mmu.c 114 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  11. *
  12. * Authors:
  13. * Yaniv Kamay <yaniv@qumranet.com>
  14. * Avi Kivity <avi@qumranet.com>
  15. *
  16. * This work is licensed under the terms of the GNU GPL, version 2. See
  17. * the COPYING file in the top-level directory.
  18. *
  19. */
  20. #include "irq.h"
  21. #include "mmu.h"
  22. #include "x86.h"
  23. #include "kvm_cache_regs.h"
  24. #include "cpuid.h"
  25. #include <linux/kvm_host.h>
  26. #include <linux/types.h>
  27. #include <linux/string.h>
  28. #include <linux/mm.h>
  29. #include <linux/highmem.h>
  30. #include <linux/module.h>
  31. #include <linux/swap.h>
  32. #include <linux/hugetlb.h>
  33. #include <linux/compiler.h>
  34. #include <linux/srcu.h>
  35. #include <linux/slab.h>
  36. #include <linux/uaccess.h>
  37. #include <asm/page.h>
  38. #include <asm/cmpxchg.h>
  39. #include <asm/io.h>
  40. #include <asm/vmx.h>
  41. /*
  42. * When setting this variable to true it enables Two-Dimensional-Paging
  43. * where the hardware walks 2 page tables:
  44. * 1. the guest-virtual to guest-physical
  45. * 2. while doing 1. it walks guest-physical to host-physical
  46. * If the hardware supports that we don't need to do shadow paging.
  47. */
  48. bool tdp_enabled = false;
  49. enum {
  50. AUDIT_PRE_PAGE_FAULT,
  51. AUDIT_POST_PAGE_FAULT,
  52. AUDIT_PRE_PTE_WRITE,
  53. AUDIT_POST_PTE_WRITE,
  54. AUDIT_PRE_SYNC,
  55. AUDIT_POST_SYNC
  56. };
  57. #undef MMU_DEBUG
  58. #ifdef MMU_DEBUG
  59. #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
  60. #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
  61. #else
  62. #define pgprintk(x...) do { } while (0)
  63. #define rmap_printk(x...) do { } while (0)
  64. #endif
  65. #ifdef MMU_DEBUG
  66. static bool dbg = 0;
  67. module_param(dbg, bool, 0644);
  68. #endif
  69. #ifndef MMU_DEBUG
  70. #define ASSERT(x) do { } while (0)
  71. #else
  72. #define ASSERT(x) \
  73. if (!(x)) { \
  74. printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
  75. __FILE__, __LINE__, #x); \
  76. }
  77. #endif
  78. #define PTE_PREFETCH_NUM 8
  79. #define PT_FIRST_AVAIL_BITS_SHIFT 10
  80. #define PT64_SECOND_AVAIL_BITS_SHIFT 52
  81. #define PT64_LEVEL_BITS 9
  82. #define PT64_LEVEL_SHIFT(level) \
  83. (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
  84. #define PT64_INDEX(address, level)\
  85. (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
  86. #define PT32_LEVEL_BITS 10
  87. #define PT32_LEVEL_SHIFT(level) \
  88. (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
  89. #define PT32_LVL_OFFSET_MASK(level) \
  90. (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  91. * PT32_LEVEL_BITS))) - 1))
  92. #define PT32_INDEX(address, level)\
  93. (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
  94. #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
  95. #define PT64_DIR_BASE_ADDR_MASK \
  96. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
  97. #define PT64_LVL_ADDR_MASK(level) \
  98. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  99. * PT64_LEVEL_BITS))) - 1))
  100. #define PT64_LVL_OFFSET_MASK(level) \
  101. (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  102. * PT64_LEVEL_BITS))) - 1))
  103. #define PT32_BASE_ADDR_MASK PAGE_MASK
  104. #define PT32_DIR_BASE_ADDR_MASK \
  105. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
  106. #define PT32_LVL_ADDR_MASK(level) \
  107. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  108. * PT32_LEVEL_BITS))) - 1))
  109. #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
  110. | shadow_x_mask | shadow_nx_mask)
  111. #define ACC_EXEC_MASK 1
  112. #define ACC_WRITE_MASK PT_WRITABLE_MASK
  113. #define ACC_USER_MASK PT_USER_MASK
  114. #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
  115. #include <trace/events/kvm.h>
  116. #define CREATE_TRACE_POINTS
  117. #include "mmutrace.h"
  118. #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
  119. #define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
  120. #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
  121. /* make pte_list_desc fit well in cache line */
  122. #define PTE_LIST_EXT 3
  123. struct pte_list_desc {
  124. u64 *sptes[PTE_LIST_EXT];
  125. struct pte_list_desc *more;
  126. };
  127. struct kvm_shadow_walk_iterator {
  128. u64 addr;
  129. hpa_t shadow_addr;
  130. u64 *sptep;
  131. int level;
  132. unsigned index;
  133. };
  134. #define for_each_shadow_entry(_vcpu, _addr, _walker) \
  135. for (shadow_walk_init(&(_walker), _vcpu, _addr); \
  136. shadow_walk_okay(&(_walker)); \
  137. shadow_walk_next(&(_walker)))
  138. #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
  139. for (shadow_walk_init(&(_walker), _vcpu, _addr); \
  140. shadow_walk_okay(&(_walker)) && \
  141. ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
  142. __shadow_walk_next(&(_walker), spte))
  143. static struct kmem_cache *pte_list_desc_cache;
  144. static struct kmem_cache *mmu_page_header_cache;
  145. static struct percpu_counter kvm_total_used_mmu_pages;
  146. static u64 __read_mostly shadow_nx_mask;
  147. static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
  148. static u64 __read_mostly shadow_user_mask;
  149. static u64 __read_mostly shadow_accessed_mask;
  150. static u64 __read_mostly shadow_dirty_mask;
  151. static u64 __read_mostly shadow_mmio_mask;
  152. static void mmu_spte_set(u64 *sptep, u64 spte);
  153. static void mmu_free_roots(struct kvm_vcpu *vcpu);
  154. void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
  155. {
  156. shadow_mmio_mask = mmio_mask;
  157. }
  158. EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
  159. /*
  160. * the low bit of the generation number is always presumed to be zero.
  161. * This disables mmio caching during memslot updates. The concept is
  162. * similar to a seqcount but instead of retrying the access we just punt
  163. * and ignore the cache.
  164. *
  165. * spte bits 3-11 are used as bits 1-9 of the generation number,
  166. * the bits 52-61 are used as bits 10-19 of the generation number.
  167. */
  168. #define MMIO_SPTE_GEN_LOW_SHIFT 2
  169. #define MMIO_SPTE_GEN_HIGH_SHIFT 52
  170. #define MMIO_GEN_SHIFT 20
  171. #define MMIO_GEN_LOW_SHIFT 10
  172. #define MMIO_GEN_LOW_MASK ((1 << MMIO_GEN_LOW_SHIFT) - 2)
  173. #define MMIO_GEN_MASK ((1 << MMIO_GEN_SHIFT) - 1)
  174. static u64 generation_mmio_spte_mask(unsigned int gen)
  175. {
  176. u64 mask;
  177. WARN_ON(gen & ~MMIO_GEN_MASK);
  178. mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
  179. mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
  180. return mask;
  181. }
  182. static unsigned int get_mmio_spte_generation(u64 spte)
  183. {
  184. unsigned int gen;
  185. spte &= ~shadow_mmio_mask;
  186. gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
  187. gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
  188. return gen;
  189. }
  190. static unsigned int kvm_current_mmio_generation(struct kvm *kvm)
  191. {
  192. return kvm_memslots(kvm)->generation & MMIO_GEN_MASK;
  193. }
  194. static void mark_mmio_spte(struct kvm *kvm, u64 *sptep, u64 gfn,
  195. unsigned access)
  196. {
  197. unsigned int gen = kvm_current_mmio_generation(kvm);
  198. u64 mask = generation_mmio_spte_mask(gen);
  199. access &= ACC_WRITE_MASK | ACC_USER_MASK;
  200. mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;
  201. trace_mark_mmio_spte(sptep, gfn, access, gen);
  202. mmu_spte_set(sptep, mask);
  203. }
  204. static bool is_mmio_spte(u64 spte)
  205. {
  206. return (spte & shadow_mmio_mask) == shadow_mmio_mask;
  207. }
  208. static gfn_t get_mmio_spte_gfn(u64 spte)
  209. {
  210. u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
  211. return (spte & ~mask) >> PAGE_SHIFT;
  212. }
  213. static unsigned get_mmio_spte_access(u64 spte)
  214. {
  215. u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
  216. return (spte & ~mask) & ~PAGE_MASK;
  217. }
  218. static bool set_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
  219. pfn_t pfn, unsigned access)
  220. {
  221. if (unlikely(is_noslot_pfn(pfn))) {
  222. mark_mmio_spte(kvm, sptep, gfn, access);
  223. return true;
  224. }
  225. return false;
  226. }
  227. static bool check_mmio_spte(struct kvm *kvm, u64 spte)
  228. {
  229. unsigned int kvm_gen, spte_gen;
  230. kvm_gen = kvm_current_mmio_generation(kvm);
  231. spte_gen = get_mmio_spte_generation(spte);
  232. trace_check_mmio_spte(spte, kvm_gen, spte_gen);
  233. return likely(kvm_gen == spte_gen);
  234. }
  235. void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
  236. u64 dirty_mask, u64 nx_mask, u64 x_mask)
  237. {
  238. shadow_user_mask = user_mask;
  239. shadow_accessed_mask = accessed_mask;
  240. shadow_dirty_mask = dirty_mask;
  241. shadow_nx_mask = nx_mask;
  242. shadow_x_mask = x_mask;
  243. }
  244. EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
  245. static int is_cpuid_PSE36(void)
  246. {
  247. return 1;
  248. }
  249. static int is_nx(struct kvm_vcpu *vcpu)
  250. {
  251. return vcpu->arch.efer & EFER_NX;
  252. }
  253. static int is_shadow_present_pte(u64 pte)
  254. {
  255. return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
  256. }
  257. static int is_large_pte(u64 pte)
  258. {
  259. return pte & PT_PAGE_SIZE_MASK;
  260. }
  261. static int is_rmap_spte(u64 pte)
  262. {
  263. return is_shadow_present_pte(pte);
  264. }
  265. static int is_last_spte(u64 pte, int level)
  266. {
  267. if (level == PT_PAGE_TABLE_LEVEL)
  268. return 1;
  269. if (is_large_pte(pte))
  270. return 1;
  271. return 0;
  272. }
  273. static pfn_t spte_to_pfn(u64 pte)
  274. {
  275. return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  276. }
  277. static gfn_t pse36_gfn_delta(u32 gpte)
  278. {
  279. int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
  280. return (gpte & PT32_DIR_PSE36_MASK) << shift;
  281. }
  282. #ifdef CONFIG_X86_64
  283. static void __set_spte(u64 *sptep, u64 spte)
  284. {
  285. *sptep = spte;
  286. }
  287. static void __update_clear_spte_fast(u64 *sptep, u64 spte)
  288. {
  289. *sptep = spte;
  290. }
  291. static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
  292. {
  293. return xchg(sptep, spte);
  294. }
  295. static u64 __get_spte_lockless(u64 *sptep)
  296. {
  297. return ACCESS_ONCE(*sptep);
  298. }
  299. static bool __check_direct_spte_mmio_pf(u64 spte)
  300. {
  301. /* It is valid if the spte is zapped. */
  302. return spte == 0ull;
  303. }
  304. #else
  305. union split_spte {
  306. struct {
  307. u32 spte_low;
  308. u32 spte_high;
  309. };
  310. u64 spte;
  311. };
  312. static void count_spte_clear(u64 *sptep, u64 spte)
  313. {
  314. struct kvm_mmu_page *sp = page_header(__pa(sptep));
  315. if (is_shadow_present_pte(spte))
  316. return;
  317. /* Ensure the spte is completely set before we increase the count */
  318. smp_wmb();
  319. sp->clear_spte_count++;
  320. }
  321. static void __set_spte(u64 *sptep, u64 spte)
  322. {
  323. union split_spte *ssptep, sspte;
  324. ssptep = (union split_spte *)sptep;
  325. sspte = (union split_spte)spte;
  326. ssptep->spte_high = sspte.spte_high;
  327. /*
  328. * If we map the spte from nonpresent to present, We should store
  329. * the high bits firstly, then set present bit, so cpu can not
  330. * fetch this spte while we are setting the spte.
  331. */
  332. smp_wmb();
  333. ssptep->spte_low = sspte.spte_low;
  334. }
  335. static void __update_clear_spte_fast(u64 *sptep, u64 spte)
  336. {
  337. union split_spte *ssptep, sspte;
  338. ssptep = (union split_spte *)sptep;
  339. sspte = (union split_spte)spte;
  340. ssptep->spte_low = sspte.spte_low;
  341. /*
  342. * If we map the spte from present to nonpresent, we should clear
  343. * present bit firstly to avoid vcpu fetch the old high bits.
  344. */
  345. smp_wmb();
  346. ssptep->spte_high = sspte.spte_high;
  347. count_spte_clear(sptep, spte);
  348. }
  349. static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
  350. {
  351. union split_spte *ssptep, sspte, orig;
  352. ssptep = (union split_spte *)sptep;
  353. sspte = (union split_spte)spte;
  354. /* xchg acts as a barrier before the setting of the high bits */
  355. orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
  356. orig.spte_high = ssptep->spte_high;
  357. ssptep->spte_high = sspte.spte_high;
  358. count_spte_clear(sptep, spte);
  359. return orig.spte;
  360. }
  361. /*
  362. * The idea using the light way get the spte on x86_32 guest is from
  363. * gup_get_pte(arch/x86/mm/gup.c).
  364. *
  365. * An spte tlb flush may be pending, because kvm_set_pte_rmapp
  366. * coalesces them and we are running out of the MMU lock. Therefore
  367. * we need to protect against in-progress updates of the spte.
  368. *
  369. * Reading the spte while an update is in progress may get the old value
  370. * for the high part of the spte. The race is fine for a present->non-present
  371. * change (because the high part of the spte is ignored for non-present spte),
  372. * but for a present->present change we must reread the spte.
  373. *
  374. * All such changes are done in two steps (present->non-present and
  375. * non-present->present), hence it is enough to count the number of
  376. * present->non-present updates: if it changed while reading the spte,
  377. * we might have hit the race. This is done using clear_spte_count.
  378. */
  379. static u64 __get_spte_lockless(u64 *sptep)
  380. {
  381. struct kvm_mmu_page *sp = page_header(__pa(sptep));
  382. union split_spte spte, *orig = (union split_spte *)sptep;
  383. int count;
  384. retry:
  385. count = sp->clear_spte_count;
  386. smp_rmb();
  387. spte.spte_low = orig->spte_low;
  388. smp_rmb();
  389. spte.spte_high = orig->spte_high;
  390. smp_rmb();
  391. if (unlikely(spte.spte_low != orig->spte_low ||
  392. count != sp->clear_spte_count))
  393. goto retry;
  394. return spte.spte;
  395. }
  396. static bool __check_direct_spte_mmio_pf(u64 spte)
  397. {
  398. union split_spte sspte = (union split_spte)spte;
  399. u32 high_mmio_mask = shadow_mmio_mask >> 32;
  400. /* It is valid if the spte is zapped. */
  401. if (spte == 0ull)
  402. return true;
  403. /* It is valid if the spte is being zapped. */
  404. if (sspte.spte_low == 0ull &&
  405. (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
  406. return true;
  407. return false;
  408. }
  409. #endif
  410. static bool spte_is_locklessly_modifiable(u64 spte)
  411. {
  412. return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
  413. (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
  414. }
  415. static bool spte_has_volatile_bits(u64 spte)
  416. {
  417. /*
  418. * Always atomicly update spte if it can be updated
  419. * out of mmu-lock, it can ensure dirty bit is not lost,
  420. * also, it can help us to get a stable is_writable_pte()
  421. * to ensure tlb flush is not missed.
  422. */
  423. if (spte_is_locklessly_modifiable(spte))
  424. return true;
  425. if (!shadow_accessed_mask)
  426. return false;
  427. if (!is_shadow_present_pte(spte))
  428. return false;
  429. if ((spte & shadow_accessed_mask) &&
  430. (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
  431. return false;
  432. return true;
  433. }
  434. static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
  435. {
  436. return (old_spte & bit_mask) && !(new_spte & bit_mask);
  437. }
  438. /* Rules for using mmu_spte_set:
  439. * Set the sptep from nonpresent to present.
  440. * Note: the sptep being assigned *must* be either not present
  441. * or in a state where the hardware will not attempt to update
  442. * the spte.
  443. */
  444. static void mmu_spte_set(u64 *sptep, u64 new_spte)
  445. {
  446. WARN_ON(is_shadow_present_pte(*sptep));
  447. __set_spte(sptep, new_spte);
  448. }
  449. /* Rules for using mmu_spte_update:
  450. * Update the state bits, it means the mapped pfn is not changged.
  451. *
  452. * Whenever we overwrite a writable spte with a read-only one we
  453. * should flush remote TLBs. Otherwise rmap_write_protect
  454. * will find a read-only spte, even though the writable spte
  455. * might be cached on a CPU's TLB, the return value indicates this
  456. * case.
  457. */
  458. static bool mmu_spte_update(u64 *sptep, u64 new_spte)
  459. {
  460. u64 old_spte = *sptep;
  461. bool ret = false;
  462. WARN_ON(!is_rmap_spte(new_spte));
  463. if (!is_shadow_present_pte(old_spte)) {
  464. mmu_spte_set(sptep, new_spte);
  465. return ret;
  466. }
  467. if (!spte_has_volatile_bits(old_spte))
  468. __update_clear_spte_fast(sptep, new_spte);
  469. else
  470. old_spte = __update_clear_spte_slow(sptep, new_spte);
  471. /*
  472. * For the spte updated out of mmu-lock is safe, since
  473. * we always atomicly update it, see the comments in
  474. * spte_has_volatile_bits().
  475. */
  476. if (spte_is_locklessly_modifiable(old_spte) &&
  477. !is_writable_pte(new_spte))
  478. ret = true;
  479. if (!shadow_accessed_mask)
  480. return ret;
  481. if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
  482. kvm_set_pfn_accessed(spte_to_pfn(old_spte));
  483. if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
  484. kvm_set_pfn_dirty(spte_to_pfn(old_spte));
  485. return ret;
  486. }
  487. /*
  488. * Rules for using mmu_spte_clear_track_bits:
  489. * It sets the sptep from present to nonpresent, and track the
  490. * state bits, it is used to clear the last level sptep.
  491. */
  492. static int mmu_spte_clear_track_bits(u64 *sptep)
  493. {
  494. pfn_t pfn;
  495. u64 old_spte = *sptep;
  496. if (!spte_has_volatile_bits(old_spte))
  497. __update_clear_spte_fast(sptep, 0ull);
  498. else
  499. old_spte = __update_clear_spte_slow(sptep, 0ull);
  500. if (!is_rmap_spte(old_spte))
  501. return 0;
  502. pfn = spte_to_pfn(old_spte);
  503. /*
  504. * KVM does not hold the refcount of the page used by
  505. * kvm mmu, before reclaiming the page, we should
  506. * unmap it from mmu first.
  507. */
  508. WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
  509. if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
  510. kvm_set_pfn_accessed(pfn);
  511. if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
  512. kvm_set_pfn_dirty(pfn);
  513. return 1;
  514. }
  515. /*
  516. * Rules for using mmu_spte_clear_no_track:
  517. * Directly clear spte without caring the state bits of sptep,
  518. * it is used to set the upper level spte.
  519. */
  520. static void mmu_spte_clear_no_track(u64 *sptep)
  521. {
  522. __update_clear_spte_fast(sptep, 0ull);
  523. }
  524. static u64 mmu_spte_get_lockless(u64 *sptep)
  525. {
  526. return __get_spte_lockless(sptep);
  527. }
  528. static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
  529. {
  530. /*
  531. * Prevent page table teardown by making any free-er wait during
  532. * kvm_flush_remote_tlbs() IPI to all active vcpus.
  533. */
  534. local_irq_disable();
  535. vcpu->mode = READING_SHADOW_PAGE_TABLES;
  536. /*
  537. * Make sure a following spte read is not reordered ahead of the write
  538. * to vcpu->mode.
  539. */
  540. smp_mb();
  541. }
  542. static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
  543. {
  544. /*
  545. * Make sure the write to vcpu->mode is not reordered in front of
  546. * reads to sptes. If it does, kvm_commit_zap_page() can see us
  547. * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
  548. */
  549. smp_mb();
  550. vcpu->mode = OUTSIDE_GUEST_MODE;
  551. local_irq_enable();
  552. }
  553. static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
  554. struct kmem_cache *base_cache, int min)
  555. {
  556. void *obj;
  557. if (cache->nobjs >= min)
  558. return 0;
  559. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  560. obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
  561. if (!obj)
  562. return -ENOMEM;
  563. cache->objects[cache->nobjs++] = obj;
  564. }
  565. return 0;
  566. }
  567. static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
  568. {
  569. return cache->nobjs;
  570. }
  571. static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
  572. struct kmem_cache *cache)
  573. {
  574. while (mc->nobjs)
  575. kmem_cache_free(cache, mc->objects[--mc->nobjs]);
  576. }
  577. static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
  578. int min)
  579. {
  580. void *page;
  581. if (cache->nobjs >= min)
  582. return 0;
  583. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  584. page = (void *)__get_free_page(GFP_KERNEL);
  585. if (!page)
  586. return -ENOMEM;
  587. cache->objects[cache->nobjs++] = page;
  588. }
  589. return 0;
  590. }
  591. static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
  592. {
  593. while (mc->nobjs)
  594. free_page((unsigned long)mc->objects[--mc->nobjs]);
  595. }
  596. static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
  597. {
  598. int r;
  599. r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
  600. pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
  601. if (r)
  602. goto out;
  603. r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
  604. if (r)
  605. goto out;
  606. r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
  607. mmu_page_header_cache, 4);
  608. out:
  609. return r;
  610. }
  611. static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
  612. {
  613. mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
  614. pte_list_desc_cache);
  615. mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
  616. mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
  617. mmu_page_header_cache);
  618. }
  619. static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
  620. {
  621. void *p;
  622. BUG_ON(!mc->nobjs);
  623. p = mc->objects[--mc->nobjs];
  624. return p;
  625. }
  626. static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
  627. {
  628. return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
  629. }
  630. static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
  631. {
  632. kmem_cache_free(pte_list_desc_cache, pte_list_desc);
  633. }
  634. static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
  635. {
  636. if (!sp->role.direct)
  637. return sp->gfns[index];
  638. return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
  639. }
  640. static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
  641. {
  642. if (sp->role.direct)
  643. BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
  644. else
  645. sp->gfns[index] = gfn;
  646. }
  647. /*
  648. * Return the pointer to the large page information for a given gfn,
  649. * handling slots that are not large page aligned.
  650. */
  651. static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
  652. struct kvm_memory_slot *slot,
  653. int level)
  654. {
  655. unsigned long idx;
  656. idx = gfn_to_index(gfn, slot->base_gfn, level);
  657. return &slot->arch.lpage_info[level - 2][idx];
  658. }
  659. static void account_shadowed(struct kvm *kvm, gfn_t gfn)
  660. {
  661. struct kvm_memory_slot *slot;
  662. struct kvm_lpage_info *linfo;
  663. int i;
  664. slot = gfn_to_memslot(kvm, gfn);
  665. for (i = PT_DIRECTORY_LEVEL;
  666. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  667. linfo = lpage_info_slot(gfn, slot, i);
  668. linfo->write_count += 1;
  669. }
  670. kvm->arch.indirect_shadow_pages++;
  671. }
  672. static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
  673. {
  674. struct kvm_memory_slot *slot;
  675. struct kvm_lpage_info *linfo;
  676. int i;
  677. slot = gfn_to_memslot(kvm, gfn);
  678. for (i = PT_DIRECTORY_LEVEL;
  679. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  680. linfo = lpage_info_slot(gfn, slot, i);
  681. linfo->write_count -= 1;
  682. WARN_ON(linfo->write_count < 0);
  683. }
  684. kvm->arch.indirect_shadow_pages--;
  685. }
  686. static int has_wrprotected_page(struct kvm *kvm,
  687. gfn_t gfn,
  688. int level)
  689. {
  690. struct kvm_memory_slot *slot;
  691. struct kvm_lpage_info *linfo;
  692. slot = gfn_to_memslot(kvm, gfn);
  693. if (slot) {
  694. linfo = lpage_info_slot(gfn, slot, level);
  695. return linfo->write_count;
  696. }
  697. return 1;
  698. }
  699. static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
  700. {
  701. unsigned long page_size;
  702. int i, ret = 0;
  703. page_size = kvm_host_page_size(kvm, gfn);
  704. for (i = PT_PAGE_TABLE_LEVEL;
  705. i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
  706. if (page_size >= KVM_HPAGE_SIZE(i))
  707. ret = i;
  708. else
  709. break;
  710. }
  711. return ret;
  712. }
  713. static struct kvm_memory_slot *
  714. gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
  715. bool no_dirty_log)
  716. {
  717. struct kvm_memory_slot *slot;
  718. slot = gfn_to_memslot(vcpu->kvm, gfn);
  719. if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
  720. (no_dirty_log && slot->dirty_bitmap))
  721. slot = NULL;
  722. return slot;
  723. }
  724. static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  725. {
  726. return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
  727. }
  728. static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  729. {
  730. int host_level, level, max_level;
  731. host_level = host_mapping_level(vcpu->kvm, large_gfn);
  732. if (host_level == PT_PAGE_TABLE_LEVEL)
  733. return host_level;
  734. max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
  735. for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
  736. if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
  737. break;
  738. return level - 1;
  739. }
  740. /*
  741. * Pte mapping structures:
  742. *
  743. * If pte_list bit zero is zero, then pte_list point to the spte.
  744. *
  745. * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
  746. * pte_list_desc containing more mappings.
  747. *
  748. * Returns the number of pte entries before the spte was added or zero if
  749. * the spte was not added.
  750. *
  751. */
  752. static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
  753. unsigned long *pte_list)
  754. {
  755. struct pte_list_desc *desc;
  756. int i, count = 0;
  757. if (!*pte_list) {
  758. rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
  759. *pte_list = (unsigned long)spte;
  760. } else if (!(*pte_list & 1)) {
  761. rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
  762. desc = mmu_alloc_pte_list_desc(vcpu);
  763. desc->sptes[0] = (u64 *)*pte_list;
  764. desc->sptes[1] = spte;
  765. *pte_list = (unsigned long)desc | 1;
  766. ++count;
  767. } else {
  768. rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
  769. desc = (struct pte_list_desc *)(*pte_list & ~1ul);
  770. while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
  771. desc = desc->more;
  772. count += PTE_LIST_EXT;
  773. }
  774. if (desc->sptes[PTE_LIST_EXT-1]) {
  775. desc->more = mmu_alloc_pte_list_desc(vcpu);
  776. desc = desc->more;
  777. }
  778. for (i = 0; desc->sptes[i]; ++i)
  779. ++count;
  780. desc->sptes[i] = spte;
  781. }
  782. return count;
  783. }
  784. static void
  785. pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
  786. int i, struct pte_list_desc *prev_desc)
  787. {
  788. int j;
  789. for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
  790. ;
  791. desc->sptes[i] = desc->sptes[j];
  792. desc->sptes[j] = NULL;
  793. if (j != 0)
  794. return;
  795. if (!prev_desc && !desc->more)
  796. *pte_list = (unsigned long)desc->sptes[0];
  797. else
  798. if (prev_desc)
  799. prev_desc->more = desc->more;
  800. else
  801. *pte_list = (unsigned long)desc->more | 1;
  802. mmu_free_pte_list_desc(desc);
  803. }
  804. static void pte_list_remove(u64 *spte, unsigned long *pte_list)
  805. {
  806. struct pte_list_desc *desc;
  807. struct pte_list_desc *prev_desc;
  808. int i;
  809. if (!*pte_list) {
  810. printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
  811. BUG();
  812. } else if (!(*pte_list & 1)) {
  813. rmap_printk("pte_list_remove: %p 1->0\n", spte);
  814. if ((u64 *)*pte_list != spte) {
  815. printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
  816. BUG();
  817. }
  818. *pte_list = 0;
  819. } else {
  820. rmap_printk("pte_list_remove: %p many->many\n", spte);
  821. desc = (struct pte_list_desc *)(*pte_list & ~1ul);
  822. prev_desc = NULL;
  823. while (desc) {
  824. for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
  825. if (desc->sptes[i] == spte) {
  826. pte_list_desc_remove_entry(pte_list,
  827. desc, i,
  828. prev_desc);
  829. return;
  830. }
  831. prev_desc = desc;
  832. desc = desc->more;
  833. }
  834. pr_err("pte_list_remove: %p many->many\n", spte);
  835. BUG();
  836. }
  837. }
  838. typedef void (*pte_list_walk_fn) (u64 *spte);
  839. static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
  840. {
  841. struct pte_list_desc *desc;
  842. int i;
  843. if (!*pte_list)
  844. return;
  845. if (!(*pte_list & 1))
  846. return fn((u64 *)*pte_list);
  847. desc = (struct pte_list_desc *)(*pte_list & ~1ul);
  848. while (desc) {
  849. for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
  850. fn(desc->sptes[i]);
  851. desc = desc->more;
  852. }
  853. }
  854. static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
  855. struct kvm_memory_slot *slot)
  856. {
  857. unsigned long idx;
  858. idx = gfn_to_index(gfn, slot->base_gfn, level);
  859. return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
  860. }
  861. /*
  862. * Take gfn and return the reverse mapping to it.
  863. */
  864. static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
  865. {
  866. struct kvm_memory_slot *slot;
  867. slot = gfn_to_memslot(kvm, gfn);
  868. return __gfn_to_rmap(gfn, level, slot);
  869. }
  870. static bool rmap_can_add(struct kvm_vcpu *vcpu)
  871. {
  872. struct kvm_mmu_memory_cache *cache;
  873. cache = &vcpu->arch.mmu_pte_list_desc_cache;
  874. return mmu_memory_cache_free_objects(cache);
  875. }
  876. static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  877. {
  878. struct kvm_mmu_page *sp;
  879. unsigned long *rmapp;
  880. sp = page_header(__pa(spte));
  881. kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
  882. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  883. return pte_list_add(vcpu, spte, rmapp);
  884. }
  885. static void rmap_remove(struct kvm *kvm, u64 *spte)
  886. {
  887. struct kvm_mmu_page *sp;
  888. gfn_t gfn;
  889. unsigned long *rmapp;
  890. sp = page_header(__pa(spte));
  891. gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
  892. rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
  893. pte_list_remove(spte, rmapp);
  894. }
  895. /*
  896. * Used by the following functions to iterate through the sptes linked by a
  897. * rmap. All fields are private and not assumed to be used outside.
  898. */
  899. struct rmap_iterator {
  900. /* private fields */
  901. struct pte_list_desc *desc; /* holds the sptep if not NULL */
  902. int pos; /* index of the sptep */
  903. };
  904. /*
  905. * Iteration must be started by this function. This should also be used after
  906. * removing/dropping sptes from the rmap link because in such cases the
  907. * information in the itererator may not be valid.
  908. *
  909. * Returns sptep if found, NULL otherwise.
  910. */
  911. static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
  912. {
  913. if (!rmap)
  914. return NULL;
  915. if (!(rmap & 1)) {
  916. iter->desc = NULL;
  917. return (u64 *)rmap;
  918. }
  919. iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
  920. iter->pos = 0;
  921. return iter->desc->sptes[iter->pos];
  922. }
  923. /*
  924. * Must be used with a valid iterator: e.g. after rmap_get_first().
  925. *
  926. * Returns sptep if found, NULL otherwise.
  927. */
  928. static u64 *rmap_get_next(struct rmap_iterator *iter)
  929. {
  930. if (iter->desc) {
  931. if (iter->pos < PTE_LIST_EXT - 1) {
  932. u64 *sptep;
  933. ++iter->pos;
  934. sptep = iter->desc->sptes[iter->pos];
  935. if (sptep)
  936. return sptep;
  937. }
  938. iter->desc = iter->desc->more;
  939. if (iter->desc) {
  940. iter->pos = 0;
  941. /* desc->sptes[0] cannot be NULL */
  942. return iter->desc->sptes[iter->pos];
  943. }
  944. }
  945. return NULL;
  946. }
  947. static void drop_spte(struct kvm *kvm, u64 *sptep)
  948. {
  949. if (mmu_spte_clear_track_bits(sptep))
  950. rmap_remove(kvm, sptep);
  951. }
  952. static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
  953. {
  954. if (is_large_pte(*sptep)) {
  955. WARN_ON(page_header(__pa(sptep))->role.level ==
  956. PT_PAGE_TABLE_LEVEL);
  957. drop_spte(kvm, sptep);
  958. --kvm->stat.lpages;
  959. return true;
  960. }
  961. return false;
  962. }
  963. static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
  964. {
  965. if (__drop_large_spte(vcpu->kvm, sptep))
  966. kvm_flush_remote_tlbs(vcpu->kvm);
  967. }
  968. /*
  969. * Write-protect on the specified @sptep, @pt_protect indicates whether
  970. * spte write-protection is caused by protecting shadow page table.
  971. *
  972. * Note: write protection is difference between dirty logging and spte
  973. * protection:
  974. * - for dirty logging, the spte can be set to writable at anytime if
  975. * its dirty bitmap is properly set.
  976. * - for spte protection, the spte can be writable only after unsync-ing
  977. * shadow page.
  978. *
  979. * Return true if tlb need be flushed.
  980. */
  981. static bool spte_write_protect(struct kvm *kvm, u64 *sptep, bool pt_protect)
  982. {
  983. u64 spte = *sptep;
  984. if (!is_writable_pte(spte) &&
  985. !(pt_protect && spte_is_locklessly_modifiable(spte)))
  986. return false;
  987. rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
  988. if (pt_protect)
  989. spte &= ~SPTE_MMU_WRITEABLE;
  990. spte = spte & ~PT_WRITABLE_MASK;
  991. return mmu_spte_update(sptep, spte);
  992. }
  993. static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
  994. bool pt_protect)
  995. {
  996. u64 *sptep;
  997. struct rmap_iterator iter;
  998. bool flush = false;
  999. for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
  1000. BUG_ON(!(*sptep & PT_PRESENT_MASK));
  1001. flush |= spte_write_protect(kvm, sptep, pt_protect);
  1002. sptep = rmap_get_next(&iter);
  1003. }
  1004. return flush;
  1005. }
  1006. /**
  1007. * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
  1008. * @kvm: kvm instance
  1009. * @slot: slot to protect
  1010. * @gfn_offset: start of the BITS_PER_LONG pages we care about
  1011. * @mask: indicates which pages we should protect
  1012. *
  1013. * Used when we do not need to care about huge page mappings: e.g. during dirty
  1014. * logging we do not have any such mappings.
  1015. */
  1016. void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
  1017. struct kvm_memory_slot *slot,
  1018. gfn_t gfn_offset, unsigned long mask)
  1019. {
  1020. unsigned long *rmapp;
  1021. while (mask) {
  1022. rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
  1023. PT_PAGE_TABLE_LEVEL, slot);
  1024. __rmap_write_protect(kvm, rmapp, false);
  1025. /* clear the first set bit */
  1026. mask &= mask - 1;
  1027. }
  1028. }
  1029. static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
  1030. {
  1031. struct kvm_memory_slot *slot;
  1032. unsigned long *rmapp;
  1033. int i;
  1034. bool write_protected = false;
  1035. slot = gfn_to_memslot(kvm, gfn);
  1036. for (i = PT_PAGE_TABLE_LEVEL;
  1037. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  1038. rmapp = __gfn_to_rmap(gfn, i, slot);
  1039. write_protected |= __rmap_write_protect(kvm, rmapp, true);
  1040. }
  1041. return write_protected;
  1042. }
  1043. static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
  1044. struct kvm_memory_slot *slot, gfn_t gfn, int level,
  1045. unsigned long data)
  1046. {
  1047. u64 *sptep;
  1048. struct rmap_iterator iter;
  1049. int need_tlb_flush = 0;
  1050. while ((sptep = rmap_get_first(*rmapp, &iter))) {
  1051. BUG_ON(!(*sptep & PT_PRESENT_MASK));
  1052. rmap_printk("kvm_rmap_unmap_hva: spte %p %llx gfn %llx (%d)\n",
  1053. sptep, *sptep, gfn, level);
  1054. drop_spte(kvm, sptep);
  1055. need_tlb_flush = 1;
  1056. }
  1057. return need_tlb_flush;
  1058. }
  1059. static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
  1060. struct kvm_memory_slot *slot, gfn_t gfn, int level,
  1061. unsigned long data)
  1062. {
  1063. u64 *sptep;
  1064. struct rmap_iterator iter;
  1065. int need_flush = 0;
  1066. u64 new_spte;
  1067. pte_t *ptep = (pte_t *)data;
  1068. pfn_t new_pfn;
  1069. WARN_ON(pte_huge(*ptep));
  1070. new_pfn = pte_pfn(*ptep);
  1071. for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
  1072. BUG_ON(!is_shadow_present_pte(*sptep));
  1073. rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
  1074. sptep, *sptep, gfn, level);
  1075. need_flush = 1;
  1076. if (pte_write(*ptep)) {
  1077. drop_spte(kvm, sptep);
  1078. sptep = rmap_get_first(*rmapp, &iter);
  1079. } else {
  1080. new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
  1081. new_spte |= (u64)new_pfn << PAGE_SHIFT;
  1082. new_spte &= ~PT_WRITABLE_MASK;
  1083. new_spte &= ~SPTE_HOST_WRITEABLE;
  1084. new_spte &= ~shadow_accessed_mask;
  1085. mmu_spte_clear_track_bits(sptep);
  1086. mmu_spte_set(sptep, new_spte);
  1087. sptep = rmap_get_next(&iter);
  1088. }
  1089. }
  1090. if (need_flush)
  1091. kvm_flush_remote_tlbs(kvm);
  1092. return 0;
  1093. }
  1094. static int kvm_handle_hva_range(struct kvm *kvm,
  1095. unsigned long start,
  1096. unsigned long end,
  1097. unsigned long data,
  1098. int (*handler)(struct kvm *kvm,
  1099. unsigned long *rmapp,
  1100. struct kvm_memory_slot *slot,
  1101. gfn_t gfn,
  1102. int level,
  1103. unsigned long data))
  1104. {
  1105. int j;
  1106. int ret = 0;
  1107. struct kvm_memslots *slots;
  1108. struct kvm_memory_slot *memslot;
  1109. slots = kvm_memslots(kvm);
  1110. kvm_for_each_memslot(memslot, slots) {
  1111. unsigned long hva_start, hva_end;
  1112. gfn_t gfn_start, gfn_end;
  1113. hva_start = max(start, memslot->userspace_addr);
  1114. hva_end = min(end, memslot->userspace_addr +
  1115. (memslot->npages << PAGE_SHIFT));
  1116. if (hva_start >= hva_end)
  1117. continue;
  1118. /*
  1119. * {gfn(page) | page intersects with [hva_start, hva_end)} =
  1120. * {gfn_start, gfn_start+1, ..., gfn_end-1}.
  1121. */
  1122. gfn_start = hva_to_gfn_memslot(hva_start, memslot);
  1123. gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
  1124. for (j = PT_PAGE_TABLE_LEVEL;
  1125. j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) {
  1126. unsigned long idx, idx_end;
  1127. unsigned long *rmapp;
  1128. gfn_t gfn = gfn_start;
  1129. /*
  1130. * {idx(page_j) | page_j intersects with
  1131. * [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}.
  1132. */
  1133. idx = gfn_to_index(gfn_start, memslot->base_gfn, j);
  1134. idx_end = gfn_to_index(gfn_end - 1, memslot->base_gfn, j);
  1135. rmapp = __gfn_to_rmap(gfn_start, j, memslot);
  1136. for (; idx <= idx_end;
  1137. ++idx, gfn += (1UL << KVM_HPAGE_GFN_SHIFT(j)))
  1138. ret |= handler(kvm, rmapp++, memslot,
  1139. gfn, j, data);
  1140. }
  1141. }
  1142. return ret;
  1143. }
  1144. static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
  1145. unsigned long data,
  1146. int (*handler)(struct kvm *kvm, unsigned long *rmapp,
  1147. struct kvm_memory_slot *slot,
  1148. gfn_t gfn, int level,
  1149. unsigned long data))
  1150. {
  1151. return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
  1152. }
  1153. int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
  1154. {
  1155. return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
  1156. }
  1157. int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
  1158. {
  1159. return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
  1160. }
  1161. void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
  1162. {
  1163. kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
  1164. }
  1165. static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
  1166. struct kvm_memory_slot *slot, gfn_t gfn, int level,
  1167. unsigned long data)
  1168. {
  1169. u64 *sptep;
  1170. struct rmap_iterator uninitialized_var(iter);
  1171. int young = 0;
  1172. BUG_ON(!shadow_accessed_mask);
  1173. for (sptep = rmap_get_first(*rmapp, &iter); sptep;
  1174. sptep = rmap_get_next(&iter)) {
  1175. BUG_ON(!is_shadow_present_pte(*sptep));
  1176. if (*sptep & shadow_accessed_mask) {
  1177. young = 1;
  1178. clear_bit((ffs(shadow_accessed_mask) - 1),
  1179. (unsigned long *)sptep);
  1180. }
  1181. }
  1182. trace_kvm_age_page(gfn, level, slot, young);
  1183. return young;
  1184. }
  1185. static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
  1186. struct kvm_memory_slot *slot, gfn_t gfn,
  1187. int level, unsigned long data)
  1188. {
  1189. u64 *sptep;
  1190. struct rmap_iterator iter;
  1191. int young = 0;
  1192. /*
  1193. * If there's no access bit in the secondary pte set by the
  1194. * hardware it's up to gup-fast/gup to set the access bit in
  1195. * the primary pte or in the page structure.
  1196. */
  1197. if (!shadow_accessed_mask)
  1198. goto out;
  1199. for (sptep = rmap_get_first(*rmapp, &iter); sptep;
  1200. sptep = rmap_get_next(&iter)) {
  1201. BUG_ON(!is_shadow_present_pte(*sptep));
  1202. if (*sptep & shadow_accessed_mask) {
  1203. young = 1;
  1204. break;
  1205. }
  1206. }
  1207. out:
  1208. return young;
  1209. }
  1210. #define RMAP_RECYCLE_THRESHOLD 1000
  1211. static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  1212. {
  1213. unsigned long *rmapp;
  1214. struct kvm_mmu_page *sp;
  1215. sp = page_header(__pa(spte));
  1216. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  1217. kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, gfn, sp->role.level, 0);
  1218. kvm_flush_remote_tlbs(vcpu->kvm);
  1219. }
  1220. int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
  1221. {
  1222. /*
  1223. * In case of absence of EPT Access and Dirty Bits supports,
  1224. * emulate the accessed bit for EPT, by checking if this page has
  1225. * an EPT mapping, and clearing it if it does. On the next access,
  1226. * a new EPT mapping will be established.
  1227. * This has some overhead, but not as much as the cost of swapping
  1228. * out actively used pages or breaking up actively used hugepages.
  1229. */
  1230. if (!shadow_accessed_mask) {
  1231. /*
  1232. * We are holding the kvm->mmu_lock, and we are blowing up
  1233. * shadow PTEs. MMU notifier consumers need to be kept at bay.
  1234. * This is correct as long as we don't decouple the mmu_lock
  1235. * protected regions (like invalidate_range_start|end does).
  1236. */
  1237. kvm->mmu_notifier_seq++;
  1238. return kvm_handle_hva_range(kvm, start, end, 0,
  1239. kvm_unmap_rmapp);
  1240. }
  1241. return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
  1242. }
  1243. int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
  1244. {
  1245. return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
  1246. }
  1247. #ifdef MMU_DEBUG
  1248. static int is_empty_shadow_page(u64 *spt)
  1249. {
  1250. u64 *pos;
  1251. u64 *end;
  1252. for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
  1253. if (is_shadow_present_pte(*pos)) {
  1254. printk(KERN_ERR "%s: %p %llx\n", __func__,
  1255. pos, *pos);
  1256. return 0;
  1257. }
  1258. return 1;
  1259. }
  1260. #endif
  1261. /*
  1262. * This value is the sum of all of the kvm instances's
  1263. * kvm->arch.n_used_mmu_pages values. We need a global,
  1264. * aggregate version in order to make the slab shrinker
  1265. * faster
  1266. */
  1267. static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
  1268. {
  1269. kvm->arch.n_used_mmu_pages += nr;
  1270. percpu_counter_add(&kvm_total_used_mmu_pages, nr);
  1271. }
  1272. static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
  1273. {
  1274. ASSERT(is_empty_shadow_page(sp->spt));
  1275. hlist_del(&sp->hash_link);
  1276. list_del(&sp->link);
  1277. free_page((unsigned long)sp->spt);
  1278. if (!sp->role.direct)
  1279. free_page((unsigned long)sp->gfns);
  1280. kmem_cache_free(mmu_page_header_cache, sp);
  1281. }
  1282. static unsigned kvm_page_table_hashfn(gfn_t gfn)
  1283. {
  1284. return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
  1285. }
  1286. static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
  1287. struct kvm_mmu_page *sp, u64 *parent_pte)
  1288. {
  1289. if (!parent_pte)
  1290. return;
  1291. pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
  1292. }
  1293. static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
  1294. u64 *parent_pte)
  1295. {
  1296. pte_list_remove(parent_pte, &sp->parent_ptes);
  1297. }
  1298. static void drop_parent_pte(struct kvm_mmu_page *sp,
  1299. u64 *parent_pte)
  1300. {
  1301. mmu_page_remove_parent_pte(sp, parent_pte);
  1302. mmu_spte_clear_no_track(parent_pte);
  1303. }
  1304. static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
  1305. u64 *parent_pte, int direct)
  1306. {
  1307. struct kvm_mmu_page *sp;
  1308. sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
  1309. sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
  1310. if (!direct)
  1311. sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
  1312. set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
  1313. /*
  1314. * The active_mmu_pages list is the FIFO list, do not move the
  1315. * page until it is zapped. kvm_zap_obsolete_pages depends on
  1316. * this feature. See the comments in kvm_zap_obsolete_pages().
  1317. */
  1318. list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
  1319. sp->parent_ptes = 0;
  1320. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  1321. kvm_mod_used_mmu_pages(vcpu->kvm, +1);
  1322. return sp;
  1323. }
  1324. static void mark_unsync(u64 *spte);
  1325. static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
  1326. {
  1327. pte_list_walk(&sp->parent_ptes, mark_unsync);
  1328. }
  1329. static void mark_unsync(u64 *spte)
  1330. {
  1331. struct kvm_mmu_page *sp;
  1332. unsigned int index;
  1333. sp = page_header(__pa(spte));
  1334. index = spte - sp->spt;
  1335. if (__test_and_set_bit(index, sp->unsync_child_bitmap))
  1336. return;
  1337. if (sp->unsync_children++)
  1338. return;
  1339. kvm_mmu_mark_parents_unsync(sp);
  1340. }
  1341. static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
  1342. struct kvm_mmu_page *sp)
  1343. {
  1344. return 1;
  1345. }
  1346. static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  1347. {
  1348. }
  1349. static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
  1350. struct kvm_mmu_page *sp, u64 *spte,
  1351. const void *pte)
  1352. {
  1353. WARN_ON(1);
  1354. }
  1355. #define KVM_PAGE_ARRAY_NR 16
  1356. struct kvm_mmu_pages {
  1357. struct mmu_page_and_offset {
  1358. struct kvm_mmu_page *sp;
  1359. unsigned int idx;
  1360. } page[KVM_PAGE_ARRAY_NR];
  1361. unsigned int nr;
  1362. };
  1363. static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
  1364. int idx)
  1365. {
  1366. int i;
  1367. if (sp->unsync)
  1368. for (i=0; i < pvec->nr; i++)
  1369. if (pvec->page[i].sp == sp)
  1370. return 0;
  1371. pvec->page[pvec->nr].sp = sp;
  1372. pvec->page[pvec->nr].idx = idx;
  1373. pvec->nr++;
  1374. return (pvec->nr == KVM_PAGE_ARRAY_NR);
  1375. }
  1376. static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
  1377. struct kvm_mmu_pages *pvec)
  1378. {
  1379. int i, ret, nr_unsync_leaf = 0;
  1380. for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
  1381. struct kvm_mmu_page *child;
  1382. u64 ent = sp->spt[i];
  1383. if (!is_shadow_present_pte(ent) || is_large_pte(ent))
  1384. goto clear_child_bitmap;
  1385. child = page_header(ent & PT64_BASE_ADDR_MASK);
  1386. if (child->unsync_children) {
  1387. if (mmu_pages_add(pvec, child, i))
  1388. return -ENOSPC;
  1389. ret = __mmu_unsync_walk(child, pvec);
  1390. if (!ret)
  1391. goto clear_child_bitmap;
  1392. else if (ret > 0)
  1393. nr_unsync_leaf += ret;
  1394. else
  1395. return ret;
  1396. } else if (child->unsync) {
  1397. nr_unsync_leaf++;
  1398. if (mmu_pages_add(pvec, child, i))
  1399. return -ENOSPC;
  1400. } else
  1401. goto clear_child_bitmap;
  1402. continue;
  1403. clear_child_bitmap:
  1404. __clear_bit(i, sp->unsync_child_bitmap);
  1405. sp->unsync_children--;
  1406. WARN_ON((int)sp->unsync_children < 0);
  1407. }
  1408. return nr_unsync_leaf;
  1409. }
  1410. static int mmu_unsync_walk(struct kvm_mmu_page *sp,
  1411. struct kvm_mmu_pages *pvec)
  1412. {
  1413. if (!sp->unsync_children)
  1414. return 0;
  1415. mmu_pages_add(pvec, sp, 0);
  1416. return __mmu_unsync_walk(sp, pvec);
  1417. }
  1418. static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  1419. {
  1420. WARN_ON(!sp->unsync);
  1421. trace_kvm_mmu_sync_page(sp);
  1422. sp->unsync = 0;
  1423. --kvm->stat.mmu_unsync;
  1424. }
  1425. static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
  1426. struct list_head *invalid_list);
  1427. static void kvm_mmu_commit_zap_page(struct kvm *kvm,
  1428. struct list_head *invalid_list);
  1429. /*
  1430. * NOTE: we should pay more attention on the zapped-obsolete page
  1431. * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
  1432. * since it has been deleted from active_mmu_pages but still can be found
  1433. * at hast list.
  1434. *
  1435. * for_each_gfn_indirect_valid_sp has skipped that kind of page and
  1436. * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
  1437. * all the obsolete pages.
  1438. */
  1439. #define for_each_gfn_sp(_kvm, _sp, _gfn) \
  1440. hlist_for_each_entry(_sp, \
  1441. &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
  1442. if ((_sp)->gfn != (_gfn)) {} else
  1443. #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
  1444. for_each_gfn_sp(_kvm, _sp, _gfn) \
  1445. if ((_sp)->role.direct || (_sp)->role.invalid) {} else
  1446. /* @sp->gfn should be write-protected at the call site */
  1447. static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  1448. struct list_head *invalid_list, bool clear_unsync)
  1449. {
  1450. if (sp->role.cr4_pae != !!is_pae(vcpu)) {
  1451. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
  1452. return 1;
  1453. }
  1454. if (clear_unsync)
  1455. kvm_unlink_unsync_page(vcpu->kvm, sp);
  1456. if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
  1457. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
  1458. return 1;
  1459. }
  1460. kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
  1461. return 0;
  1462. }
  1463. static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
  1464. struct kvm_mmu_page *sp)
  1465. {
  1466. LIST_HEAD(invalid_list);
  1467. int ret;
  1468. ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
  1469. if (ret)
  1470. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1471. return ret;
  1472. }
  1473. #ifdef CONFIG_KVM_MMU_AUDIT
  1474. #include "mmu_audit.c"
  1475. #else
  1476. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
  1477. static void mmu_audit_disable(void) { }
  1478. #endif
  1479. static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  1480. struct list_head *invalid_list)
  1481. {
  1482. return __kvm_sync_page(vcpu, sp, invalid_list, true);
  1483. }
  1484. /* @gfn should be write-protected at the call site */
  1485. static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
  1486. {
  1487. struct kvm_mmu_page *s;
  1488. LIST_HEAD(invalid_list);
  1489. bool flush = false;
  1490. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
  1491. if (!s->unsync)
  1492. continue;
  1493. WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
  1494. kvm_unlink_unsync_page(vcpu->kvm, s);
  1495. if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
  1496. (vcpu->arch.mmu.sync_page(vcpu, s))) {
  1497. kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
  1498. continue;
  1499. }
  1500. flush = true;
  1501. }
  1502. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1503. if (flush)
  1504. kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
  1505. }
  1506. struct mmu_page_path {
  1507. struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
  1508. unsigned int idx[PT64_ROOT_LEVEL-1];
  1509. };
  1510. #define for_each_sp(pvec, sp, parents, i) \
  1511. for (i = mmu_pages_next(&pvec, &parents, -1), \
  1512. sp = pvec.page[i].sp; \
  1513. i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
  1514. i = mmu_pages_next(&pvec, &parents, i))
  1515. static int mmu_pages_next(struct kvm_mmu_pages *pvec,
  1516. struct mmu_page_path *parents,
  1517. int i)
  1518. {
  1519. int n;
  1520. for (n = i+1; n < pvec->nr; n++) {
  1521. struct kvm_mmu_page *sp = pvec->page[n].sp;
  1522. if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
  1523. parents->idx[0] = pvec->page[n].idx;
  1524. return n;
  1525. }
  1526. parents->parent[sp->role.level-2] = sp;
  1527. parents->idx[sp->role.level-1] = pvec->page[n].idx;
  1528. }
  1529. return n;
  1530. }
  1531. static void mmu_pages_clear_parents(struct mmu_page_path *parents)
  1532. {
  1533. struct kvm_mmu_page *sp;
  1534. unsigned int level = 0;
  1535. do {
  1536. unsigned int idx = parents->idx[level];
  1537. sp = parents->parent[level];
  1538. if (!sp)
  1539. return;
  1540. --sp->unsync_children;
  1541. WARN_ON((int)sp->unsync_children < 0);
  1542. __clear_bit(idx, sp->unsync_child_bitmap);
  1543. level++;
  1544. } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
  1545. }
  1546. static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
  1547. struct mmu_page_path *parents,
  1548. struct kvm_mmu_pages *pvec)
  1549. {
  1550. parents->parent[parent->role.level-1] = NULL;
  1551. pvec->nr = 0;
  1552. }
  1553. static void mmu_sync_children(struct kvm_vcpu *vcpu,
  1554. struct kvm_mmu_page *parent)
  1555. {
  1556. int i;
  1557. struct kvm_mmu_page *sp;
  1558. struct mmu_page_path parents;
  1559. struct kvm_mmu_pages pages;
  1560. LIST_HEAD(invalid_list);
  1561. kvm_mmu_pages_init(parent, &parents, &pages);
  1562. while (mmu_unsync_walk(parent, &pages)) {
  1563. bool protected = false;
  1564. for_each_sp(pages, sp, parents, i)
  1565. protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
  1566. if (protected)
  1567. kvm_flush_remote_tlbs(vcpu->kvm);
  1568. for_each_sp(pages, sp, parents, i) {
  1569. kvm_sync_page(vcpu, sp, &invalid_list);
  1570. mmu_pages_clear_parents(&parents);
  1571. }
  1572. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1573. cond_resched_lock(&vcpu->kvm->mmu_lock);
  1574. kvm_mmu_pages_init(parent, &parents, &pages);
  1575. }
  1576. }
  1577. static void init_shadow_page_table(struct kvm_mmu_page *sp)
  1578. {
  1579. int i;
  1580. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  1581. sp->spt[i] = 0ull;
  1582. }
  1583. static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
  1584. {
  1585. sp->write_flooding_count = 0;
  1586. }
  1587. static void clear_sp_write_flooding_count(u64 *spte)
  1588. {
  1589. struct kvm_mmu_page *sp = page_header(__pa(spte));
  1590. __clear_sp_write_flooding_count(sp);
  1591. }
  1592. static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
  1593. {
  1594. return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
  1595. }
  1596. static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
  1597. gfn_t gfn,
  1598. gva_t gaddr,
  1599. unsigned level,
  1600. int direct,
  1601. unsigned access,
  1602. u64 *parent_pte)
  1603. {
  1604. union kvm_mmu_page_role role;
  1605. unsigned quadrant;
  1606. struct kvm_mmu_page *sp;
  1607. bool need_sync = false;
  1608. role = vcpu->arch.mmu.base_role;
  1609. role.level = level;
  1610. role.direct = direct;
  1611. if (role.direct)
  1612. role.cr4_pae = 0;
  1613. role.access = access;
  1614. if (!vcpu->arch.mmu.direct_map
  1615. && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
  1616. quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
  1617. quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
  1618. role.quadrant = quadrant;
  1619. }
  1620. for_each_gfn_sp(vcpu->kvm, sp, gfn) {
  1621. if (is_obsolete_sp(vcpu->kvm, sp))
  1622. continue;
  1623. if (!need_sync && sp->unsync)
  1624. need_sync = true;
  1625. if (sp->role.word != role.word)
  1626. continue;
  1627. if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
  1628. break;
  1629. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  1630. if (sp->unsync_children) {
  1631. kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
  1632. kvm_mmu_mark_parents_unsync(sp);
  1633. } else if (sp->unsync)
  1634. kvm_mmu_mark_parents_unsync(sp);
  1635. __clear_sp_write_flooding_count(sp);
  1636. trace_kvm_mmu_get_page(sp, false);
  1637. return sp;
  1638. }
  1639. ++vcpu->kvm->stat.mmu_cache_miss;
  1640. sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
  1641. if (!sp)
  1642. return sp;
  1643. sp->gfn = gfn;
  1644. sp->role = role;
  1645. hlist_add_head(&sp->hash_link,
  1646. &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
  1647. if (!direct) {
  1648. if (rmap_write_protect(vcpu->kvm, gfn))
  1649. kvm_flush_remote_tlbs(vcpu->kvm);
  1650. if (level > PT_PAGE_TABLE_LEVEL && need_sync)
  1651. kvm_sync_pages(vcpu, gfn);
  1652. account_shadowed(vcpu->kvm, gfn);
  1653. }
  1654. sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
  1655. init_shadow_page_table(sp);
  1656. trace_kvm_mmu_get_page(sp, true);
  1657. return sp;
  1658. }
  1659. static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
  1660. struct kvm_vcpu *vcpu, u64 addr)
  1661. {
  1662. iterator->addr = addr;
  1663. iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
  1664. iterator->level = vcpu->arch.mmu.shadow_root_level;
  1665. if (iterator->level == PT64_ROOT_LEVEL &&
  1666. vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
  1667. !vcpu->arch.mmu.direct_map)
  1668. --iterator->level;
  1669. if (iterator->level == PT32E_ROOT_LEVEL) {
  1670. iterator->shadow_addr
  1671. = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
  1672. iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
  1673. --iterator->level;
  1674. if (!iterator->shadow_addr)
  1675. iterator->level = 0;
  1676. }
  1677. }
  1678. static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
  1679. {
  1680. if (iterator->level < PT_PAGE_TABLE_LEVEL)
  1681. return false;
  1682. iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
  1683. iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
  1684. return true;
  1685. }
  1686. static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
  1687. u64 spte)
  1688. {
  1689. if (is_last_spte(spte, iterator->level)) {
  1690. iterator->level = 0;
  1691. return;
  1692. }
  1693. iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
  1694. --iterator->level;
  1695. }
  1696. static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
  1697. {
  1698. return __shadow_walk_next(iterator, *iterator->sptep);
  1699. }
  1700. static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp, bool accessed)
  1701. {
  1702. u64 spte;
  1703. BUILD_BUG_ON(VMX_EPT_READABLE_MASK != PT_PRESENT_MASK ||
  1704. VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
  1705. spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
  1706. shadow_user_mask | shadow_x_mask;
  1707. if (accessed)
  1708. spte |= shadow_accessed_mask;
  1709. mmu_spte_set(sptep, spte);
  1710. }
  1711. static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1712. unsigned direct_access)
  1713. {
  1714. if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
  1715. struct kvm_mmu_page *child;
  1716. /*
  1717. * For the direct sp, if the guest pte's dirty bit
  1718. * changed form clean to dirty, it will corrupt the
  1719. * sp's access: allow writable in the read-only sp,
  1720. * so we should update the spte at this point to get
  1721. * a new sp with the correct access.
  1722. */
  1723. child = page_header(*sptep & PT64_BASE_ADDR_MASK);
  1724. if (child->role.access == direct_access)
  1725. return;
  1726. drop_parent_pte(child, sptep);
  1727. kvm_flush_remote_tlbs(vcpu->kvm);
  1728. }
  1729. }
  1730. static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
  1731. u64 *spte)
  1732. {
  1733. u64 pte;
  1734. struct kvm_mmu_page *child;
  1735. pte = *spte;
  1736. if (is_shadow_present_pte(pte)) {
  1737. if (is_last_spte(pte, sp->role.level)) {
  1738. drop_spte(kvm, spte);
  1739. if (is_large_pte(pte))
  1740. --kvm->stat.lpages;
  1741. } else {
  1742. child = page_header(pte & PT64_BASE_ADDR_MASK);
  1743. drop_parent_pte(child, spte);
  1744. }
  1745. return true;
  1746. }
  1747. if (is_mmio_spte(pte))
  1748. mmu_spte_clear_no_track(spte);
  1749. return false;
  1750. }
  1751. static void kvm_mmu_page_unlink_children(struct kvm *kvm,
  1752. struct kvm_mmu_page *sp)
  1753. {
  1754. unsigned i;
  1755. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  1756. mmu_page_zap_pte(kvm, sp, sp->spt + i);
  1757. }
  1758. static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
  1759. {
  1760. mmu_page_remove_parent_pte(sp, parent_pte);
  1761. }
  1762. static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
  1763. {
  1764. u64 *sptep;
  1765. struct rmap_iterator iter;
  1766. while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
  1767. drop_parent_pte(sp, sptep);
  1768. }
  1769. static int mmu_zap_unsync_children(struct kvm *kvm,
  1770. struct kvm_mmu_page *parent,
  1771. struct list_head *invalid_list)
  1772. {
  1773. int i, zapped = 0;
  1774. struct mmu_page_path parents;
  1775. struct kvm_mmu_pages pages;
  1776. if (parent->role.level == PT_PAGE_TABLE_LEVEL)
  1777. return 0;
  1778. kvm_mmu_pages_init(parent, &parents, &pages);
  1779. while (mmu_unsync_walk(parent, &pages)) {
  1780. struct kvm_mmu_page *sp;
  1781. for_each_sp(pages, sp, parents, i) {
  1782. kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
  1783. mmu_pages_clear_parents(&parents);
  1784. zapped++;
  1785. }
  1786. kvm_mmu_pages_init(parent, &parents, &pages);
  1787. }
  1788. return zapped;
  1789. }
  1790. static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
  1791. struct list_head *invalid_list)
  1792. {
  1793. int ret;
  1794. trace_kvm_mmu_prepare_zap_page(sp);
  1795. ++kvm->stat.mmu_shadow_zapped;
  1796. ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
  1797. kvm_mmu_page_unlink_children(kvm, sp);
  1798. kvm_mmu_unlink_parents(kvm, sp);
  1799. if (!sp->role.invalid && !sp->role.direct)
  1800. unaccount_shadowed(kvm, sp->gfn);
  1801. if (sp->unsync)
  1802. kvm_unlink_unsync_page(kvm, sp);
  1803. if (!sp->root_count) {
  1804. /* Count self */
  1805. ret++;
  1806. list_move(&sp->link, invalid_list);
  1807. kvm_mod_used_mmu_pages(kvm, -1);
  1808. } else {
  1809. list_move(&sp->link, &kvm->arch.active_mmu_pages);
  1810. /*
  1811. * The obsolete pages can not be used on any vcpus.
  1812. * See the comments in kvm_mmu_invalidate_zap_all_pages().
  1813. */
  1814. if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
  1815. kvm_reload_remote_mmus(kvm);
  1816. }
  1817. sp->role.invalid = 1;
  1818. return ret;
  1819. }
  1820. static void kvm_mmu_commit_zap_page(struct kvm *kvm,
  1821. struct list_head *invalid_list)
  1822. {
  1823. struct kvm_mmu_page *sp, *nsp;
  1824. if (list_empty(invalid_list))
  1825. return;
  1826. /*
  1827. * wmb: make sure everyone sees our modifications to the page tables
  1828. * rmb: make sure we see changes to vcpu->mode
  1829. */
  1830. smp_mb();
  1831. /*
  1832. * Wait for all vcpus to exit guest mode and/or lockless shadow
  1833. * page table walks.
  1834. */
  1835. kvm_flush_remote_tlbs(kvm);
  1836. list_for_each_entry_safe(sp, nsp, invalid_list, link) {
  1837. WARN_ON(!sp->role.invalid || sp->root_count);
  1838. kvm_mmu_free_page(sp);
  1839. }
  1840. }
  1841. static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
  1842. struct list_head *invalid_list)
  1843. {
  1844. struct kvm_mmu_page *sp;
  1845. if (list_empty(&kvm->arch.active_mmu_pages))
  1846. return false;
  1847. sp = list_entry(kvm->arch.active_mmu_pages.prev,
  1848. struct kvm_mmu_page, link);
  1849. kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
  1850. return true;
  1851. }
  1852. /*
  1853. * Changing the number of mmu pages allocated to the vm
  1854. * Note: if goal_nr_mmu_pages is too small, you will get dead lock
  1855. */
  1856. void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
  1857. {
  1858. LIST_HEAD(invalid_list);
  1859. spin_lock(&kvm->mmu_lock);
  1860. if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
  1861. /* Need to free some mmu pages to achieve the goal. */
  1862. while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
  1863. if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
  1864. break;
  1865. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  1866. goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
  1867. }
  1868. kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
  1869. spin_unlock(&kvm->mmu_lock);
  1870. }
  1871. int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
  1872. {
  1873. struct kvm_mmu_page *sp;
  1874. LIST_HEAD(invalid_list);
  1875. int r;
  1876. pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
  1877. r = 0;
  1878. spin_lock(&kvm->mmu_lock);
  1879. for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
  1880. pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
  1881. sp->role.word);
  1882. r = 1;
  1883. kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
  1884. }
  1885. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  1886. spin_unlock(&kvm->mmu_lock);
  1887. return r;
  1888. }
  1889. EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
  1890. /*
  1891. * The function is based on mtrr_type_lookup() in
  1892. * arch/x86/kernel/cpu/mtrr/generic.c
  1893. */
  1894. static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
  1895. u64 start, u64 end)
  1896. {
  1897. int i;
  1898. u64 base, mask;
  1899. u8 prev_match, curr_match;
  1900. int num_var_ranges = KVM_NR_VAR_MTRR;
  1901. if (!mtrr_state->enabled)
  1902. return 0xFF;
  1903. /* Make end inclusive end, instead of exclusive */
  1904. end--;
  1905. /* Look in fixed ranges. Just return the type as per start */
  1906. if (mtrr_state->have_fixed && (start < 0x100000)) {
  1907. int idx;
  1908. if (start < 0x80000) {
  1909. idx = 0;
  1910. idx += (start >> 16);
  1911. return mtrr_state->fixed_ranges[idx];
  1912. } else if (start < 0xC0000) {
  1913. idx = 1 * 8;
  1914. idx += ((start - 0x80000) >> 14);
  1915. return mtrr_state->fixed_ranges[idx];
  1916. } else if (start < 0x1000000) {
  1917. idx = 3 * 8;
  1918. idx += ((start - 0xC0000) >> 12);
  1919. return mtrr_state->fixed_ranges[idx];
  1920. }
  1921. }
  1922. /*
  1923. * Look in variable ranges
  1924. * Look of multiple ranges matching this address and pick type
  1925. * as per MTRR precedence
  1926. */
  1927. if (!(mtrr_state->enabled & 2))
  1928. return mtrr_state->def_type;
  1929. prev_match = 0xFF;
  1930. for (i = 0; i < num_var_ranges; ++i) {
  1931. unsigned short start_state, end_state;
  1932. if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
  1933. continue;
  1934. base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
  1935. (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
  1936. mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
  1937. (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
  1938. start_state = ((start & mask) == (base & mask));
  1939. end_state = ((end & mask) == (base & mask));
  1940. if (start_state != end_state)
  1941. return 0xFE;
  1942. if ((start & mask) != (base & mask))
  1943. continue;
  1944. curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
  1945. if (prev_match == 0xFF) {
  1946. prev_match = curr_match;
  1947. continue;
  1948. }
  1949. if (prev_match == MTRR_TYPE_UNCACHABLE ||
  1950. curr_match == MTRR_TYPE_UNCACHABLE)
  1951. return MTRR_TYPE_UNCACHABLE;
  1952. if ((prev_match == MTRR_TYPE_WRBACK &&
  1953. curr_match == MTRR_TYPE_WRTHROUGH) ||
  1954. (prev_match == MTRR_TYPE_WRTHROUGH &&
  1955. curr_match == MTRR_TYPE_WRBACK)) {
  1956. prev_match = MTRR_TYPE_WRTHROUGH;
  1957. curr_match = MTRR_TYPE_WRTHROUGH;
  1958. }
  1959. if (prev_match != curr_match)
  1960. return MTRR_TYPE_UNCACHABLE;
  1961. }
  1962. if (prev_match != 0xFF)
  1963. return prev_match;
  1964. return mtrr_state->def_type;
  1965. }
  1966. u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
  1967. {
  1968. u8 mtrr;
  1969. mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
  1970. (gfn << PAGE_SHIFT) + PAGE_SIZE);
  1971. if (mtrr == 0xfe || mtrr == 0xff)
  1972. mtrr = MTRR_TYPE_WRBACK;
  1973. return mtrr;
  1974. }
  1975. EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
  1976. static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  1977. {
  1978. trace_kvm_mmu_unsync_page(sp);
  1979. ++vcpu->kvm->stat.mmu_unsync;
  1980. sp->unsync = 1;
  1981. kvm_mmu_mark_parents_unsync(sp);
  1982. }
  1983. static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
  1984. {
  1985. struct kvm_mmu_page *s;
  1986. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
  1987. if (s->unsync)
  1988. continue;
  1989. WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
  1990. __kvm_unsync_page(vcpu, s);
  1991. }
  1992. }
  1993. static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
  1994. bool can_unsync)
  1995. {
  1996. struct kvm_mmu_page *s;
  1997. bool need_unsync = false;
  1998. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
  1999. if (!can_unsync)
  2000. return 1;
  2001. if (s->role.level != PT_PAGE_TABLE_LEVEL)
  2002. return 1;
  2003. if (!s->unsync)
  2004. need_unsync = true;
  2005. }
  2006. if (need_unsync)
  2007. kvm_unsync_pages(vcpu, gfn);
  2008. return 0;
  2009. }
  2010. static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  2011. unsigned pte_access, int level,
  2012. gfn_t gfn, pfn_t pfn, bool speculative,
  2013. bool can_unsync, bool host_writable)
  2014. {
  2015. u64 spte;
  2016. int ret = 0;
  2017. if (set_mmio_spte(vcpu->kvm, sptep, gfn, pfn, pte_access))
  2018. return 0;
  2019. spte = PT_PRESENT_MASK;
  2020. if (!speculative)
  2021. spte |= shadow_accessed_mask;
  2022. if (pte_access & ACC_EXEC_MASK)
  2023. spte |= shadow_x_mask;
  2024. else
  2025. spte |= shadow_nx_mask;
  2026. if (pte_access & ACC_USER_MASK)
  2027. spte |= shadow_user_mask;
  2028. if (level > PT_PAGE_TABLE_LEVEL)
  2029. spte |= PT_PAGE_SIZE_MASK;
  2030. if (tdp_enabled)
  2031. spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
  2032. kvm_is_reserved_pfn(pfn));
  2033. if (host_writable)
  2034. spte |= SPTE_HOST_WRITEABLE;
  2035. else
  2036. pte_access &= ~ACC_WRITE_MASK;
  2037. spte |= (u64)pfn << PAGE_SHIFT;
  2038. if (pte_access & ACC_WRITE_MASK) {
  2039. /*
  2040. * Other vcpu creates new sp in the window between
  2041. * mapping_level() and acquiring mmu-lock. We can
  2042. * allow guest to retry the access, the mapping can
  2043. * be fixed if guest refault.
  2044. */
  2045. if (level > PT_PAGE_TABLE_LEVEL &&
  2046. has_wrprotected_page(vcpu->kvm, gfn, level))
  2047. goto done;
  2048. spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
  2049. /*
  2050. * Optimization: for pte sync, if spte was writable the hash
  2051. * lookup is unnecessary (and expensive). Write protection
  2052. * is responsibility of mmu_get_page / kvm_sync_page.
  2053. * Same reasoning can be applied to dirty page accounting.
  2054. */
  2055. if (!can_unsync && is_writable_pte(*sptep))
  2056. goto set_pte;
  2057. if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
  2058. pgprintk("%s: found shadow page for %llx, marking ro\n",
  2059. __func__, gfn);
  2060. ret = 1;
  2061. pte_access &= ~ACC_WRITE_MASK;
  2062. spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
  2063. }
  2064. }
  2065. if (pte_access & ACC_WRITE_MASK)
  2066. mark_page_dirty(vcpu->kvm, gfn);
  2067. set_pte:
  2068. if (mmu_spte_update(sptep, spte))
  2069. kvm_flush_remote_tlbs(vcpu->kvm);
  2070. done:
  2071. return ret;
  2072. }
  2073. static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  2074. unsigned pte_access, int write_fault, int *emulate,
  2075. int level, gfn_t gfn, pfn_t pfn, bool speculative,
  2076. bool host_writable)
  2077. {
  2078. int was_rmapped = 0;
  2079. int rmap_count;
  2080. pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
  2081. *sptep, write_fault, gfn);
  2082. if (is_rmap_spte(*sptep)) {
  2083. /*
  2084. * If we overwrite a PTE page pointer with a 2MB PMD, unlink
  2085. * the parent of the now unreachable PTE.
  2086. */
  2087. if (level > PT_PAGE_TABLE_LEVEL &&
  2088. !is_large_pte(*sptep)) {
  2089. struct kvm_mmu_page *child;
  2090. u64 pte = *sptep;
  2091. child = page_header(pte & PT64_BASE_ADDR_MASK);
  2092. drop_parent_pte(child, sptep);
  2093. kvm_flush_remote_tlbs(vcpu->kvm);
  2094. } else if (pfn != spte_to_pfn(*sptep)) {
  2095. pgprintk("hfn old %llx new %llx\n",
  2096. spte_to_pfn(*sptep), pfn);
  2097. drop_spte(vcpu->kvm, sptep);
  2098. kvm_flush_remote_tlbs(vcpu->kvm);
  2099. } else
  2100. was_rmapped = 1;
  2101. }
  2102. if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
  2103. true, host_writable)) {
  2104. if (write_fault)
  2105. *emulate = 1;
  2106. kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
  2107. }
  2108. if (unlikely(is_mmio_spte(*sptep) && emulate))
  2109. *emulate = 1;
  2110. pgprintk("%s: setting spte %llx\n", __func__, *sptep);
  2111. pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
  2112. is_large_pte(*sptep)? "2MB" : "4kB",
  2113. *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
  2114. *sptep, sptep);
  2115. if (!was_rmapped && is_large_pte(*sptep))
  2116. ++vcpu->kvm->stat.lpages;
  2117. if (is_shadow_present_pte(*sptep)) {
  2118. if (!was_rmapped) {
  2119. rmap_count = rmap_add(vcpu, sptep, gfn);
  2120. if (rmap_count > RMAP_RECYCLE_THRESHOLD)
  2121. rmap_recycle(vcpu, sptep, gfn);
  2122. }
  2123. }
  2124. kvm_release_pfn_clean(pfn);
  2125. }
  2126. static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
  2127. bool no_dirty_log)
  2128. {
  2129. struct kvm_memory_slot *slot;
  2130. slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
  2131. if (!slot)
  2132. return KVM_PFN_ERR_FAULT;
  2133. return gfn_to_pfn_memslot_atomic(slot, gfn);
  2134. }
  2135. static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
  2136. struct kvm_mmu_page *sp,
  2137. u64 *start, u64 *end)
  2138. {
  2139. struct page *pages[PTE_PREFETCH_NUM];
  2140. unsigned access = sp->role.access;
  2141. int i, ret;
  2142. gfn_t gfn;
  2143. gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
  2144. if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
  2145. return -1;
  2146. ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
  2147. if (ret <= 0)
  2148. return -1;
  2149. for (i = 0; i < ret; i++, gfn++, start++)
  2150. mmu_set_spte(vcpu, start, access, 0, NULL,
  2151. sp->role.level, gfn, page_to_pfn(pages[i]),
  2152. true, true);
  2153. return 0;
  2154. }
  2155. static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
  2156. struct kvm_mmu_page *sp, u64 *sptep)
  2157. {
  2158. u64 *spte, *start = NULL;
  2159. int i;
  2160. WARN_ON(!sp->role.direct);
  2161. i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
  2162. spte = sp->spt + i;
  2163. for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
  2164. if (is_shadow_present_pte(*spte) || spte == sptep) {
  2165. if (!start)
  2166. continue;
  2167. if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
  2168. break;
  2169. start = NULL;
  2170. } else if (!start)
  2171. start = spte;
  2172. }
  2173. }
  2174. static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
  2175. {
  2176. struct kvm_mmu_page *sp;
  2177. /*
  2178. * Since it's no accessed bit on EPT, it's no way to
  2179. * distinguish between actually accessed translations
  2180. * and prefetched, so disable pte prefetch if EPT is
  2181. * enabled.
  2182. */
  2183. if (!shadow_accessed_mask)
  2184. return;
  2185. sp = page_header(__pa(sptep));
  2186. if (sp->role.level > PT_PAGE_TABLE_LEVEL)
  2187. return;
  2188. __direct_pte_prefetch(vcpu, sp, sptep);
  2189. }
  2190. static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
  2191. int map_writable, int level, gfn_t gfn, pfn_t pfn,
  2192. bool prefault)
  2193. {
  2194. struct kvm_shadow_walk_iterator iterator;
  2195. struct kvm_mmu_page *sp;
  2196. int emulate = 0;
  2197. gfn_t pseudo_gfn;
  2198. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2199. return 0;
  2200. for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
  2201. if (iterator.level == level) {
  2202. mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
  2203. write, &emulate, level, gfn, pfn,
  2204. prefault, map_writable);
  2205. direct_pte_prefetch(vcpu, iterator.sptep);
  2206. ++vcpu->stat.pf_fixed;
  2207. break;
  2208. }
  2209. drop_large_spte(vcpu, iterator.sptep);
  2210. if (!is_shadow_present_pte(*iterator.sptep)) {
  2211. u64 base_addr = iterator.addr;
  2212. base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
  2213. pseudo_gfn = base_addr >> PAGE_SHIFT;
  2214. sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
  2215. iterator.level - 1,
  2216. 1, ACC_ALL, iterator.sptep);
  2217. link_shadow_page(iterator.sptep, sp, true);
  2218. }
  2219. }
  2220. return emulate;
  2221. }
  2222. static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
  2223. {
  2224. siginfo_t info;
  2225. info.si_signo = SIGBUS;
  2226. info.si_errno = 0;
  2227. info.si_code = BUS_MCEERR_AR;
  2228. info.si_addr = (void __user *)address;
  2229. info.si_addr_lsb = PAGE_SHIFT;
  2230. send_sig_info(SIGBUS, &info, tsk);
  2231. }
  2232. static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
  2233. {
  2234. /*
  2235. * Do not cache the mmio info caused by writing the readonly gfn
  2236. * into the spte otherwise read access on readonly gfn also can
  2237. * caused mmio page fault and treat it as mmio access.
  2238. * Return 1 to tell kvm to emulate it.
  2239. */
  2240. if (pfn == KVM_PFN_ERR_RO_FAULT)
  2241. return 1;
  2242. if (pfn == KVM_PFN_ERR_HWPOISON) {
  2243. kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
  2244. return 0;
  2245. }
  2246. return -EFAULT;
  2247. }
  2248. static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
  2249. gfn_t *gfnp, pfn_t *pfnp, int *levelp)
  2250. {
  2251. pfn_t pfn = *pfnp;
  2252. gfn_t gfn = *gfnp;
  2253. int level = *levelp;
  2254. /*
  2255. * Check if it's a transparent hugepage. If this would be an
  2256. * hugetlbfs page, level wouldn't be set to
  2257. * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
  2258. * here.
  2259. */
  2260. if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
  2261. level == PT_PAGE_TABLE_LEVEL &&
  2262. PageTransCompound(pfn_to_page(pfn)) &&
  2263. !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
  2264. unsigned long mask;
  2265. /*
  2266. * mmu_notifier_retry was successful and we hold the
  2267. * mmu_lock here, so the pmd can't become splitting
  2268. * from under us, and in turn
  2269. * __split_huge_page_refcount() can't run from under
  2270. * us and we can safely transfer the refcount from
  2271. * PG_tail to PG_head as we switch the pfn to tail to
  2272. * head.
  2273. */
  2274. *levelp = level = PT_DIRECTORY_LEVEL;
  2275. mask = KVM_PAGES_PER_HPAGE(level) - 1;
  2276. VM_BUG_ON((gfn & mask) != (pfn & mask));
  2277. if (pfn & mask) {
  2278. gfn &= ~mask;
  2279. *gfnp = gfn;
  2280. kvm_release_pfn_clean(pfn);
  2281. pfn &= ~mask;
  2282. kvm_get_pfn(pfn);
  2283. *pfnp = pfn;
  2284. }
  2285. }
  2286. }
  2287. static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
  2288. pfn_t pfn, unsigned access, int *ret_val)
  2289. {
  2290. bool ret = true;
  2291. /* The pfn is invalid, report the error! */
  2292. if (unlikely(is_error_pfn(pfn))) {
  2293. *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
  2294. goto exit;
  2295. }
  2296. if (unlikely(is_noslot_pfn(pfn)))
  2297. vcpu_cache_mmio_info(vcpu, gva, gfn, access);
  2298. ret = false;
  2299. exit:
  2300. return ret;
  2301. }
  2302. static bool page_fault_can_be_fast(u32 error_code)
  2303. {
  2304. /*
  2305. * Do not fix the mmio spte with invalid generation number which
  2306. * need to be updated by slow page fault path.
  2307. */
  2308. if (unlikely(error_code & PFERR_RSVD_MASK))
  2309. return false;
  2310. /*
  2311. * #PF can be fast only if the shadow page table is present and it
  2312. * is caused by write-protect, that means we just need change the
  2313. * W bit of the spte which can be done out of mmu-lock.
  2314. */
  2315. if (!(error_code & PFERR_PRESENT_MASK) ||
  2316. !(error_code & PFERR_WRITE_MASK))
  2317. return false;
  2318. return true;
  2319. }
  2320. static bool
  2321. fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  2322. u64 *sptep, u64 spte)
  2323. {
  2324. gfn_t gfn;
  2325. WARN_ON(!sp->role.direct);
  2326. /*
  2327. * The gfn of direct spte is stable since it is calculated
  2328. * by sp->gfn.
  2329. */
  2330. gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
  2331. if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
  2332. mark_page_dirty(vcpu->kvm, gfn);
  2333. return true;
  2334. }
  2335. /*
  2336. * Return value:
  2337. * - true: let the vcpu to access on the same address again.
  2338. * - false: let the real page fault path to fix it.
  2339. */
  2340. static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
  2341. u32 error_code)
  2342. {
  2343. struct kvm_shadow_walk_iterator iterator;
  2344. struct kvm_mmu_page *sp;
  2345. bool ret = false;
  2346. u64 spte = 0ull;
  2347. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2348. return false;
  2349. if (!page_fault_can_be_fast(error_code))
  2350. return false;
  2351. walk_shadow_page_lockless_begin(vcpu);
  2352. for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
  2353. if (!is_shadow_present_pte(spte) || iterator.level < level)
  2354. break;
  2355. /*
  2356. * If the mapping has been changed, let the vcpu fault on the
  2357. * same address again.
  2358. */
  2359. if (!is_rmap_spte(spte)) {
  2360. ret = true;
  2361. goto exit;
  2362. }
  2363. sp = page_header(__pa(iterator.sptep));
  2364. if (!is_last_spte(spte, sp->role.level))
  2365. goto exit;
  2366. /*
  2367. * Check if it is a spurious fault caused by TLB lazily flushed.
  2368. *
  2369. * Need not check the access of upper level table entries since
  2370. * they are always ACC_ALL.
  2371. */
  2372. if (is_writable_pte(spte)) {
  2373. ret = true;
  2374. goto exit;
  2375. }
  2376. /*
  2377. * Currently, to simplify the code, only the spte write-protected
  2378. * by dirty-log can be fast fixed.
  2379. */
  2380. if (!spte_is_locklessly_modifiable(spte))
  2381. goto exit;
  2382. /*
  2383. * Do not fix write-permission on the large spte since we only dirty
  2384. * the first page into the dirty-bitmap in fast_pf_fix_direct_spte()
  2385. * that means other pages are missed if its slot is dirty-logged.
  2386. *
  2387. * Instead, we let the slow page fault path create a normal spte to
  2388. * fix the access.
  2389. *
  2390. * See the comments in kvm_arch_commit_memory_region().
  2391. */
  2392. if (sp->role.level > PT_PAGE_TABLE_LEVEL)
  2393. goto exit;
  2394. /*
  2395. * Currently, fast page fault only works for direct mapping since
  2396. * the gfn is not stable for indirect shadow page.
  2397. * See Documentation/virtual/kvm/locking.txt to get more detail.
  2398. */
  2399. ret = fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte);
  2400. exit:
  2401. trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
  2402. spte, ret);
  2403. walk_shadow_page_lockless_end(vcpu);
  2404. return ret;
  2405. }
  2406. static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
  2407. gva_t gva, pfn_t *pfn, bool write, bool *writable);
  2408. static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
  2409. static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
  2410. gfn_t gfn, bool prefault)
  2411. {
  2412. int r;
  2413. int level;
  2414. int force_pt_level;
  2415. pfn_t pfn;
  2416. unsigned long mmu_seq;
  2417. bool map_writable, write = error_code & PFERR_WRITE_MASK;
  2418. force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
  2419. if (likely(!force_pt_level)) {
  2420. level = mapping_level(vcpu, gfn);
  2421. /*
  2422. * This path builds a PAE pagetable - so we can map
  2423. * 2mb pages at maximum. Therefore check if the level
  2424. * is larger than that.
  2425. */
  2426. if (level > PT_DIRECTORY_LEVEL)
  2427. level = PT_DIRECTORY_LEVEL;
  2428. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  2429. } else
  2430. level = PT_PAGE_TABLE_LEVEL;
  2431. if (fast_page_fault(vcpu, v, level, error_code))
  2432. return 0;
  2433. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  2434. smp_rmb();
  2435. if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
  2436. return 0;
  2437. if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
  2438. return r;
  2439. spin_lock(&vcpu->kvm->mmu_lock);
  2440. if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
  2441. goto out_unlock;
  2442. make_mmu_pages_available(vcpu);
  2443. if (likely(!force_pt_level))
  2444. transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
  2445. r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
  2446. prefault);
  2447. spin_unlock(&vcpu->kvm->mmu_lock);
  2448. return r;
  2449. out_unlock:
  2450. spin_unlock(&vcpu->kvm->mmu_lock);
  2451. kvm_release_pfn_clean(pfn);
  2452. return 0;
  2453. }
  2454. static void mmu_free_roots(struct kvm_vcpu *vcpu)
  2455. {
  2456. int i;
  2457. struct kvm_mmu_page *sp;
  2458. LIST_HEAD(invalid_list);
  2459. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2460. return;
  2461. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
  2462. (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
  2463. vcpu->arch.mmu.direct_map)) {
  2464. hpa_t root = vcpu->arch.mmu.root_hpa;
  2465. spin_lock(&vcpu->kvm->mmu_lock);
  2466. sp = page_header(root);
  2467. --sp->root_count;
  2468. if (!sp->root_count && sp->role.invalid) {
  2469. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
  2470. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  2471. }
  2472. spin_unlock(&vcpu->kvm->mmu_lock);
  2473. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  2474. return;
  2475. }
  2476. spin_lock(&vcpu->kvm->mmu_lock);
  2477. for (i = 0; i < 4; ++i) {
  2478. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2479. if (root) {
  2480. root &= PT64_BASE_ADDR_MASK;
  2481. sp = page_header(root);
  2482. --sp->root_count;
  2483. if (!sp->root_count && sp->role.invalid)
  2484. kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
  2485. &invalid_list);
  2486. }
  2487. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  2488. }
  2489. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  2490. spin_unlock(&vcpu->kvm->mmu_lock);
  2491. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  2492. }
  2493. static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
  2494. {
  2495. int ret = 0;
  2496. if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
  2497. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  2498. ret = 1;
  2499. }
  2500. return ret;
  2501. }
  2502. static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
  2503. {
  2504. struct kvm_mmu_page *sp;
  2505. unsigned i;
  2506. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  2507. spin_lock(&vcpu->kvm->mmu_lock);
  2508. make_mmu_pages_available(vcpu);
  2509. sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
  2510. 1, ACC_ALL, NULL);
  2511. ++sp->root_count;
  2512. spin_unlock(&vcpu->kvm->mmu_lock);
  2513. vcpu->arch.mmu.root_hpa = __pa(sp->spt);
  2514. } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
  2515. for (i = 0; i < 4; ++i) {
  2516. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2517. ASSERT(!VALID_PAGE(root));
  2518. spin_lock(&vcpu->kvm->mmu_lock);
  2519. make_mmu_pages_available(vcpu);
  2520. sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
  2521. i << 30,
  2522. PT32_ROOT_LEVEL, 1, ACC_ALL,
  2523. NULL);
  2524. root = __pa(sp->spt);
  2525. ++sp->root_count;
  2526. spin_unlock(&vcpu->kvm->mmu_lock);
  2527. vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
  2528. }
  2529. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  2530. } else
  2531. BUG();
  2532. return 0;
  2533. }
  2534. static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
  2535. {
  2536. struct kvm_mmu_page *sp;
  2537. u64 pdptr, pm_mask;
  2538. gfn_t root_gfn;
  2539. int i;
  2540. root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
  2541. if (mmu_check_root(vcpu, root_gfn))
  2542. return 1;
  2543. /*
  2544. * Do we shadow a long mode page table? If so we need to
  2545. * write-protect the guests page table root.
  2546. */
  2547. if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
  2548. hpa_t root = vcpu->arch.mmu.root_hpa;
  2549. ASSERT(!VALID_PAGE(root));
  2550. spin_lock(&vcpu->kvm->mmu_lock);
  2551. make_mmu_pages_available(vcpu);
  2552. sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
  2553. 0, ACC_ALL, NULL);
  2554. root = __pa(sp->spt);
  2555. ++sp->root_count;
  2556. spin_unlock(&vcpu->kvm->mmu_lock);
  2557. vcpu->arch.mmu.root_hpa = root;
  2558. return 0;
  2559. }
  2560. /*
  2561. * We shadow a 32 bit page table. This may be a legacy 2-level
  2562. * or a PAE 3-level page table. In either case we need to be aware that
  2563. * the shadow page table may be a PAE or a long mode page table.
  2564. */
  2565. pm_mask = PT_PRESENT_MASK;
  2566. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
  2567. pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
  2568. for (i = 0; i < 4; ++i) {
  2569. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2570. ASSERT(!VALID_PAGE(root));
  2571. if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
  2572. pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
  2573. if (!is_present_gpte(pdptr)) {
  2574. vcpu->arch.mmu.pae_root[i] = 0;
  2575. continue;
  2576. }
  2577. root_gfn = pdptr >> PAGE_SHIFT;
  2578. if (mmu_check_root(vcpu, root_gfn))
  2579. return 1;
  2580. }
  2581. spin_lock(&vcpu->kvm->mmu_lock);
  2582. make_mmu_pages_available(vcpu);
  2583. sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
  2584. PT32_ROOT_LEVEL, 0,
  2585. ACC_ALL, NULL);
  2586. root = __pa(sp->spt);
  2587. ++sp->root_count;
  2588. spin_unlock(&vcpu->kvm->mmu_lock);
  2589. vcpu->arch.mmu.pae_root[i] = root | pm_mask;
  2590. }
  2591. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  2592. /*
  2593. * If we shadow a 32 bit page table with a long mode page
  2594. * table we enter this path.
  2595. */
  2596. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  2597. if (vcpu->arch.mmu.lm_root == NULL) {
  2598. /*
  2599. * The additional page necessary for this is only
  2600. * allocated on demand.
  2601. */
  2602. u64 *lm_root;
  2603. lm_root = (void*)get_zeroed_page(GFP_KERNEL);
  2604. if (lm_root == NULL)
  2605. return 1;
  2606. lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
  2607. vcpu->arch.mmu.lm_root = lm_root;
  2608. }
  2609. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
  2610. }
  2611. return 0;
  2612. }
  2613. static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
  2614. {
  2615. if (vcpu->arch.mmu.direct_map)
  2616. return mmu_alloc_direct_roots(vcpu);
  2617. else
  2618. return mmu_alloc_shadow_roots(vcpu);
  2619. }
  2620. static void mmu_sync_roots(struct kvm_vcpu *vcpu)
  2621. {
  2622. int i;
  2623. struct kvm_mmu_page *sp;
  2624. if (vcpu->arch.mmu.direct_map)
  2625. return;
  2626. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2627. return;
  2628. vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
  2629. kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
  2630. if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
  2631. hpa_t root = vcpu->arch.mmu.root_hpa;
  2632. sp = page_header(root);
  2633. mmu_sync_children(vcpu, sp);
  2634. kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
  2635. return;
  2636. }
  2637. for (i = 0; i < 4; ++i) {
  2638. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2639. if (root && VALID_PAGE(root)) {
  2640. root &= PT64_BASE_ADDR_MASK;
  2641. sp = page_header(root);
  2642. mmu_sync_children(vcpu, sp);
  2643. }
  2644. }
  2645. kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
  2646. }
  2647. void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
  2648. {
  2649. spin_lock(&vcpu->kvm->mmu_lock);
  2650. mmu_sync_roots(vcpu);
  2651. spin_unlock(&vcpu->kvm->mmu_lock);
  2652. }
  2653. EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
  2654. static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
  2655. u32 access, struct x86_exception *exception)
  2656. {
  2657. if (exception)
  2658. exception->error_code = 0;
  2659. return vaddr;
  2660. }
  2661. static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
  2662. u32 access,
  2663. struct x86_exception *exception)
  2664. {
  2665. if (exception)
  2666. exception->error_code = 0;
  2667. return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
  2668. }
  2669. static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
  2670. {
  2671. if (direct)
  2672. return vcpu_match_mmio_gpa(vcpu, addr);
  2673. return vcpu_match_mmio_gva(vcpu, addr);
  2674. }
  2675. /*
  2676. * On direct hosts, the last spte is only allows two states
  2677. * for mmio page fault:
  2678. * - It is the mmio spte
  2679. * - It is zapped or it is being zapped.
  2680. *
  2681. * This function completely checks the spte when the last spte
  2682. * is not the mmio spte.
  2683. */
  2684. static bool check_direct_spte_mmio_pf(u64 spte)
  2685. {
  2686. return __check_direct_spte_mmio_pf(spte);
  2687. }
  2688. static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
  2689. {
  2690. struct kvm_shadow_walk_iterator iterator;
  2691. u64 spte = 0ull;
  2692. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2693. return spte;
  2694. walk_shadow_page_lockless_begin(vcpu);
  2695. for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
  2696. if (!is_shadow_present_pte(spte))
  2697. break;
  2698. walk_shadow_page_lockless_end(vcpu);
  2699. return spte;
  2700. }
  2701. int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
  2702. {
  2703. u64 spte;
  2704. if (quickly_check_mmio_pf(vcpu, addr, direct))
  2705. return RET_MMIO_PF_EMULATE;
  2706. spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
  2707. if (is_mmio_spte(spte)) {
  2708. gfn_t gfn = get_mmio_spte_gfn(spte);
  2709. unsigned access = get_mmio_spte_access(spte);
  2710. if (!check_mmio_spte(vcpu->kvm, spte))
  2711. return RET_MMIO_PF_INVALID;
  2712. if (direct)
  2713. addr = 0;
  2714. trace_handle_mmio_page_fault(addr, gfn, access);
  2715. vcpu_cache_mmio_info(vcpu, addr, gfn, access);
  2716. return RET_MMIO_PF_EMULATE;
  2717. }
  2718. /*
  2719. * It's ok if the gva is remapped by other cpus on shadow guest,
  2720. * it's a BUG if the gfn is not a mmio page.
  2721. */
  2722. if (direct && !check_direct_spte_mmio_pf(spte))
  2723. return RET_MMIO_PF_BUG;
  2724. /*
  2725. * If the page table is zapped by other cpus, let CPU fault again on
  2726. * the address.
  2727. */
  2728. return RET_MMIO_PF_RETRY;
  2729. }
  2730. EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
  2731. static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
  2732. u32 error_code, bool direct)
  2733. {
  2734. int ret;
  2735. ret = handle_mmio_page_fault_common(vcpu, addr, direct);
  2736. WARN_ON(ret == RET_MMIO_PF_BUG);
  2737. return ret;
  2738. }
  2739. static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
  2740. u32 error_code, bool prefault)
  2741. {
  2742. gfn_t gfn;
  2743. int r;
  2744. pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
  2745. if (unlikely(error_code & PFERR_RSVD_MASK)) {
  2746. r = handle_mmio_page_fault(vcpu, gva, error_code, true);
  2747. if (likely(r != RET_MMIO_PF_INVALID))
  2748. return r;
  2749. }
  2750. r = mmu_topup_memory_caches(vcpu);
  2751. if (r)
  2752. return r;
  2753. ASSERT(vcpu);
  2754. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2755. gfn = gva >> PAGE_SHIFT;
  2756. return nonpaging_map(vcpu, gva & PAGE_MASK,
  2757. error_code, gfn, prefault);
  2758. }
  2759. static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
  2760. {
  2761. struct kvm_arch_async_pf arch;
  2762. arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
  2763. arch.gfn = gfn;
  2764. arch.direct_map = vcpu->arch.mmu.direct_map;
  2765. arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
  2766. return kvm_setup_async_pf(vcpu, gva, gfn_to_hva(vcpu->kvm, gfn), &arch);
  2767. }
  2768. static bool can_do_async_pf(struct kvm_vcpu *vcpu)
  2769. {
  2770. if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
  2771. kvm_event_needs_reinjection(vcpu)))
  2772. return false;
  2773. return kvm_x86_ops->interrupt_allowed(vcpu);
  2774. }
  2775. static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
  2776. gva_t gva, pfn_t *pfn, bool write, bool *writable)
  2777. {
  2778. bool async;
  2779. *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
  2780. if (!async)
  2781. return false; /* *pfn has correct page already */
  2782. if (!prefault && can_do_async_pf(vcpu)) {
  2783. trace_kvm_try_async_get_page(gva, gfn);
  2784. if (kvm_find_async_pf_gfn(vcpu, gfn)) {
  2785. trace_kvm_async_pf_doublefault(gva, gfn);
  2786. kvm_make_request(KVM_REQ_APF_HALT, vcpu);
  2787. return true;
  2788. } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
  2789. return true;
  2790. }
  2791. *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
  2792. return false;
  2793. }
  2794. static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
  2795. bool prefault)
  2796. {
  2797. pfn_t pfn;
  2798. int r;
  2799. int level;
  2800. int force_pt_level;
  2801. gfn_t gfn = gpa >> PAGE_SHIFT;
  2802. unsigned long mmu_seq;
  2803. int write = error_code & PFERR_WRITE_MASK;
  2804. bool map_writable;
  2805. ASSERT(vcpu);
  2806. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2807. if (unlikely(error_code & PFERR_RSVD_MASK)) {
  2808. r = handle_mmio_page_fault(vcpu, gpa, error_code, true);
  2809. if (likely(r != RET_MMIO_PF_INVALID))
  2810. return r;
  2811. }
  2812. r = mmu_topup_memory_caches(vcpu);
  2813. if (r)
  2814. return r;
  2815. force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
  2816. if (likely(!force_pt_level)) {
  2817. level = mapping_level(vcpu, gfn);
  2818. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  2819. } else
  2820. level = PT_PAGE_TABLE_LEVEL;
  2821. if (fast_page_fault(vcpu, gpa, level, error_code))
  2822. return 0;
  2823. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  2824. smp_rmb();
  2825. if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
  2826. return 0;
  2827. if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
  2828. return r;
  2829. spin_lock(&vcpu->kvm->mmu_lock);
  2830. if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
  2831. goto out_unlock;
  2832. make_mmu_pages_available(vcpu);
  2833. if (likely(!force_pt_level))
  2834. transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
  2835. r = __direct_map(vcpu, gpa, write, map_writable,
  2836. level, gfn, pfn, prefault);
  2837. spin_unlock(&vcpu->kvm->mmu_lock);
  2838. return r;
  2839. out_unlock:
  2840. spin_unlock(&vcpu->kvm->mmu_lock);
  2841. kvm_release_pfn_clean(pfn);
  2842. return 0;
  2843. }
  2844. static void nonpaging_init_context(struct kvm_vcpu *vcpu,
  2845. struct kvm_mmu *context)
  2846. {
  2847. context->page_fault = nonpaging_page_fault;
  2848. context->gva_to_gpa = nonpaging_gva_to_gpa;
  2849. context->sync_page = nonpaging_sync_page;
  2850. context->invlpg = nonpaging_invlpg;
  2851. context->update_pte = nonpaging_update_pte;
  2852. context->root_level = 0;
  2853. context->shadow_root_level = PT32E_ROOT_LEVEL;
  2854. context->root_hpa = INVALID_PAGE;
  2855. context->direct_map = true;
  2856. context->nx = false;
  2857. }
  2858. void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
  2859. {
  2860. mmu_free_roots(vcpu);
  2861. }
  2862. static unsigned long get_cr3(struct kvm_vcpu *vcpu)
  2863. {
  2864. return kvm_read_cr3(vcpu);
  2865. }
  2866. static void inject_page_fault(struct kvm_vcpu *vcpu,
  2867. struct x86_exception *fault)
  2868. {
  2869. vcpu->arch.mmu.inject_page_fault(vcpu, fault);
  2870. }
  2871. static bool sync_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
  2872. unsigned access, int *nr_present)
  2873. {
  2874. if (unlikely(is_mmio_spte(*sptep))) {
  2875. if (gfn != get_mmio_spte_gfn(*sptep)) {
  2876. mmu_spte_clear_no_track(sptep);
  2877. return true;
  2878. }
  2879. (*nr_present)++;
  2880. mark_mmio_spte(kvm, sptep, gfn, access);
  2881. return true;
  2882. }
  2883. return false;
  2884. }
  2885. static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
  2886. {
  2887. unsigned index;
  2888. index = level - 1;
  2889. index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
  2890. return mmu->last_pte_bitmap & (1 << index);
  2891. }
  2892. #define PTTYPE_EPT 18 /* arbitrary */
  2893. #define PTTYPE PTTYPE_EPT
  2894. #include "paging_tmpl.h"
  2895. #undef PTTYPE
  2896. #define PTTYPE 64
  2897. #include "paging_tmpl.h"
  2898. #undef PTTYPE
  2899. #define PTTYPE 32
  2900. #include "paging_tmpl.h"
  2901. #undef PTTYPE
  2902. static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
  2903. struct kvm_mmu *context)
  2904. {
  2905. int maxphyaddr = cpuid_maxphyaddr(vcpu);
  2906. u64 exb_bit_rsvd = 0;
  2907. u64 gbpages_bit_rsvd = 0;
  2908. u64 nonleaf_bit8_rsvd = 0;
  2909. context->bad_mt_xwr = 0;
  2910. if (!context->nx)
  2911. exb_bit_rsvd = rsvd_bits(63, 63);
  2912. if (!guest_cpuid_has_gbpages(vcpu))
  2913. gbpages_bit_rsvd = rsvd_bits(7, 7);
  2914. /*
  2915. * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
  2916. * leaf entries) on AMD CPUs only.
  2917. */
  2918. if (guest_cpuid_is_amd(vcpu))
  2919. nonleaf_bit8_rsvd = rsvd_bits(8, 8);
  2920. switch (context->root_level) {
  2921. case PT32_ROOT_LEVEL:
  2922. /* no rsvd bits for 2 level 4K page table entries */
  2923. context->rsvd_bits_mask[0][1] = 0;
  2924. context->rsvd_bits_mask[0][0] = 0;
  2925. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2926. if (!is_pse(vcpu)) {
  2927. context->rsvd_bits_mask[1][1] = 0;
  2928. break;
  2929. }
  2930. if (is_cpuid_PSE36())
  2931. /* 36bits PSE 4MB page */
  2932. context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
  2933. else
  2934. /* 32 bits PSE 4MB page */
  2935. context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
  2936. break;
  2937. case PT32E_ROOT_LEVEL:
  2938. context->rsvd_bits_mask[0][2] =
  2939. rsvd_bits(maxphyaddr, 63) |
  2940. rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */
  2941. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  2942. rsvd_bits(maxphyaddr, 62); /* PDE */
  2943. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  2944. rsvd_bits(maxphyaddr, 62); /* PTE */
  2945. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  2946. rsvd_bits(maxphyaddr, 62) |
  2947. rsvd_bits(13, 20); /* large page */
  2948. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2949. break;
  2950. case PT64_ROOT_LEVEL:
  2951. context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
  2952. nonleaf_bit8_rsvd | rsvd_bits(7, 7) | rsvd_bits(maxphyaddr, 51);
  2953. context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
  2954. nonleaf_bit8_rsvd | gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51);
  2955. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  2956. rsvd_bits(maxphyaddr, 51);
  2957. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  2958. rsvd_bits(maxphyaddr, 51);
  2959. context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
  2960. context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
  2961. gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
  2962. rsvd_bits(13, 29);
  2963. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  2964. rsvd_bits(maxphyaddr, 51) |
  2965. rsvd_bits(13, 20); /* large page */
  2966. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2967. break;
  2968. }
  2969. }
  2970. static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
  2971. struct kvm_mmu *context, bool execonly)
  2972. {
  2973. int maxphyaddr = cpuid_maxphyaddr(vcpu);
  2974. int pte;
  2975. context->rsvd_bits_mask[0][3] =
  2976. rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
  2977. context->rsvd_bits_mask[0][2] =
  2978. rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
  2979. context->rsvd_bits_mask[0][1] =
  2980. rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
  2981. context->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
  2982. /* large page */
  2983. context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
  2984. context->rsvd_bits_mask[1][2] =
  2985. rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
  2986. context->rsvd_bits_mask[1][1] =
  2987. rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
  2988. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2989. for (pte = 0; pte < 64; pte++) {
  2990. int rwx_bits = pte & 7;
  2991. int mt = pte >> 3;
  2992. if (mt == 0x2 || mt == 0x3 || mt == 0x7 ||
  2993. rwx_bits == 0x2 || rwx_bits == 0x6 ||
  2994. (rwx_bits == 0x4 && !execonly))
  2995. context->bad_mt_xwr |= (1ull << pte);
  2996. }
  2997. }
  2998. void update_permission_bitmask(struct kvm_vcpu *vcpu,
  2999. struct kvm_mmu *mmu, bool ept)
  3000. {
  3001. unsigned bit, byte, pfec;
  3002. u8 map;
  3003. bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0;
  3004. cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
  3005. cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
  3006. for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
  3007. pfec = byte << 1;
  3008. map = 0;
  3009. wf = pfec & PFERR_WRITE_MASK;
  3010. uf = pfec & PFERR_USER_MASK;
  3011. ff = pfec & PFERR_FETCH_MASK;
  3012. /*
  3013. * PFERR_RSVD_MASK bit is set in PFEC if the access is not
  3014. * subject to SMAP restrictions, and cleared otherwise. The
  3015. * bit is only meaningful if the SMAP bit is set in CR4.
  3016. */
  3017. smapf = !(pfec & PFERR_RSVD_MASK);
  3018. for (bit = 0; bit < 8; ++bit) {
  3019. x = bit & ACC_EXEC_MASK;
  3020. w = bit & ACC_WRITE_MASK;
  3021. u = bit & ACC_USER_MASK;
  3022. if (!ept) {
  3023. /* Not really needed: !nx will cause pte.nx to fault */
  3024. x |= !mmu->nx;
  3025. /* Allow supervisor writes if !cr0.wp */
  3026. w |= !is_write_protection(vcpu) && !uf;
  3027. /* Disallow supervisor fetches of user code if cr4.smep */
  3028. x &= !(cr4_smep && u && !uf);
  3029. /*
  3030. * SMAP:kernel-mode data accesses from user-mode
  3031. * mappings should fault. A fault is considered
  3032. * as a SMAP violation if all of the following
  3033. * conditions are ture:
  3034. * - X86_CR4_SMAP is set in CR4
  3035. * - An user page is accessed
  3036. * - Page fault in kernel mode
  3037. * - if CPL = 3 or X86_EFLAGS_AC is clear
  3038. *
  3039. * Here, we cover the first three conditions.
  3040. * The fourth is computed dynamically in
  3041. * permission_fault() and is in smapf.
  3042. *
  3043. * Also, SMAP does not affect instruction
  3044. * fetches, add the !ff check here to make it
  3045. * clearer.
  3046. */
  3047. smap = cr4_smap && u && !uf && !ff;
  3048. } else
  3049. /* Not really needed: no U/S accesses on ept */
  3050. u = 1;
  3051. fault = (ff && !x) || (uf && !u) || (wf && !w) ||
  3052. (smapf && smap);
  3053. map |= fault << bit;
  3054. }
  3055. mmu->permissions[byte] = map;
  3056. }
  3057. }
  3058. static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
  3059. {
  3060. u8 map;
  3061. unsigned level, root_level = mmu->root_level;
  3062. const unsigned ps_set_index = 1 << 2; /* bit 2 of index: ps */
  3063. if (root_level == PT32E_ROOT_LEVEL)
  3064. --root_level;
  3065. /* PT_PAGE_TABLE_LEVEL always terminates */
  3066. map = 1 | (1 << ps_set_index);
  3067. for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
  3068. if (level <= PT_PDPE_LEVEL
  3069. && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
  3070. map |= 1 << (ps_set_index | (level - 1));
  3071. }
  3072. mmu->last_pte_bitmap = map;
  3073. }
  3074. static void paging64_init_context_common(struct kvm_vcpu *vcpu,
  3075. struct kvm_mmu *context,
  3076. int level)
  3077. {
  3078. context->nx = is_nx(vcpu);
  3079. context->root_level = level;
  3080. reset_rsvds_bits_mask(vcpu, context);
  3081. update_permission_bitmask(vcpu, context, false);
  3082. update_last_pte_bitmap(vcpu, context);
  3083. ASSERT(is_pae(vcpu));
  3084. context->page_fault = paging64_page_fault;
  3085. context->gva_to_gpa = paging64_gva_to_gpa;
  3086. context->sync_page = paging64_sync_page;
  3087. context->invlpg = paging64_invlpg;
  3088. context->update_pte = paging64_update_pte;
  3089. context->shadow_root_level = level;
  3090. context->root_hpa = INVALID_PAGE;
  3091. context->direct_map = false;
  3092. }
  3093. static void paging64_init_context(struct kvm_vcpu *vcpu,
  3094. struct kvm_mmu *context)
  3095. {
  3096. paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
  3097. }
  3098. static void paging32_init_context(struct kvm_vcpu *vcpu,
  3099. struct kvm_mmu *context)
  3100. {
  3101. context->nx = false;
  3102. context->root_level = PT32_ROOT_LEVEL;
  3103. reset_rsvds_bits_mask(vcpu, context);
  3104. update_permission_bitmask(vcpu, context, false);
  3105. update_last_pte_bitmap(vcpu, context);
  3106. context->page_fault = paging32_page_fault;
  3107. context->gva_to_gpa = paging32_gva_to_gpa;
  3108. context->sync_page = paging32_sync_page;
  3109. context->invlpg = paging32_invlpg;
  3110. context->update_pte = paging32_update_pte;
  3111. context->shadow_root_level = PT32E_ROOT_LEVEL;
  3112. context->root_hpa = INVALID_PAGE;
  3113. context->direct_map = false;
  3114. }
  3115. static void paging32E_init_context(struct kvm_vcpu *vcpu,
  3116. struct kvm_mmu *context)
  3117. {
  3118. paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
  3119. }
  3120. static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
  3121. {
  3122. struct kvm_mmu *context = vcpu->arch.walk_mmu;
  3123. context->base_role.word = 0;
  3124. context->page_fault = tdp_page_fault;
  3125. context->sync_page = nonpaging_sync_page;
  3126. context->invlpg = nonpaging_invlpg;
  3127. context->update_pte = nonpaging_update_pte;
  3128. context->shadow_root_level = kvm_x86_ops->get_tdp_level();
  3129. context->root_hpa = INVALID_PAGE;
  3130. context->direct_map = true;
  3131. context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
  3132. context->get_cr3 = get_cr3;
  3133. context->get_pdptr = kvm_pdptr_read;
  3134. context->inject_page_fault = kvm_inject_page_fault;
  3135. if (!is_paging(vcpu)) {
  3136. context->nx = false;
  3137. context->gva_to_gpa = nonpaging_gva_to_gpa;
  3138. context->root_level = 0;
  3139. } else if (is_long_mode(vcpu)) {
  3140. context->nx = is_nx(vcpu);
  3141. context->root_level = PT64_ROOT_LEVEL;
  3142. reset_rsvds_bits_mask(vcpu, context);
  3143. context->gva_to_gpa = paging64_gva_to_gpa;
  3144. } else if (is_pae(vcpu)) {
  3145. context->nx = is_nx(vcpu);
  3146. context->root_level = PT32E_ROOT_LEVEL;
  3147. reset_rsvds_bits_mask(vcpu, context);
  3148. context->gva_to_gpa = paging64_gva_to_gpa;
  3149. } else {
  3150. context->nx = false;
  3151. context->root_level = PT32_ROOT_LEVEL;
  3152. reset_rsvds_bits_mask(vcpu, context);
  3153. context->gva_to_gpa = paging32_gva_to_gpa;
  3154. }
  3155. update_permission_bitmask(vcpu, context, false);
  3156. update_last_pte_bitmap(vcpu, context);
  3157. }
  3158. void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
  3159. {
  3160. bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
  3161. ASSERT(vcpu);
  3162. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  3163. if (!is_paging(vcpu))
  3164. nonpaging_init_context(vcpu, context);
  3165. else if (is_long_mode(vcpu))
  3166. paging64_init_context(vcpu, context);
  3167. else if (is_pae(vcpu))
  3168. paging32E_init_context(vcpu, context);
  3169. else
  3170. paging32_init_context(vcpu, context);
  3171. vcpu->arch.mmu.base_role.nxe = is_nx(vcpu);
  3172. vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
  3173. vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
  3174. vcpu->arch.mmu.base_role.smep_andnot_wp
  3175. = smep && !is_write_protection(vcpu);
  3176. }
  3177. EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
  3178. void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
  3179. bool execonly)
  3180. {
  3181. ASSERT(vcpu);
  3182. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  3183. context->shadow_root_level = kvm_x86_ops->get_tdp_level();
  3184. context->nx = true;
  3185. context->page_fault = ept_page_fault;
  3186. context->gva_to_gpa = ept_gva_to_gpa;
  3187. context->sync_page = ept_sync_page;
  3188. context->invlpg = ept_invlpg;
  3189. context->update_pte = ept_update_pte;
  3190. context->root_level = context->shadow_root_level;
  3191. context->root_hpa = INVALID_PAGE;
  3192. context->direct_map = false;
  3193. update_permission_bitmask(vcpu, context, true);
  3194. reset_rsvds_bits_mask_ept(vcpu, context, execonly);
  3195. }
  3196. EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
  3197. static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
  3198. {
  3199. kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
  3200. vcpu->arch.walk_mmu->set_cr3 = kvm_x86_ops->set_cr3;
  3201. vcpu->arch.walk_mmu->get_cr3 = get_cr3;
  3202. vcpu->arch.walk_mmu->get_pdptr = kvm_pdptr_read;
  3203. vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
  3204. }
  3205. static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
  3206. {
  3207. struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
  3208. g_context->get_cr3 = get_cr3;
  3209. g_context->get_pdptr = kvm_pdptr_read;
  3210. g_context->inject_page_fault = kvm_inject_page_fault;
  3211. /*
  3212. * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
  3213. * translation of l2_gpa to l1_gpa addresses is done using the
  3214. * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
  3215. * functions between mmu and nested_mmu are swapped.
  3216. */
  3217. if (!is_paging(vcpu)) {
  3218. g_context->nx = false;
  3219. g_context->root_level = 0;
  3220. g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
  3221. } else if (is_long_mode(vcpu)) {
  3222. g_context->nx = is_nx(vcpu);
  3223. g_context->root_level = PT64_ROOT_LEVEL;
  3224. reset_rsvds_bits_mask(vcpu, g_context);
  3225. g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
  3226. } else if (is_pae(vcpu)) {
  3227. g_context->nx = is_nx(vcpu);
  3228. g_context->root_level = PT32E_ROOT_LEVEL;
  3229. reset_rsvds_bits_mask(vcpu, g_context);
  3230. g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
  3231. } else {
  3232. g_context->nx = false;
  3233. g_context->root_level = PT32_ROOT_LEVEL;
  3234. reset_rsvds_bits_mask(vcpu, g_context);
  3235. g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
  3236. }
  3237. update_permission_bitmask(vcpu, g_context, false);
  3238. update_last_pte_bitmap(vcpu, g_context);
  3239. }
  3240. static void init_kvm_mmu(struct kvm_vcpu *vcpu)
  3241. {
  3242. if (mmu_is_nested(vcpu))
  3243. return init_kvm_nested_mmu(vcpu);
  3244. else if (tdp_enabled)
  3245. return init_kvm_tdp_mmu(vcpu);
  3246. else
  3247. return init_kvm_softmmu(vcpu);
  3248. }
  3249. void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
  3250. {
  3251. ASSERT(vcpu);
  3252. kvm_mmu_unload(vcpu);
  3253. init_kvm_mmu(vcpu);
  3254. }
  3255. EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
  3256. int kvm_mmu_load(struct kvm_vcpu *vcpu)
  3257. {
  3258. int r;
  3259. r = mmu_topup_memory_caches(vcpu);
  3260. if (r)
  3261. goto out;
  3262. r = mmu_alloc_roots(vcpu);
  3263. kvm_mmu_sync_roots(vcpu);
  3264. if (r)
  3265. goto out;
  3266. /* set_cr3() should ensure TLB has been flushed */
  3267. vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
  3268. out:
  3269. return r;
  3270. }
  3271. EXPORT_SYMBOL_GPL(kvm_mmu_load);
  3272. void kvm_mmu_unload(struct kvm_vcpu *vcpu)
  3273. {
  3274. mmu_free_roots(vcpu);
  3275. WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  3276. }
  3277. EXPORT_SYMBOL_GPL(kvm_mmu_unload);
  3278. static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
  3279. struct kvm_mmu_page *sp, u64 *spte,
  3280. const void *new)
  3281. {
  3282. if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
  3283. ++vcpu->kvm->stat.mmu_pde_zapped;
  3284. return;
  3285. }
  3286. ++vcpu->kvm->stat.mmu_pte_updated;
  3287. vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
  3288. }
  3289. static bool need_remote_flush(u64 old, u64 new)
  3290. {
  3291. if (!is_shadow_present_pte(old))
  3292. return false;
  3293. if (!is_shadow_present_pte(new))
  3294. return true;
  3295. if ((old ^ new) & PT64_BASE_ADDR_MASK)
  3296. return true;
  3297. old ^= shadow_nx_mask;
  3298. new ^= shadow_nx_mask;
  3299. return (old & ~new & PT64_PERM_MASK) != 0;
  3300. }
  3301. static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
  3302. bool remote_flush, bool local_flush)
  3303. {
  3304. if (zap_page)
  3305. return;
  3306. if (remote_flush)
  3307. kvm_flush_remote_tlbs(vcpu->kvm);
  3308. else if (local_flush)
  3309. kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
  3310. }
  3311. static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
  3312. const u8 *new, int *bytes)
  3313. {
  3314. u64 gentry;
  3315. int r;
  3316. /*
  3317. * Assume that the pte write on a page table of the same type
  3318. * as the current vcpu paging mode since we update the sptes only
  3319. * when they have the same mode.
  3320. */
  3321. if (is_pae(vcpu) && *bytes == 4) {
  3322. /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
  3323. *gpa &= ~(gpa_t)7;
  3324. *bytes = 8;
  3325. r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, 8);
  3326. if (r)
  3327. gentry = 0;
  3328. new = (const u8 *)&gentry;
  3329. }
  3330. switch (*bytes) {
  3331. case 4:
  3332. gentry = *(const u32 *)new;
  3333. break;
  3334. case 8:
  3335. gentry = *(const u64 *)new;
  3336. break;
  3337. default:
  3338. gentry = 0;
  3339. break;
  3340. }
  3341. return gentry;
  3342. }
  3343. /*
  3344. * If we're seeing too many writes to a page, it may no longer be a page table,
  3345. * or we may be forking, in which case it is better to unmap the page.
  3346. */
  3347. static bool detect_write_flooding(struct kvm_mmu_page *sp)
  3348. {
  3349. /*
  3350. * Skip write-flooding detected for the sp whose level is 1, because
  3351. * it can become unsync, then the guest page is not write-protected.
  3352. */
  3353. if (sp->role.level == PT_PAGE_TABLE_LEVEL)
  3354. return false;
  3355. return ++sp->write_flooding_count >= 3;
  3356. }
  3357. /*
  3358. * Misaligned accesses are too much trouble to fix up; also, they usually
  3359. * indicate a page is not used as a page table.
  3360. */
  3361. static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
  3362. int bytes)
  3363. {
  3364. unsigned offset, pte_size, misaligned;
  3365. pgprintk("misaligned: gpa %llx bytes %d role %x\n",
  3366. gpa, bytes, sp->role.word);
  3367. offset = offset_in_page(gpa);
  3368. pte_size = sp->role.cr4_pae ? 8 : 4;
  3369. /*
  3370. * Sometimes, the OS only writes the last one bytes to update status
  3371. * bits, for example, in linux, andb instruction is used in clear_bit().
  3372. */
  3373. if (!(offset & (pte_size - 1)) && bytes == 1)
  3374. return false;
  3375. misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
  3376. misaligned |= bytes < 4;
  3377. return misaligned;
  3378. }
  3379. static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
  3380. {
  3381. unsigned page_offset, quadrant;
  3382. u64 *spte;
  3383. int level;
  3384. page_offset = offset_in_page(gpa);
  3385. level = sp->role.level;
  3386. *nspte = 1;
  3387. if (!sp->role.cr4_pae) {
  3388. page_offset <<= 1; /* 32->64 */
  3389. /*
  3390. * A 32-bit pde maps 4MB while the shadow pdes map
  3391. * only 2MB. So we need to double the offset again
  3392. * and zap two pdes instead of one.
  3393. */
  3394. if (level == PT32_ROOT_LEVEL) {
  3395. page_offset &= ~7; /* kill rounding error */
  3396. page_offset <<= 1;
  3397. *nspte = 2;
  3398. }
  3399. quadrant = page_offset >> PAGE_SHIFT;
  3400. page_offset &= ~PAGE_MASK;
  3401. if (quadrant != sp->role.quadrant)
  3402. return NULL;
  3403. }
  3404. spte = &sp->spt[page_offset / sizeof(*spte)];
  3405. return spte;
  3406. }
  3407. void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  3408. const u8 *new, int bytes)
  3409. {
  3410. gfn_t gfn = gpa >> PAGE_SHIFT;
  3411. union kvm_mmu_page_role mask = { .word = 0 };
  3412. struct kvm_mmu_page *sp;
  3413. LIST_HEAD(invalid_list);
  3414. u64 entry, gentry, *spte;
  3415. int npte;
  3416. bool remote_flush, local_flush, zap_page;
  3417. /*
  3418. * If we don't have indirect shadow pages, it means no page is
  3419. * write-protected, so we can exit simply.
  3420. */
  3421. if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
  3422. return;
  3423. zap_page = remote_flush = local_flush = false;
  3424. pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
  3425. gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
  3426. /*
  3427. * No need to care whether allocation memory is successful
  3428. * or not since pte prefetch is skiped if it does not have
  3429. * enough objects in the cache.
  3430. */
  3431. mmu_topup_memory_caches(vcpu);
  3432. spin_lock(&vcpu->kvm->mmu_lock);
  3433. ++vcpu->kvm->stat.mmu_pte_write;
  3434. kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
  3435. mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
  3436. for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
  3437. if (detect_write_misaligned(sp, gpa, bytes) ||
  3438. detect_write_flooding(sp)) {
  3439. zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
  3440. &invalid_list);
  3441. ++vcpu->kvm->stat.mmu_flooded;
  3442. continue;
  3443. }
  3444. spte = get_written_sptes(sp, gpa, &npte);
  3445. if (!spte)
  3446. continue;
  3447. local_flush = true;
  3448. while (npte--) {
  3449. entry = *spte;
  3450. mmu_page_zap_pte(vcpu->kvm, sp, spte);
  3451. if (gentry &&
  3452. !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
  3453. & mask.word) && rmap_can_add(vcpu))
  3454. mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
  3455. if (need_remote_flush(entry, *spte))
  3456. remote_flush = true;
  3457. ++spte;
  3458. }
  3459. }
  3460. mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
  3461. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  3462. kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
  3463. spin_unlock(&vcpu->kvm->mmu_lock);
  3464. }
  3465. int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
  3466. {
  3467. gpa_t gpa;
  3468. int r;
  3469. if (vcpu->arch.mmu.direct_map)
  3470. return 0;
  3471. gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
  3472. r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  3473. return r;
  3474. }
  3475. EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
  3476. static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
  3477. {
  3478. LIST_HEAD(invalid_list);
  3479. if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
  3480. return;
  3481. while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
  3482. if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
  3483. break;
  3484. ++vcpu->kvm->stat.mmu_recycled;
  3485. }
  3486. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  3487. }
  3488. static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
  3489. {
  3490. if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
  3491. return vcpu_match_mmio_gpa(vcpu, addr);
  3492. return vcpu_match_mmio_gva(vcpu, addr);
  3493. }
  3494. int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
  3495. void *insn, int insn_len)
  3496. {
  3497. int r, emulation_type = EMULTYPE_RETRY;
  3498. enum emulation_result er;
  3499. r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
  3500. if (r < 0)
  3501. goto out;
  3502. if (!r) {
  3503. r = 1;
  3504. goto out;
  3505. }
  3506. if (is_mmio_page_fault(vcpu, cr2))
  3507. emulation_type = 0;
  3508. er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
  3509. switch (er) {
  3510. case EMULATE_DONE:
  3511. return 1;
  3512. case EMULATE_USER_EXIT:
  3513. ++vcpu->stat.mmio_exits;
  3514. /* fall through */
  3515. case EMULATE_FAIL:
  3516. return 0;
  3517. default:
  3518. BUG();
  3519. }
  3520. out:
  3521. return r;
  3522. }
  3523. EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
  3524. void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  3525. {
  3526. vcpu->arch.mmu.invlpg(vcpu, gva);
  3527. kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
  3528. ++vcpu->stat.invlpg;
  3529. }
  3530. EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
  3531. void kvm_enable_tdp(void)
  3532. {
  3533. tdp_enabled = true;
  3534. }
  3535. EXPORT_SYMBOL_GPL(kvm_enable_tdp);
  3536. void kvm_disable_tdp(void)
  3537. {
  3538. tdp_enabled = false;
  3539. }
  3540. EXPORT_SYMBOL_GPL(kvm_disable_tdp);
  3541. static void free_mmu_pages(struct kvm_vcpu *vcpu)
  3542. {
  3543. free_page((unsigned long)vcpu->arch.mmu.pae_root);
  3544. if (vcpu->arch.mmu.lm_root != NULL)
  3545. free_page((unsigned long)vcpu->arch.mmu.lm_root);
  3546. }
  3547. static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
  3548. {
  3549. struct page *page;
  3550. int i;
  3551. ASSERT(vcpu);
  3552. /*
  3553. * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
  3554. * Therefore we need to allocate shadow page tables in the first
  3555. * 4GB of memory, which happens to fit the DMA32 zone.
  3556. */
  3557. page = alloc_page(GFP_KERNEL | __GFP_DMA32);
  3558. if (!page)
  3559. return -ENOMEM;
  3560. vcpu->arch.mmu.pae_root = page_address(page);
  3561. for (i = 0; i < 4; ++i)
  3562. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  3563. return 0;
  3564. }
  3565. int kvm_mmu_create(struct kvm_vcpu *vcpu)
  3566. {
  3567. ASSERT(vcpu);
  3568. vcpu->arch.walk_mmu = &vcpu->arch.mmu;
  3569. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  3570. vcpu->arch.mmu.translate_gpa = translate_gpa;
  3571. vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
  3572. return alloc_mmu_pages(vcpu);
  3573. }
  3574. void kvm_mmu_setup(struct kvm_vcpu *vcpu)
  3575. {
  3576. ASSERT(vcpu);
  3577. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  3578. init_kvm_mmu(vcpu);
  3579. }
  3580. void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
  3581. {
  3582. struct kvm_memory_slot *memslot;
  3583. gfn_t last_gfn;
  3584. int i;
  3585. memslot = id_to_memslot(kvm->memslots, slot);
  3586. last_gfn = memslot->base_gfn + memslot->npages - 1;
  3587. spin_lock(&kvm->mmu_lock);
  3588. for (i = PT_PAGE_TABLE_LEVEL;
  3589. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  3590. unsigned long *rmapp;
  3591. unsigned long last_index, index;
  3592. rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL];
  3593. last_index = gfn_to_index(last_gfn, memslot->base_gfn, i);
  3594. for (index = 0; index <= last_index; ++index, ++rmapp) {
  3595. if (*rmapp)
  3596. __rmap_write_protect(kvm, rmapp, false);
  3597. if (need_resched() || spin_needbreak(&kvm->mmu_lock))
  3598. cond_resched_lock(&kvm->mmu_lock);
  3599. }
  3600. }
  3601. spin_unlock(&kvm->mmu_lock);
  3602. /*
  3603. * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
  3604. * which do tlb flush out of mmu-lock should be serialized by
  3605. * kvm->slots_lock otherwise tlb flush would be missed.
  3606. */
  3607. lockdep_assert_held(&kvm->slots_lock);
  3608. /*
  3609. * We can flush all the TLBs out of the mmu lock without TLB
  3610. * corruption since we just change the spte from writable to
  3611. * readonly so that we only need to care the case of changing
  3612. * spte from present to present (changing the spte from present
  3613. * to nonpresent will flush all the TLBs immediately), in other
  3614. * words, the only case we care is mmu_spte_update() where we
  3615. * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
  3616. * instead of PT_WRITABLE_MASK, that means it does not depend
  3617. * on PT_WRITABLE_MASK anymore.
  3618. */
  3619. kvm_flush_remote_tlbs(kvm);
  3620. }
  3621. #define BATCH_ZAP_PAGES 10
  3622. static void kvm_zap_obsolete_pages(struct kvm *kvm)
  3623. {
  3624. struct kvm_mmu_page *sp, *node;
  3625. int batch = 0;
  3626. restart:
  3627. list_for_each_entry_safe_reverse(sp, node,
  3628. &kvm->arch.active_mmu_pages, link) {
  3629. int ret;
  3630. /*
  3631. * No obsolete page exists before new created page since
  3632. * active_mmu_pages is the FIFO list.
  3633. */
  3634. if (!is_obsolete_sp(kvm, sp))
  3635. break;
  3636. /*
  3637. * Since we are reversely walking the list and the invalid
  3638. * list will be moved to the head, skip the invalid page
  3639. * can help us to avoid the infinity list walking.
  3640. */
  3641. if (sp->role.invalid)
  3642. continue;
  3643. /*
  3644. * Need not flush tlb since we only zap the sp with invalid
  3645. * generation number.
  3646. */
  3647. if (batch >= BATCH_ZAP_PAGES &&
  3648. cond_resched_lock(&kvm->mmu_lock)) {
  3649. batch = 0;
  3650. goto restart;
  3651. }
  3652. ret = kvm_mmu_prepare_zap_page(kvm, sp,
  3653. &kvm->arch.zapped_obsolete_pages);
  3654. batch += ret;
  3655. if (ret)
  3656. goto restart;
  3657. }
  3658. /*
  3659. * Should flush tlb before free page tables since lockless-walking
  3660. * may use the pages.
  3661. */
  3662. kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
  3663. }
  3664. /*
  3665. * Fast invalidate all shadow pages and use lock-break technique
  3666. * to zap obsolete pages.
  3667. *
  3668. * It's required when memslot is being deleted or VM is being
  3669. * destroyed, in these cases, we should ensure that KVM MMU does
  3670. * not use any resource of the being-deleted slot or all slots
  3671. * after calling the function.
  3672. */
  3673. void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
  3674. {
  3675. spin_lock(&kvm->mmu_lock);
  3676. trace_kvm_mmu_invalidate_zap_all_pages(kvm);
  3677. kvm->arch.mmu_valid_gen++;
  3678. /*
  3679. * Notify all vcpus to reload its shadow page table
  3680. * and flush TLB. Then all vcpus will switch to new
  3681. * shadow page table with the new mmu_valid_gen.
  3682. *
  3683. * Note: we should do this under the protection of
  3684. * mmu-lock, otherwise, vcpu would purge shadow page
  3685. * but miss tlb flush.
  3686. */
  3687. kvm_reload_remote_mmus(kvm);
  3688. kvm_zap_obsolete_pages(kvm);
  3689. spin_unlock(&kvm->mmu_lock);
  3690. }
  3691. static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
  3692. {
  3693. return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
  3694. }
  3695. void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm)
  3696. {
  3697. /*
  3698. * The very rare case: if the generation-number is round,
  3699. * zap all shadow pages.
  3700. */
  3701. if (unlikely(kvm_current_mmio_generation(kvm) == 0)) {
  3702. printk_ratelimited(KERN_DEBUG "kvm: zapping shadow pages for mmio generation wraparound\n");
  3703. kvm_mmu_invalidate_zap_all_pages(kvm);
  3704. }
  3705. }
  3706. static unsigned long
  3707. mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
  3708. {
  3709. struct kvm *kvm;
  3710. int nr_to_scan = sc->nr_to_scan;
  3711. unsigned long freed = 0;
  3712. spin_lock(&kvm_lock);
  3713. list_for_each_entry(kvm, &vm_list, vm_list) {
  3714. int idx;
  3715. LIST_HEAD(invalid_list);
  3716. /*
  3717. * Never scan more than sc->nr_to_scan VM instances.
  3718. * Will not hit this condition practically since we do not try
  3719. * to shrink more than one VM and it is very unlikely to see
  3720. * !n_used_mmu_pages so many times.
  3721. */
  3722. if (!nr_to_scan--)
  3723. break;
  3724. /*
  3725. * n_used_mmu_pages is accessed without holding kvm->mmu_lock
  3726. * here. We may skip a VM instance errorneosly, but we do not
  3727. * want to shrink a VM that only started to populate its MMU
  3728. * anyway.
  3729. */
  3730. if (!kvm->arch.n_used_mmu_pages &&
  3731. !kvm_has_zapped_obsolete_pages(kvm))
  3732. continue;
  3733. idx = srcu_read_lock(&kvm->srcu);
  3734. spin_lock(&kvm->mmu_lock);
  3735. if (kvm_has_zapped_obsolete_pages(kvm)) {
  3736. kvm_mmu_commit_zap_page(kvm,
  3737. &kvm->arch.zapped_obsolete_pages);
  3738. goto unlock;
  3739. }
  3740. if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
  3741. freed++;
  3742. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  3743. unlock:
  3744. spin_unlock(&kvm->mmu_lock);
  3745. srcu_read_unlock(&kvm->srcu, idx);
  3746. /*
  3747. * unfair on small ones
  3748. * per-vm shrinkers cry out
  3749. * sadness comes quickly
  3750. */
  3751. list_move_tail(&kvm->vm_list, &vm_list);
  3752. break;
  3753. }
  3754. spin_unlock(&kvm_lock);
  3755. return freed;
  3756. }
  3757. static unsigned long
  3758. mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
  3759. {
  3760. return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
  3761. }
  3762. static struct shrinker mmu_shrinker = {
  3763. .count_objects = mmu_shrink_count,
  3764. .scan_objects = mmu_shrink_scan,
  3765. .seeks = DEFAULT_SEEKS * 10,
  3766. };
  3767. static void mmu_destroy_caches(void)
  3768. {
  3769. if (pte_list_desc_cache)
  3770. kmem_cache_destroy(pte_list_desc_cache);
  3771. if (mmu_page_header_cache)
  3772. kmem_cache_destroy(mmu_page_header_cache);
  3773. }
  3774. int kvm_mmu_module_init(void)
  3775. {
  3776. pte_list_desc_cache = kmem_cache_create("pte_list_desc",
  3777. sizeof(struct pte_list_desc),
  3778. 0, 0, NULL);
  3779. if (!pte_list_desc_cache)
  3780. goto nomem;
  3781. mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
  3782. sizeof(struct kvm_mmu_page),
  3783. 0, 0, NULL);
  3784. if (!mmu_page_header_cache)
  3785. goto nomem;
  3786. if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
  3787. goto nomem;
  3788. register_shrinker(&mmu_shrinker);
  3789. return 0;
  3790. nomem:
  3791. mmu_destroy_caches();
  3792. return -ENOMEM;
  3793. }
  3794. /*
  3795. * Caculate mmu pages needed for kvm.
  3796. */
  3797. unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
  3798. {
  3799. unsigned int nr_mmu_pages;
  3800. unsigned int nr_pages = 0;
  3801. struct kvm_memslots *slots;
  3802. struct kvm_memory_slot *memslot;
  3803. slots = kvm_memslots(kvm);
  3804. kvm_for_each_memslot(memslot, slots)
  3805. nr_pages += memslot->npages;
  3806. nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
  3807. nr_mmu_pages = max(nr_mmu_pages,
  3808. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  3809. return nr_mmu_pages;
  3810. }
  3811. int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
  3812. {
  3813. struct kvm_shadow_walk_iterator iterator;
  3814. u64 spte;
  3815. int nr_sptes = 0;
  3816. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  3817. return nr_sptes;
  3818. walk_shadow_page_lockless_begin(vcpu);
  3819. for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
  3820. sptes[iterator.level-1] = spte;
  3821. nr_sptes++;
  3822. if (!is_shadow_present_pte(spte))
  3823. break;
  3824. }
  3825. walk_shadow_page_lockless_end(vcpu);
  3826. return nr_sptes;
  3827. }
  3828. EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
  3829. void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
  3830. {
  3831. ASSERT(vcpu);
  3832. kvm_mmu_unload(vcpu);
  3833. free_mmu_pages(vcpu);
  3834. mmu_free_memory_caches(vcpu);
  3835. }
  3836. void kvm_mmu_module_exit(void)
  3837. {
  3838. mmu_destroy_caches();
  3839. percpu_counter_destroy(&kvm_total_used_mmu_pages);
  3840. unregister_shrinker(&mmu_shrinker);
  3841. mmu_audit_disable();
  3842. }