clearing via sysfs *only* for testing/debugging.
  7439. * Normally only a successful write may clear a badblock
  7440. */
  7441. int clear = 0;
  7442. if (page[0] == '-') {
  7443. clear = 1;
  7444. page++;
  7445. }
  7446. #endif /* DO_DEBUG */
  7447. switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
  7448. case 3:
  7449. if (newline != '\n')
  7450. return -EINVAL;
  7451. case 2:
  7452. if (length <= 0)
  7453. return -EINVAL;
  7454. break;
  7455. default:
  7456. return -EINVAL;
  7457. }
  7458. #ifdef DO_DEBUG
  7459. if (clear) {
  7460. md_clear_badblocks(bb, sector, length);
  7461. return len;
  7462. }
  7463. #endif /* DO_DEBUG */
  7464. if (md_set_badblocks(bb, sector, length, !unack))
  7465. return len;
  7466. else
  7467. return -ENOSPC;
  7468. }
  7469. static int md_notify_reboot(struct notifier_block *this,
  7470. unsigned long code, void *x)
  7471. {
  7472. struct list_head *tmp;
  7473. struct mddev *mddev;
  7474. int need_delay = 0;
  7475. for_each_mddev(mddev, tmp) {
  7476. if (mddev_trylock(mddev)) {
  7477. if (mddev->pers)
  7478. __md_stop_writes(mddev);
  7479. if (mddev->persistent)
  7480. mddev->safemode = 2;
  7481. mddev_unlock(mddev);
  7482. }
  7483. need_delay = 1;
  7484. }
  7485. /*
  7486. * certain more exotic SCSI devices are known to be
  7487. * volatile wrt too early system reboots. While the
  7488. * right place to handle this issue is the given
  7489. * driver, we do want to have a safe RAID driver ...
  7490. */
  7491. if (need_delay)
  7492. mdelay(1000*1);
  7493. return NOTIFY_DONE;
  7494. }
  7495. static struct notifier_block md_notifier = {
  7496. .notifier_call = md_notify_reboot,
  7497. .next = NULL,
  7498. .priority = INT_MAX, /* before any real devices */
  7499. };
  7500. static void md_geninit(void)
  7501. {
  7502. pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
  7503. proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
  7504. }
  7505. static int __init md_init(void)
  7506. {
  7507. int ret = -ENOMEM;
  7508. md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
  7509. if (!md_wq)
  7510. goto err_wq;
  7511. md_misc_wq = alloc_workqueue("md_misc", 0, 0);
  7512. if (!md_misc_wq)
  7513. goto err_misc_wq;
  7514. if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
  7515. goto err_md;
  7516. if ((ret = register_blkdev(0, "mdp")) < 0)
  7517. goto err_mdp;
  7518. mdp_major = ret;
  7519. blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE,
  7520. md_probe, NULL, NULL);
  7521. blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
  7522. md_probe, NULL, NULL);
  7523. register_reboot_notifier(&md_notifier);
  7524. raid_table_header = register_sysctl_table(raid_root_table);
  7525. md_geninit();
  7526. return 0;
  7527. err_mdp:
  7528. unregister_blkdev(MD_MAJOR, "md");
  7529. err_md:
  7530. destroy_workqueue(md_misc_wq);
  7531. err_misc_wq:
  7532. destroy_workqueue(md_wq);
  7533. err_wq:
  7534. return ret;
  7535. }
  7536. #ifndef MODULE
  7537. /*
  7538. * Searches all registered partitions for autorun RAID arrays
  7539. * at boot time.
  7540. */
  7541. static LIST_HEAD(all_detected_devices);
  7542. struct detected_devices_node {
  7543. struct list_head list;
  7544. dev_t dev;
  7545. };
  7546. void md_autodetect_dev(dev_t dev)
  7547. {
  7548. struct detected_devices_node *node_detected_dev;
  7549. node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
  7550. if (node_detected_dev) {
  7551. node_detected_dev->dev = dev;
  7552. list_add_tail(&node_detected_dev->list, &all_detected_devices);
  7553. } else {
  7554. printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
  7555. ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
  7556. }
  7557. }
  7558. static void autostart_arrays(int part)
  7559. {
  7560. struct md_rdev *rdev;
  7561. struct detected_devices_node *node_detected_dev;
  7562. dev_t dev;
  7563. int i_scanned, i_passed;
  7564. i_scanned = 0;
  7565. i_passed = 0;
  7566. printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
  7567. while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
  7568. i_scanned++;
  7569. node_detected_dev = list_entry(all_detected_devices.next,
  7570. struct detected_devices_node, list);
  7571. list_del(&node_detected_dev->list);
  7572. dev = node_detected_dev->dev;
  7573. kfree(node_detected_dev);
  7574. rdev = md_import_device(dev,0, 90);
  7575. if (IS_ERR(rdev))
  7576. continue;
  7577. if (test_bit(Faulty, &rdev->flags))
  7578. continue;
  7579. set_bit(AutoDetected, &rdev->flags);
  7580. list_add(&rdev->same_set, &pending_raid_disks);
  7581. i_passed++;
  7582. }
  7583. printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
  7584. i_scanned, i_passed);
  7585. autorun_devices(part);
  7586. }
  7587. #endif /* !MODULE */
  7588. static __exit void md_exit(void)
  7589. {
  7590. struct mddev *mddev;
  7591. struct list_head *tmp;
  7592. int delay = 1;
  7593. blk_unregister_region(MKDEV(MD_MAJOR,0), 512);
  7594. blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
  7595. unregister_blkdev(MD_MAJOR,"md");
  7596. unregister_blkdev(mdp_major, "mdp");
  7597. unregister_reboot_notifier(&md_notifier);
  7598. unregister_sysctl_table(raid_table_header);
  7599. /* We cannot unload the modules while some process is
  7600. * waiting for us in select() or poll() - wake them up
  7601. */
  7602. md_unloading = 1;
  7603. while (waitqueue_active(&md_event_waiters)) {
  7604. /* not safe to leave yet */
  7605. wake_up(&md_event_waiters);
  7606. msleep(delay);
  7607. delay += delay;
  7608. }
  7609. remove_proc_entry("mdstat", NULL);
  7610. for_each_mddev(mddev, tmp) {
  7611. export_array(mddev);
  7612. mddev->hold_active = 0;
  7613. }
  7614. destroy_workqueue(md_misc_wq);
  7615. destroy_workqueue(md_wq);
  7616. }
  7617. subsys_initcall(md_init);
  7618. module_exit(md_exit)
  7619. static int get_ro(char *buffer, struct kernel_param *kp)
  7620. {
  7621. return sprintf(buffer, "%d", start_readonly);
  7622. }
  7623. static int set_ro(const char *val, struct kernel_param *kp)
  7624. {
  7625. char *e;
  7626. int num = simple_strtoul(val, &e, 10);
  7627. if (*val && (*e == '\0' || *e == '\n')) {
  7628. start_readonly = num;
  7629. return 0;
  7630. }
  7631. return -EINVAL;
  7632. }
  7633. module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
  7634. module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
  7635. module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
  7636. MODULE_LICENSE("GPL");
  7637. MODULE_DESCRIPTION("MD RAID framework");
  7638. MODULE_ALIAS("md");
  7639. MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);