init_64.c 33 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390
  1. /*
  2. * linux/arch/x86_64/mm/init.c
  3. *
  4. * Copyright (C) 1995 Linus Torvalds
  5. * Copyright (C) 2000 Pavel Machek <pavel@ucw.cz>
  6. * Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
  7. */
  8. #include <linux/signal.h>
  9. #include <linux/sched.h>
  10. #include <linux/kernel.h>
  11. #include <linux/errno.h>
  12. #include <linux/string.h>
  13. #include <linux/types.h>
  14. #include <linux/ptrace.h>
  15. #include <linux/mman.h>
  16. #include <linux/mm.h>
  17. #include <linux/swap.h>
  18. #include <linux/smp.h>
  19. #include <linux/init.h>
  20. #include <linux/initrd.h>
  21. #include <linux/pagemap.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/memblock.h>
  24. #include <linux/proc_fs.h>
  25. #include <linux/pci.h>
  26. #include <linux/pfn.h>
  27. #include <linux/poison.h>
  28. #include <linux/dma-mapping.h>
  29. #include <linux/module.h>
  30. #include <linux/memory.h>
  31. #include <linux/memory_hotplug.h>
  32. #include <linux/nmi.h>
  33. #include <linux/gfp.h>
  34. #include <linux/kcore.h>
  35. #include <asm/processor.h>
  36. #include <asm/bios_ebda.h>
  37. #include <asm/uaccess.h>
  38. #include <asm/pgtable.h>
  39. #include <asm/pgalloc.h>
  40. #include <asm/dma.h>
  41. #include <asm/fixmap.h>
  42. #include <asm/e820.h>
  43. #include <asm/apic.h>
  44. #include <asm/tlb.h>
  45. #include <asm/mmu_context.h>
  46. #include <asm/proto.h>
  47. #include <asm/smp.h>
  48. #include <asm/sections.h>
  49. #include <asm/kdebug.h>
  50. #include <asm/numa.h>
  51. #include <asm/cacheflush.h>
  52. #include <asm/init.h>
  53. #include <asm/setup.h>
  54. #include "mm_internal.h"
  55. static void ident_pmd_init(unsigned long pmd_flag, pmd_t *pmd_page,
  56. unsigned long addr, unsigned long end)
  57. {
  58. addr &= PMD_MASK;
  59. for (; addr < end; addr += PMD_SIZE) {
  60. pmd_t *pmd = pmd_page + pmd_index(addr);
  61. if (!pmd_present(*pmd))
  62. set_pmd(pmd, __pmd(addr | pmd_flag));
  63. }
  64. }
  65. static int ident_pud_init(struct x86_mapping_info *info, pud_t *pud_page,
  66. unsigned long addr, unsigned long end)
  67. {
  68. unsigned long next;
  69. for (; addr < end; addr = next) {
  70. pud_t *pud = pud_page + pud_index(addr);
  71. pmd_t *pmd;
  72. next = (addr & PUD_MASK) + PUD_SIZE;
  73. if (next > end)
  74. next = end;
  75. if (pud_present(*pud)) {
  76. pmd = pmd_offset(pud, 0);
  77. ident_pmd_init(info->pmd_flag, pmd, addr, next);
  78. continue;
  79. }
  80. pmd = (pmd_t *)info->alloc_pgt_page(info->context);
  81. if (!pmd)
  82. return -ENOMEM;
  83. ident_pmd_init(info->pmd_flag, pmd, addr, next);
  84. set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
  85. }
  86. return 0;
  87. }
  88. int kernel_ident_mapping_init(struct x86_mapping_info *info, pgd_t *pgd_page,
  89. unsigned long addr, unsigned long end)
  90. {
  91. unsigned long next;
  92. int result;
  93. int off = info->kernel_mapping ? pgd_index(__PAGE_OFFSET) : 0;
  94. for (; addr < end; addr = next) {
  95. pgd_t *pgd = pgd_page + pgd_index(addr) + off;
  96. pud_t *pud;
  97. next = (addr & PGDIR_MASK) + PGDIR_SIZE;
  98. if (next > end)
  99. next = end;
  100. if (pgd_present(*pgd)) {
  101. pud = pud_offset(pgd, 0);
  102. result = ident_pud_init(info, pud, addr, next);
  103. if (result)
  104. return result;
  105. continue;
  106. }
  107. pud = (pud_t *)info->alloc_pgt_page(info->context);
  108. if (!pud)
  109. return -ENOMEM;
  110. result = ident_pud_init(info, pud, addr, next);
  111. if (result)
  112. return result;
  113. set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE));
  114. }
  115. return 0;
  116. }
  117. static int __init parse_direct_gbpages_off(char *arg)
  118. {
  119. direct_gbpages = 0;
  120. return 0;
  121. }
  122. early_param("nogbpages", parse_direct_gbpages_off);
  123. static int __init parse_direct_gbpages_on(char *arg)
  124. {
  125. direct_gbpages = 1;
  126. return 0;
  127. }
  128. early_param("gbpages", parse_direct_gbpages_on);
  129. /*
  130. * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
  131. * physical space so we can cache the place of the first one and move
  132. * around without checking the pgd every time.
  133. */
  134. pteval_t __supported_pte_mask __read_mostly = ~0;
  135. EXPORT_SYMBOL_GPL(__supported_pte_mask);
  136. int force_personality32;
  137. /*
  138. * noexec32=on|off
  139. * Control non executable heap for 32bit processes.
  140. * To control the stack too use noexec=off
  141. *
  142. * on PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
  143. * off PROT_READ implies PROT_EXEC
  144. */
  145. static int __init nonx32_setup(char *str)
  146. {
  147. if (!strcmp(str, "on"))
  148. force_personality32 &= ~READ_IMPLIES_EXEC;
  149. else if (!strcmp(str, "off"))
  150. force_personality32 |= READ_IMPLIES_EXEC;
  151. return 1;
  152. }
  153. __setup("noexec32=", nonx32_setup);
  154. /*
  155. * When memory was added/removed make sure all the processes MM have
  156. * suitable PGD entries in the local PGD level page.
  157. */
  158. void sync_global_pgds(unsigned long start, unsigned long end, int removed)
  159. {
  160. unsigned long address;
  161. for (address = start; address <= end; address += PGDIR_SIZE) {
  162. const pgd_t *pgd_ref = pgd_offset_k(address);
  163. struct page *page;
  164. /*
  165. * When it is called after memory hot remove, pgd_none()
  166. * returns true. In this case (removed == 1), we must clear
  167. * the PGD entries in the local PGD level page.
  168. */
  169. if (pgd_none(*pgd_ref) && !removed)
  170. continue;
  171. spin_lock(&pgd_lock);
  172. list_for_each_entry(page, &pgd_list, lru) {
  173. pgd_t *pgd;
  174. spinlock_t *pgt_lock;
  175. pgd = (pgd_t *)page_address(page) + pgd_index(address);
  176. /* the pgt_lock only for Xen */
  177. pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
  178. spin_lock(pgt_lock);
  179. if (!pgd_none(*pgd_ref) && !pgd_none(*pgd))
  180. BUG_ON(pgd_page_vaddr(*pgd)
  181. != pgd_page_vaddr(*pgd_ref));
  182. if (removed) {
  183. if (pgd_none(*pgd_ref) && !pgd_none(*pgd))
  184. pgd_clear(pgd);
  185. } else {
  186. if (pgd_none(*pgd))
  187. set_pgd(pgd, *pgd_ref);
  188. }
  189. spin_unlock(pgt_lock);
  190. }
  191. spin_unlock(&pgd_lock);
  192. }
  193. }
  194. /*
  195. * NOTE: This function is marked __ref because it calls __init function
  196. * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
  197. */
  198. static __ref void *spp_getpage(void)
  199. {
  200. void *ptr;
  201. if (after_bootmem)
  202. ptr = (void *) get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
  203. else
  204. ptr = alloc_bootmem_pages(PAGE_SIZE);
  205. if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
  206. panic("set_pte_phys: cannot allocate page data %s\n",
  207. after_bootmem ? "after bootmem" : "");
  208. }
  209. pr_debug("spp_getpage %p\n", ptr);
  210. return ptr;
  211. }
  212. static pud_t *fill_pud(pgd_t *pgd, unsigned long vaddr)
  213. {
  214. if (pgd_none(*pgd)) {
  215. pud_t *pud = (pud_t *)spp_getpage();
  216. pgd_populate(&init_mm, pgd, pud);
  217. if (pud != pud_offset(pgd, 0))
  218. printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
  219. pud, pud_offset(pgd, 0));
  220. }
  221. return pud_offset(pgd, vaddr);
  222. }
  223. static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
  224. {
  225. if (pud_none(*pud)) {
  226. pmd_t *pmd = (pmd_t *) spp_getpage();
  227. pud_populate(&init_mm, pud, pmd);
  228. if (pmd != pmd_offset(pud, 0))
  229. printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
  230. pmd, pmd_offset(pud, 0));
  231. }
  232. return pmd_offset(pud, vaddr);
  233. }
  234. static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
  235. {
  236. if (pmd_none(*pmd)) {
  237. pte_t *pte = (pte_t *) spp_getpage();
  238. pmd_populate_kernel(&init_mm, pmd, pte);
  239. if (pte != pte_offset_kernel(pmd, 0))
  240. printk(KERN_ERR "PAGETABLE BUG #02!\n");
  241. }
  242. return pte_offset_kernel(pmd, vaddr);
  243. }
  244. void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
  245. {
  246. pud_t *pud;
  247. pmd_t *pmd;
  248. pte_t *pte;
  249. pud = pud_page + pud_index(vaddr);
  250. pmd = fill_pmd(pud, vaddr);
  251. pte = fill_pte(pmd, vaddr);
  252. set_pte(pte, new_pte);
  253. /*
  254. * It's enough to flush this one mapping.
  255. * (PGE mappings get flushed as well)
  256. */
  257. __flush_tlb_one(vaddr);
  258. }
  259. void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
  260. {
  261. pgd_t *pgd;
  262. pud_t *pud_page;
  263. pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
  264. pgd = pgd_offset_k(vaddr);
  265. if (pgd_none(*pgd)) {
  266. printk(KERN_ERR
  267. "PGD FIXMAP MISSING, it should be setup in head.S!\n");
  268. return;
  269. }
  270. pud_page = (pud_t*)pgd_page_vaddr(*pgd);
  271. set_pte_vaddr_pud(pud_page, vaddr, pteval);
  272. }
  273. pmd_t * __init populate_extra_pmd(unsigned long vaddr)
  274. {
  275. pgd_t *pgd;
  276. pud_t *pud;
  277. pgd = pgd_offset_k(vaddr);
  278. pud = fill_pud(pgd, vaddr);
  279. return fill_pmd(pud, vaddr);
  280. }
  281. pte_t * __init populate_extra_pte(unsigned long vaddr)
  282. {
  283. pmd_t *pmd;
  284. pmd = populate_extra_pmd(vaddr);
  285. return fill_pte(pmd, vaddr);
  286. }
  287. /*
  288. * Create large page table mappings for a range of physical addresses.
  289. */
  290. static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
  291. enum page_cache_mode cache)
  292. {
  293. pgd_t *pgd;
  294. pud_t *pud;
  295. pmd_t *pmd;
  296. pgprot_t prot;
  297. pgprot_val(prot) = pgprot_val(PAGE_KERNEL_LARGE) |
  298. pgprot_val(pgprot_4k_2_large(cachemode2pgprot(cache)));
  299. BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
  300. for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
  301. pgd = pgd_offset_k((unsigned long)__va(phys));
  302. if (pgd_none(*pgd)) {
  303. pud = (pud_t *) spp_getpage();
  304. set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE |
  305. _PAGE_USER));
  306. }
  307. pud = pud_offset(pgd, (unsigned long)__va(phys));
  308. if (pud_none(*pud)) {
  309. pmd = (pmd_t *) spp_getpage();
  310. set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
  311. _PAGE_USER));
  312. }
  313. pmd = pmd_offset(pud, phys);
  314. BUG_ON(!pmd_none(*pmd));
  315. set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
  316. }
  317. }
  318. void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
  319. {
  320. __init_extra_mapping(phys, size, _PAGE_CACHE_MODE_WB);
  321. }
  322. void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
  323. {
  324. __init_extra_mapping(phys, size, _PAGE_CACHE_MODE_UC);
  325. }
  326. /*
  327. * The head.S code sets up the kernel high mapping:
  328. *
  329. * from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
  330. *
  331. * phys_base holds the negative offset to the kernel, which is added
  332. * to the compile time generated pmds. This results in invalid pmds up
  333. * to the point where we hit the physaddr 0 mapping.
  334. *
  335. * We limit the mappings to the region from _text to _brk_end. _brk_end
  336. * is rounded up to the 2MB boundary. This catches the invalid pmds as
  337. * well, as they are located before _text:
  338. */
  339. void __init cleanup_highmap(void)
  340. {
  341. unsigned long vaddr = __START_KERNEL_map;
  342. unsigned long vaddr_end = __START_KERNEL_map + KERNEL_IMAGE_SIZE;
  343. unsigned long end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
  344. pmd_t *pmd = level2_kernel_pgt;
  345. /*
  346. * Native path, max_pfn_mapped is not set yet.
  347. * Xen has valid max_pfn_mapped set in
  348. * arch/x86/xen/mmu.c:xen_setup_kernel_pagetable().
  349. */
  350. if (max_pfn_mapped)
  351. vaddr_end = __START_KERNEL_map + (max_pfn_mapped << PAGE_SHIFT);
  352. for (; vaddr + PMD_SIZE - 1 < vaddr_end; pmd++, vaddr += PMD_SIZE) {
  353. if (pmd_none(*pmd))
  354. continue;
  355. if (vaddr < (unsigned long) _text || vaddr > end)
  356. set_pmd(pmd, __pmd(0));
  357. }
  358. }
  359. static unsigned long __meminit
  360. phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end,
  361. pgprot_t prot)
  362. {
  363. unsigned long pages = 0, next;
  364. unsigned long last_map_addr = end;
  365. int i;
  366. pte_t *pte = pte_page + pte_index(addr);
  367. for (i = pte_index(addr); i < PTRS_PER_PTE; i++, addr = next, pte++) {
  368. next = (addr & PAGE_MASK) + PAGE_SIZE;
  369. if (addr >= end) {
  370. if (!after_bootmem &&
  371. !e820_any_mapped(addr & PAGE_MASK, next, E820_RAM) &&
  372. !e820_any_mapped(addr & PAGE_MASK, next, E820_RESERVED_KERN))
  373. set_pte(pte, __pte(0));
  374. continue;
  375. }
  376. /*
  377. * We will re-use the existing mapping.
  378. * Xen for example has some special requirements, like mapping
  379. * pagetable pages as RO. So assume someone who pre-setup
  380. * these mappings are more intelligent.
  381. */
  382. if (pte_val(*pte)) {
  383. if (!after_bootmem)
  384. pages++;
  385. continue;
  386. }
  387. if (0)
  388. printk(" pte=%p addr=%lx pte=%016lx\n",
  389. pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte);
  390. pages++;
  391. set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, prot));
  392. last_map_addr = (addr & PAGE_MASK) + PAGE_SIZE;
  393. }
  394. update_page_count(PG_LEVEL_4K, pages);
  395. return last_map_addr;
  396. }
  397. static unsigned long __meminit
  398. phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end,
  399. unsigned long page_size_mask, pgprot_t prot)
  400. {
  401. unsigned long pages = 0, next;
  402. unsigned long last_map_addr = end;
  403. int i = pmd_index(address);
  404. for (; i < PTRS_PER_PMD; i++, address = next) {
  405. pmd_t *pmd = pmd_page + pmd_index(address);
  406. pte_t *pte;
  407. pgprot_t new_prot = prot;
  408. next = (address & PMD_MASK) + PMD_SIZE;
  409. if (address >= end) {
  410. if (!after_bootmem &&
  411. !e820_any_mapped(address & PMD_MASK, next, E820_RAM) &&
  412. !e820_any_mapped(address & PMD_MASK, next, E820_RESERVED_KERN))
  413. set_pmd(pmd, __pmd(0));
  414. continue;
  415. }
  416. if (pmd_val(*pmd)) {
  417. if (!pmd_large(*pmd)) {
  418. spin_lock(&init_mm.page_table_lock);
  419. pte = (pte_t *)pmd_page_vaddr(*pmd);
  420. last_map_addr = phys_pte_init(pte, address,
  421. end, prot);
  422. spin_unlock(&init_mm.page_table_lock);
  423. continue;
  424. }
  425. /*
  426. * If we are ok with PG_LEVEL_2M mapping, then we will
  427. * use the existing mapping,
  428. *
  429. * Otherwise, we will split the large page mapping but
  430. * use the same existing protection bits except for
  431. * large page, so that we don't violate Intel's TLB
  432. * Application note (317080) which says, while changing
  433. * the page sizes, new and old translations should
  434. * not differ with respect to page frame and
  435. * attributes.
  436. */
  437. if (page_size_mask & (1 << PG_LEVEL_2M)) {
  438. if (!after_bootmem)
  439. pages++;
  440. last_map_addr = next;
  441. continue;
  442. }
  443. new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
  444. }
  445. if (page_size_mask & (1<<PG_LEVEL_2M)) {
  446. pages++;
  447. spin_lock(&init_mm.page_table_lock);
  448. set_pte((pte_t *)pmd,
  449. pfn_pte((address & PMD_MASK) >> PAGE_SHIFT,
  450. __pgprot(pgprot_val(prot) | _PAGE_PSE)));
  451. spin_unlock(&init_mm.page_table_lock);
  452. last_map_addr = next;
  453. continue;
  454. }
  455. pte = alloc_low_page();
  456. last_map_addr = phys_pte_init(pte, address, end, new_prot);
  457. spin_lock(&init_mm.page_table_lock);
  458. pmd_populate_kernel(&init_mm, pmd, pte);
  459. spin_unlock(&init_mm.page_table_lock);
  460. }
  461. update_page_count(PG_LEVEL_2M, pages);
  462. return last_map_addr;
  463. }
  464. static unsigned long __meminit
  465. phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end,
  466. unsigned long page_size_mask)
  467. {
  468. unsigned long pages = 0, next;
  469. unsigned long last_map_addr = end;
  470. int i = pud_index(addr);
  471. for (; i < PTRS_PER_PUD; i++, addr = next) {
  472. pud_t *pud = pud_page + pud_index(addr);
  473. pmd_t *pmd;
  474. pgprot_t prot = PAGE_KERNEL;
  475. next = (addr & PUD_MASK) + PUD_SIZE;
  476. if (addr >= end) {
  477. if (!after_bootmem &&
  478. !e820_any_mapped(addr & PUD_MASK, next, E820_RAM) &&
  479. !e820_any_mapped(addr & PUD_MASK, next, E820_RESERVED_KERN))
  480. set_pud(pud, __pud(0));
  481. continue;
  482. }
  483. if (pud_val(*pud)) {
  484. if (!pud_large(*pud)) {
  485. pmd = pmd_offset(pud, 0);
  486. last_map_addr = phys_pmd_init(pmd, addr, end,
  487. page_size_mask, prot);
  488. __flush_tlb_all();
  489. continue;
  490. }
  491. /*
  492. * If we are ok with PG_LEVEL_1G mapping, then we will
  493. * use the existing mapping.
  494. *
  495. * Otherwise, we will split the gbpage mapping but use
  496. * the same existing protection bits except for large
  497. * page, so that we don't violate Intel's TLB
  498. * Application note (317080) which says, while changing
  499. * the page sizes, new and old translations should
  500. * not differ with respect to page frame and
  501. * attributes.
  502. */
  503. if (page_size_mask & (1 << PG_LEVEL_1G)) {
  504. if (!after_bootmem)
  505. pages++;
  506. last_map_addr = next;
  507. continue;
  508. }
  509. prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
  510. }
  511. if (page_size_mask & (1<<PG_LEVEL_1G)) {
  512. pages++;
  513. spin_lock(&init_mm.page_table_lock);
  514. set_pte((pte_t *)pud,
  515. pfn_pte((addr & PUD_MASK) >> PAGE_SHIFT,
  516. PAGE_KERNEL_LARGE));
  517. spin_unlock(&init_mm.page_table_lock);
  518. last_map_addr = next;
  519. continue;
  520. }
  521. pmd = alloc_low_page();
  522. last_map_addr = phys_pmd_init(pmd, addr, end, page_size_mask,
  523. prot);
  524. spin_lock(&init_mm.page_table_lock);
  525. pud_populate(&init_mm, pud, pmd);
  526. spin_unlock(&init_mm.page_table_lock);
  527. }
  528. __flush_tlb_all();
  529. update_page_count(PG_LEVEL_1G, pages);
  530. return last_map_addr;
  531. }
  532. unsigned long __meminit
  533. kernel_physical_mapping_init(unsigned long start,
  534. unsigned long end,
  535. unsigned long page_size_mask)
  536. {
  537. bool pgd_changed = false;
  538. unsigned long next, last_map_addr = end;
  539. unsigned long addr;
  540. start = (unsigned long)__va(start);
  541. end = (unsigned long)__va(end);
  542. addr = start;
  543. for (; start < end; start = next) {
  544. pgd_t *pgd = pgd_offset_k(start);
  545. pud_t *pud;
  546. next = (start & PGDIR_MASK) + PGDIR_SIZE;
  547. if (pgd_val(*pgd)) {
  548. pud = (pud_t *)pgd_page_vaddr(*pgd);
  549. last_map_addr = phys_pud_init(pud, __pa(start),
  550. __pa(end), page_size_mask);
  551. continue;
  552. }
  553. pud = alloc_low_page();
  554. last_map_addr = phys_pud_init(pud, __pa(start), __pa(end),
  555. page_size_mask);
  556. spin_lock(&init_mm.page_table_lock);
  557. pgd_populate(&init_mm, pgd, pud);
  558. spin_unlock(&init_mm.page_table_lock);
  559. pgd_changed = true;
  560. }
  561. if (pgd_changed)
  562. sync_global_pgds(addr, end - 1, 0);
  563. __flush_tlb_all();
  564. return last_map_addr;
  565. }
  566. #ifndef CONFIG_NUMA
  567. void __init initmem_init(void)
  568. {
  569. memblock_set_node(0, (phys_addr_t)ULLONG_MAX, &memblock.memory, 0);
  570. }
  571. #endif
  572. void __init paging_init(void)
  573. {
  574. sparse_memory_present_with_active_regions(MAX_NUMNODES);
  575. sparse_init();
  576. /*
  577. * clear the default setting with node 0
  578. * note: don't use nodes_clear here, that is really clearing when
  579. * numa support is not compiled in, and later node_set_state
  580. * will not set it back.
  581. */
  582. node_clear_state(0, N_MEMORY);
  583. if (N_MEMORY != N_NORMAL_MEMORY)
  584. node_clear_state(0, N_NORMAL_MEMORY);
  585. zone_sizes_init();
  586. }
  587. /*
  588. * Memory hotplug specific functions
  589. */
  590. #ifdef CONFIG_MEMORY_HOTPLUG
  591. /*
  592. * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need
  593. * updating.
  594. */
  595. static void update_end_of_memory_vars(u64 start, u64 size)
  596. {
  597. unsigned long end_pfn = PFN_UP(start + size);
  598. if (end_pfn > max_pfn) {
  599. max_pfn = end_pfn;
  600. max_low_pfn = end_pfn;
  601. high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
  602. }
  603. }
  604. /*
  605. * Memory is added always to NORMAL zone. This means you will never get
  606. * additional DMA/DMA32 memory.
  607. */
  608. int arch_add_memory(int nid, u64 start, u64 size)
  609. {
  610. struct pglist_data *pgdat = NODE_DATA(nid);
  611. struct zone *zone = pgdat->node_zones +
  612. zone_for_memory(nid, start, size, ZONE_NORMAL);
  613. unsigned long start_pfn = start >> PAGE_SHIFT;
  614. unsigned long nr_pages = size >> PAGE_SHIFT;
  615. int ret;
  616. init_memory_mapping(start, start + size);
  617. ret = __add_pages(nid, zone, start_pfn, nr_pages);
  618. WARN_ON_ONCE(ret);
  619. /* update max_pfn, max_low_pfn and high_memory */
  620. update_end_of_memory_vars(start, size);
  621. return ret;
  622. }
  623. EXPORT_SYMBOL_GPL(arch_add_memory);
  624. #define PAGE_INUSE 0xFD
  625. static void __meminit free_pagetable(struct page *page, int order)
  626. {
  627. unsigned long magic;
  628. unsigned int nr_pages = 1 << order;
  629. /* bootmem page has reserved flag */
  630. if (PageReserved(page)) {
  631. __ClearPageReserved(page);
  632. magic = (unsigned long)page->lru.next;
  633. if (magic == SECTION_INFO || magic == MIX_SECTION_INFO) {
  634. while (nr_pages--)
  635. put_page_bootmem(page++);
  636. } else
  637. while (nr_pages--)
  638. free_reserved_page(page++);
  639. } else
  640. free_pages((unsigned long)page_address(page), order);
  641. }
  642. static void __meminit free_pte_table(pte_t *pte_start, pmd_t *pmd)
  643. {
  644. pte_t *pte;
  645. int i;
  646. for (i = 0; i < PTRS_PER_PTE; i++) {
  647. pte = pte_start + i;
  648. if (pte_val(*pte))
  649. return;
  650. }
  651. /* free a pte talbe */
  652. free_pagetable(pmd_page(*pmd), 0);
  653. spin_lock(&init_mm.page_table_lock);
  654. pmd_clear(pmd);
  655. spin_unlock(&init_mm.page_table_lock);
  656. }
  657. static void __meminit free_pmd_table(pmd_t *pmd_start, pud_t *pud)
  658. {
  659. pmd_t *pmd;
  660. int i;
  661. for (i = 0; i < PTRS_PER_PMD; i++) {
  662. pmd = pmd_start + i;
  663. if (pmd_val(*pmd))
  664. return;
  665. }
  666. /* free a pmd talbe */
  667. free_pagetable(pud_page(*pud), 0);
  668. spin_lock(&init_mm.page_table_lock);
  669. pud_clear(pud);
  670. spin_unlock(&init_mm.page_table_lock);
  671. }
  672. /* Return true if pgd is changed, otherwise return false. */
  673. static bool __meminit free_pud_table(pud_t *pud_start, pgd_t *pgd)
  674. {
  675. pud_t *pud;
  676. int i;
  677. for (i = 0; i < PTRS_PER_PUD; i++) {
  678. pud = pud_start + i;
  679. if (pud_val(*pud))
  680. return false;
  681. }
  682. /* free a pud table */
  683. free_pagetable(pgd_page(*pgd), 0);
  684. spin_lock(&init_mm.page_table_lock);
  685. pgd_clear(pgd);
  686. spin_unlock(&init_mm.page_table_lock);
  687. return true;
  688. }
  689. static void __meminit
  690. remove_pte_table(pte_t *pte_start, unsigned long addr, unsigned long end,
  691. bool direct)
  692. {
  693. unsigned long next, pages = 0;
  694. pte_t *pte;
  695. void *page_addr;
  696. phys_addr_t phys_addr;
  697. pte = pte_start + pte_index(addr);
  698. for (; addr < end; addr = next, pte++) {
  699. next = (addr + PAGE_SIZE) & PAGE_MASK;
  700. if (next > end)
  701. next = end;
  702. if (!pte_present(*pte))
  703. continue;
  704. /*
  705. * We mapped [0,1G) memory as identity mapping when
  706. * initializing, in arch/x86/kernel/head_64.S. These
  707. * pagetables cannot be removed.
  708. */
  709. phys_addr = pte_val(*pte) + (addr & PAGE_MASK);
  710. if (phys_addr < (phys_addr_t)0x40000000)
  711. return;
  712. if (IS_ALIGNED(addr, PAGE_SIZE) &&
  713. IS_ALIGNED(next, PAGE_SIZE)) {
  714. /*
  715. * Do not free direct mapping pages since they were
  716. * freed when offlining, or simplely not in use.
  717. */
  718. if (!direct)
  719. free_pagetable(pte_page(*pte), 0);
  720. spin_lock(&init_mm.page_table_lock);
  721. pte_clear(&init_mm, addr, pte);
  722. spin_unlock(&init_mm.page_table_lock);
  723. /* For non-direct mapping, pages means nothing. */
  724. pages++;
  725. } else {
  726. /*
  727. * If we are here, we are freeing vmemmap pages since
  728. * direct mapped memory ranges to be freed are aligned.
  729. *
  730. * If we are not removing the whole page, it means
  731. * other page structs in this page are being used and
  732. * we canot remove them. So fill the unused page_structs
  733. * with 0xFD, and remove the page when it is wholly
  734. * filled with 0xFD.
  735. */
  736. memset((void *)addr, PAGE_INUSE, next - addr);
  737. page_addr = page_address(pte_page(*pte));
  738. if (!memchr_inv(page_addr, PAGE_INUSE, PAGE_SIZE)) {
  739. free_pagetable(pte_page(*pte), 0);
  740. spin_lock(&init_mm.page_table_lock);
  741. pte_clear(&init_mm, addr, pte);
  742. spin_unlock(&init_mm.page_table_lock);
  743. }
  744. }
  745. }
  746. /* Call free_pte_table() in remove_pmd_table(). */
  747. flush_tlb_all();
  748. if (direct)
  749. update_page_count(PG_LEVEL_4K, -pages);
  750. }
  751. static void __meminit
  752. remove_pmd_table(pmd_t *pmd_start, unsigned long addr, unsigned long end,
  753. bool direct)
  754. {
  755. unsigned long next, pages = 0;
  756. pte_t *pte_base;
  757. pmd_t *pmd;
  758. void *page_addr;
  759. pmd = pmd_start + pmd_index(addr);
  760. for (; addr < end; addr = next, pmd++) {
  761. next = pmd_addr_end(addr, end);
  762. if (!pmd_present(*pmd))
  763. continue;
  764. if (pmd_large(*pmd)) {
  765. if (IS_ALIGNED(addr, PMD_SIZE) &&
  766. IS_ALIGNED(next, PMD_SIZE)) {
  767. if (!direct)
  768. free_pagetable(pmd_page(*pmd),
  769. get_order(PMD_SIZE));
  770. spin_lock(&init_mm.page_table_lock);
  771. pmd_clear(pmd);
  772. spin_unlock(&init_mm.page_table_lock);
  773. pages++;
  774. } else {
  775. /* If here, we are freeing vmemmap pages. */
  776. memset((void *)addr, PAGE_INUSE, next - addr);
  777. page_addr = page_address(pmd_page(*pmd));
  778. if (!memchr_inv(page_addr, PAGE_INUSE,
  779. PMD_SIZE)) {
  780. free_pagetable(pmd_page(*pmd),
  781. get_order(PMD_SIZE));
  782. spin_lock(&init_mm.page_table_lock);
  783. pmd_clear(pmd);
  784. spin_unlock(&init_mm.page_table_lock);
  785. }
  786. }
  787. continue;
  788. }
  789. pte_base = (pte_t *)pmd_page_vaddr(*pmd);
  790. remove_pte_table(pte_base, addr, next, direct);
  791. free_pte_table(pte_base, pmd);
  792. }
  793. /* Call free_pmd_table() in remove_pud_table(). */
  794. if (direct)
  795. update_page_count(PG_LEVEL_2M, -pages);
  796. }
  797. static void __meminit
  798. remove_pud_table(pud_t *pud_start, unsigned long addr, unsigned long end,
  799. bool direct)
  800. {
  801. unsigned long next, pages = 0;
  802. pmd_t *pmd_base;
  803. pud_t *pud;
  804. void *page_addr;
  805. pud = pud_start + pud_index(addr);
  806. for (; addr < end; addr = next, pud++) {
  807. next = pud_addr_end(addr, end);
  808. if (!pud_present(*pud))
  809. continue;
  810. if (pud_large(*pud)) {
  811. if (IS_ALIGNED(addr, PUD_SIZE) &&
  812. IS_ALIGNED(next, PUD_SIZE)) {
  813. if (!direct)
  814. free_pagetable(pud_page(*pud),
  815. get_order(PUD_SIZE));
  816. spin_lock(&init_mm.page_table_lock);
  817. pud_clear(pud);
  818. spin_unlock(&init_mm.page_table_lock);
  819. pages++;
  820. } else {
  821. /* If here, we are freeing vmemmap pages. */
  822. memset((void *)addr, PAGE_INUSE, next - addr);
  823. page_addr = page_address(pud_page(*pud));
  824. if (!memchr_inv(page_addr, PAGE_INUSE,
  825. PUD_SIZE)) {
  826. free_pagetable(pud_page(*pud),
  827. get_order(PUD_SIZE));
  828. spin_lock(&init_mm.page_table_lock);
  829. pud_clear(pud);
  830. spin_unlock(&init_mm.page_table_lock);
  831. }
  832. }
  833. continue;
  834. }
  835. pmd_base = (pmd_t *)pud_page_vaddr(*pud);
  836. remove_pmd_table(pmd_base, addr, next, direct);
  837. free_pmd_table(pmd_base, pud);
  838. }
  839. if (direct)
  840. update_page_count(PG_LEVEL_1G, -pages);
  841. }
  842. /* start and end are both virtual address. */
  843. static void __meminit
  844. remove_pagetable(unsigned long start, unsigned long end, bool direct)
  845. {
  846. unsigned long next;
  847. unsigned long addr;
  848. pgd_t *pgd;
  849. pud_t *pud;
  850. bool pgd_changed = false;
  851. for (addr = start; addr < end; addr = next) {
  852. next = pgd_addr_end(addr, end);
  853. pgd = pgd_offset_k(addr);
  854. if (!pgd_present(*pgd))
  855. continue;
  856. pud = (pud_t *)pgd_page_vaddr(*pgd);
  857. remove_pud_table(pud, addr, next, direct);
  858. if (free_pud_table(pud, pgd))
  859. pgd_changed = true;
  860. }
  861. if (pgd_changed)
  862. sync_global_pgds(start, end - 1, 1);
  863. flush_tlb_all();
  864. }
  865. void __ref vmemmap_free(unsigned long start, unsigned long end)
  866. {
  867. remove_pagetable(start, end, false);
  868. }
  869. #ifdef CONFIG_MEMORY_HOTREMOVE
  870. static void __meminit
  871. kernel_physical_mapping_remove(unsigned long start, unsigned long end)
  872. {
  873. start = (unsigned long)__va(start);
  874. end = (unsigned long)__va(end);
  875. remove_pagetable(start, end, true);
  876. }
  877. int __ref arch_remove_memory(u64 start, u64 size)
  878. {
  879. unsigned long start_pfn = start >> PAGE_SHIFT;
  880. unsigned long nr_pages = size >> PAGE_SHIFT;
  881. struct zone *zone;
  882. int ret;
  883. zone = page_zone(pfn_to_page(start_pfn));
  884. kernel_physical_mapping_remove(start, start + size);
  885. ret = __remove_pages(zone, start_pfn, nr_pages);
  886. WARN_ON_ONCE(ret);
  887. return ret;
  888. }
  889. #endif
  890. #endif /* CONFIG_MEMORY_HOTPLUG */
  891. static struct kcore_list kcore_vsyscall;
  892. static void __init register_page_bootmem_info(void)
  893. {
  894. #ifdef CONFIG_NUMA
  895. int i;
  896. for_each_online_node(i)
  897. register_page_bootmem_info_node(NODE_DATA(i));
  898. #endif
  899. }
  900. void __init mem_init(void)
  901. {
  902. pci_iommu_alloc();
  903. /* clear_bss() already clear the empty_zero_page */
  904. register_page_bootmem_info();
  905. /* this will put all memory onto the freelists */
  906. free_all_bootmem();
  907. after_bootmem = 1;
  908. /* Register memory areas for /proc/kcore */
  909. kclist_add(&kcore_vsyscall, (void *)VSYSCALL_ADDR,
  910. PAGE_SIZE, KCORE_OTHER);
  911. mem_init_print_info(NULL);
  912. }
  913. #ifdef CONFIG_DEBUG_RODATA
  914. const int rodata_test_data = 0xC3;
  915. EXPORT_SYMBOL_GPL(rodata_test_data);
  916. int kernel_set_to_readonly;
  917. void set_kernel_text_rw(void)
  918. {
  919. unsigned long start = PFN_ALIGN(_text);
  920. unsigned long end = PFN_ALIGN(__stop___ex_table);
  921. if (!kernel_set_to_readonly)
  922. return;
  923. pr_debug("Set kernel text: %lx - %lx for read write\n",
  924. start, end);
  925. /*
  926. * Make the kernel identity mapping for text RW. Kernel text
  927. * mapping will always be RO. Refer to the comment in
  928. * static_protections() in pageattr.c
  929. */
  930. set_memory_rw(start, (end - start) >> PAGE_SHIFT);
  931. }
  932. void set_kernel_text_ro(void)
  933. {
  934. unsigned long start = PFN_ALIGN(_text);
  935. unsigned long end = PFN_ALIGN(__stop___ex_table);
  936. if (!kernel_set_to_readonly)
  937. return;
  938. pr_debug("Set kernel text: %lx - %lx for read only\n",
  939. start, end);
  940. /*
  941. * Set the kernel identity mapping for text RO.
  942. */
  943. set_memory_ro(start, (end - start) >> PAGE_SHIFT);
  944. }
  945. void mark_rodata_ro(void)
  946. {
  947. unsigned long start = PFN_ALIGN(_text);
  948. unsigned long rodata_start = PFN_ALIGN(__start_rodata);
  949. unsigned long end = (unsigned long) &__end_rodata_hpage_align;
  950. unsigned long text_end = PFN_ALIGN(&__stop___ex_table);
  951. unsigned long rodata_end = PFN_ALIGN(&__end_rodata);
  952. unsigned long all_end;
  953. printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
  954. (end - start) >> 10);
  955. set_memory_ro(start, (end - start) >> PAGE_SHIFT);
  956. kernel_set_to_readonly = 1;
  957. /*
  958. * The rodata/data/bss/brk section (but not the kernel text!)
  959. * should also be not-executable.
  960. *
  961. * We align all_end to PMD_SIZE because the existing mapping
  962. * is a full PMD. If we would align _brk_end to PAGE_SIZE we
  963. * split the PMD and the reminder between _brk_end and the end
  964. * of the PMD will remain mapped executable.
  965. *
  966. * Any PMD which was setup after the one which covers _brk_end
  967. * has been zapped already via cleanup_highmem().
  968. */
  969. all_end = roundup((unsigned long)_brk_end, PMD_SIZE);
  970. set_memory_nx(rodata_start, (all_end - rodata_start) >> PAGE_SHIFT);
  971. rodata_test();
  972. #ifdef CONFIG_CPA_DEBUG
  973. printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
  974. set_memory_rw(start, (end-start) >> PAGE_SHIFT);
  975. printk(KERN_INFO "Testing CPA: again\n");
  976. set_memory_ro(start, (end-start) >> PAGE_SHIFT);
  977. #endif
  978. free_init_pages("unused kernel",
  979. (unsigned long) __va(__pa_symbol(text_end)),
  980. (unsigned long) __va(__pa_symbol(rodata_start)));
  981. free_init_pages("unused kernel",
  982. (unsigned long) __va(__pa_symbol(rodata_end)),
  983. (unsigned long) __va(__pa_symbol(_sdata)));
  984. }
  985. #endif
  986. int kern_addr_valid(unsigned long addr)
  987. {
  988. unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
  989. pgd_t *pgd;
  990. pud_t *pud;
  991. pmd_t *pmd;
  992. pte_t *pte;
  993. if (above != 0 && above != -1UL)
  994. return 0;
  995. pgd = pgd_offset_k(addr);
  996. if (pgd_none(*pgd))
  997. return 0;
  998. pud = pud_offset(pgd, addr);
  999. if (pud_none(*pud))
  1000. return 0;
  1001. if (pud_large(*pud))
  1002. return pfn_valid(pud_pfn(*pud));
  1003. pmd = pmd_offset(pud, addr);
  1004. if (pmd_none(*pmd))
  1005. return 0;
  1006. if (pmd_large(*pmd))
  1007. return pfn_valid(pmd_pfn(*pmd));
  1008. pte = pte_offset_kernel(pmd, addr);
  1009. if (pte_none(*pte))
  1010. return 0;
  1011. return pfn_valid(pte_pfn(*pte));
  1012. }
  1013. static unsigned long probe_memory_block_size(void)
  1014. {
  1015. /* start from 2g */
  1016. unsigned long bz = 1UL<<31;
  1017. if (totalram_pages >= (64ULL << (30 - PAGE_SHIFT))) {
  1018. pr_info("Using 2GB memory block size for large-memory system\n");
  1019. return 2UL * 1024 * 1024 * 1024;
  1020. }
  1021. /* less than 64g installed */
  1022. if ((max_pfn << PAGE_SHIFT) < (16UL << 32))
  1023. return MIN_MEMORY_BLOCK_SIZE;
  1024. /* get the tail size */
  1025. while (bz > MIN_MEMORY_BLOCK_SIZE) {
  1026. if (!((max_pfn << PAGE_SHIFT) & (bz - 1)))
  1027. break;
  1028. bz >>= 1;
  1029. }
  1030. printk(KERN_DEBUG "memory block size : %ldMB\n", bz >> 20);
  1031. return bz;
  1032. }
  1033. static unsigned long memory_block_size_probed;
  1034. unsigned long memory_block_size_bytes(void)
  1035. {
  1036. if (!memory_block_size_probed)
  1037. memory_block_size_probed = probe_memory_block_size();
  1038. return memory_block_size_probed;
  1039. }
  1040. #ifdef CONFIG_SPARSEMEM_VMEMMAP
  1041. /*
  1042. * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
  1043. */
  1044. static long __meminitdata addr_start, addr_end;
  1045. static void __meminitdata *p_start, *p_end;
  1046. static int __meminitdata node_start;
  1047. static int __meminit vmemmap_populate_hugepages(unsigned long start,
  1048. unsigned long end, int node)
  1049. {
  1050. unsigned long addr;
  1051. unsigned long next;
  1052. pgd_t *pgd;
  1053. pud_t *pud;
  1054. pmd_t *pmd;
  1055. for (addr = start; addr < end; addr = next) {
  1056. next = pmd_addr_end(addr, end);
  1057. pgd = vmemmap_pgd_populate(addr, node);
  1058. if (!pgd)
  1059. return -ENOMEM;
  1060. pud = vmemmap_pud_populate(pgd, addr, node);
  1061. if (!pud)
  1062. return -ENOMEM;
  1063. pmd = pmd_offset(pud, addr);
  1064. if (pmd_none(*pmd)) {
  1065. void *p;
  1066. p = vmemmap_alloc_block_buf(PMD_SIZE, node);
  1067. if (p) {
  1068. pte_t entry;
  1069. entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
  1070. PAGE_KERNEL_LARGE);
  1071. set_pmd(pmd, __pmd(pte_val(entry)));
  1072. /* check to see if we have contiguous blocks */
  1073. if (p_end != p || node_start != node) {
  1074. if (p_start)
  1075. printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
  1076. addr_start, addr_end-1, p_start, p_end-1, node_start);
  1077. addr_start = addr;
  1078. node_start = node;
  1079. p_start = p;
  1080. }
  1081. addr_end = addr + PMD_SIZE;
  1082. p_end = p + PMD_SIZE;
  1083. continue;
  1084. }
  1085. } else if (pmd_large(*pmd)) {
  1086. vmemmap_verify((pte_t *)pmd, node, addr, next);
  1087. continue;
  1088. }
  1089. pr_warn_once("vmemmap: falling back to regular page backing\n");
  1090. if (vmemmap_populate_basepages(addr, next, node))
  1091. return -ENOMEM;
  1092. }
  1093. return 0;
  1094. }
  1095. int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node)
  1096. {
  1097. int err;
  1098. if (cpu_has_pse)
  1099. err = vmemmap_populate_hugepages(start, end, node);
  1100. else
  1101. err = vmemmap_populate_basepages(start, end, node);
  1102. if (!err)
  1103. sync_global_pgds(start, end - 1, 0);
  1104. return err;
  1105. }
  1106. #if defined(CONFIG_MEMORY_HOTPLUG_SPARSE) && defined(CONFIG_HAVE_BOOTMEM_INFO_NODE)
  1107. void register_page_bootmem_memmap(unsigned long section_nr,
  1108. struct page *start_page, unsigned long size)
  1109. {
  1110. unsigned long addr = (unsigned long)start_page;
  1111. unsigned long end = (unsigned long)(start_page + size);
  1112. unsigned long next;
  1113. pgd_t *pgd;
  1114. pud_t *pud;
  1115. pmd_t *pmd;
  1116. unsigned int nr_pages;
  1117. struct page *page;
  1118. for (; addr < end; addr = next) {
  1119. pte_t *pte = NULL;
  1120. pgd = pgd_offset_k(addr);
  1121. if (pgd_none(*pgd)) {
  1122. next = (addr + PAGE_SIZE) & PAGE_MASK;
  1123. continue;
  1124. }
  1125. get_page_bootmem(section_nr, pgd_page(*pgd), MIX_SECTION_INFO);
  1126. pud = pud_offset(pgd, addr);
  1127. if (pud_none(*pud)) {
  1128. next = (addr + PAGE_SIZE) & PAGE_MASK;
  1129. continue;
  1130. }
  1131. get_page_bootmem(section_nr, pud_page(*pud), MIX_SECTION_INFO);
  1132. if (!cpu_has_pse) {
  1133. next = (addr + PAGE_SIZE) & PAGE_MASK;
  1134. pmd = pmd_offset(pud, addr);
  1135. if (pmd_none(*pmd))
  1136. continue;
  1137. get_page_bootmem(section_nr, pmd_page(*pmd),
  1138. MIX_SECTION_INFO);
  1139. pte = pte_offset_kernel(pmd, addr);
  1140. if (pte_none(*pte))
  1141. continue;
  1142. get_page_bootmem(section_nr, pte_page(*pte),
  1143. SECTION_INFO);
  1144. } else {
  1145. next = pmd_addr_end(addr, end);
  1146. pmd = pmd_offset(pud, addr);
  1147. if (pmd_none(*pmd))
  1148. continue;
  1149. nr_pages = 1 << (get_order(PMD_SIZE));
  1150. page = pmd_page(*pmd);
  1151. while (nr_pages--)
  1152. get_page_bootmem(section_nr, page++,
  1153. SECTION_INFO);
  1154. }
  1155. }
  1156. }
  1157. #endif
  1158. void __meminit vmemmap_populate_print_last(void)
  1159. {
  1160. if (p_start) {
  1161. printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
  1162. addr_start, addr_end-1, p_start, p_end-1, node_start);
  1163. p_start = NULL;
  1164. p_end = NULL;
  1165. node_start = 0;
  1166. }
  1167. }
  1168. #endif