kfd_device_queue_manager.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062
  1. /*
  2. * Copyright 2014 Advanced Micro Devices, Inc.
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice shall be included in
  12. * all copies or substantial portions of the Software.
  13. *
  14. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  17. * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18. * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19. * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20. * OTHER DEALINGS IN THE SOFTWARE.
  21. *
  22. */
  23. #include <linux/slab.h>
  24. #include <linux/list.h>
  25. #include <linux/types.h>
  26. #include <linux/printk.h>
  27. #include <linux/bitops.h>
  28. #include "kfd_priv.h"
  29. #include "kfd_device_queue_manager.h"
  30. #include "kfd_mqd_manager.h"
  31. #include "cik_regs.h"
  32. #include "kfd_kernel_queue.h"
  33. #include "../../radeon/cik_reg.h"
  34. /* Size of the per-pipe EOP queue */
  35. #define CIK_HPD_EOP_BYTES_LOG2 11
  36. #define CIK_HPD_EOP_BYTES (1U << CIK_HPD_EOP_BYTES_LOG2)
  37. static bool is_mem_initialized;
  38. static int init_memory(struct device_queue_manager *dqm);
  39. static int set_pasid_vmid_mapping(struct device_queue_manager *dqm,
  40. unsigned int pasid, unsigned int vmid);
  41. static int create_compute_queue_nocpsch(struct device_queue_manager *dqm,
  42. struct queue *q,
  43. struct qcm_process_device *qpd);
  44. static int execute_queues_cpsch(struct device_queue_manager *dqm, bool lock);
  45. static int destroy_queues_cpsch(struct device_queue_manager *dqm, bool lock);
  46. static inline unsigned int get_pipes_num(struct device_queue_manager *dqm)
  47. {
  48. BUG_ON(!dqm || !dqm->dev);
  49. return dqm->dev->shared_resources.compute_pipe_count;
  50. }
  51. static inline unsigned int get_first_pipe(struct device_queue_manager *dqm)
  52. {
  53. BUG_ON(!dqm);
  54. return dqm->dev->shared_resources.first_compute_pipe;
  55. }
  56. static inline unsigned int get_pipes_num_cpsch(void)
  57. {
  58. return PIPE_PER_ME_CP_SCHEDULING;
  59. }
  60. static inline unsigned int
  61. get_sh_mem_bases_nybble_64(struct kfd_process_device *pdd)
  62. {
  63. uint32_t nybble;
  64. nybble = (pdd->lds_base >> 60) & 0x0E;
  65. return nybble;
  66. }
  67. static inline unsigned int get_sh_mem_bases_32(struct kfd_process_device *pdd)
  68. {
  69. unsigned int shared_base;
  70. shared_base = (pdd->lds_base >> 16) & 0xFF;
  71. return shared_base;
  72. }
  73. static uint32_t compute_sh_mem_bases_64bit(unsigned int top_address_nybble);
  74. static void init_process_memory(struct device_queue_manager *dqm,
  75. struct qcm_process_device *qpd)
  76. {
  77. struct kfd_process_device *pdd;
  78. unsigned int temp;
  79. BUG_ON(!dqm || !qpd);
  80. pdd = qpd_to_pdd(qpd);
  81. /* check if sh_mem_config register already configured */
  82. if (qpd->sh_mem_config == 0) {
  83. qpd->sh_mem_config =
  84. ALIGNMENT_MODE(SH_MEM_ALIGNMENT_MODE_UNALIGNED) |
  85. DEFAULT_MTYPE(MTYPE_NONCACHED) |
  86. APE1_MTYPE(MTYPE_NONCACHED);
  87. qpd->sh_mem_ape1_limit = 0;
  88. qpd->sh_mem_ape1_base = 0;
  89. }
  90. if (qpd->pqm->process->is_32bit_user_mode) {
  91. temp = get_sh_mem_bases_32(pdd);
  92. qpd->sh_mem_bases = SHARED_BASE(temp);
  93. qpd->sh_mem_config |= PTR32;
  94. } else {
  95. temp = get_sh_mem_bases_nybble_64(pdd);
  96. qpd->sh_mem_bases = compute_sh_mem_bases_64bit(temp);
  97. }
  98. pr_debug("kfd: is32bit process: %d sh_mem_bases nybble: 0x%X and register 0x%X\n",
  99. qpd->pqm->process->is_32bit_user_mode, temp, qpd->sh_mem_bases);
  100. }
  101. static void program_sh_mem_settings(struct device_queue_manager *dqm,
  102. struct qcm_process_device *qpd)
  103. {
  104. return kfd2kgd->program_sh_mem_settings(dqm->dev->kgd, qpd->vmid,
  105. qpd->sh_mem_config,
  106. qpd->sh_mem_ape1_base,
  107. qpd->sh_mem_ape1_limit,
  108. qpd->sh_mem_bases);
  109. }
  110. static int allocate_vmid(struct device_queue_manager *dqm,
  111. struct qcm_process_device *qpd,
  112. struct queue *q)
  113. {
  114. int bit, allocated_vmid;
  115. if (dqm->vmid_bitmap == 0)
  116. return -ENOMEM;
  117. bit = find_first_bit((unsigned long *)&dqm->vmid_bitmap, CIK_VMID_NUM);
  118. clear_bit(bit, (unsigned long *)&dqm->vmid_bitmap);
  119. /* Kaveri kfd vmid's starts from vmid 8 */
  120. allocated_vmid = bit + KFD_VMID_START_OFFSET;
  121. pr_debug("kfd: vmid allocation %d\n", allocated_vmid);
  122. qpd->vmid = allocated_vmid;
  123. q->properties.vmid = allocated_vmid;
  124. set_pasid_vmid_mapping(dqm, q->process->pasid, q->properties.vmid);
  125. program_sh_mem_settings(dqm, qpd);
  126. return 0;
  127. }
  128. static void deallocate_vmid(struct device_queue_manager *dqm,
  129. struct qcm_process_device *qpd,
  130. struct queue *q)
  131. {
  132. int bit = qpd->vmid - KFD_VMID_START_OFFSET;
  133. set_bit(bit, (unsigned long *)&dqm->vmid_bitmap);
  134. qpd->vmid = 0;
  135. q->properties.vmid = 0;
  136. }
  137. static int create_queue_nocpsch(struct device_queue_manager *dqm,
  138. struct queue *q,
  139. struct qcm_process_device *qpd,
  140. int *allocated_vmid)
  141. {
  142. int retval;
  143. BUG_ON(!dqm || !q || !qpd || !allocated_vmid);
  144. pr_debug("kfd: In func %s\n", __func__);
  145. print_queue(q);
  146. mutex_lock(&dqm->lock);
  147. if (list_empty(&qpd->queues_list)) {
  148. retval = allocate_vmid(dqm, qpd, q);
  149. if (retval != 0) {
  150. mutex_unlock(&dqm->lock);
  151. return retval;
  152. }
  153. }
  154. *allocated_vmid = qpd->vmid;
  155. q->properties.vmid = qpd->vmid;
  156. retval = create_compute_queue_nocpsch(dqm, q, qpd);
  157. if (retval != 0) {
  158. if (list_empty(&qpd->queues_list)) {
  159. deallocate_vmid(dqm, qpd, q);
  160. *allocated_vmid = 0;
  161. }
  162. mutex_unlock(&dqm->lock);
  163. return retval;
  164. }
  165. list_add(&q->list, &qpd->queues_list);
  166. dqm->queue_count++;
  167. mutex_unlock(&dqm->lock);
  168. return 0;
  169. }
  170. static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q)
  171. {
  172. bool set;
  173. int pipe, bit;
  174. set = false;
  175. for (pipe = dqm->next_pipe_to_allocate; pipe < get_pipes_num(dqm);
  176. pipe = (pipe + 1) % get_pipes_num(dqm)) {
  177. if (dqm->allocated_queues[pipe] != 0) {
  178. bit = find_first_bit(
  179. (unsigned long *)&dqm->allocated_queues[pipe],
  180. QUEUES_PER_PIPE);
  181. clear_bit(bit,
  182. (unsigned long *)&dqm->allocated_queues[pipe]);
  183. q->pipe = pipe;
  184. q->queue = bit;
  185. set = true;
  186. break;
  187. }
  188. }
  189. if (set == false)
  190. return -EBUSY;
  191. pr_debug("kfd: DQM %s hqd slot - pipe (%d) queue(%d)\n",
  192. __func__, q->pipe, q->queue);
  193. /* horizontal hqd allocation */
  194. dqm->next_pipe_to_allocate = (pipe + 1) % get_pipes_num(dqm);
  195. return 0;
  196. }
  197. static inline void deallocate_hqd(struct device_queue_manager *dqm,
  198. struct queue *q)
  199. {
  200. set_bit(q->queue, (unsigned long *)&dqm->allocated_queues[q->pipe]);
  201. }
  202. static int create_compute_queue_nocpsch(struct device_queue_manager *dqm,
  203. struct queue *q,
  204. struct qcm_process_device *qpd)
  205. {
  206. int retval;
  207. struct mqd_manager *mqd;
  208. BUG_ON(!dqm || !q || !qpd);
  209. mqd = dqm->get_mqd_manager(dqm, KFD_MQD_TYPE_CIK_COMPUTE);
  210. if (mqd == NULL)
  211. return -ENOMEM;
  212. retval = allocate_hqd(dqm, q);
  213. if (retval != 0)
  214. return retval;
  215. retval = mqd->init_mqd(mqd, &q->mqd, &q->mqd_mem_obj,
  216. &q->gart_mqd_addr, &q->properties);
  217. if (retval != 0) {
  218. deallocate_hqd(dqm, q);
  219. return retval;
  220. }
  221. return 0;
  222. }
  223. static int destroy_queue_nocpsch(struct device_queue_manager *dqm,
  224. struct qcm_process_device *qpd,
  225. struct queue *q)
  226. {
  227. int retval;
  228. struct mqd_manager *mqd;
  229. BUG_ON(!dqm || !q || !q->mqd || !qpd);
  230. retval = 0;
  231. pr_debug("kfd: In Func %s\n", __func__);
  232. mutex_lock(&dqm->lock);
  233. mqd = dqm->get_mqd_manager(dqm, KFD_MQD_TYPE_CIK_COMPUTE);
  234. if (mqd == NULL) {
  235. retval = -ENOMEM;
  236. goto out;
  237. }
  238. retval = mqd->destroy_mqd(mqd, q->mqd,
  239. KFD_PREEMPT_TYPE_WAVEFRONT,
  240. QUEUE_PREEMPT_DEFAULT_TIMEOUT_MS,
  241. q->pipe, q->queue);
  242. if (retval != 0)
  243. goto out;
  244. deallocate_hqd(dqm, q);
  245. mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj);
  246. list_del(&q->list);
  247. if (list_empty(&qpd->queues_list))
  248. deallocate_vmid(dqm, qpd, q);
  249. dqm->queue_count--;
  250. out:
  251. mutex_unlock(&dqm->lock);
  252. return retval;
  253. }
  254. static int update_queue(struct device_queue_manager *dqm, struct queue *q)
  255. {
  256. int retval;
  257. struct mqd_manager *mqd;
  258. BUG_ON(!dqm || !q || !q->mqd);
  259. mutex_lock(&dqm->lock);
  260. mqd = dqm->get_mqd_manager(dqm, KFD_MQD_TYPE_CIK_COMPUTE);
  261. if (mqd == NULL) {
  262. mutex_unlock(&dqm->lock);
  263. return -ENOMEM;
  264. }
  265. retval = mqd->update_mqd(mqd, q->mqd, &q->properties);
  266. if (q->properties.is_active == true)
  267. dqm->queue_count++;
  268. else
  269. dqm->queue_count--;
  270. if (sched_policy != KFD_SCHED_POLICY_NO_HWS)
  271. retval = execute_queues_cpsch(dqm, false);
  272. mutex_unlock(&dqm->lock);
  273. return retval;
  274. }
  275. static struct mqd_manager *get_mqd_manager_nocpsch(
  276. struct device_queue_manager *dqm, enum KFD_MQD_TYPE type)
  277. {
  278. struct mqd_manager *mqd;
  279. BUG_ON(!dqm || type >= KFD_MQD_TYPE_MAX);
  280. pr_debug("kfd: In func %s mqd type %d\n", __func__, type);
  281. mqd = dqm->mqds[type];
  282. if (!mqd) {
  283. mqd = mqd_manager_init(type, dqm->dev);
  284. if (mqd == NULL)
  285. pr_err("kfd: mqd manager is NULL");
  286. dqm->mqds[type] = mqd;
  287. }
  288. return mqd;
  289. }
  290. static int register_process_nocpsch(struct device_queue_manager *dqm,
  291. struct qcm_process_device *qpd)
  292. {
  293. struct device_process_node *n;
  294. BUG_ON(!dqm || !qpd);
  295. pr_debug("kfd: In func %s\n", __func__);
  296. n = kzalloc(sizeof(struct device_process_node), GFP_KERNEL);
  297. if (!n)
  298. return -ENOMEM;
  299. n->qpd = qpd;
  300. mutex_lock(&dqm->lock);
  301. list_add(&n->list, &dqm->queues);
  302. init_process_memory(dqm, qpd);
  303. dqm->processes_count++;
  304. mutex_unlock(&dqm->lock);
  305. return 0;
  306. }
  307. static int unregister_process_nocpsch(struct device_queue_manager *dqm,
  308. struct qcm_process_device *qpd)
  309. {
  310. int retval;
  311. struct device_process_node *cur, *next;
  312. BUG_ON(!dqm || !qpd);
  313. BUG_ON(!list_empty(&qpd->queues_list));
  314. pr_debug("kfd: In func %s\n", __func__);
  315. retval = 0;
  316. mutex_lock(&dqm->lock);
  317. list_for_each_entry_safe(cur, next, &dqm->queues, list) {
  318. if (qpd == cur->qpd) {
  319. list_del(&cur->list);
  320. kfree(cur);
  321. dqm->processes_count--;
  322. goto out;
  323. }
  324. }
  325. /* qpd not found in dqm list */
  326. retval = 1;
  327. out:
  328. mutex_unlock(&dqm->lock);
  329. return retval;
  330. }
  331. static int
  332. set_pasid_vmid_mapping(struct device_queue_manager *dqm, unsigned int pasid,
  333. unsigned int vmid)
  334. {
  335. uint32_t pasid_mapping;
  336. pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
  337. ATC_VMID_PASID_MAPPING_VALID;
  338. return kfd2kgd->set_pasid_vmid_mapping(dqm->dev->kgd, pasid_mapping,
  339. vmid);
  340. }
  341. static uint32_t compute_sh_mem_bases_64bit(unsigned int top_address_nybble)
  342. {
  343. /* In 64-bit mode, we can only control the top 3 bits of the LDS,
  344. * scratch and GPUVM apertures.
  345. * The hardware fills in the remaining 59 bits according to the
  346. * following pattern:
  347. * LDS: X0000000'00000000 - X0000001'00000000 (4GB)
  348. * Scratch: X0000001'00000000 - X0000002'00000000 (4GB)
  349. * GPUVM: Y0010000'00000000 - Y0020000'00000000 (1TB)
  350. *
  351. * (where X/Y is the configurable nybble with the low-bit 0)
  352. *
  353. * LDS and scratch will have the same top nybble programmed in the
  354. * top 3 bits of SH_MEM_BASES.PRIVATE_BASE.
  355. * GPUVM can have a different top nybble programmed in the
  356. * top 3 bits of SH_MEM_BASES.SHARED_BASE.
  357. * We don't bother to support different top nybbles
  358. * for LDS/Scratch and GPUVM.
  359. */
  360. BUG_ON((top_address_nybble & 1) || top_address_nybble > 0xE ||
  361. top_address_nybble == 0);
  362. return PRIVATE_BASE(top_address_nybble << 12) |
  363. SHARED_BASE(top_address_nybble << 12);
  364. }
  365. static int init_memory(struct device_queue_manager *dqm)
  366. {
  367. int i, retval;
  368. for (i = 8; i < 16; i++)
  369. set_pasid_vmid_mapping(dqm, 0, i);
  370. retval = kfd2kgd->init_memory(dqm->dev->kgd);
  371. if (retval == 0)
  372. is_mem_initialized = true;
  373. return retval;
  374. }
  375. static int init_pipelines(struct device_queue_manager *dqm,
  376. unsigned int pipes_num, unsigned int first_pipe)
  377. {
  378. void *hpdptr;
  379. struct mqd_manager *mqd;
  380. unsigned int i, err, inx;
  381. uint64_t pipe_hpd_addr;
  382. BUG_ON(!dqm || !dqm->dev);
  383. pr_debug("kfd: In func %s\n", __func__);
  384. /*
  385. * Allocate memory for the HPDs. This is hardware-owned per-pipe data.
  386. * The driver never accesses this memory after zeroing it.
  387. * It doesn't even have to be saved/restored on suspend/resume
  388. * because it contains no data when there are no active queues.
  389. */
  390. err = kfd2kgd->allocate_mem(dqm->dev->kgd,
  391. CIK_HPD_EOP_BYTES * pipes_num,
  392. PAGE_SIZE,
  393. KFD_MEMPOOL_SYSTEM_WRITECOMBINE,
  394. (struct kgd_mem **) &dqm->pipeline_mem);
  395. if (err) {
  396. pr_err("kfd: error allocate vidmem num pipes: %d\n",
  397. pipes_num);
  398. return -ENOMEM;
  399. }
  400. hpdptr = dqm->pipeline_mem->cpu_ptr;
  401. dqm->pipelines_addr = dqm->pipeline_mem->gpu_addr;
  402. memset(hpdptr, 0, CIK_HPD_EOP_BYTES * pipes_num);
  403. mqd = dqm->get_mqd_manager(dqm, KFD_MQD_TYPE_CIK_COMPUTE);
  404. if (mqd == NULL) {
  405. kfd2kgd->free_mem(dqm->dev->kgd,
  406. (struct kgd_mem *) dqm->pipeline_mem);
  407. return -ENOMEM;
  408. }
  409. for (i = 0; i < pipes_num; i++) {
  410. inx = i + first_pipe;
  411. pipe_hpd_addr = dqm->pipelines_addr + i * CIK_HPD_EOP_BYTES;
  412. pr_debug("kfd: pipeline address %llX\n", pipe_hpd_addr);
  413. /* = log2(bytes/4)-1 */
  414. kfd2kgd->init_pipeline(dqm->dev->kgd, i,
  415. CIK_HPD_EOP_BYTES_LOG2 - 3, pipe_hpd_addr);
  416. }
  417. return 0;
  418. }
  419. static int init_scheduler(struct device_queue_manager *dqm)
  420. {
  421. int retval;
  422. BUG_ON(!dqm);
  423. pr_debug("kfd: In %s\n", __func__);
  424. retval = init_pipelines(dqm, get_pipes_num(dqm), KFD_DQM_FIRST_PIPE);
  425. if (retval != 0)
  426. return retval;
  427. retval = init_memory(dqm);
  428. return retval;
  429. }
  430. static int initialize_nocpsch(struct device_queue_manager *dqm)
  431. {
  432. int i;
  433. BUG_ON(!dqm);
  434. pr_debug("kfd: In func %s num of pipes: %d\n",
  435. __func__, get_pipes_num(dqm));
  436. mutex_init(&dqm->lock);
  437. INIT_LIST_HEAD(&dqm->queues);
  438. dqm->queue_count = dqm->next_pipe_to_allocate = 0;
  439. dqm->allocated_queues = kcalloc(get_pipes_num(dqm),
  440. sizeof(unsigned int), GFP_KERNEL);
  441. if (!dqm->allocated_queues) {
  442. mutex_destroy(&dqm->lock);
  443. return -ENOMEM;
  444. }
  445. for (i = 0; i < get_pipes_num(dqm); i++)
  446. dqm->allocated_queues[i] = (1 << QUEUES_PER_PIPE) - 1;
  447. dqm->vmid_bitmap = (1 << VMID_PER_DEVICE) - 1;
  448. init_scheduler(dqm);
  449. return 0;
  450. }
  451. static void uninitialize_nocpsch(struct device_queue_manager *dqm)
  452. {
  453. int i;
  454. BUG_ON(!dqm);
  455. BUG_ON(dqm->queue_count > 0 || dqm->processes_count > 0);
  456. kfree(dqm->allocated_queues);
  457. for (i = 0 ; i < KFD_MQD_TYPE_MAX ; i++)
  458. kfree(dqm->mqds[i]);
  459. mutex_destroy(&dqm->lock);
  460. kfd2kgd->free_mem(dqm->dev->kgd,
  461. (struct kgd_mem *) dqm->pipeline_mem);
  462. }
  463. static int start_nocpsch(struct device_queue_manager *dqm)
  464. {
  465. return 0;
  466. }
  467. static int stop_nocpsch(struct device_queue_manager *dqm)
  468. {
  469. return 0;
  470. }
  471. /*
  472. * Device Queue Manager implementation for cp scheduler
  473. */
  474. static int set_sched_resources(struct device_queue_manager *dqm)
  475. {
  476. struct scheduling_resources res;
  477. unsigned int queue_num, queue_mask;
  478. BUG_ON(!dqm);
  479. pr_debug("kfd: In func %s\n", __func__);
  480. queue_num = get_pipes_num_cpsch() * QUEUES_PER_PIPE;
  481. queue_mask = (1 << queue_num) - 1;
  482. res.vmid_mask = (1 << VMID_PER_DEVICE) - 1;
  483. res.vmid_mask <<= KFD_VMID_START_OFFSET;
  484. res.queue_mask = queue_mask << (get_first_pipe(dqm) * QUEUES_PER_PIPE);
  485. res.gws_mask = res.oac_mask = res.gds_heap_base =
  486. res.gds_heap_size = 0;
  487. pr_debug("kfd: scheduling resources:\n"
  488. " vmid mask: 0x%8X\n"
  489. " queue mask: 0x%8llX\n",
  490. res.vmid_mask, res.queue_mask);
  491. return pm_send_set_resources(&dqm->packets, &res);
  492. }
  493. static int initialize_cpsch(struct device_queue_manager *dqm)
  494. {
  495. int retval;
  496. BUG_ON(!dqm);
  497. pr_debug("kfd: In func %s num of pipes: %d\n",
  498. __func__, get_pipes_num_cpsch());
  499. mutex_init(&dqm->lock);
  500. INIT_LIST_HEAD(&dqm->queues);
  501. dqm->queue_count = dqm->processes_count = 0;
  502. dqm->active_runlist = false;
  503. retval = init_pipelines(dqm, get_pipes_num(dqm), 0);
  504. if (retval != 0)
  505. goto fail_init_pipelines;
  506. return 0;
  507. fail_init_pipelines:
  508. mutex_destroy(&dqm->lock);
  509. return retval;
  510. }
  511. static int start_cpsch(struct device_queue_manager *dqm)
  512. {
  513. struct device_process_node *node;
  514. int retval;
  515. BUG_ON(!dqm);
  516. retval = 0;
  517. retval = pm_init(&dqm->packets, dqm);
  518. if (retval != 0)
  519. goto fail_packet_manager_init;
  520. retval = set_sched_resources(dqm);
  521. if (retval != 0)
  522. goto fail_set_sched_resources;
  523. pr_debug("kfd: allocating fence memory\n");
  524. /* allocate fence memory on the gart */
  525. retval = kfd2kgd->allocate_mem(dqm->dev->kgd,
  526. sizeof(*dqm->fence_addr),
  527. 32,
  528. KFD_MEMPOOL_SYSTEM_WRITECOMBINE,
  529. (struct kgd_mem **) &dqm->fence_mem);
  530. if (retval != 0)
  531. goto fail_allocate_vidmem;
  532. dqm->fence_addr = dqm->fence_mem->cpu_ptr;
  533. dqm->fence_gpu_addr = dqm->fence_mem->gpu_addr;
  534. list_for_each_entry(node, &dqm->queues, list)
  535. if (node->qpd->pqm->process && dqm->dev)
  536. kfd_bind_process_to_device(dqm->dev,
  537. node->qpd->pqm->process);
  538. execute_queues_cpsch(dqm, true);
  539. return 0;
  540. fail_allocate_vidmem:
  541. fail_set_sched_resources:
  542. pm_uninit(&dqm->packets);
  543. fail_packet_manager_init:
  544. return retval;
  545. }
  546. static int stop_cpsch(struct device_queue_manager *dqm)
  547. {
  548. struct device_process_node *node;
  549. struct kfd_process_device *pdd;
  550. BUG_ON(!dqm);
  551. destroy_queues_cpsch(dqm, true);
  552. list_for_each_entry(node, &dqm->queues, list) {
  553. pdd = qpd_to_pdd(node->qpd);
  554. pdd->bound = false;
  555. }
  556. kfd2kgd->free_mem(dqm->dev->kgd,
  557. (struct kgd_mem *) dqm->fence_mem);
  558. pm_uninit(&dqm->packets);
  559. return 0;
  560. }
  561. static int create_kernel_queue_cpsch(struct device_queue_manager *dqm,
  562. struct kernel_queue *kq,
  563. struct qcm_process_device *qpd)
  564. {
  565. BUG_ON(!dqm || !kq || !qpd);
  566. pr_debug("kfd: In func %s\n", __func__);
  567. mutex_lock(&dqm->lock);
  568. list_add(&kq->list, &qpd->priv_queue_list);
  569. dqm->queue_count++;
  570. qpd->is_debug = true;
  571. execute_queues_cpsch(dqm, false);
  572. mutex_unlock(&dqm->lock);
  573. return 0;
  574. }
  575. static void destroy_kernel_queue_cpsch(struct device_queue_manager *dqm,
  576. struct kernel_queue *kq,
  577. struct qcm_process_device *qpd)
  578. {
  579. BUG_ON(!dqm || !kq);
  580. pr_debug("kfd: In %s\n", __func__);
  581. mutex_lock(&dqm->lock);
  582. destroy_queues_cpsch(dqm, false);
  583. list_del(&kq->list);
  584. dqm->queue_count--;
  585. qpd->is_debug = false;
  586. execute_queues_cpsch(dqm, false);
  587. mutex_unlock(&dqm->lock);
  588. }
  589. static int create_queue_cpsch(struct device_queue_manager *dqm, struct queue *q,
  590. struct qcm_process_device *qpd, int *allocate_vmid)
  591. {
  592. int retval;
  593. struct mqd_manager *mqd;
  594. BUG_ON(!dqm || !q || !qpd);
  595. retval = 0;
  596. if (allocate_vmid)
  597. *allocate_vmid = 0;
  598. mutex_lock(&dqm->lock);
  599. mqd = dqm->get_mqd_manager(dqm, KFD_MQD_TYPE_CIK_CP);
  600. if (mqd == NULL) {
  601. mutex_unlock(&dqm->lock);
  602. return -ENOMEM;
  603. }
  604. retval = mqd->init_mqd(mqd, &q->mqd, &q->mqd_mem_obj,
  605. &q->gart_mqd_addr, &q->properties);
  606. if (retval != 0)
  607. goto out;
  608. list_add(&q->list, &qpd->queues_list);
  609. if (q->properties.is_active) {
  610. dqm->queue_count++;
  611. retval = execute_queues_cpsch(dqm, false);
  612. }
  613. out:
  614. mutex_unlock(&dqm->lock);
  615. return retval;
  616. }
  617. static int fence_wait_timeout(unsigned int *fence_addr,
  618. unsigned int fence_value,
  619. unsigned long timeout)
  620. {
  621. BUG_ON(!fence_addr);
  622. timeout += jiffies;
  623. while (*fence_addr != fence_value) {
  624. if (time_after(jiffies, timeout)) {
  625. pr_err("kfd: qcm fence wait loop timeout expired\n");
  626. return -ETIME;
  627. }
  628. cpu_relax();
  629. }
  630. return 0;
  631. }
  632. static int destroy_queues_cpsch(struct device_queue_manager *dqm, bool lock)
  633. {
  634. int retval;
  635. BUG_ON(!dqm);
  636. retval = 0;
  637. if (lock)
  638. mutex_lock(&dqm->lock);
  639. if (dqm->active_runlist == false)
  640. goto out;
  641. retval = pm_send_unmap_queue(&dqm->packets, KFD_QUEUE_TYPE_COMPUTE,
  642. KFD_PREEMPT_TYPE_FILTER_ALL_QUEUES, 0, false, 0);
  643. if (retval != 0)
  644. goto out;
  645. *dqm->fence_addr = KFD_FENCE_INIT;
  646. pm_send_query_status(&dqm->packets, dqm->fence_gpu_addr,
  647. KFD_FENCE_COMPLETED);
  648. /* should be timed out */
  649. fence_wait_timeout(dqm->fence_addr, KFD_FENCE_COMPLETED,
  650. QUEUE_PREEMPT_DEFAULT_TIMEOUT_MS);
  651. pm_release_ib(&dqm->packets);
  652. dqm->active_runlist = false;
  653. out:
  654. if (lock)
  655. mutex_unlock(&dqm->lock);
  656. return retval;
  657. }
  658. static int execute_queues_cpsch(struct device_queue_manager *dqm, bool lock)
  659. {
  660. int retval;
  661. BUG_ON(!dqm);
  662. if (lock)
  663. mutex_lock(&dqm->lock);
  664. retval = destroy_queues_cpsch(dqm, false);
  665. if (retval != 0) {
  666. pr_err("kfd: the cp might be in an unrecoverable state due to an unsuccessful queues preemption");
  667. goto out;
  668. }
  669. if (dqm->queue_count <= 0 || dqm->processes_count <= 0) {
  670. retval = 0;
  671. goto out;
  672. }
  673. if (dqm->active_runlist) {
  674. retval = 0;
  675. goto out;
  676. }
  677. retval = pm_send_runlist(&dqm->packets, &dqm->queues);
  678. if (retval != 0) {
  679. pr_err("kfd: failed to execute runlist");
  680. goto out;
  681. }
  682. dqm->active_runlist = true;
  683. out:
  684. if (lock)
  685. mutex_unlock(&dqm->lock);
  686. return retval;
  687. }
  688. static int destroy_queue_cpsch(struct device_queue_manager *dqm,
  689. struct qcm_process_device *qpd,
  690. struct queue *q)
  691. {
  692. int retval;
  693. struct mqd_manager *mqd;
  694. BUG_ON(!dqm || !qpd || !q);
  695. retval = 0;
  696. /* remove queue from list to prevent rescheduling after preemption */
  697. mutex_lock(&dqm->lock);
  698. mqd = dqm->get_mqd_manager(dqm, KFD_MQD_TYPE_CIK_CP);
  699. if (!mqd) {
  700. retval = -ENOMEM;
  701. goto failed;
  702. }
  703. list_del(&q->list);
  704. dqm->queue_count--;
  705. execute_queues_cpsch(dqm, false);
  706. mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj);
  707. mutex_unlock(&dqm->lock);
  708. return 0;
  709. failed:
  710. mutex_unlock(&dqm->lock);
  711. return retval;
  712. }
  713. /*
  714. * Low bits must be 0000/FFFF as required by HW, high bits must be 0 to
  715. * stay in user mode.
  716. */
  717. #define APE1_FIXED_BITS_MASK 0xFFFF80000000FFFFULL
  718. /* APE1 limit is inclusive and 64K aligned. */
  719. #define APE1_LIMIT_ALIGNMENT 0xFFFF
  720. static bool set_cache_memory_policy(struct device_queue_manager *dqm,
  721. struct qcm_process_device *qpd,
  722. enum cache_policy default_policy,
  723. enum cache_policy alternate_policy,
  724. void __user *alternate_aperture_base,
  725. uint64_t alternate_aperture_size)
  726. {
  727. uint32_t default_mtype;
  728. uint32_t ape1_mtype;
  729. pr_debug("kfd: In func %s\n", __func__);
  730. mutex_lock(&dqm->lock);
  731. if (alternate_aperture_size == 0) {
  732. /* base > limit disables APE1 */
  733. qpd->sh_mem_ape1_base = 1;
  734. qpd->sh_mem_ape1_limit = 0;
  735. } else {
  736. /*
  737. * In FSA64, APE1_Base[63:0] = { 16{SH_MEM_APE1_BASE[31]},
  738. * SH_MEM_APE1_BASE[31:0], 0x0000 }
  739. * APE1_Limit[63:0] = { 16{SH_MEM_APE1_LIMIT[31]},
  740. * SH_MEM_APE1_LIMIT[31:0], 0xFFFF }
  741. * Verify that the base and size parameters can be
  742. * represented in this format and convert them.
  743. * Additionally restrict APE1 to user-mode addresses.
  744. */
  745. uint64_t base = (uintptr_t)alternate_aperture_base;
  746. uint64_t limit = base + alternate_aperture_size - 1;
  747. if (limit <= base)
  748. goto out;
  749. if ((base & APE1_FIXED_BITS_MASK) != 0)
  750. goto out;
  751. if ((limit & APE1_FIXED_BITS_MASK) != APE1_LIMIT_ALIGNMENT)
  752. goto out;
  753. qpd->sh_mem_ape1_base = base >> 16;
  754. qpd->sh_mem_ape1_limit = limit >> 16;
  755. }
  756. default_mtype = (default_policy == cache_policy_coherent) ?
  757. MTYPE_NONCACHED :
  758. MTYPE_CACHED;
  759. ape1_mtype = (alternate_policy == cache_policy_coherent) ?
  760. MTYPE_NONCACHED :
  761. MTYPE_CACHED;
  762. qpd->sh_mem_config = (qpd->sh_mem_config & PTR32)
  763. | ALIGNMENT_MODE(SH_MEM_ALIGNMENT_MODE_UNALIGNED)
  764. | DEFAULT_MTYPE(default_mtype)
  765. | APE1_MTYPE(ape1_mtype);
  766. if ((sched_policy == KFD_SCHED_POLICY_NO_HWS) && (qpd->vmid != 0))
  767. program_sh_mem_settings(dqm, qpd);
  768. pr_debug("kfd: sh_mem_config: 0x%x, ape1_base: 0x%x, ape1_limit: 0x%x\n",
  769. qpd->sh_mem_config, qpd->sh_mem_ape1_base,
  770. qpd->sh_mem_ape1_limit);
  771. mutex_unlock(&dqm->lock);
  772. return true;
  773. out:
  774. mutex_unlock(&dqm->lock);
  775. return false;
  776. }
  777. struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev)
  778. {
  779. struct device_queue_manager *dqm;
  780. BUG_ON(!dev);
  781. dqm = kzalloc(sizeof(struct device_queue_manager), GFP_KERNEL);
  782. if (!dqm)
  783. return NULL;
  784. dqm->dev = dev;
  785. switch (sched_policy) {
  786. case KFD_SCHED_POLICY_HWS:
  787. case KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION:
  788. /* initialize dqm for cp scheduling */
  789. dqm->create_queue = create_queue_cpsch;
  790. dqm->initialize = initialize_cpsch;
  791. dqm->start = start_cpsch;
  792. dqm->stop = stop_cpsch;
  793. dqm->destroy_queue = destroy_queue_cpsch;
  794. dqm->update_queue = update_queue;
  795. dqm->get_mqd_manager = get_mqd_manager_nocpsch;
  796. dqm->register_process = register_process_nocpsch;
  797. dqm->unregister_process = unregister_process_nocpsch;
  798. dqm->uninitialize = uninitialize_nocpsch;
  799. dqm->create_kernel_queue = create_kernel_queue_cpsch;
  800. dqm->destroy_kernel_queue = destroy_kernel_queue_cpsch;
  801. dqm->set_cache_memory_policy = set_cache_memory_policy;
  802. break;
  803. case KFD_SCHED_POLICY_NO_HWS:
  804. /* initialize dqm for no cp scheduling */
  805. dqm->start = start_nocpsch;
  806. dqm->stop = stop_nocpsch;
  807. dqm->create_queue = create_queue_nocpsch;
  808. dqm->destroy_queue = destroy_queue_nocpsch;
  809. dqm->update_queue = update_queue;
  810. dqm->get_mqd_manager = get_mqd_manager_nocpsch;
  811. dqm->register_process = register_process_nocpsch;
  812. dqm->unregister_process = unregister_process_nocpsch;
  813. dqm->initialize = initialize_nocpsch;
  814. dqm->uninitialize = uninitialize_nocpsch;
  815. dqm->set_cache_memory_policy = set_cache_memory_policy;
  816. break;
  817. default:
  818. BUG();
  819. break;
  820. }
  821. if (dqm->initialize(dqm) != 0) {
  822. kfree(dqm);
  823. return NULL;
  824. }
  825. return dqm;
  826. }
  827. void device_queue_manager_uninit(struct device_queue_manager *dqm)
  828. {
  829. BUG_ON(!dqm);
  830. dqm->uninitialize(dqm);
  831. kfree(dqm);
  832. }