emulate.c 131 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112
  1. /******************************************************************************
  2. * emulate.c
  3. *
  4. * Generic x86 (32-bit and 64-bit) instruction decoder and emulator.
  5. *
  6. * Copyright (c) 2005 Keir Fraser
  7. *
  8. * Linux coding style, mod r/m decoder, segment base fixes, real-mode
  9. * privileged instructions:
  10. *
  11. * Copyright (C) 2006 Qumranet
  12. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  13. *
  14. * Avi Kivity <avi@qumranet.com>
  15. * Yaniv Kamay <yaniv@qumranet.com>
  16. *
  17. * This work is licensed under the terms of the GNU GPL, version 2. See
  18. * the COPYING file in the top-level directory.
  19. *
  20. * From: xen-unstable 10676:af9809f51f81a3c43f276f00c81a52ef558afda4
  21. */
  22. #include <linux/kvm_host.h>
  23. #include "kvm_cache_regs.h"
  24. #include <linux/module.h>
  25. #include <asm/kvm_emulate.h>
  26. #include <linux/stringify.h>
  27. #include "x86.h"
  28. #include "tss.h"
  29. /*
  30. * Operand types
  31. */
  32. #define OpNone 0ull
  33. #define OpImplicit 1ull /* No generic decode */
  34. #define OpReg 2ull /* Register */
  35. #define OpMem 3ull /* Memory */
  36. #define OpAcc 4ull /* Accumulator: AL/AX/EAX/RAX */
  37. #define OpDI 5ull /* ES:DI/EDI/RDI */
  38. #define OpMem64 6ull /* Memory, 64-bit */
  39. #define OpImmUByte 7ull /* Zero-extended 8-bit immediate */
  40. #define OpDX 8ull /* DX register */
  41. #define OpCL 9ull /* CL register (for shifts) */
  42. #define OpImmByte 10ull /* 8-bit sign extended immediate */
  43. #define OpOne 11ull /* Implied 1 */
  44. #define OpImm 12ull /* Sign extended up to 32-bit immediate */
  45. #define OpMem16 13ull /* Memory operand (16-bit). */
  46. #define OpMem32 14ull /* Memory operand (32-bit). */
  47. #define OpImmU 15ull /* Immediate operand, zero extended */
  48. #define OpSI 16ull /* SI/ESI/RSI */
  49. #define OpImmFAddr 17ull /* Immediate far address */
  50. #define OpMemFAddr 18ull /* Far address in memory */
  51. #define OpImmU16 19ull /* Immediate operand, 16 bits, zero extended */
  52. #define OpES 20ull /* ES */
  53. #define OpCS 21ull /* CS */
  54. #define OpSS 22ull /* SS */
  55. #define OpDS 23ull /* DS */
  56. #define OpFS 24ull /* FS */
  57. #define OpGS 25ull /* GS */
  58. #define OpMem8 26ull /* 8-bit zero extended memory operand */
  59. #define OpImm64 27ull /* Sign extended 16/32/64-bit immediate */
  60. #define OpXLat 28ull /* memory at BX/EBX/RBX + zero-extended AL */
  61. #define OpAccLo 29ull /* Low part of extended acc (AX/AX/EAX/RAX) */
  62. #define OpAccHi 30ull /* High part of extended acc (-/DX/EDX/RDX) */
  63. #define OpBits 5 /* Width of operand field */
  64. #define OpMask ((1ull << OpBits) - 1)
  65. /*
  66. * Opcode effective-address decode tables.
  67. * Note that we only emulate instructions that have at least one memory
  68. * operand (excluding implicit stack references). We assume that stack
  69. * references and instruction fetches will never occur in special memory
  70. * areas that require emulation. So, for example, 'mov <imm>,<reg>' need
  71. * not be handled.
  72. */
  73. /* Operand sizes: 8-bit operands or specified/overridden size. */
  74. #define ByteOp (1<<0) /* 8-bit operands. */
  75. /* Destination operand type. */
  76. #define DstShift 1
  77. #define ImplicitOps (OpImplicit << DstShift)
  78. #define DstReg (OpReg << DstShift)
  79. #define DstMem (OpMem << DstShift)
  80. #define DstAcc (OpAcc << DstShift)
  81. #define DstDI (OpDI << DstShift)
  82. #define DstMem64 (OpMem64 << DstShift)
  83. #define DstImmUByte (OpImmUByte << DstShift)
  84. #define DstDX (OpDX << DstShift)
  85. #define DstAccLo (OpAccLo << DstShift)
  86. #define DstMask (OpMask << DstShift)
  87. /* Source operand type. */
  88. #define SrcShift 6
  89. #define SrcNone (OpNone << SrcShift)
  90. #define SrcReg (OpReg << SrcShift)
  91. #define SrcMem (OpMem << SrcShift)
  92. #define SrcMem16 (OpMem16 << SrcShift)
  93. #define SrcMem32 (OpMem32 << SrcShift)
  94. #define SrcImm (OpImm << SrcShift)
  95. #define SrcImmByte (OpImmByte << SrcShift)
  96. #define SrcOne (OpOne << SrcShift)
  97. #define SrcImmUByte (OpImmUByte << SrcShift)
  98. #define SrcImmU (OpImmU << SrcShift)
  99. #define SrcSI (OpSI << SrcShift)
  100. #define SrcXLat (OpXLat << SrcShift)
  101. #define SrcImmFAddr (OpImmFAddr << SrcShift)
  102. #define SrcMemFAddr (OpMemFAddr << SrcShift)
  103. #define SrcAcc (OpAcc << SrcShift)
  104. #define SrcImmU16 (OpImmU16 << SrcShift)
  105. #define SrcImm64 (OpImm64 << SrcShift)
  106. #define SrcDX (OpDX << SrcShift)
  107. #define SrcMem8 (OpMem8 << SrcShift)
  108. #define SrcAccHi (OpAccHi << SrcShift)
  109. #define SrcMask (OpMask << SrcShift)
  110. #define BitOp (1<<11)
  111. #define MemAbs (1<<12) /* Memory operand is absolute displacement */
  112. #define String (1<<13) /* String instruction (rep capable) */
  113. #define Stack (1<<14) /* Stack instruction (push/pop) */
  114. #define GroupMask (7<<15) /* Opcode uses one of the group mechanisms */
  115. #define Group (1<<15) /* Bits 3:5 of modrm byte extend opcode */
  116. #define GroupDual (2<<15) /* Alternate decoding of mod == 3 */
  117. #define Prefix (3<<15) /* Instruction varies with 66/f2/f3 prefix */
  118. #define RMExt (4<<15) /* Opcode extension in ModRM r/m if mod == 3 */
  119. #define Escape (5<<15) /* Escape to coprocessor instruction */
  120. #define InstrDual (6<<15) /* Alternate instruction decoding of mod == 3 */
  121. #define Sse (1<<18) /* SSE Vector instruction */
  122. /* Generic ModRM decode. */
  123. #define ModRM (1<<19)
  124. /* Destination is only written; never read. */
  125. #define Mov (1<<20)
  126. /* Misc flags */
  127. #define Prot (1<<21) /* instruction generates #UD if not in prot-mode */
  128. #define EmulateOnUD (1<<22) /* Emulate if unsupported by the host */
  129. #define NoAccess (1<<23) /* Don't access memory (lea/invlpg/verr etc) */
  130. #define Op3264 (1<<24) /* Operand is 64b in long mode, 32b otherwise */
  131. #define Undefined (1<<25) /* No Such Instruction */
  132. #define Lock (1<<26) /* lock prefix is allowed for the instruction */
  133. #define Priv (1<<27) /* instruction generates #GP if current CPL != 0 */
  134. #define No64 (1<<28)
  135. #define PageTable (1 << 29) /* instruction used to write page table */
  136. #define NotImpl (1 << 30) /* instruction is not implemented */
  137. /* Source 2 operand type */
  138. #define Src2Shift (31)
  139. #define Src2None (OpNone << Src2Shift)
  140. #define Src2Mem (OpMem << Src2Shift)
  141. #define Src2CL (OpCL << Src2Shift)
  142. #define Src2ImmByte (OpImmByte << Src2Shift)
  143. #define Src2One (OpOne << Src2Shift)
  144. #define Src2Imm (OpImm << Src2Shift)
  145. #define Src2ES (OpES << Src2Shift)
  146. #define Src2CS (OpCS << Src2Shift)
  147. #define Src2SS (OpSS << Src2Shift)
  148. #define Src2DS (OpDS << Src2Shift)
  149. #define Src2FS (OpFS << Src2Shift)
  150. #define Src2GS (OpGS << Src2Shift)
  151. #define Src2Mask (OpMask << Src2Shift)
  152. #define Mmx ((u64)1 << 40) /* MMX Vector instruction */
  153. #define Aligned ((u64)1 << 41) /* Explicitly aligned (e.g. MOVDQA) */
  154. #define Unaligned ((u64)1 << 42) /* Explicitly unaligned (e.g. MOVDQU) */
  155. #define Avx ((u64)1 << 43) /* Advanced Vector Extensions */
  156. #define Fastop ((u64)1 << 44) /* Use opcode::u.fastop */
  157. #define NoWrite ((u64)1 << 45) /* No writeback */
  158. #define SrcWrite ((u64)1 << 46) /* Write back src operand */
  159. #define NoMod ((u64)1 << 47) /* Mod field is ignored */
  160. #define Intercept ((u64)1 << 48) /* Has valid intercept field */
  161. #define CheckPerm ((u64)1 << 49) /* Has valid check_perm field */
  162. #define NoBigReal ((u64)1 << 50) /* No big real mode */
  163. #define PrivUD ((u64)1 << 51) /* #UD instead of #GP on CPL > 0 */
  164. #define NearBranch ((u64)1 << 52) /* Near branches */
  165. #define No16 ((u64)1 << 53) /* No 16 bit operand */
  166. #define DstXacc (DstAccLo | SrcAccHi | SrcWrite)
  167. #define X2(x...) x, x
  168. #define X3(x...) X2(x), x
  169. #define X4(x...) X2(x), X2(x)
  170. #define X5(x...) X4(x), x
  171. #define X6(x...) X4(x), X2(x)
  172. #define X7(x...) X4(x), X3(x)
  173. #define X8(x...) X4(x), X4(x)
  174. #define X16(x...) X8(x), X8(x)
  175. #define NR_FASTOP (ilog2(sizeof(ulong)) + 1)
  176. #define FASTOP_SIZE 8
  177. /*
  178. * fastop functions have a special calling convention:
  179. *
  180. * dst: rax (in/out)
  181. * src: rdx (in/out)
  182. * src2: rcx (in)
  183. * flags: rflags (in/out)
  184. * ex: rsi (in:fastop pointer, out:zero if exception)
  185. *
  186. * Moreover, they are all exactly FASTOP_SIZE bytes long, so functions for
  187. * different operand sizes can be reached by calculation, rather than a jump
  188. * table (which would be bigger than the code).
  189. *
  190. * fastop functions are declared as taking a never-defined fastop parameter,
  191. * so they can't be called from C directly.
  192. */
  193. struct fastop;
  194. struct opcode {
  195. u64 flags : 56;
  196. u64 intercept : 8;
  197. union {
  198. int (*execute)(struct x86_emulate_ctxt *ctxt);
  199. const struct opcode *group;
  200. const struct group_dual *gdual;
  201. const struct gprefix *gprefix;
  202. const struct escape *esc;
  203. const struct instr_dual *idual;
  204. void (*fastop)(struct fastop *fake);
  205. } u;
  206. int (*check_perm)(struct x86_emulate_ctxt *ctxt);
  207. };
  208. struct group_dual {
  209. struct opcode mod012[8];
  210. struct opcode mod3[8];
  211. };
  212. struct gprefix {
  213. struct opcode pfx_no;
  214. struct opcode pfx_66;
  215. struct opcode pfx_f2;
  216. struct opcode pfx_f3;
  217. };
  218. struct escape {
  219. struct opcode op[8];
  220. struct opcode high[64];
  221. };
  222. struct instr_dual {
  223. struct opcode mod012;
  224. struct opcode mod3;
  225. };
  226. /* EFLAGS bit definitions. */
  227. #define EFLG_ID (1<<21)
  228. #define EFLG_VIP (1<<20)
  229. #define EFLG_VIF (1<<19)
  230. #define EFLG_AC (1<<18)
  231. #define EFLG_VM (1<<17)
  232. #define EFLG_RF (1<<16)
  233. #define EFLG_IOPL (3<<12)
  234. #define EFLG_NT (1<<14)
  235. #define EFLG_OF (1<<11)
  236. #define EFLG_DF (1<<10)
  237. #define EFLG_IF (1<<9)
  238. #define EFLG_TF (1<<8)
  239. #define EFLG_SF (1<<7)
  240. #define EFLG_ZF (1<<6)
  241. #define EFLG_AF (1<<4)
  242. #define EFLG_PF (1<<2)
  243. #define EFLG_CF (1<<0)
  244. #define EFLG_RESERVED_ZEROS_MASK 0xffc0802a
  245. #define EFLG_RESERVED_ONE_MASK 2
  246. static ulong reg_read(struct x86_emulate_ctxt *ctxt, unsigned nr)
  247. {
  248. if (!(ctxt->regs_valid & (1 << nr))) {
  249. ctxt->regs_valid |= 1 << nr;
  250. ctxt->_regs[nr] = ctxt->ops->read_gpr(ctxt, nr);
  251. }
  252. return ctxt->_regs[nr];
  253. }
  254. static ulong *reg_write(struct x86_emulate_ctxt *ctxt, unsigned nr)
  255. {
  256. ctxt->regs_valid |= 1 << nr;
  257. ctxt->regs_dirty |= 1 << nr;
  258. return &ctxt->_regs[nr];
  259. }
  260. static ulong *reg_rmw(struct x86_emulate_ctxt *ctxt, unsigned nr)
  261. {
  262. reg_read(ctxt, nr);
  263. return reg_write(ctxt, nr);
  264. }
  265. static void writeback_registers(struct x86_emulate_ctxt *ctxt)
  266. {
  267. unsigned reg;
  268. for_each_set_bit(reg, (ulong *)&ctxt->regs_dirty, 16)
  269. ctxt->ops->write_gpr(ctxt, reg, ctxt->_regs[reg]);
  270. }
  271. static void invalidate_registers(struct x86_emulate_ctxt *ctxt)
  272. {
  273. ctxt->regs_dirty = 0;
  274. ctxt->regs_valid = 0;
  275. }
  276. /*
  277. * These EFLAGS bits are restored from saved value during emulation, and
  278. * any changes are written back to the saved value after emulation.
  279. */
  280. #define EFLAGS_MASK (EFLG_OF|EFLG_SF|EFLG_ZF|EFLG_AF|EFLG_PF|EFLG_CF)
  281. #ifdef CONFIG_X86_64
  282. #define ON64(x) x
  283. #else
  284. #define ON64(x)
  285. #endif
  286. static int fastop(struct x86_emulate_ctxt *ctxt, void (*fop)(struct fastop *));
  287. #define FOP_ALIGN ".align " __stringify(FASTOP_SIZE) " \n\t"
  288. #define FOP_RET "ret \n\t"
  289. #define FOP_START(op) \
  290. extern void em_##op(struct fastop *fake); \
  291. asm(".pushsection .text, \"ax\" \n\t" \
  292. ".global em_" #op " \n\t" \
  293. FOP_ALIGN \
  294. "em_" #op ": \n\t"
  295. #define FOP_END \
  296. ".popsection")
  297. #define FOPNOP() FOP_ALIGN FOP_RET
  298. #define FOP1E(op, dst) \
  299. FOP_ALIGN "10: " #op " %" #dst " \n\t" FOP_RET
  300. #define FOP1EEX(op, dst) \
  301. FOP1E(op, dst) _ASM_EXTABLE(10b, kvm_fastop_exception)
  302. #define FASTOP1(op) \
  303. FOP_START(op) \
  304. FOP1E(op##b, al) \
  305. FOP1E(op##w, ax) \
  306. FOP1E(op##l, eax) \
  307. ON64(FOP1E(op##q, rax)) \
  308. FOP_END
  309. /* 1-operand, using src2 (for MUL/DIV r/m) */
  310. #define FASTOP1SRC2(op, name) \
  311. FOP_START(name) \
  312. FOP1E(op, cl) \
  313. FOP1E(op, cx) \
  314. FOP1E(op, ecx) \
  315. ON64(FOP1E(op, rcx)) \
  316. FOP_END
  317. /* 1-operand, using src2 (for MUL/DIV r/m), with exceptions */
  318. #define FASTOP1SRC2EX(op, name) \
  319. FOP_START(name) \
  320. FOP1EEX(op, cl) \
  321. FOP1EEX(op, cx) \
  322. FOP1EEX(op, ecx) \
  323. ON64(FOP1EEX(op, rcx)) \
  324. FOP_END
  325. #define FOP2E(op, dst, src) \
  326. FOP_ALIGN #op " %" #src ", %" #dst " \n\t" FOP_RET
  327. #define FASTOP2(op) \
  328. FOP_START(op) \
  329. FOP2E(op##b, al, dl) \
  330. FOP2E(op##w, ax, dx) \
  331. FOP2E(op##l, eax, edx) \
  332. ON64(FOP2E(op##q, rax, rdx)) \
  333. FOP_END
  334. /* 2 operand, word only */
  335. #define FASTOP2W(op) \
  336. FOP_START(op) \
  337. FOPNOP() \
  338. FOP2E(op##w, ax, dx) \
  339. FOP2E(op##l, eax, edx) \
  340. ON64(FOP2E(op##q, rax, rdx)) \
  341. FOP_END
  342. /* 2 operand, src is CL */
  343. #define FASTOP2CL(op) \
  344. FOP_START(op) \
  345. FOP2E(op##b, al, cl) \
  346. FOP2E(op##w, ax, cl) \
  347. FOP2E(op##l, eax, cl) \
  348. ON64(FOP2E(op##q, rax, cl)) \
  349. FOP_END
  350. /* 2 operand, src and dest are reversed */
  351. #define FASTOP2R(op, name) \
  352. FOP_START(name) \
  353. FOP2E(op##b, dl, al) \
  354. FOP2E(op##w, dx, ax) \
  355. FOP2E(op##l, edx, eax) \
  356. ON64(FOP2E(op##q, rdx, rax)) \
  357. FOP_END
  358. #define FOP3E(op, dst, src, src2) \
  359. FOP_ALIGN #op " %" #src2 ", %" #src ", %" #dst " \n\t" FOP_RET
  360. /* 3-operand, word-only, src2=cl */
  361. #define FASTOP3WCL(op) \
  362. FOP_START(op) \
  363. FOPNOP() \
  364. FOP3E(op##w, ax, dx, cl) \
  365. FOP3E(op##l, eax, edx, cl) \
  366. ON64(FOP3E(op##q, rax, rdx, cl)) \
  367. FOP_END
  368. /* Special case for SETcc - 1 instruction per cc */
  369. #define FOP_SETCC(op) ".align 4; " #op " %al; ret \n\t"
  370. asm(".global kvm_fastop_exception \n"
  371. "kvm_fastop_exception: xor %esi, %esi; ret");
  372. FOP_START(setcc)
  373. FOP_SETCC(seto)
  374. FOP_SETCC(setno)
  375. FOP_SETCC(setc)
  376. FOP_SETCC(setnc)
  377. FOP_SETCC(setz)
  378. FOP_SETCC(setnz)
  379. FOP_SETCC(setbe)
  380. FOP_SETCC(setnbe)
  381. FOP_SETCC(sets)
  382. FOP_SETCC(setns)
  383. FOP_SETCC(setp)
  384. FOP_SETCC(setnp)
  385. FOP_SETCC(setl)
  386. FOP_SETCC(setnl)
  387. FOP_SETCC(setle)
  388. FOP_SETCC(setnle)
  389. FOP_END;
  390. FOP_START(salc) "pushf; sbb %al, %al; popf \n\t" FOP_RET
  391. FOP_END;
  392. static int emulator_check_intercept(struct x86_emulate_ctxt *ctxt,
  393. enum x86_intercept intercept,
  394. enum x86_intercept_stage stage)
  395. {
  396. struct x86_instruction_info info = {
  397. .intercept = intercept,
  398. .rep_prefix = ctxt->rep_prefix,
  399. .modrm_mod = ctxt->modrm_mod,
  400. .modrm_reg = ctxt->modrm_reg,
  401. .modrm_rm = ctxt->modrm_rm,
  402. .src_val = ctxt->src.val64,
  403. .dst_val = ctxt->dst.val64,
  404. .src_bytes = ctxt->src.bytes,
  405. .dst_bytes = ctxt->dst.bytes,
  406. .ad_bytes = ctxt->ad_bytes,
  407. .next_rip = ctxt->eip,
  408. };
  409. return ctxt->ops->intercept(ctxt, &info, stage);
  410. }
  411. static void assign_masked(ulong *dest, ulong src, ulong mask)
  412. {
  413. *dest = (*dest & ~mask) | (src & mask);
  414. }
  415. static inline unsigned long ad_mask(struct x86_emulate_ctxt *ctxt)
  416. {
  417. return (1UL << (ctxt->ad_bytes << 3)) - 1;
  418. }
  419. static ulong stack_mask(struct x86_emulate_ctxt *ctxt)
  420. {
  421. u16 sel;
  422. struct desc_struct ss;
  423. if (ctxt->mode == X86EMUL_MODE_PROT64)
  424. return ~0UL;
  425. ctxt->ops->get_segment(ctxt, &sel, &ss, NULL, VCPU_SREG_SS);
  426. return ~0U >> ((ss.d ^ 1) * 16); /* d=0: 0xffff; d=1: 0xffffffff */
  427. }
  428. static int stack_size(struct x86_emulate_ctxt *ctxt)
  429. {
  430. return (__fls(stack_mask(ctxt)) + 1) >> 3;
  431. }
  432. /* Access/update address held in a register, based on addressing mode. */
  433. static inline unsigned long
  434. address_mask(struct x86_emulate_ctxt *ctxt, unsigned long reg)
  435. {
  436. if (ctxt->ad_bytes == sizeof(unsigned long))
  437. return reg;
  438. else
  439. return reg & ad_mask(ctxt);
  440. }
  441. static inline unsigned long
  442. register_address(struct x86_emulate_ctxt *ctxt, int reg)
  443. {
  444. return address_mask(ctxt, reg_read(ctxt, reg));
  445. }
  446. static void masked_increment(ulong *reg, ulong mask, int inc)
  447. {
  448. assign_masked(reg, *reg + inc, mask);
  449. }
  450. static inline void
  451. register_address_increment(struct x86_emulate_ctxt *ctxt, int reg, int inc)
  452. {
  453. ulong mask;
  454. if (ctxt->ad_bytes == sizeof(unsigned long))
  455. mask = ~0UL;
  456. else
  457. mask = ad_mask(ctxt);
  458. masked_increment(reg_rmw(ctxt, reg), mask, inc);
  459. }
  460. static void rsp_increment(struct x86_emulate_ctxt *ctxt, int inc)
  461. {
  462. masked_increment(reg_rmw(ctxt, VCPU_REGS_RSP), stack_mask(ctxt), inc);
  463. }
  464. static u32 desc_limit_scaled(struct desc_struct *desc)
  465. {
  466. u32 limit = get_desc_limit(desc);
  467. return desc->g ? (limit << 12) | 0xfff : limit;
  468. }
  469. static unsigned long seg_base(struct x86_emulate_ctxt *ctxt, int seg)
  470. {
  471. if (ctxt->mode == X86EMUL_MODE_PROT64 && seg < VCPU_SREG_FS)
  472. return 0;
  473. return ctxt->ops->get_cached_segment_base(ctxt, seg);
  474. }
  475. static int emulate_exception(struct x86_emulate_ctxt *ctxt, int vec,
  476. u32 error, bool valid)
  477. {
  478. WARN_ON(vec > 0x1f);
  479. ctxt->exception.vector = vec;
  480. ctxt->exception.error_code = error;
  481. ctxt->exception.error_code_valid = valid;
  482. return X86EMUL_PROPAGATE_FAULT;
  483. }
  484. static int emulate_db(struct x86_emulate_ctxt *ctxt)
  485. {
  486. return emulate_exception(ctxt, DB_VECTOR, 0, false);
  487. }
  488. static int emulate_gp(struct x86_emulate_ctxt *ctxt, int err)
  489. {
  490. return emulate_exception(ctxt, GP_VECTOR, err, true);
  491. }
  492. static int emulate_ss(struct x86_emulate_ctxt *ctxt, int err)
  493. {
  494. return emulate_exception(ctxt, SS_VECTOR, err, true);
  495. }
  496. static int emulate_ud(struct x86_emulate_ctxt *ctxt)
  497. {
  498. return emulate_exception(ctxt, UD_VECTOR, 0, false);
  499. }
  500. static int emulate_ts(struct x86_emulate_ctxt *ctxt, int err)
  501. {
  502. return emulate_exception(ctxt, TS_VECTOR, err, true);
  503. }
  504. static int emulate_de(struct x86_emulate_ctxt *ctxt)
  505. {
  506. return emulate_exception(ctxt, DE_VECTOR, 0, false);
  507. }
  508. static int emulate_nm(struct x86_emulate_ctxt *ctxt)
  509. {
  510. return emulate_exception(ctxt, NM_VECTOR, 0, false);
  511. }
  512. static u16 get_segment_selector(struct x86_emulate_ctxt *ctxt, unsigned seg)
  513. {
  514. u16 selector;
  515. struct desc_struct desc;
  516. ctxt->ops->get_segment(ctxt, &selector, &desc, NULL, seg);
  517. return selector;
  518. }
  519. static void set_segment_selector(struct x86_emulate_ctxt *ctxt, u16 selector,
  520. unsigned seg)
  521. {
  522. u16 dummy;
  523. u32 base3;
  524. struct desc_struct desc;
  525. ctxt->ops->get_segment(ctxt, &dummy, &desc, &base3, seg);
  526. ctxt->ops->set_segment(ctxt, selector, &desc, base3, seg);
  527. }
  528. /*
  529. * x86 defines three classes of vector instructions: explicitly
  530. * aligned, explicitly unaligned, and the rest, which change behaviour
  531. * depending on whether they're AVX encoded or not.
  532. *
  533. * Also included is CMPXCHG16B which is not a vector instruction, yet it is
  534. * subject to the same check.
  535. */
  536. static bool insn_aligned(struct x86_emulate_ctxt *ctxt, unsigned size)
  537. {
  538. if (likely(size < 16))
  539. return false;
  540. if (ctxt->d & Aligned)
  541. return true;
  542. else if (ctxt->d & Unaligned)
  543. return false;
  544. else if (ctxt->d & Avx)
  545. return false;
  546. else
  547. return true;
  548. }
  549. static __always_inline int __linearize(struct x86_emulate_ctxt *ctxt,
  550. struct segmented_address addr,
  551. unsigned *max_size, unsigned size,
  552. bool write, bool fetch,
  553. enum x86emul_mode mode, ulong *linear)
  554. {
  555. struct desc_struct desc;
  556. bool usable;
  557. ulong la;
  558. u32 lim;
  559. u16 sel;
  560. la = seg_base(ctxt, addr.seg) + addr.ea;
  561. *max_size = 0;
  562. switch (mode) {
  563. case X86EMUL_MODE_PROT64:
  564. if (is_noncanonical_address(la))
  565. goto bad;
  566. *max_size = min_t(u64, ~0u, (1ull << 48) - la);
  567. if (size > *max_size)
  568. goto bad;
  569. break;
  570. default:
  571. usable = ctxt->ops->get_segment(ctxt, &sel, &desc, NULL,
  572. addr.seg);
  573. if (!usable)
  574. goto bad;
  575. /* code segment in protected mode or read-only data segment */
  576. if ((((ctxt->mode != X86EMUL_MODE_REAL) && (desc.type & 8))
  577. || !(desc.type & 2)) && write)
  578. goto bad;
  579. /* unreadable code segment */
  580. if (!fetch && (desc.type & 8) && !(desc.type & 2))
  581. goto bad;
  582. lim = desc_limit_scaled(&desc);
  583. if (!(desc.type & 8) && (desc.type & 4)) {
  584. /* expand-down segment */
  585. if (addr.ea <= lim)
  586. goto bad;
  587. lim = desc.d ? 0xffffffff : 0xffff;
  588. }
  589. if (addr.ea > lim)
  590. goto bad;
  591. *max_size = min_t(u64, ~0u, (u64)lim + 1 - addr.ea);
  592. if (size > *max_size)
  593. goto bad;
  594. la &= (u32)-1;
  595. break;
  596. }
  597. if (insn_aligned(ctxt, size) && ((la & (size - 1)) != 0))
  598. return emulate_gp(ctxt, 0);
  599. *linear = la;
  600. return X86EMUL_CONTINUE;
  601. bad:
  602. if (addr.seg == VCPU_SREG_SS)
  603. return emulate_ss(ctxt, 0);
  604. else
  605. return emulate_gp(ctxt, 0);
  606. }
  607. static int linearize(struct x86_emulate_ctxt *ctxt,
  608. struct segmented_address addr,
  609. unsigned size, bool write,
  610. ulong *linear)
  611. {
  612. unsigned max_size;
  613. return __linearize(ctxt, addr, &max_size, size, write, false,
  614. ctxt->mode, linear);
  615. }
  616. static inline int assign_eip(struct x86_emulate_ctxt *ctxt, ulong dst,
  617. enum x86emul_mode mode)
  618. {
  619. ulong linear;
  620. int rc;
  621. unsigned max_size;
  622. struct segmented_address addr = { .seg = VCPU_SREG_CS,
  623. .ea = dst };
  624. if (ctxt->op_bytes != sizeof(unsigned long))
  625. addr.ea = dst & ((1UL << (ctxt->op_bytes << 3)) - 1);
  626. rc = __linearize(ctxt, addr, &max_size, 1, false, true, mode, &linear);
  627. if (rc == X86EMUL_CONTINUE)
  628. ctxt->_eip = addr.ea;
  629. return rc;
  630. }
  631. static inline int assign_eip_near(struct x86_emulate_ctxt *ctxt, ulong dst)
  632. {
  633. return assign_eip(ctxt, dst, ctxt->mode);
  634. }
  635. static int assign_eip_far(struct x86_emulate_ctxt *ctxt, ulong dst,
  636. const struct desc_struct *cs_desc)
  637. {
  638. enum x86emul_mode mode = ctxt->mode;
  639. #ifdef CONFIG_X86_64
  640. if (ctxt->mode >= X86EMUL_MODE_PROT32 && cs_desc->l) {
  641. u64 efer = 0;
  642. ctxt->ops->get_msr(ctxt, MSR_EFER, &efer);
  643. if (efer & EFER_LMA)
  644. mode = X86EMUL_MODE_PROT64;
  645. }
  646. #endif
  647. if (mode == X86EMUL_MODE_PROT16 || mode == X86EMUL_MODE_PROT32)
  648. mode = cs_desc->d ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  649. return assign_eip(ctxt, dst, mode);
  650. }
  651. static inline int jmp_rel(struct x86_emulate_ctxt *ctxt, int rel)
  652. {
  653. return assign_eip_near(ctxt, ctxt->_eip + rel);
  654. }
  655. static int segmented_read_std(struct x86_emulate_ctxt *ctxt,
  656. struct segmented_address addr,
  657. void *data,
  658. unsigned size)
  659. {
  660. int rc;
  661. ulong linear;
  662. rc = linearize(ctxt, addr, size, false, &linear);
  663. if (rc != X86EMUL_CONTINUE)
  664. return rc;
  665. return ctxt->ops->read_std(ctxt, linear, data, size, &ctxt->exception);
  666. }
  667. /*
  668. * Prefetch the remaining bytes of the instruction without crossing page
  669. * boundary if they are not in fetch_cache yet.
  670. */
  671. static int __do_insn_fetch_bytes(struct x86_emulate_ctxt *ctxt, int op_size)
  672. {
  673. int rc;
  674. unsigned size, max_size;
  675. unsigned long linear;
  676. int cur_size = ctxt->fetch.end - ctxt->fetch.data;
  677. struct segmented_address addr = { .seg = VCPU_SREG_CS,
  678. .ea = ctxt->eip + cur_size };
  679. /*
  680. * We do not know exactly how many bytes will be needed, and
  681. * __linearize is expensive, so fetch as much as possible. We
  682. * just have to avoid going beyond the 15 byte limit, the end
  683. * of the segment, or the end of the page.
  684. *
  685. * __linearize is called with size 0 so that it does not do any
  686. * boundary check itself. Instead, we use max_size to check
  687. * against op_size.
  688. */
  689. rc = __linearize(ctxt, addr, &max_size, 0, false, true, ctxt->mode,
  690. &linear);
  691. if (unlikely(rc != X86EMUL_CONTINUE))
  692. return rc;
  693. size = min_t(unsigned, 15UL ^ cur_size, max_size);
  694. size = min_t(unsigned, size, PAGE_SIZE - offset_in_page(linear));
  695. /*
  696. * One instruction can only straddle two pages,
  697. * and one has been loaded at the beginning of
  698. * x86_decode_insn. So, if not enough bytes
  699. * still, we must have hit the 15-byte boundary.
  700. */
  701. if (unlikely(size < op_size))
  702. return emulate_gp(ctxt, 0);
  703. rc = ctxt->ops->fetch(ctxt, linear, ctxt->fetch.end,
  704. size, &ctxt->exception);
  705. if (unlikely(rc != X86EMUL_CONTINUE))
  706. return rc;
  707. ctxt->fetch.end += size;
  708. return X86EMUL_CONTINUE;
  709. }
  710. static __always_inline int do_insn_fetch_bytes(struct x86_emulate_ctxt *ctxt,
  711. unsigned size)
  712. {
  713. unsigned done_size = ctxt->fetch.end - ctxt->fetch.ptr;
  714. if (unlikely(done_size < size))
  715. return __do_insn_fetch_bytes(ctxt, size - done_size);
  716. else
  717. return X86EMUL_CONTINUE;
  718. }
  719. /* Fetch next part of the instruction being emulated. */
  720. #define insn_fetch(_type, _ctxt) \
  721. ({ _type _x; \
  722. \
  723. rc = do_insn_fetch_bytes(_ctxt, sizeof(_type)); \
  724. if (rc != X86EMUL_CONTINUE) \
  725. goto done; \
  726. ctxt->_eip += sizeof(_type); \
  727. _x = *(_type __aligned(1) *) ctxt->fetch.ptr; \
  728. ctxt->fetch.ptr += sizeof(_type); \
  729. _x; \
  730. })
  731. #define insn_fetch_arr(_arr, _size, _ctxt) \
  732. ({ \
  733. rc = do_insn_fetch_bytes(_ctxt, _size); \
  734. if (rc != X86EMUL_CONTINUE) \
  735. goto done; \
  736. ctxt->_eip += (_size); \
  737. memcpy(_arr, ctxt->fetch.ptr, _size); \
  738. ctxt->fetch.ptr += (_size); \
  739. })
  740. /*
  741. * Given the 'reg' portion of a ModRM byte, and a register block, return a
  742. * pointer into the block that addresses the relevant register.
  743. * @highbyte_regs specifies whether to decode AH,CH,DH,BH.
  744. */
  745. static void *decode_register(struct x86_emulate_ctxt *ctxt, u8 modrm_reg,
  746. int byteop)
  747. {
  748. void *p;
  749. int highbyte_regs = (ctxt->rex_prefix == 0) && byteop;
  750. if (highbyte_regs && modrm_reg >= 4 && modrm_reg < 8)
  751. p = (unsigned char *)reg_rmw(ctxt, modrm_reg & 3) + 1;
  752. else
  753. p = reg_rmw(ctxt, modrm_reg);
  754. return p;
  755. }
  756. static int read_descriptor(struct x86_emulate_ctxt *ctxt,
  757. struct segmented_address addr,
  758. u16 *size, unsigned long *address, int op_bytes)
  759. {
  760. int rc;
  761. if (op_bytes == 2)
  762. op_bytes = 3;
  763. *address = 0;
  764. rc = segmented_read_std(ctxt, addr, size, 2);
  765. if (rc != X86EMUL_CONTINUE)
  766. return rc;
  767. addr.ea += 2;
  768. rc = segmented_read_std(ctxt, addr, address, op_bytes);
  769. return rc;
  770. }
  771. FASTOP2(add);
  772. FASTOP2(or);
  773. FASTOP2(adc);
  774. FASTOP2(sbb);
  775. FASTOP2(and);
  776. FASTOP2(sub);
  777. FASTOP2(xor);
  778. FASTOP2(cmp);
  779. FASTOP2(test);
  780. FASTOP1SRC2(mul, mul_ex);
  781. FASTOP1SRC2(imul, imul_ex);
  782. FASTOP1SRC2EX(div, div_ex);
  783. FASTOP1SRC2EX(idiv, idiv_ex);
  784. FASTOP3WCL(shld);
  785. FASTOP3WCL(shrd);
  786. FASTOP2W(imul);
  787. FASTOP1(not);
  788. FASTOP1(neg);
  789. FASTOP1(inc);
  790. FASTOP1(dec);
  791. FASTOP2CL(rol);
  792. FASTOP2CL(ror);
  793. FASTOP2CL(rcl);
  794. FASTOP2CL(rcr);
  795. FASTOP2CL(shl);
  796. FASTOP2CL(shr);
  797. FASTOP2CL(sar);
  798. FASTOP2W(bsf);
  799. FASTOP2W(bsr);
  800. FASTOP2W(bt);
  801. FASTOP2W(bts);
  802. FASTOP2W(btr);
  803. FASTOP2W(btc);
  804. FASTOP2(xadd);
  805. FASTOP2R(cmp, cmp_r);
  806. static u8 test_cc(unsigned int condition, unsigned long flags)
  807. {
  808. u8 rc;
  809. void (*fop)(void) = (void *)em_setcc + 4 * (condition & 0xf);
  810. flags = (flags & EFLAGS_MASK) | X86_EFLAGS_IF;
  811. asm("push %[flags]; popf; call *%[fastop]"
  812. : "=a"(rc) : [fastop]"r"(fop), [flags]"r"(flags));
  813. return rc;
  814. }
  815. static void fetch_register_operand(struct operand *op)
  816. {
  817. switch (op->bytes) {
  818. case 1:
  819. op->val = *(u8 *)op->addr.reg;
  820. break;
  821. case 2:
  822. op->val = *(u16 *)op->addr.reg;
  823. break;
  824. case 4:
  825. op->val = *(u32 *)op->addr.reg;
  826. break;
  827. case 8:
  828. op->val = *(u64 *)op->addr.reg;
  829. break;
  830. }
  831. }
  832. static void read_sse_reg(struct x86_emulate_ctxt *ctxt, sse128_t *data, int reg)
  833. {
  834. ctxt->ops->get_fpu(ctxt);
  835. switch (reg) {
  836. case 0: asm("movdqa %%xmm0, %0" : "=m"(*data)); break;
  837. case 1: asm("movdqa %%xmm1, %0" : "=m"(*data)); break;
  838. case 2: asm("movdqa %%xmm2, %0" : "=m"(*data)); break;
  839. case 3: asm("movdqa %%xmm3, %0" : "=m"(*data)); break;
  840. case 4: asm("movdqa %%xmm4, %0" : "=m"(*data)); break;
  841. case 5: asm("movdqa %%xmm5, %0" : "=m"(*data)); break;
  842. case 6: asm("movdqa %%xmm6, %0" : "=m"(*data)); break;
  843. case 7: asm("movdqa %%xmm7, %0" : "=m"(*data)); break;
  844. #ifdef CONFIG_X86_64
  845. case 8: asm("movdqa %%xmm8, %0" : "=m"(*data)); break;
  846. case 9: asm("movdqa %%xmm9, %0" : "=m"(*data)); break;
  847. case 10: asm("movdqa %%xmm10, %0" : "=m"(*data)); break;
  848. case 11: asm("movdqa %%xmm11, %0" : "=m"(*data)); break;
  849. case 12: asm("movdqa %%xmm12, %0" : "=m"(*data)); break;
  850. case 13: asm("movdqa %%xmm13, %0" : "=m"(*data)); break;
  851. case 14: asm("movdqa %%xmm14, %0" : "=m"(*data)); break;
  852. case 15: asm("movdqa %%xmm15, %0" : "=m"(*data)); break;
  853. #endif
  854. default: BUG();
  855. }
  856. ctxt->ops->put_fpu(ctxt);
  857. }
  858. static void write_sse_reg(struct x86_emulate_ctxt *ctxt, sse128_t *data,
  859. int reg)
  860. {
  861. ctxt->ops->get_fpu(ctxt);
  862. switch (reg) {
  863. case 0: asm("movdqa %0, %%xmm0" : : "m"(*data)); break;
  864. case 1: asm("movdqa %0, %%xmm1" : : "m"(*data)); break;
  865. case 2: asm("movdqa %0, %%xmm2" : : "m"(*data)); break;
  866. case 3: asm("movdqa %0, %%xmm3" : : "m"(*data)); break;
  867. case 4: asm("movdqa %0, %%xmm4" : : "m"(*data)); break;
  868. case 5: asm("movdqa %0, %%xmm5" : : "m"(*data)); break;
  869. case 6: asm("movdqa %0, %%xmm6" : : "m"(*data)); break;
  870. case 7: asm("movdqa %0, %%xmm7" : : "m"(*data)); break;
  871. #ifdef CONFIG_X86_64
  872. case 8: asm("movdqa %0, %%xmm8" : : "m"(*data)); break;
  873. case 9: asm("movdqa %0, %%xmm9" : : "m"(*data)); break;
  874. case 10: asm("movdqa %0, %%xmm10" : : "m"(*data)); break;
  875. case 11: asm("movdqa %0, %%xmm11" : : "m"(*data)); break;
  876. case 12: asm("movdqa %0, %%xmm12" : : "m"(*data)); break;
  877. case 13: asm("movdqa %0, %%xmm13" : : "m"(*data)); break;
  878. case 14: asm("movdqa %0, %%xmm14" : : "m"(*data)); break;
  879. case 15: asm("movdqa %0, %%xmm15" : : "m"(*data)); break;
  880. #endif
  881. default: BUG();
  882. }
  883. ctxt->ops->put_fpu(ctxt);
  884. }
  885. static void read_mmx_reg(struct x86_emulate_ctxt *ctxt, u64 *data, int reg)
  886. {
  887. ctxt->ops->get_fpu(ctxt);
  888. switch (reg) {
  889. case 0: asm("movq %%mm0, %0" : "=m"(*data)); break;
  890. case 1: asm("movq %%mm1, %0" : "=m"(*data)); break;
  891. case 2: asm("movq %%mm2, %0" : "=m"(*data)); break;
  892. case 3: asm("movq %%mm3, %0" : "=m"(*data)); break;
  893. case 4: asm("movq %%mm4, %0" : "=m"(*data)); break;
  894. case 5: asm("movq %%mm5, %0" : "=m"(*data)); break;
  895. case 6: asm("movq %%mm6, %0" : "=m"(*data)); break;
  896. case 7: asm("movq %%mm7, %0" : "=m"(*data)); break;
  897. default: BUG();
  898. }
  899. ctxt->ops->put_fpu(ctxt);
  900. }
  901. static void write_mmx_reg(struct x86_emulate_ctxt *ctxt, u64 *data, int reg)
  902. {
  903. ctxt->ops->get_fpu(ctxt);
  904. switch (reg) {
  905. case 0: asm("movq %0, %%mm0" : : "m"(*data)); break;
  906. case 1: asm("movq %0, %%mm1" : : "m"(*data)); break;
  907. case 2: asm("movq %0, %%mm2" : : "m"(*data)); break;
  908. case 3: asm("movq %0, %%mm3" : : "m"(*data)); break;
  909. case 4: asm("movq %0, %%mm4" : : "m"(*data)); break;
  910. case 5: asm("movq %0, %%mm5" : : "m"(*data)); break;
  911. case 6: asm("movq %0, %%mm6" : : "m"(*data)); break;
  912. case 7: asm("movq %0, %%mm7" : : "m"(*data)); break;
  913. default: BUG();
  914. }
  915. ctxt->ops->put_fpu(ctxt);
  916. }
  917. static int em_fninit(struct x86_emulate_ctxt *ctxt)
  918. {
  919. if (ctxt->ops->get_cr(ctxt, 0) & (X86_CR0_TS | X86_CR0_EM))
  920. return emulate_nm(ctxt);
  921. ctxt->ops->get_fpu(ctxt);
  922. asm volatile("fninit");
  923. ctxt->ops->put_fpu(ctxt);
  924. return X86EMUL_CONTINUE;
  925. }
  926. static int em_fnstcw(struct x86_emulate_ctxt *ctxt)
  927. {
  928. u16 fcw;
  929. if (ctxt->ops->get_cr(ctxt, 0) & (X86_CR0_TS | X86_CR0_EM))
  930. return emulate_nm(ctxt);
  931. ctxt->ops->get_fpu(ctxt);
  932. asm volatile("fnstcw %0": "+m"(fcw));
  933. ctxt->ops->put_fpu(ctxt);
  934. /* force 2 byte destination */
  935. ctxt->dst.bytes = 2;
  936. ctxt->dst.val = fcw;
  937. return X86EMUL_CONTINUE;
  938. }
  939. static int em_fnstsw(struct x86_emulate_ctxt *ctxt)
  940. {
  941. u16 fsw;
  942. if (ctxt->ops->get_cr(ctxt, 0) & (X86_CR0_TS | X86_CR0_EM))
  943. return emulate_nm(ctxt);
  944. ctxt->ops->get_fpu(ctxt);
  945. asm volatile("fnstsw %0": "+m"(fsw));
  946. ctxt->ops->put_fpu(ctxt);
  947. /* force 2 byte destination */
  948. ctxt->dst.bytes = 2;
  949. ctxt->dst.val = fsw;
  950. return X86EMUL_CONTINUE;
  951. }
  952. static void decode_register_operand(struct x86_emulate_ctxt *ctxt,
  953. struct operand *op)
  954. {
  955. unsigned reg = ctxt->modrm_reg;
  956. if (!(ctxt->d & ModRM))
  957. reg = (ctxt->b & 7) | ((ctxt->rex_prefix & 1) << 3);
  958. if (ctxt->d & Sse) {
  959. op->type = OP_XMM;
  960. op->bytes = 16;
  961. op->addr.xmm = reg;
  962. read_sse_reg(ctxt, &op->vec_val, reg);
  963. return;
  964. }
  965. if (ctxt->d & Mmx) {
  966. reg &= 7;
  967. op->type = OP_MM;
  968. op->bytes = 8;
  969. op->addr.mm = reg;
  970. return;
  971. }
  972. op->type = OP_REG;
  973. op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
  974. op->addr.reg = decode_register(ctxt, reg, ctxt->d & ByteOp);
  975. fetch_register_operand(op);
  976. op->orig_val = op->val;
  977. }
  978. static void adjust_modrm_seg(struct x86_emulate_ctxt *ctxt, int base_reg)
  979. {
  980. if (base_reg == VCPU_REGS_RSP || base_reg == VCPU_REGS_RBP)
  981. ctxt->modrm_seg = VCPU_SREG_SS;
  982. }
  983. static int decode_modrm(struct x86_emulate_ctxt *ctxt,
  984. struct operand *op)
  985. {
  986. u8 sib;
  987. int index_reg, base_reg, scale;
  988. int rc = X86EMUL_CONTINUE;
  989. ulong modrm_ea = 0;
  990. ctxt->modrm_reg = ((ctxt->rex_prefix << 1) & 8); /* REX.R */
  991. index_reg = (ctxt->rex_prefix << 2) & 8; /* REX.X */
  992. base_reg = (ctxt->rex_prefix << 3) & 8; /* REX.B */
  993. ctxt->modrm_mod = (ctxt->modrm & 0xc0) >> 6;
  994. ctxt->modrm_reg |= (ctxt->modrm & 0x38) >> 3;
  995. ctxt->modrm_rm = base_reg | (ctxt->modrm & 0x07);
  996. ctxt->modrm_seg = VCPU_SREG_DS;
  997. if (ctxt->modrm_mod == 3 || (ctxt->d & NoMod)) {
  998. op->type = OP_REG;
  999. op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
  1000. op->addr.reg = decode_register(ctxt, ctxt->modrm_rm,
  1001. ctxt->d & ByteOp);
  1002. if (ctxt->d & Sse) {
  1003. op->type = OP_XMM;
  1004. op->bytes = 16;
  1005. op->addr.xmm = ctxt->modrm_rm;
  1006. read_sse_reg(ctxt, &op->vec_val, ctxt->modrm_rm);
  1007. return rc;
  1008. }
  1009. if (ctxt->d & Mmx) {
  1010. op->type = OP_MM;
  1011. op->bytes = 8;
  1012. op->addr.mm = ctxt->modrm_rm & 7;
  1013. return rc;
  1014. }
  1015. fetch_register_operand(op);
  1016. return rc;
  1017. }
  1018. op->type = OP_MEM;
  1019. if (ctxt->ad_bytes == 2) {
  1020. unsigned bx = reg_read(ctxt, VCPU_REGS_RBX);
  1021. unsigned bp = reg_read(ctxt, VCPU_REGS_RBP);
  1022. unsigned si = reg_read(ctxt, VCPU_REGS_RSI);
  1023. unsigned di = reg_read(ctxt, VCPU_REGS_RDI);
  1024. /* 16-bit ModR/M decode. */
  1025. switch (ctxt->modrm_mod) {
  1026. case 0:
  1027. if (ctxt->modrm_rm == 6)
  1028. modrm_ea += insn_fetch(u16, ctxt);
  1029. break;
  1030. case 1:
  1031. modrm_ea += insn_fetch(s8, ctxt);
  1032. break;
  1033. case 2:
  1034. modrm_ea += insn_fetch(u16, ctxt);
  1035. break;
  1036. }
  1037. switch (ctxt->modrm_rm) {
  1038. case 0:
  1039. modrm_ea += bx + si;
  1040. break;
  1041. case 1:
  1042. modrm_ea += bx + di;
  1043. break;
  1044. case 2:
  1045. modrm_ea += bp + si;
  1046. break;
  1047. case 3:
  1048. modrm_ea += bp + di;
  1049. break;
  1050. case 4:
  1051. modrm_ea += si;
  1052. break;
  1053. case 5:
  1054. modrm_ea += di;
  1055. break;
  1056. case 6:
  1057. if (ctxt->modrm_mod != 0)
  1058. modrm_ea += bp;
  1059. break;
  1060. case 7:
  1061. modrm_ea += bx;
  1062. break;
  1063. }
  1064. if (ctxt->modrm_rm == 2 || ctxt->modrm_rm == 3 ||
  1065. (ctxt->modrm_rm == 6 && ctxt->modrm_mod != 0))
  1066. ctxt->modrm_seg = VCPU_SREG_SS;
  1067. modrm_ea = (u16)modrm_ea;
  1068. } else {
  1069. /* 32/64-bit ModR/M decode. */
  1070. if ((ctxt->modrm_rm & 7) == 4) {
  1071. sib = insn_fetch(u8, ctxt);
  1072. index_reg |= (sib >> 3) & 7;
  1073. base_reg |= sib & 7;
  1074. scale = sib >> 6;
  1075. if ((base_reg & 7) == 5 && ctxt->modrm_mod == 0)
  1076. modrm_ea += insn_fetch(s32, ctxt);
  1077. else {
  1078. modrm_ea += reg_read(ctxt, base_reg);
  1079. adjust_modrm_seg(ctxt, base_reg);
  1080. }
  1081. if (index_reg != 4)
  1082. modrm_ea += reg_read(ctxt, index_reg) << scale;
  1083. } else if ((ctxt->modrm_rm & 7) == 5 && ctxt->modrm_mod == 0) {
  1084. modrm_ea += insn_fetch(s32, ctxt);
  1085. if (ctxt->mode == X86EMUL_MODE_PROT64)
  1086. ctxt->rip_relative = 1;
  1087. } else {
  1088. base_reg = ctxt->modrm_rm;
  1089. modrm_ea += reg_read(ctxt, base_reg);
  1090. adjust_modrm_seg(ctxt, base_reg);
  1091. }
  1092. switch (ctxt->modrm_mod) {
  1093. case 1:
  1094. modrm_ea += insn_fetch(s8, ctxt);
  1095. break;
  1096. case 2:
  1097. modrm_ea += insn_fetch(s32, ctxt);
  1098. break;
  1099. }
  1100. }
  1101. op->addr.mem.ea = modrm_ea;
  1102. if (ctxt->ad_bytes != 8)
  1103. ctxt->memop.addr.mem.ea = (u32)ctxt->memop.addr.mem.ea;
  1104. done:
  1105. return rc;
  1106. }
  1107. static int decode_abs(struct x86_emulate_ctxt *ctxt,
  1108. struct operand *op)
  1109. {
  1110. int rc = X86EMUL_CONTINUE;
  1111. op->type = OP_MEM;
  1112. switch (ctxt->ad_bytes) {
  1113. case 2:
  1114. op->addr.mem.ea = insn_fetch(u16, ctxt);
  1115. break;
  1116. case 4:
  1117. op->addr.mem.ea = insn_fetch(u32, ctxt);
  1118. break;
  1119. case 8:
  1120. op->addr.mem.ea = insn_fetch(u64, ctxt);
  1121. break;
  1122. }
  1123. done:
  1124. return rc;
  1125. }
  1126. static void fetch_bit_operand(struct x86_emulate_ctxt *ctxt)
  1127. {
  1128. long sv = 0, mask;
  1129. if (ctxt->dst.type == OP_MEM && ctxt->src.type == OP_REG) {
  1130. mask = ~((long)ctxt->dst.bytes * 8 - 1);
  1131. if (ctxt->src.bytes == 2)
  1132. sv = (s16)ctxt->src.val & (s16)mask;
  1133. else if (ctxt->src.bytes == 4)
  1134. sv = (s32)ctxt->src.val & (s32)mask;
  1135. else
  1136. sv = (s64)ctxt->src.val & (s64)mask;
  1137. ctxt->dst.addr.mem.ea = address_mask(ctxt,
  1138. ctxt->dst.addr.mem.ea + (sv >> 3));
  1139. }
  1140. /* only subword offset */
  1141. ctxt->src.val &= (ctxt->dst.bytes << 3) - 1;
  1142. }
  1143. static int read_emulated(struct x86_emulate_ctxt *ctxt,
  1144. unsigned long addr, void *dest, unsigned size)
  1145. {
  1146. int rc;
  1147. struct read_cache *mc = &ctxt->mem_read;
  1148. if (mc->pos < mc->end)
  1149. goto read_cached;
  1150. WARN_ON((mc->end + size) >= sizeof(mc->data));
  1151. rc = ctxt->ops->read_emulated(ctxt, addr, mc->data + mc->end, size,
  1152. &ctxt->exception);
  1153. if (rc != X86EMUL_CONTINUE)
  1154. return rc;
  1155. mc->end += size;
  1156. read_cached:
  1157. memcpy(dest, mc->data + mc->pos, size);
  1158. mc->pos += size;
  1159. return X86EMUL_CONTINUE;
  1160. }
  1161. static int segmented_read(struct x86_emulate_ctxt *ctxt,
  1162. struct segmented_address addr,
  1163. void *data,
  1164. unsigned size)
  1165. {
  1166. int rc;
  1167. ulong linear;
  1168. rc = linearize(ctxt, addr, size, false, &linear);
  1169. if (rc != X86EMUL_CONTINUE)
  1170. return rc;
  1171. return read_emulated(ctxt, linear, data, size);
  1172. }
  1173. static int segmented_write(struct x86_emulate_ctxt *ctxt,
  1174. struct segmented_address addr,
  1175. const void *data,
  1176. unsigned size)
  1177. {
  1178. int rc;
  1179. ulong linear;
  1180. rc = linearize(ctxt, addr, size, true, &linear);
  1181. if (rc != X86EMUL_CONTINUE)
  1182. return rc;
  1183. return ctxt->ops->write_emulated(ctxt, linear, data, size,
  1184. &ctxt->exception);
  1185. }
  1186. static int segmented_cmpxchg(struct x86_emulate_ctxt *ctxt,
  1187. struct segmented_address addr,
  1188. const void *orig_data, const void *data,
  1189. unsigned size)
  1190. {
  1191. int rc;
  1192. ulong linear;
  1193. rc = linearize(ctxt, addr, size, true, &linear);
  1194. if (rc != X86EMUL_CONTINUE)
  1195. return rc;
  1196. return ctxt->ops->cmpxchg_emulated(ctxt, linear, orig_data, data,
  1197. size, &ctxt->exception);
  1198. }
  1199. static int pio_in_emulated(struct x86_emulate_ctxt *ctxt,
  1200. unsigned int size, unsigned short port,
  1201. void *dest)
  1202. {
  1203. struct read_cache *rc = &ctxt->io_read;
  1204. if (rc->pos == rc->end) { /* refill pio read ahead */
  1205. unsigned int in_page, n;
  1206. unsigned int count = ctxt->rep_prefix ?
  1207. address_mask(ctxt, reg_read(ctxt, VCPU_REGS_RCX)) : 1;
  1208. in_page = (ctxt->eflags & EFLG_DF) ?
  1209. offset_in_page(reg_read(ctxt, VCPU_REGS_RDI)) :
  1210. PAGE_SIZE - offset_in_page(reg_read(ctxt, VCPU_REGS_RDI));
  1211. n = min3(in_page, (unsigned int)sizeof(rc->data) / size, count);
  1212. if (n == 0)
  1213. n = 1;
  1214. rc->pos = rc->end = 0;
  1215. if (!ctxt->ops->pio_in_emulated(ctxt, size, port, rc->data, n))
  1216. return 0;
  1217. rc->end = n * size;
  1218. }
  1219. if (ctxt->rep_prefix && (ctxt->d & String) &&
  1220. !(ctxt->eflags & EFLG_DF)) {
  1221. ctxt->dst.data = rc->data + rc->pos;
  1222. ctxt->dst.type = OP_MEM_STR;
  1223. ctxt->dst.count = (rc->end - rc->pos) / size;
  1224. rc->pos = rc->end;
  1225. } else {
  1226. memcpy(dest, rc->data + rc->pos, size);
  1227. rc->pos += size;
  1228. }
  1229. return 1;
  1230. }
  1231. static int read_interrupt_descriptor(struct x86_emulate_ctxt *ctxt,
  1232. u16 index, struct desc_struct *desc)
  1233. {
  1234. struct desc_ptr dt;
  1235. ulong addr;
  1236. ctxt->ops->get_idt(ctxt, &dt);
  1237. if (dt.size < index * 8 + 7)
  1238. return emulate_gp(ctxt, index << 3 | 0x2);
  1239. addr = dt.address + index * 8;
  1240. return ctxt->ops->read_std(ctxt, addr, desc, sizeof *desc,
  1241. &ctxt->exception);
  1242. }
  1243. static void get_descriptor_table_ptr(struct x86_emulate_ctxt *ctxt,
  1244. u16 selector, struct desc_ptr *dt)
  1245. {
  1246. const struct x86_emulate_ops *ops = ctxt->ops;
  1247. u32 base3 = 0;
  1248. if (selector & 1 << 2) {
  1249. struct desc_struct desc;
  1250. u16 sel;
  1251. memset (dt, 0, sizeof *dt);
  1252. if (!ops->get_segment(ctxt, &sel, &desc, &base3,
  1253. VCPU_SREG_LDTR))
  1254. return;
  1255. dt->size = desc_limit_scaled(&desc); /* what if limit > 65535? */
  1256. dt->address = get_desc_base(&desc) | ((u64)base3 << 32);
  1257. } else
  1258. ops->get_gdt(ctxt, dt);
  1259. }
  1260. /* allowed just for 8 bytes segments */
  1261. static int read_segment_descriptor(struct x86_emulate_ctxt *ctxt,
  1262. u16 selector, struct desc_struct *desc,
  1263. ulong *desc_addr_p)
  1264. {
  1265. struct desc_ptr dt;
  1266. u16 index = selector >> 3;
  1267. ulong addr;
  1268. get_descriptor_table_ptr(ctxt, selector, &dt);
  1269. if (dt.size < index * 8 + 7)
  1270. return emulate_gp(ctxt, selector & 0xfffc);
  1271. *desc_addr_p = addr = dt.address + index * 8;
  1272. return ctxt->ops->read_std(ctxt, addr, desc, sizeof *desc,
  1273. &ctxt->exception);
  1274. }
  1275. /* allowed just for 8 bytes segments */
  1276. static int write_segment_descriptor(struct x86_emulate_ctxt *ctxt,
  1277. u16 selector, struct desc_struct *desc)
  1278. {
  1279. struct desc_ptr dt;
  1280. u16 index = selector >> 3;
  1281. ulong addr;
  1282. get_descriptor_table_ptr(ctxt, selector, &dt);
  1283. if (dt.size < index * 8 + 7)
  1284. return emulate_gp(ctxt, selector & 0xfffc);
  1285. addr = dt.address + index * 8;
  1286. return ctxt->ops->write_std(ctxt, addr, desc, sizeof *desc,
  1287. &ctxt->exception);
  1288. }
  1289. /* Does not support long mode */
  1290. static int __load_segment_descriptor(struct x86_emulate_ctxt *ctxt,
  1291. u16 selector, int seg, u8 cpl,
  1292. bool in_task_switch,
  1293. struct desc_struct *desc)
  1294. {
  1295. struct desc_struct seg_desc, old_desc;
  1296. u8 dpl, rpl;
  1297. unsigned err_vec = GP_VECTOR;
  1298. u32 err_code = 0;
  1299. bool null_selector = !(selector & ~0x3); /* 0000-0003 are null */
  1300. ulong desc_addr;
  1301. int ret;
  1302. u16 dummy;
  1303. u32 base3 = 0;
  1304. memset(&seg_desc, 0, sizeof seg_desc);
  1305. if (ctxt->mode == X86EMUL_MODE_REAL) {
  1306. /* set real mode segment descriptor (keep limit etc. for
  1307. * unreal mode) */
  1308. ctxt->ops->get_segment(ctxt, &dummy, &seg_desc, NULL, seg);
  1309. set_desc_base(&seg_desc, selector << 4);
  1310. goto load;
  1311. } else if (seg <= VCPU_SREG_GS && ctxt->mode == X86EMUL_MODE_VM86) {
  1312. /* VM86 needs a clean new segment descriptor */
  1313. set_desc_base(&seg_desc, selector << 4);
  1314. set_desc_limit(&seg_desc, 0xffff);
  1315. seg_desc.type = 3;
  1316. seg_desc.p = 1;
  1317. seg_desc.s = 1;
  1318. seg_desc.dpl = 3;
  1319. goto load;
  1320. }
  1321. rpl = selector & 3;
  1322. /* NULL selector is not valid for TR, CS and SS (except for long mode) */
  1323. if ((seg == VCPU_SREG_CS
  1324. || (seg == VCPU_SREG_SS
  1325. && (ctxt->mode != X86EMUL_MODE_PROT64 || rpl != cpl))
  1326. || seg == VCPU_SREG_TR)
  1327. && null_selector)
  1328. goto exception;
  1329. /* TR should be in GDT only */
  1330. if (seg == VCPU_SREG_TR && (selector & (1 << 2)))
  1331. goto exception;
  1332. if (null_selector) /* for NULL selector skip all following checks */
  1333. goto load;
  1334. ret = read_segment_descriptor(ctxt, selector, &seg_desc, &desc_addr);
  1335. if (ret != X86EMUL_CONTINUE)
  1336. return ret;
  1337. err_code = selector & 0xfffc;
  1338. err_vec = in_task_switch ? TS_VECTOR : GP_VECTOR;
  1339. /* can't load system descriptor into segment selector */
  1340. if (seg <= VCPU_SREG_GS && !seg_desc.s)
  1341. goto exception;
  1342. if (!seg_desc.p) {
  1343. err_vec = (seg == VCPU_SREG_SS) ? SS_VECTOR : NP_VECTOR;
  1344. goto exception;
  1345. }
  1346. dpl = seg_desc.dpl;
  1347. switch (seg) {
  1348. case VCPU_SREG_SS:
  1349. /*
  1350. * segment is not a writable data segment or segment
  1351. * selector's RPL != CPL or segment selector's RPL != CPL
  1352. */
  1353. if (rpl != cpl || (seg_desc.type & 0xa) != 0x2 || dpl != cpl)
  1354. goto exception;
  1355. break;
  1356. case VCPU_SREG_CS:
  1357. if (!(seg_desc.type & 8))
  1358. goto exception;
  1359. if (seg_desc.type & 4) {
  1360. /* conforming */
  1361. if (dpl > cpl)
  1362. goto exception;
  1363. } else {
  1364. /* nonconforming */
  1365. if (rpl > cpl || dpl != cpl)
  1366. goto exception;
  1367. }
  1368. /* in long-mode d/b must be clear if l is set */
  1369. if (seg_desc.d && seg_desc.l) {
  1370. u64 efer = 0;
  1371. ctxt->ops->get_msr(ctxt, MSR_EFER, &efer);
  1372. if (efer & EFER_LMA)
  1373. goto exception;
  1374. }
  1375. /* CS(RPL) <- CPL */
  1376. selector = (selector & 0xfffc) | cpl;
  1377. break;
  1378. case VCPU_SREG_TR:
  1379. if (seg_desc.s || (seg_desc.type != 1 && seg_desc.type != 9))
  1380. goto exception;
  1381. old_desc = seg_desc;
  1382. seg_desc.type |= 2; /* busy */
  1383. ret = ctxt->ops->cmpxchg_emulated(ctxt, desc_addr, &old_desc, &seg_desc,
  1384. sizeof(seg_desc), &ctxt->exception);
  1385. if (ret != X86EMUL_CONTINUE)
  1386. return ret;
  1387. break;
  1388. case VCPU_SREG_LDTR:
  1389. if (seg_desc.s || seg_desc.type != 2)
  1390. goto exception;
  1391. break;
  1392. default: /* DS, ES, FS, or GS */
  1393. /*
  1394. * segment is not a data or readable code segment or
  1395. * ((segment is a data or nonconforming code segment)
  1396. * and (both RPL and CPL > DPL))
  1397. */
  1398. if ((seg_desc.type & 0xa) == 0x8 ||
  1399. (((seg_desc.type & 0xc) != 0xc) &&
  1400. (rpl > dpl && cpl > dpl)))
  1401. goto exception;
  1402. break;
  1403. }
  1404. if (seg_desc.s) {
  1405. /* mark segment as accessed */
  1406. seg_desc.type |= 1;
  1407. ret = write_segment_descriptor(ctxt, selector, &seg_desc);
  1408. if (ret != X86EMUL_CONTINUE)
  1409. return ret;
  1410. } else if (ctxt->mode == X86EMUL_MODE_PROT64) {
  1411. ret = ctxt->ops->read_std(ctxt, desc_addr+8, &base3,
  1412. sizeof(base3), &ctxt->exception);
  1413. if (ret != X86EMUL_CONTINUE)
  1414. return ret;
  1415. if (is_noncanonical_address(get_desc_base(&seg_desc) |
  1416. ((u64)base3 << 32)))
  1417. return emulate_gp(ctxt, 0);
  1418. }
  1419. load:
  1420. ctxt->ops->set_segment(ctxt, selector, &seg_desc, base3, seg);
  1421. if (desc)
  1422. *desc = seg_desc;
  1423. return X86EMUL_CONTINUE;
  1424. exception:
  1425. return emulate_exception(ctxt, err_vec, err_code, true);
  1426. }
  1427. static int load_segment_descriptor(struct x86_emulate_ctxt *ctxt,
  1428. u16 selector, int seg)
  1429. {
  1430. u8 cpl = ctxt->ops->cpl(ctxt);
  1431. return __load_segment_descriptor(ctxt, selector, seg, cpl, false, NULL);
  1432. }
  1433. static void write_register_operand(struct operand *op)
  1434. {
  1435. /* The 4-byte case *is* correct: in 64-bit mode we zero-extend. */
  1436. switch (op->bytes) {
  1437. case 1:
  1438. *(u8 *)op->addr.reg = (u8)op->val;
  1439. break;
  1440. case 2:
  1441. *(u16 *)op->addr.reg = (u16)op->val;
  1442. break;
  1443. case 4:
  1444. *op->addr.reg = (u32)op->val;
  1445. break; /* 64b: zero-extend */
  1446. case 8:
  1447. *op->addr.reg = op->val;
  1448. break;
  1449. }
  1450. }
  1451. static int writeback(struct x86_emulate_ctxt *ctxt, struct operand *op)
  1452. {
  1453. switch (op->type) {
  1454. case OP_REG:
  1455. write_register_operand(op);
  1456. break;
  1457. case OP_MEM:
  1458. if (ctxt->lock_prefix)
  1459. return segmented_cmpxchg(ctxt,
  1460. op->addr.mem,
  1461. &op->orig_val,
  1462. &op->val,
  1463. op->bytes);
  1464. else
  1465. return segmented_write(ctxt,
  1466. op->addr.mem,
  1467. &op->val,
  1468. op->bytes);
  1469. break;
  1470. case OP_MEM_STR:
  1471. return segmented_write(ctxt,
  1472. op->addr.mem,
  1473. op->data,
  1474. op->bytes * op->count);
  1475. break;
  1476. case OP_XMM:
  1477. write_sse_reg(ctxt, &op->vec_val, op->addr.xmm);
  1478. break;
  1479. case OP_MM:
  1480. write_mmx_reg(ctxt, &op->mm_val, op->addr.mm);
  1481. break;
  1482. case OP_NONE:
  1483. /* no writeback */
  1484. break;
  1485. default:
  1486. break;
  1487. }
  1488. return X86EMUL_CONTINUE;
  1489. }
  1490. static int push(struct x86_emulate_ctxt *ctxt, void *data, int bytes)
  1491. {
  1492. struct segmented_address addr;
  1493. rsp_increment(ctxt, -bytes);
  1494. addr.ea = reg_read(ctxt, VCPU_REGS_RSP) & stack_mask(ctxt);
  1495. addr.seg = VCPU_SREG_SS;
  1496. return segmented_write(ctxt, addr, data, bytes);
  1497. }
  1498. static int em_push(struct x86_emulate_ctxt *ctxt)
  1499. {
  1500. /* Disable writeback. */
  1501. ctxt->dst.type = OP_NONE;
  1502. return push(ctxt, &ctxt->src.val, ctxt->op_bytes);
  1503. }
  1504. static int emulate_pop(struct x86_emulate_ctxt *ctxt,
  1505. void *dest, int len)
  1506. {
  1507. int rc;
  1508. struct segmented_address addr;
  1509. addr.ea = reg_read(ctxt, VCPU_REGS_RSP) & stack_mask(ctxt);
  1510. addr.seg = VCPU_SREG_SS;
  1511. rc = segmented_read(ctxt, addr, dest, len);
  1512. if (rc != X86EMUL_CONTINUE)
  1513. return rc;
  1514. rsp_increment(ctxt, len);
  1515. return rc;
  1516. }
  1517. static int em_pop(struct x86_emulate_ctxt *ctxt)
  1518. {
  1519. return emulate_pop(ctxt, &ctxt->dst.val, ctxt->op_bytes);
  1520. }
  1521. static int emulate_popf(struct x86_emulate_ctxt *ctxt,
  1522. void *dest, int len)
  1523. {
  1524. int rc;
  1525. unsigned long val, change_mask;
  1526. int iopl = (ctxt->eflags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
  1527. int cpl = ctxt->ops->cpl(ctxt);
  1528. rc = emulate_pop(ctxt, &val, len);
  1529. if (rc != X86EMUL_CONTINUE)
  1530. return rc;
  1531. change_mask = EFLG_CF | EFLG_PF | EFLG_AF | EFLG_ZF | EFLG_SF | EFLG_OF
  1532. | EFLG_TF | EFLG_DF | EFLG_NT | EFLG_AC | EFLG_ID;
  1533. switch(ctxt->mode) {
  1534. case X86EMUL_MODE_PROT64:
  1535. case X86EMUL_MODE_PROT32:
  1536. case X86EMUL_MODE_PROT16:
  1537. if (cpl == 0)
  1538. change_mask |= EFLG_IOPL;
  1539. if (cpl <= iopl)
  1540. change_mask |= EFLG_IF;
  1541. break;
  1542. case X86EMUL_MODE_VM86:
  1543. if (iopl < 3)
  1544. return emulate_gp(ctxt, 0);
  1545. change_mask |= EFLG_IF;
  1546. break;
  1547. default: /* real mode */
  1548. change_mask |= (EFLG_IOPL | EFLG_IF);
  1549. break;
  1550. }
  1551. *(unsigned long *)dest =
  1552. (ctxt->eflags & ~change_mask) | (val & change_mask);
  1553. return rc;
  1554. }
  1555. static int em_popf(struct x86_emulate_ctxt *ctxt)
  1556. {
  1557. ctxt->dst.type = OP_REG;
  1558. ctxt->dst.addr.reg = &ctxt->eflags;
  1559. ctxt->dst.bytes = ctxt->op_bytes;
  1560. return emulate_popf(ctxt, &ctxt->dst.val, ctxt->op_bytes);
  1561. }
  1562. static int em_enter(struct x86_emulate_ctxt *ctxt)
  1563. {
  1564. int rc;
  1565. unsigned frame_size = ctxt->src.val;
  1566. unsigned nesting_level = ctxt->src2.val & 31;
  1567. ulong rbp;
  1568. if (nesting_level)
  1569. return X86EMUL_UNHANDLEABLE;
  1570. rbp = reg_read(ctxt, VCPU_REGS_RBP);
  1571. rc = push(ctxt, &rbp, stack_size(ctxt));
  1572. if (rc != X86EMUL_CONTINUE)
  1573. return rc;
  1574. assign_masked(reg_rmw(ctxt, VCPU_REGS_RBP), reg_read(ctxt, VCPU_REGS_RSP),
  1575. stack_mask(ctxt));
  1576. assign_masked(reg_rmw(ctxt, VCPU_REGS_RSP),
  1577. reg_read(ctxt, VCPU_REGS_RSP) - frame_size,
  1578. stack_mask(ctxt));
  1579. return X86EMUL_CONTINUE;
  1580. }
  1581. static int em_leave(struct x86_emulate_ctxt *ctxt)
  1582. {
  1583. assign_masked(reg_rmw(ctxt, VCPU_REGS_RSP), reg_read(ctxt, VCPU_REGS_RBP),
  1584. stack_mask(ctxt));
  1585. return emulate_pop(ctxt, reg_rmw(ctxt, VCPU_REGS_RBP), ctxt->op_bytes);
  1586. }
  1587. static int em_push_sreg(struct x86_emulate_ctxt *ctxt)
  1588. {
  1589. int seg = ctxt->src2.val;
  1590. ctxt->src.val = get_segment_selector(ctxt, seg);
  1591. if (ctxt->op_bytes == 4) {
  1592. rsp_increment(ctxt, -2);
  1593. ctxt->op_bytes = 2;
  1594. }
  1595. return em_push(ctxt);
  1596. }
  1597. static int em_pop_sreg(struct x86_emulate_ctxt *ctxt)
  1598. {
  1599. int seg = ctxt->src2.val;
  1600. unsigned long selector;
  1601. int rc;
  1602. rc = emulate_pop(ctxt, &selector, ctxt->op_bytes);
  1603. if (rc != X86EMUL_CONTINUE)
  1604. return rc;
  1605. if (ctxt->modrm_reg == VCPU_SREG_SS)
  1606. ctxt->interruptibility = KVM_X86_SHADOW_INT_MOV_SS;
  1607. rc = load_segment_descriptor(ctxt, (u16)selector, seg);
  1608. return rc;
  1609. }
  1610. static int em_pusha(struct x86_emulate_ctxt *ctxt)
  1611. {
  1612. unsigned long old_esp = reg_read(ctxt, VCPU_REGS_RSP);
  1613. int rc = X86EMUL_CONTINUE;
  1614. int reg = VCPU_REGS_RAX;
  1615. while (reg <= VCPU_REGS_RDI) {
  1616. (reg == VCPU_REGS_RSP) ?
  1617. (ctxt->src.val = old_esp) : (ctxt->src.val = reg_read(ctxt, reg));
  1618. rc = em_push(ctxt);
  1619. if (rc != X86EMUL_CONTINUE)
  1620. return rc;
  1621. ++reg;
  1622. }
  1623. return rc;
  1624. }
  1625. static int em_pushf(struct x86_emulate_ctxt *ctxt)
  1626. {
  1627. ctxt->src.val = (unsigned long)ctxt->eflags & ~EFLG_VM;
  1628. return em_push(ctxt);
  1629. }
  1630. static int em_popa(struct x86_emulate_ctxt *ctxt)
  1631. {
  1632. int rc = X86EMUL_CONTINUE;
  1633. int reg = VCPU_REGS_RDI;
  1634. while (reg >= VCPU_REGS_RAX) {
  1635. if (reg == VCPU_REGS_RSP) {
  1636. rsp_increment(ctxt, ctxt->op_bytes);
  1637. --reg;
  1638. }
  1639. rc = emulate_pop(ctxt, reg_rmw(ctxt, reg), ctxt->op_bytes);
  1640. if (rc != X86EMUL_CONTINUE)
  1641. break;
  1642. --reg;
  1643. }
  1644. return rc;
  1645. }
  1646. static int __emulate_int_real(struct x86_emulate_ctxt *ctxt, int irq)
  1647. {
  1648. const struct x86_emulate_ops *ops = ctxt->ops;
  1649. int rc;
  1650. struct desc_ptr dt;
  1651. gva_t cs_addr;
  1652. gva_t eip_addr;
  1653. u16 cs, eip;
  1654. /* TODO: Add limit checks */
  1655. ctxt->src.val = ctxt->eflags;
  1656. rc = em_push(ctxt);
  1657. if (rc != X86EMUL_CONTINUE)
  1658. return rc;
  1659. ctxt->eflags &= ~(EFLG_IF | EFLG_TF | EFLG_AC);
  1660. ctxt->src.val = get_segment_selector(ctxt, VCPU_SREG_CS);
  1661. rc = em_push(ctxt);
  1662. if (rc != X86EMUL_CONTINUE)
  1663. return rc;
  1664. ctxt->src.val = ctxt->_eip;
  1665. rc = em_push(ctxt);
  1666. if (rc != X86EMUL_CONTINUE)
  1667. return rc;
  1668. ops->get_idt(ctxt, &dt);
  1669. eip_addr = dt.address + (irq << 2);
  1670. cs_addr = dt.address + (irq << 2) + 2;
  1671. rc = ops->read_std(ctxt, cs_addr, &cs, 2, &ctxt->exception);
  1672. if (rc != X86EMUL_CONTINUE)
  1673. return rc;
  1674. rc = ops->read_std(ctxt, eip_addr, &eip, 2, &ctxt->exception);
  1675. if (rc != X86EMUL_CONTINUE)
  1676. return rc;
  1677. rc = load_segment_descriptor(ctxt, cs, VCPU_SREG_CS);
  1678. if (rc != X86EMUL_CONTINUE)
  1679. return rc;
  1680. ctxt->_eip = eip;
  1681. return rc;
  1682. }
  1683. int emulate_int_real(struct x86_emulate_ctxt *ctxt, int irq)
  1684. {
  1685. int rc;
  1686. invalidate_registers(ctxt);
  1687. rc = __emulate_int_real(ctxt, irq);
  1688. if (rc == X86EMUL_CONTINUE)
  1689. writeback_registers(ctxt);
  1690. return rc;
  1691. }
  1692. static int emulate_int(struct x86_emulate_ctxt *ctxt, int irq)
  1693. {
  1694. switch(ctxt->mode) {
  1695. case X86EMUL_MODE_REAL:
  1696. return __emulate_int_real(ctxt, irq);
  1697. case X86EMUL_MODE_VM86:
  1698. case X86EMUL_MODE_PROT16:
  1699. case X86EMUL_MODE_PROT32:
  1700. case X86EMUL_MODE_PROT64:
  1701. default:
  1702. /* Protected mode interrupts unimplemented yet */
  1703. return X86EMUL_UNHANDLEABLE;
  1704. }
  1705. }
  1706. static int emulate_iret_real(struct x86_emulate_ctxt *ctxt)
  1707. {
  1708. int rc = X86EMUL_CONTINUE;
  1709. unsigned long temp_eip = 0;
  1710. unsigned long temp_eflags = 0;
  1711. unsigned long cs = 0;
  1712. unsigned long mask = EFLG_CF | EFLG_PF | EFLG_AF | EFLG_ZF | EFLG_SF | EFLG_TF |
  1713. EFLG_IF | EFLG_DF | EFLG_OF | EFLG_IOPL | EFLG_NT | EFLG_RF |
  1714. EFLG_AC | EFLG_ID | (1 << 1); /* Last one is the reserved bit */
  1715. unsigned long vm86_mask = EFLG_VM | EFLG_VIF | EFLG_VIP;
  1716. /* TODO: Add stack limit check */
  1717. rc = emulate_pop(ctxt, &temp_eip, ctxt->op_bytes);
  1718. if (rc != X86EMUL_CONTINUE)
  1719. return rc;
  1720. if (temp_eip & ~0xffff)
  1721. return emulate_gp(ctxt, 0);
  1722. rc = emulate_pop(ctxt, &cs, ctxt->op_bytes);
  1723. if (rc != X86EMUL_CONTINUE)
  1724. return rc;
  1725. rc = emulate_pop(ctxt, &temp_eflags, ctxt->op_bytes);
  1726. if (rc != X86EMUL_CONTINUE)
  1727. return rc;
  1728. rc = load_segment_descriptor(ctxt, (u16)cs, VCPU_SREG_CS);
  1729. if (rc != X86EMUL_CONTINUE)
  1730. return rc;
  1731. ctxt->_eip = temp_eip;
  1732. if (ctxt->op_bytes == 4)
  1733. ctxt->eflags = ((temp_eflags & mask) | (ctxt->eflags & vm86_mask));
  1734. else if (ctxt->op_bytes == 2) {
  1735. ctxt->eflags &= ~0xffff;
  1736. ctxt->eflags |= temp_eflags;
  1737. }
  1738. ctxt->eflags &= ~EFLG_RESERVED_ZEROS_MASK; /* Clear reserved zeros */
  1739. ctxt->eflags |= EFLG_RESERVED_ONE_MASK;
  1740. return rc;
  1741. }
  1742. static int em_iret(struct x86_emulate_ctxt *ctxt)
  1743. {
  1744. switch(ctxt->mode) {
  1745. case X86EMUL_MODE_REAL:
  1746. return emulate_iret_real(ctxt);
  1747. case X86EMUL_MODE_VM86:
  1748. case X86EMUL_MODE_PROT16:
  1749. case X86EMUL_MODE_PROT32:
  1750. case X86EMUL_MODE_PROT64:
  1751. default:
  1752. /* iret from protected mode unimplemented yet */
  1753. return X86EMUL_UNHANDLEABLE;
  1754. }
  1755. }
  1756. static int em_jmp_far(struct x86_emulate_ctxt *ctxt)
  1757. {
  1758. int rc;
  1759. unsigned short sel, old_sel;
  1760. struct desc_struct old_desc, new_desc;
  1761. const struct x86_emulate_ops *ops = ctxt->ops;
  1762. u8 cpl = ctxt->ops->cpl(ctxt);
  1763. /* Assignment of RIP may only fail in 64-bit mode */
  1764. if (ctxt->mode == X86EMUL_MODE_PROT64)
  1765. ops->get_segment(ctxt, &old_sel, &old_desc, NULL,
  1766. VCPU_SREG_CS);
  1767. memcpy(&sel, ctxt->src.valptr + ctxt->op_bytes, 2);
  1768. rc = __load_segment_descriptor(ctxt, sel, VCPU_SREG_CS, cpl, false,
  1769. &new_desc);
  1770. if (rc != X86EMUL_CONTINUE)
  1771. return rc;
  1772. rc = assign_eip_far(ctxt, ctxt->src.val, &new_desc);
  1773. if (rc != X86EMUL_CONTINUE) {
  1774. WARN_ON(ctxt->mode != X86EMUL_MODE_PROT64);
  1775. /* assigning eip failed; restore the old cs */
  1776. ops->set_segment(ctxt, old_sel, &old_desc, 0, VCPU_SREG_CS);
  1777. return rc;
  1778. }
  1779. return rc;
  1780. }
  1781. static int em_jmp_abs(struct x86_emulate_ctxt *ctxt)
  1782. {
  1783. return assign_eip_near(ctxt, ctxt->src.val);
  1784. }
  1785. static int em_call_near_abs(struct x86_emulate_ctxt *ctxt)
  1786. {
  1787. int rc;
  1788. long int old_eip;
  1789. old_eip = ctxt->_eip;
  1790. rc = assign_eip_near(ctxt, ctxt->src.val);
  1791. if (rc != X86EMUL_CONTINUE)
  1792. return rc;
  1793. ctxt->src.val = old_eip;
  1794. rc = em_push(ctxt);
  1795. return rc;
  1796. }
  1797. static int em_cmpxchg8b(struct x86_emulate_ctxt *ctxt)
  1798. {
  1799. u64 old = ctxt->dst.orig_val64;
  1800. if (ctxt->dst.bytes == 16)
  1801. return X86EMUL_UNHANDLEABLE;
  1802. if (((u32) (old >> 0) != (u32) reg_read(ctxt, VCPU_REGS_RAX)) ||
  1803. ((u32) (old >> 32) != (u32) reg_read(ctxt, VCPU_REGS_RDX))) {
  1804. *reg_write(ctxt, VCPU_REGS_RAX) = (u32) (old >> 0);
  1805. *reg_write(ctxt, VCPU_REGS_RDX) = (u32) (old >> 32);
  1806. ctxt->eflags &= ~EFLG_ZF;
  1807. } else {
  1808. ctxt->dst.val64 = ((u64)reg_read(ctxt, VCPU_REGS_RCX) << 32) |
  1809. (u32) reg_read(ctxt, VCPU_REGS_RBX);
  1810. ctxt->eflags |= EFLG_ZF;
  1811. }
  1812. return X86EMUL_CONTINUE;
  1813. }
  1814. static int em_ret(struct x86_emulate_ctxt *ctxt)
  1815. {
  1816. int rc;
  1817. unsigned long eip;
  1818. rc = emulate_pop(ctxt, &eip, ctxt->op_bytes);
  1819. if (rc != X86EMUL_CONTINUE)
  1820. return rc;
  1821. return assign_eip_near(ctxt, eip);
  1822. }
  1823. static int em_ret_far(struct x86_emulate_ctxt *ctxt)
  1824. {
  1825. int rc;
  1826. unsigned long eip, cs;
  1827. u16 old_cs;
  1828. int cpl = ctxt->ops->cpl(ctxt);
  1829. struct desc_struct old_desc, new_desc;
  1830. const struct x86_emulate_ops *ops = ctxt->ops;
  1831. if (ctxt->mode == X86EMUL_MODE_PROT64)
  1832. ops->get_segment(ctxt, &old_cs, &old_desc, NULL,
  1833. VCPU_SREG_CS);
  1834. rc = emulate_pop(ctxt, &eip, ctxt->op_bytes);
  1835. if (rc != X86EMUL_CONTINUE)
  1836. return rc;
  1837. rc = emulate_pop(ctxt, &cs, ctxt->op_bytes);
  1838. if (rc != X86EMUL_CONTINUE)
  1839. return rc;
  1840. /* Outer-privilege level return is not implemented */
  1841. if (ctxt->mode >= X86EMUL_MODE_PROT16 && (cs & 3) > cpl)
  1842. return X86EMUL_UNHANDLEABLE;
  1843. rc = __load_segment_descriptor(ctxt, (u16)cs, VCPU_SREG_CS, cpl, false,
  1844. &new_desc);
  1845. if (rc != X86EMUL_CONTINUE)
  1846. return rc;
  1847. rc = assign_eip_far(ctxt, eip, &new_desc);
  1848. if (rc != X86EMUL_CONTINUE) {
  1849. WARN_ON(ctxt->mode != X86EMUL_MODE_PROT64);
  1850. ops->set_segment(ctxt, old_cs, &old_desc, 0, VCPU_SREG_CS);
  1851. }
  1852. return rc;
  1853. }
  1854. static int em_ret_far_imm(struct x86_emulate_ctxt *ctxt)
  1855. {
  1856. int rc;
  1857. rc = em_ret_far(ctxt);
  1858. if (rc != X86EMUL_CONTINUE)
  1859. return rc;
  1860. rsp_increment(ctxt, ctxt->src.val);
  1861. return X86EMUL_CONTINUE;
  1862. }
  1863. static int em_cmpxchg(struct x86_emulate_ctxt *ctxt)
  1864. {
  1865. /* Save real source value, then compare EAX against destination. */
  1866. ctxt->dst.orig_val = ctxt->dst.val;
  1867. ctxt->dst.val = reg_read(ctxt, VCPU_REGS_RAX);
  1868. ctxt->src.orig_val = ctxt->src.val;
  1869. ctxt->src.val = ctxt->dst.orig_val;
  1870. fastop(ctxt, em_cmp);
  1871. if (ctxt->eflags & EFLG_ZF) {
  1872. /* Success: write back to memory. */
  1873. ctxt->dst.val = ctxt->src.orig_val;
  1874. } else {
  1875. /* Failure: write the value we saw to EAX. */
  1876. ctxt->dst.type = OP_REG;
  1877. ctxt->dst.addr.reg = reg_rmw(ctxt, VCPU_REGS_RAX);
  1878. ctxt->dst.val = ctxt->dst.orig_val;
  1879. }
  1880. return X86EMUL_CONTINUE;
  1881. }
  1882. static int em_lseg(struct x86_emulate_ctxt *ctxt)
  1883. {
  1884. int seg = ctxt->src2.val;
  1885. unsigned short sel;
  1886. int rc;
  1887. memcpy(&sel, ctxt->src.valptr + ctxt->op_bytes, 2);
  1888. rc = load_segment_descriptor(ctxt, sel, seg);
  1889. if (rc != X86EMUL_CONTINUE)
  1890. return rc;
  1891. ctxt->dst.val = ctxt->src.val;
  1892. return rc;
  1893. }
  1894. static void
  1895. setup_syscalls_segments(struct x86_emulate_ctxt *ctxt,
  1896. struct desc_struct *cs, struct desc_struct *ss)
  1897. {
  1898. cs->l = 0; /* will be adjusted later */
  1899. set_desc_base(cs, 0); /* flat segment */
  1900. cs->g = 1; /* 4kb granularity */
  1901. set_desc_limit(cs, 0xfffff); /* 4GB limit */
  1902. cs->type = 0x0b; /* Read, Execute, Accessed */
  1903. cs->s = 1;
  1904. cs->dpl = 0; /* will be adjusted later */
  1905. cs->p = 1;
  1906. cs->d = 1;
  1907. cs->avl = 0;
  1908. set_desc_base(ss, 0); /* flat segment */
  1909. set_desc_limit(ss, 0xfffff); /* 4GB limit */
  1910. ss->g = 1; /* 4kb granularity */
  1911. ss->s = 1;
  1912. ss->type = 0x03; /* Read/Write, Accessed */
  1913. ss->d = 1; /* 32bit stack segment */
  1914. ss->dpl = 0;
  1915. ss->p = 1;
  1916. ss->l = 0;
  1917. ss->avl = 0;
  1918. }
  1919. static bool vendor_intel(struct x86_emulate_ctxt *ctxt)
  1920. {
  1921. u32 eax, ebx, ecx, edx;
  1922. eax = ecx = 0;
  1923. ctxt->ops->get_cpuid(ctxt, &eax, &ebx, &ecx, &edx);
  1924. return ebx == X86EMUL_CPUID_VENDOR_GenuineIntel_ebx
  1925. && ecx == X86EMUL_CPUID_VENDOR_GenuineIntel_ecx
  1926. && edx == X86EMUL_CPUID_VENDOR_GenuineIntel_edx;
  1927. }
  1928. static bool em_syscall_is_enabled(struct x86_emulate_ctxt *ctxt)
  1929. {
  1930. const struct x86_emulate_ops *ops = ctxt->ops;
  1931. u32 eax, ebx, ecx, edx;
  1932. /*
  1933. * syscall should always be enabled in longmode - so only become
  1934. * vendor specific (cpuid) if other modes are active...
  1935. */
  1936. if (ctxt->mode == X86EMUL_MODE_PROT64)
  1937. return true;
  1938. eax = 0x00000000;
  1939. ecx = 0x00000000;
  1940. ops->get_cpuid(ctxt, &eax, &ebx, &ecx, &edx);
  1941. /*
  1942. * Intel ("GenuineIntel")
  1943. * remark: Intel CPUs only support "syscall" in 64bit
  1944. * longmode. Also an 64bit guest with a
  1945. * 32bit compat-app running will #UD !! While this
  1946. * behaviour can be fixed (by emulating) into AMD
  1947. * response - CPUs of AMD can't behave like Intel.
  1948. */
  1949. if (ebx == X86EMUL_CPUID_VENDOR_GenuineIntel_ebx &&
  1950. ecx == X86EMUL_CPUID_VENDOR_GenuineIntel_ecx &&
  1951. edx == X86EMUL_CPUID_VENDOR_GenuineIntel_edx)
  1952. return false;
  1953. /* AMD ("AuthenticAMD") */
  1954. if (ebx == X86EMUL_CPUID_VENDOR_AuthenticAMD_ebx &&
  1955. ecx == X86EMUL_CPUID_VENDOR_AuthenticAMD_ecx &&
  1956. edx == X86EMUL_CPUID_VENDOR_AuthenticAMD_edx)
  1957. return true;
  1958. /* AMD ("AMDisbetter!") */
  1959. if (ebx == X86EMUL_CPUID_VENDOR_AMDisbetterI_ebx &&
  1960. ecx == X86EMUL_CPUID_VENDOR_AMDisbetterI_ecx &&
  1961. edx == X86EMUL_CPUID_VENDOR_AMDisbetterI_edx)
  1962. return true;
  1963. /* default: (not Intel, not AMD), apply Intel's stricter rules... */
  1964. return false;
  1965. }
  1966. static int em_syscall(struct x86_emulate_ctxt *ctxt)
  1967. {
  1968. const struct x86_emulate_ops *ops = ctxt->ops;
  1969. struct desc_struct cs, ss;
  1970. u64 msr_data;
  1971. u16 cs_sel, ss_sel;
  1972. u64 efer = 0;
  1973. /* syscall is not available in real mode */
  1974. if (ctxt->mode == X86EMUL_MODE_REAL ||
  1975. ctxt->mode == X86EMUL_MODE_VM86)
  1976. return emulate_ud(ctxt);
  1977. if (!(em_syscall_is_enabled(ctxt)))
  1978. return emulate_ud(ctxt);
  1979. ops->get_msr(ctxt, MSR_EFER, &efer);
  1980. setup_syscalls_segments(ctxt, &cs, &ss);
  1981. if (!(efer & EFER_SCE))
  1982. return emulate_ud(ctxt);
  1983. ops->get_msr(ctxt, MSR_STAR, &msr_data);
  1984. msr_data >>= 32;
  1985. cs_sel = (u16)(msr_data & 0xfffc);
  1986. ss_sel = (u16)(msr_data + 8);
  1987. if (efer & EFER_LMA) {
  1988. cs.d = 0;
  1989. cs.l = 1;
  1990. }
  1991. ops->set_segment(ctxt, cs_sel, &cs, 0, VCPU_SREG_CS);
  1992. ops->set_segment(ctxt, ss_sel, &ss, 0, VCPU_SREG_SS);
  1993. *reg_write(ctxt, VCPU_REGS_RCX) = ctxt->_eip;
  1994. if (efer & EFER_LMA) {
  1995. #ifdef CONFIG_X86_64
  1996. *reg_write(ctxt, VCPU_REGS_R11) = ctxt->eflags;
  1997. ops->get_msr(ctxt,
  1998. ctxt->mode == X86EMUL_MODE_PROT64 ?
  1999. MSR_LSTAR : MSR_CSTAR, &msr_data);
  2000. ctxt->_eip = msr_data;
  2001. ops->get_msr(ctxt, MSR_SYSCALL_MASK, &msr_data);
  2002. ctxt->eflags &= ~msr_data;
  2003. ctxt->eflags |= EFLG_RESERVED_ONE_MASK;
  2004. #endif
  2005. } else {
  2006. /* legacy mode */
  2007. ops->get_msr(ctxt, MSR_STAR, &msr_data);
  2008. ctxt->_eip = (u32)msr_data;
  2009. ctxt->eflags &= ~(EFLG_VM | EFLG_IF);
  2010. }
  2011. return X86EMUL_CONTINUE;
  2012. }
  2013. static int em_sysenter(struct x86_emulate_ctxt *ctxt)
  2014. {
  2015. const struct x86_emulate_ops *ops = ctxt->ops;
  2016. struct desc_struct cs, ss;
  2017. u64 msr_data;
  2018. u16 cs_sel, ss_sel;
  2019. u64 efer = 0;
  2020. ops->get_msr(ctxt, MSR_EFER, &efer);
  2021. /* inject #GP if in real mode */
  2022. if (ctxt->mode == X86EMUL_MODE_REAL)
  2023. return emulate_gp(ctxt, 0);
  2024. /*
  2025. * Not recognized on AMD in compat mode (but is recognized in legacy
  2026. * mode).
  2027. */
  2028. if ((ctxt->mode == X86EMUL_MODE_PROT32) && (efer & EFER_LMA)
  2029. && !vendor_intel(ctxt))
  2030. return emulate_ud(ctxt);
  2031. /* sysenter/sysexit have not been tested in 64bit mode. */
  2032. if (ctxt->mode == X86EMUL_MODE_PROT64)
  2033. return X86EMUL_UNHANDLEABLE;
  2034. setup_syscalls_segments(ctxt, &cs, &ss);
  2035. ops->get_msr(ctxt, MSR_IA32_SYSENTER_CS, &msr_data);
  2036. switch (ctxt->mode) {
  2037. case X86EMUL_MODE_PROT32:
  2038. if ((msr_data & 0xfffc) == 0x0)
  2039. return emulate_gp(ctxt, 0);
  2040. break;
  2041. case X86EMUL_MODE_PROT64:
  2042. if (msr_data == 0x0)
  2043. return emulate_gp(ctxt, 0);
  2044. break;
  2045. default:
  2046. break;
  2047. }
  2048. ctxt->eflags &= ~(EFLG_VM | EFLG_IF);
  2049. cs_sel = (u16)msr_data;
  2050. cs_sel &= ~SELECTOR_RPL_MASK;
  2051. ss_sel = cs_sel + 8;
  2052. ss_sel &= ~SELECTOR_RPL_MASK;
  2053. if (ctxt->mode == X86EMUL_MODE_PROT64 || (efer & EFER_LMA)) {
  2054. cs.d = 0;
  2055. cs.l = 1;
  2056. }
  2057. ops->set_segment(ctxt, cs_sel, &cs, 0, VCPU_SREG_CS);
  2058. ops->set_segment(ctxt, ss_sel, &ss, 0, VCPU_SREG_SS);
  2059. ops->get_msr(ctxt, MSR_IA32_SYSENTER_EIP, &msr_data);
  2060. ctxt->_eip = msr_data;
  2061. ops->get_msr(ctxt, MSR_IA32_SYSENTER_ESP, &msr_data);
  2062. *reg_write(ctxt, VCPU_REGS_RSP) = msr_data;
  2063. return X86EMUL_CONTINUE;
  2064. }
  2065. static int em_sysexit(struct x86_emulate_ctxt *ctxt)
  2066. {
  2067. const struct x86_emulate_ops *ops = ctxt->ops;
  2068. struct desc_struct cs, ss;
  2069. u64 msr_data, rcx, rdx;
  2070. int usermode;
  2071. u16 cs_sel = 0, ss_sel = 0;
  2072. /* inject #GP if in real mode or Virtual 8086 mode */
  2073. if (ctxt->mode == X86EMUL_MODE_REAL ||
  2074. ctxt->mode == X86EMUL_MODE_VM86)
  2075. return emulate_gp(ctxt, 0);
  2076. setup_syscalls_segments(ctxt, &cs, &ss);
  2077. if ((ctxt->rex_prefix & 0x8) != 0x0)
  2078. usermode = X86EMUL_MODE_PROT64;
  2079. else
  2080. usermode = X86EMUL_MODE_PROT32;
  2081. rcx = reg_read(ctxt, VCPU_REGS_RCX);
  2082. rdx = reg_read(ctxt, VCPU_REGS_RDX);
  2083. cs.dpl = 3;
  2084. ss.dpl = 3;
  2085. ops->get_msr(ctxt, MSR_IA32_SYSENTER_CS, &msr_data);
  2086. switch (usermode) {
  2087. case X86EMUL_MODE_PROT32:
  2088. cs_sel = (u16)(msr_data + 16);
  2089. if ((msr_data & 0xfffc) == 0x0)
  2090. return emulate_gp(ctxt, 0);
  2091. ss_sel = (u16)(msr_data + 24);
  2092. rcx = (u32)rcx;
  2093. rdx = (u32)rdx;
  2094. break;
  2095. case X86EMUL_MODE_PROT64:
  2096. cs_sel = (u16)(msr_data + 32);
  2097. if (msr_data == 0x0)
  2098. return emulate_gp(ctxt, 0);
  2099. ss_sel = cs_sel + 8;
  2100. cs.d = 0;
  2101. cs.l = 1;
  2102. if (is_noncanonical_address(rcx) ||
  2103. is_noncanonical_address(rdx))
  2104. return emulate_gp(ctxt, 0);
  2105. break;
  2106. }
  2107. cs_sel |= SELECTOR_RPL_MASK;
  2108. ss_sel |= SELECTOR_RPL_MASK;
  2109. ops->set_segment(ctxt, cs_sel, &cs, 0, VCPU_SREG_CS);
  2110. ops->set_segment(ctxt, ss_sel, &ss, 0, VCPU_SREG_SS);
  2111. ctxt->_eip = rdx;
  2112. *reg_write(ctxt, VCPU_REGS_RSP) = rcx;
  2113. return X86EMUL_CONTINUE;
  2114. }
  2115. static bool emulator_bad_iopl(struct x86_emulate_ctxt *ctxt)
  2116. {
  2117. int iopl;
  2118. if (ctxt->mode == X86EMUL_MODE_REAL)
  2119. return false;
  2120. if (ctxt->mode == X86EMUL_MODE_VM86)
  2121. return true;
  2122. iopl = (ctxt->eflags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
  2123. return ctxt->ops->cpl(ctxt) > iopl;
  2124. }
  2125. static bool emulator_io_port_access_allowed(struct x86_emulate_ctxt *ctxt,
  2126. u16 port, u16 len)
  2127. {
  2128. const struct x86_emulate_ops *ops = ctxt->ops;
  2129. struct desc_struct tr_seg;
  2130. u32 base3;
  2131. int r;
  2132. u16 tr, io_bitmap_ptr, perm, bit_idx = port & 0x7;
  2133. unsigned mask = (1 << len) - 1;
  2134. unsigned long base;
  2135. ops->get_segment(ctxt, &tr, &tr_seg, &base3, VCPU_SREG_TR);
  2136. if (!tr_seg.p)
  2137. return false;
  2138. if (desc_limit_scaled(&tr_seg) < 103)
  2139. return false;
  2140. base = get_desc_base(&tr_seg);
  2141. #ifdef CONFIG_X86_64
  2142. base |= ((u64)base3) << 32;
  2143. #endif
  2144. r = ops->read_std(ctxt, base + 102, &io_bitmap_ptr, 2, NULL);
  2145. if (r != X86EMUL_CONTINUE)
  2146. return false;
  2147. if (io_bitmap_ptr + port/8 > desc_limit_scaled(&tr_seg))
  2148. return false;
  2149. r = ops->read_std(ctxt, base + io_bitmap_ptr + port/8, &perm, 2, NULL);
  2150. if (r != X86EMUL_CONTINUE)
  2151. return false;
  2152. if ((perm >> bit_idx) & mask)
  2153. return false;
  2154. return true;
  2155. }
  2156. static bool emulator_io_permited(struct x86_emulate_ctxt *ctxt,
  2157. u16 port, u16 len)
  2158. {
  2159. if (ctxt->perm_ok)
  2160. return true;
  2161. if (emulator_bad_iopl(ctxt))
  2162. if (!emulator_io_port_access_allowed(ctxt, port, len))
  2163. return false;
  2164. ctxt->perm_ok = true;
  2165. return true;
  2166. }
  2167. static void save_state_to_tss16(struct x86_emulate_ctxt *ctxt,
  2168. struct tss_segment_16 *tss)
  2169. {
  2170. tss->ip = ctxt->_eip;
  2171. tss->flag = ctxt->eflags;
  2172. tss->ax = reg_read(ctxt, VCPU_REGS_RAX);
  2173. tss->cx = reg_read(ctxt, VCPU_REGS_RCX);
  2174. tss->dx = reg_read(ctxt, VCPU_REGS_RDX);
  2175. tss->bx = reg_read(ctxt, VCPU_REGS_RBX);
  2176. tss->sp = reg_read(ctxt, VCPU_REGS_RSP);
  2177. tss->bp = reg_read(ctxt, VCPU_REGS_RBP);
  2178. tss->si = reg_read(ctxt, VCPU_REGS_RSI);
  2179. tss->di = reg_read(ctxt, VCPU_REGS_RDI);
  2180. tss->es = get_segment_selector(ctxt, VCPU_SREG_ES);
  2181. tss->cs = get_segment_selector(ctxt, VCPU_SREG_CS);
  2182. tss->ss = get_segment_selector(ctxt, VCPU_SREG_SS);
  2183. tss->ds = get_segment_selector(ctxt, VCPU_SREG_DS);
  2184. tss->ldt = get_segment_selector(ctxt, VCPU_SREG_LDTR);
  2185. }
  2186. static int load_state_from_tss16(struct x86_emulate_ctxt *ctxt,
  2187. struct tss_segment_16 *tss)
  2188. {
  2189. int ret;
  2190. u8 cpl;
  2191. ctxt->_eip = tss->ip;
  2192. ctxt->eflags = tss->flag | 2;
  2193. *reg_write(ctxt, VCPU_REGS_RAX) = tss->ax;
  2194. *reg_write(ctxt, VCPU_REGS_RCX) = tss->cx;
  2195. *reg_write(ctxt, VCPU_REGS_RDX) = tss->dx;
  2196. *reg_write(ctxt, VCPU_REGS_RBX) = tss->bx;
  2197. *reg_write(ctxt, VCPU_REGS_RSP) = tss->sp;
  2198. *reg_write(ctxt, VCPU_REGS_RBP) = tss->bp;
  2199. *reg_write(ctxt, VCPU_REGS_RSI) = tss->si;
  2200. *reg_write(ctxt, VCPU_REGS_RDI) = tss->di;
  2201. /*
  2202. * SDM says that segment selectors are loaded before segment
  2203. * descriptors
  2204. */
  2205. set_segment_selector(ctxt, tss->ldt, VCPU_SREG_LDTR);
  2206. set_segment_selector(ctxt, tss->es, VCPU_SREG_ES);
  2207. set_segment_selector(ctxt, tss->cs, VCPU_SREG_CS);
  2208. set_segment_selector(ctxt, tss->ss, VCPU_SREG_SS);
  2209. set_segment_selector(ctxt, tss->ds, VCPU_SREG_DS);
  2210. cpl = tss->cs & 3;
  2211. /*
  2212. * Now load segment descriptors. If fault happens at this stage
  2213. * it is handled in a context of new task
  2214. */
  2215. ret = __load_segment_descriptor(ctxt, tss->ldt, VCPU_SREG_LDTR, cpl,
  2216. true, NULL);
  2217. if (ret != X86EMUL_CONTINUE)
  2218. return ret;
  2219. ret = __load_segment_descriptor(ctxt, tss->es, VCPU_SREG_ES, cpl,
  2220. true, NULL);
  2221. if (ret != X86EMUL_CONTINUE)
  2222. return ret;
  2223. ret = __load_segment_descriptor(ctxt, tss->cs, VCPU_SREG_CS, cpl,
  2224. true, NULL);
  2225. if (ret != X86EMUL_CONTINUE)
  2226. return ret;
  2227. ret = __load_segment_descriptor(ctxt, tss->ss, VCPU_SREG_SS, cpl,
  2228. true, NULL);
  2229. if (ret != X86EMUL_CONTINUE)
  2230. return ret;
  2231. ret = __load_segment_descriptor(ctxt, tss->ds, VCPU_SREG_DS, cpl,
  2232. true, NULL);
  2233. if (ret != X86EMUL_CONTINUE)
  2234. return ret;
  2235. return X86EMUL_CONTINUE;
  2236. }
  2237. static int task_switch_16(struct x86_emulate_ctxt *ctxt,
  2238. u16 tss_selector, u16 old_tss_sel,
  2239. ulong old_tss_base, struct desc_struct *new_desc)
  2240. {
  2241. const struct x86_emulate_ops *ops = ctxt->ops;
  2242. struct tss_segment_16 tss_seg;
  2243. int ret;
  2244. u32 new_tss_base = get_desc_base(new_desc);
  2245. ret = ops->read_std(ctxt, old_tss_base, &tss_seg, sizeof tss_seg,
  2246. &ctxt->exception);
  2247. if (ret != X86EMUL_CONTINUE)
  2248. return ret;
  2249. save_state_to_tss16(ctxt, &tss_seg);
  2250. ret = ops->write_std(ctxt, old_tss_base, &tss_seg, sizeof tss_seg,
  2251. &ctxt->exception);
  2252. if (ret != X86EMUL_CONTINUE)
  2253. return ret;
  2254. ret = ops->read_std(ctxt, new_tss_base, &tss_seg, sizeof tss_seg,
  2255. &ctxt->exception);
  2256. if (ret != X86EMUL_CONTINUE)
  2257. return ret;
  2258. if (old_tss_sel != 0xffff) {
  2259. tss_seg.prev_task_link = old_tss_sel;
  2260. ret = ops->write_std(ctxt, new_tss_base,
  2261. &tss_seg.prev_task_link,
  2262. sizeof tss_seg.prev_task_link,
  2263. &ctxt->exception);
  2264. if (ret != X86EMUL_CONTINUE)
  2265. return ret;
  2266. }
  2267. return load_state_from_tss16(ctxt, &tss_seg);
  2268. }
  2269. static void save_state_to_tss32(struct x86_emulate_ctxt *ctxt,
  2270. struct tss_segment_32 *tss)
  2271. {
  2272. /* CR3 and ldt selector are not saved intentionally */
  2273. tss->eip = ctxt->_eip;
  2274. tss->eflags = ctxt->eflags;
  2275. tss->eax = reg_read(ctxt, VCPU_REGS_RAX);
  2276. tss->ecx = reg_read(ctxt, VCPU_REGS_RCX);
  2277. tss->edx = reg_read(ctxt, VCPU_REGS_RDX);
  2278. tss->ebx = reg_read(ctxt, VCPU_REGS_RBX);
  2279. tss->esp = reg_read(ctxt, VCPU_REGS_RSP);
  2280. tss->ebp = reg_read(ctxt, VCPU_REGS_RBP);
  2281. tss->esi = reg_read(ctxt, VCPU_REGS_RSI);
  2282. tss->edi = reg_read(ctxt, VCPU_REGS_RDI);
  2283. tss->es = get_segment_selector(ctxt, VCPU_SREG_ES);
  2284. tss->cs = get_segment_selector(ctxt, VCPU_SREG_CS);
  2285. tss->ss = get_segment_selector(ctxt, VCPU_SREG_SS);
  2286. tss->ds = get_segment_selector(ctxt, VCPU_SREG_DS);
  2287. tss->fs = get_segment_selector(ctxt, VCPU_SREG_FS);
  2288. tss->gs = get_segment_selector(ctxt, VCPU_SREG_GS);
  2289. }
  2290. static int load_state_from_tss32(struct x86_emulate_ctxt *ctxt,
  2291. struct tss_segment_32 *tss)
  2292. {
  2293. int ret;
  2294. u8 cpl;
  2295. if (ctxt->ops->set_cr(ctxt, 3, tss->cr3))
  2296. return emulate_gp(ctxt, 0);
  2297. ctxt->_eip = tss->eip;
  2298. ctxt->eflags = tss->eflags | 2;
  2299. /* General purpose registers */
  2300. *reg_write(ctxt, VCPU_REGS_RAX) = tss->eax;
  2301. *reg_write(ctxt, VCPU_REGS_RCX) = tss->ecx;
  2302. *reg_write(ctxt, VCPU_REGS_RDX) = tss->edx;
  2303. *reg_write(ctxt, VCPU_REGS_RBX) = tss->ebx;
  2304. *reg_write(ctxt, VCPU_REGS_RSP) = tss->esp;
  2305. *reg_write(ctxt, VCPU_REGS_RBP) = tss->ebp;
  2306. *reg_write(ctxt, VCPU_REGS_RSI) = tss->esi;
  2307. *reg_write(ctxt, VCPU_REGS_RDI) = tss->edi;
  2308. /*
  2309. * SDM says that segment selectors are loaded before segment
  2310. * descriptors. This is important because CPL checks will
  2311. * use CS.RPL.
  2312. */
  2313. set_segment_selector(ctxt, tss->ldt_selector, VCPU_SREG_LDTR);
  2314. set_segment_selector(ctxt, tss->es, VCPU_SREG_ES);
  2315. set_segment_selector(ctxt, tss->cs, VCPU_SREG_CS);
  2316. set_segment_selector(ctxt, tss->ss, VCPU_SREG_SS);
  2317. set_segment_selector(ctxt, tss->ds, VCPU_SREG_DS);
  2318. set_segment_selector(ctxt, tss->fs, VCPU_SREG_FS);
  2319. set_segment_selector(ctxt, tss->gs, VCPU_SREG_GS);
  2320. /*
  2321. * If we're switching between Protected Mode and VM86, we need to make
  2322. * sure to update the mode before loading the segment descriptors so
  2323. * that the selectors are interpreted correctly.
  2324. */
  2325. if (ctxt->eflags & X86_EFLAGS_VM) {
  2326. ctxt->mode = X86EMUL_MODE_VM86;
  2327. cpl = 3;
  2328. } else {
  2329. ctxt->mode = X86EMUL_MODE_PROT32;
  2330. cpl = tss->cs & 3;
  2331. }
  2332. /*
  2333. * Now load segment descriptors. If fault happenes at this stage
  2334. * it is handled in a context of new task
  2335. */
  2336. ret = __load_segment_descriptor(ctxt, tss->ldt_selector, VCPU_SREG_LDTR,
  2337. cpl, true, NULL);
  2338. if (ret != X86EMUL_CONTINUE)
  2339. return ret;
  2340. ret = __load_segment_descriptor(ctxt, tss->es, VCPU_SREG_ES, cpl,
  2341. true, NULL);
  2342. if (ret != X86EMUL_CONTINUE)
  2343. return ret;
  2344. ret = __load_segment_descriptor(ctxt, tss->cs, VCPU_SREG_CS, cpl,
  2345. true, NULL);
  2346. if (ret != X86EMUL_CONTINUE)
  2347. return ret;
  2348. ret = __load_segment_descriptor(ctxt, tss->ss, VCPU_SREG_SS, cpl,
  2349. true, NULL);
  2350. if (ret != X86EMUL_CONTINUE)
  2351. return ret;
  2352. ret = __load_segment_descriptor(ctxt, tss->ds, VCPU_SREG_DS, cpl,
  2353. true, NULL);
  2354. if (ret != X86EMUL_CONTINUE)
  2355. return ret;
  2356. ret = __load_segment_descriptor(ctxt, tss->fs, VCPU_SREG_FS, cpl,
  2357. true, NULL);
  2358. if (ret != X86EMUL_CONTINUE)
  2359. return ret;
  2360. ret = __load_segment_descriptor(ctxt, tss->gs, VCPU_SREG_GS, cpl,
  2361. true, NULL);
  2362. if (ret != X86EMUL_CONTINUE)
  2363. return ret;
  2364. return X86EMUL_CONTINUE;
  2365. }
  2366. static int task_switch_32(struct x86_emulate_ctxt *ctxt,
  2367. u16 tss_selector, u16 old_tss_sel,
  2368. ulong old_tss_base, struct desc_struct *new_desc)
  2369. {
  2370. const struct x86_emulate_ops *ops = ctxt->ops;
  2371. struct tss_segment_32 tss_seg;
  2372. int ret;
  2373. u32 new_tss_base = get_desc_base(new_desc);
  2374. u32 eip_offset = offsetof(struct tss_segment_32, eip);
  2375. u32 ldt_sel_offset = offsetof(struct tss_segment_32, ldt_selector);
  2376. ret = ops->read_std(ctxt, old_tss_base, &tss_seg, sizeof tss_seg,
  2377. &ctxt->exception);
  2378. if (ret != X86EMUL_CONTINUE)
  2379. /* FIXME: need to provide precise fault address */
  2380. return ret;
  2381. save_state_to_tss32(ctxt, &tss_seg);
  2382. /* Only GP registers and segment selectors are saved */
  2383. ret = ops->write_std(ctxt, old_tss_base + eip_offset, &tss_seg.eip,
  2384. ldt_sel_offset - eip_offset, &ctxt->exception);
  2385. if (ret != X86EMUL_CONTINUE)
  2386. /* FIXME: need to provide precise fault address */
  2387. return ret;
  2388. ret = ops->read_std(ctxt, new_tss_base, &tss_seg, sizeof tss_seg,
  2389. &ctxt->exception);
  2390. if (ret != X86EMUL_CONTINUE)
  2391. /* FIXME: need to provide precise fault address */
  2392. return ret;
  2393. if (old_tss_sel != 0xffff) {
  2394. tss_seg.prev_task_link = old_tss_sel;
  2395. ret = ops->write_std(ctxt, new_tss_base,
  2396. &tss_seg.prev_task_link,
  2397. sizeof tss_seg.prev_task_link,
  2398. &ctxt->exception);
  2399. if (ret != X86EMUL_CONTINUE)
  2400. /* FIXME: need to provide precise fault address */
  2401. return ret;
  2402. }
  2403. return load_state_from_tss32(ctxt, &tss_seg);
  2404. }
  2405. static int emulator_do_task_switch(struct x86_emulate_ctxt *ctxt,
  2406. u16 tss_selector, int idt_index, int reason,
  2407. bool has_error_code, u32 error_code)
  2408. {
  2409. const struct x86_emulate_ops *ops = ctxt->ops;
  2410. struct desc_struct curr_tss_desc, next_tss_desc;
  2411. int ret;
  2412. u16 old_tss_sel = get_segment_selector(ctxt, VCPU_SREG_TR);
  2413. ulong old_tss_base =
  2414. ops->get_cached_segment_base(ctxt, VCPU_SREG_TR);
  2415. u32 desc_limit;
  2416. ulong desc_addr;
  2417. /* FIXME: old_tss_base == ~0 ? */
  2418. ret = read_segment_descriptor(ctxt, tss_selector, &next_tss_desc, &desc_addr);
  2419. if (ret != X86EMUL_CONTINUE)
  2420. return ret;
  2421. ret = read_segment_descriptor(ctxt, old_tss_sel, &curr_tss_desc, &desc_addr);
  2422. if (ret != X86EMUL_CONTINUE)
  2423. return ret;
  2424. /* FIXME: check that next_tss_desc is tss */
  2425. /*
  2426. * Check privileges. The three cases are task switch caused by...
  2427. *
  2428. * 1. jmp/call/int to task gate: Check against DPL of the task gate
  2429. * 2. Exception/IRQ/iret: No check is performed
  2430. * 3. jmp/call to TSS/task-gate: No check is performed since the
  2431. * hardware checks it before exiting.
  2432. */
  2433. if (reason == TASK_SWITCH_GATE) {
  2434. if (idt_index != -1) {
  2435. /* Software interrupts */
  2436. struct desc_struct task_gate_desc;
  2437. int dpl;
  2438. ret = read_interrupt_descriptor(ctxt, idt_index,
  2439. &task_gate_desc);
  2440. if (ret != X86EMUL_CONTINUE)
  2441. return ret;
  2442. dpl = task_gate_desc.dpl;
  2443. if ((tss_selector & 3) > dpl || ops->cpl(ctxt) > dpl)
  2444. return emulate_gp(ctxt, (idt_index << 3) | 0x2);
  2445. }
  2446. }
  2447. desc_limit = desc_limit_scaled(&next_tss_desc);
  2448. if (!next_tss_desc.p ||
  2449. ((desc_limit < 0x67 && (next_tss_desc.type & 8)) ||
  2450. desc_limit < 0x2b)) {
  2451. return emulate_ts(ctxt, tss_selector & 0xfffc);
  2452. }
  2453. if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
  2454. curr_tss_desc.type &= ~(1 << 1); /* clear busy flag */
  2455. write_segment_descriptor(ctxt, old_tss_sel, &curr_tss_desc);
  2456. }
  2457. if (reason == TASK_SWITCH_IRET)
  2458. ctxt->eflags = ctxt->eflags & ~X86_EFLAGS_NT;
  2459. /* set back link to prev task only if NT bit is set in eflags
  2460. note that old_tss_sel is not used after this point */
  2461. if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
  2462. old_tss_sel = 0xffff;
  2463. if (next_tss_desc.type & 8)
  2464. ret = task_switch_32(ctxt, tss_selector, old_tss_sel,
  2465. old_tss_base, &next_tss_desc);
  2466. else
  2467. ret = task_switch_16(ctxt, tss_selector, old_tss_sel,
  2468. old_tss_base, &next_tss_desc);
  2469. if (ret != X86EMUL_CONTINUE)
  2470. return ret;
  2471. if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE)
  2472. ctxt->eflags = ctxt->eflags | X86_EFLAGS_NT;
  2473. if (reason != TASK_SWITCH_IRET) {
  2474. next_tss_desc.type |= (1 << 1); /* set busy flag */
  2475. write_segment_descriptor(ctxt, tss_selector, &next_tss_desc);
  2476. }
  2477. ops->set_cr(ctxt, 0, ops->get_cr(ctxt, 0) | X86_CR0_TS);
  2478. ops->set_segment(ctxt, tss_selector, &next_tss_desc, 0, VCPU_SREG_TR);
  2479. if (has_error_code) {
  2480. ctxt->op_bytes = ctxt->ad_bytes = (next_tss_desc.type & 8) ? 4 : 2;
  2481. ctxt->lock_prefix = 0;
  2482. ctxt->src.val = (unsigned long) error_code;
  2483. ret = em_push(ctxt);
  2484. }
  2485. return ret;
  2486. }
  2487. int emulator_task_switch(struct x86_emulate_ctxt *ctxt,
  2488. u16 tss_selector, int idt_index, int reason,
  2489. bool has_error_code, u32 error_code)
  2490. {
  2491. int rc;
  2492. invalidate_registers(ctxt);
  2493. ctxt->_eip = ctxt->eip;
  2494. ctxt->dst.type = OP_NONE;
  2495. rc = emulator_do_task_switch(ctxt, tss_selector, idt_index, reason,
  2496. has_error_code, error_code);
  2497. if (rc == X86EMUL_CONTINUE) {
  2498. ctxt->eip = ctxt->_eip;
  2499. writeback_registers(ctxt);
  2500. }
  2501. return (rc == X86EMUL_UNHANDLEABLE) ? EMULATION_FAILED : EMULATION_OK;
  2502. }
  2503. static void string_addr_inc(struct x86_emulate_ctxt *ctxt, int reg,
  2504. struct operand *op)
  2505. {
  2506. int df = (ctxt->eflags & EFLG_DF) ? -op->count : op->count;
  2507. register_address_increment(ctxt, reg, df * op->bytes);
  2508. op->addr.mem.ea = register_address(ctxt, reg);
  2509. }
  2510. static int em_das(struct x86_emulate_ctxt *ctxt)
  2511. {
  2512. u8 al, old_al;
  2513. bool af, cf, old_cf;
  2514. cf = ctxt->eflags & X86_EFLAGS_CF;
  2515. al = ctxt->dst.val;
  2516. old_al = al;
  2517. old_cf = cf;
  2518. cf = false;
  2519. af = ctxt->eflags & X86_EFLAGS_AF;
  2520. if ((al & 0x0f) > 9 || af) {
  2521. al -= 6;
  2522. cf = old_cf | (al >= 250);
  2523. af = true;
  2524. } else {
  2525. af = false;
  2526. }
  2527. if (old_al > 0x99 || old_cf) {
  2528. al -= 0x60;
  2529. cf = true;
  2530. }
  2531. ctxt->dst.val = al;
  2532. /* Set PF, ZF, SF */
  2533. ctxt->src.type = OP_IMM;
  2534. ctxt->src.val = 0;
  2535. ctxt->src.bytes = 1;
  2536. fastop(ctxt, em_or);
  2537. ctxt->eflags &= ~(X86_EFLAGS_AF | X86_EFLAGS_CF);
  2538. if (cf)
  2539. ctxt->eflags |= X86_EFLAGS_CF;
  2540. if (af)
  2541. ctxt->eflags |= X86_EFLAGS_AF;
  2542. return X86EMUL_CONTINUE;
  2543. }
  2544. static int em_aam(struct x86_emulate_ctxt *ctxt)
  2545. {
  2546. u8 al, ah;
  2547. if (ctxt->src.val == 0)
  2548. return emulate_de(ctxt);
  2549. al = ctxt->dst.val & 0xff;
  2550. ah = al / ctxt->src.val;
  2551. al %= ctxt->src.val;
  2552. ctxt->dst.val = (ctxt->dst.val & 0xffff0000) | al | (ah << 8);
  2553. /* Set PF, ZF, SF */
  2554. ctxt->src.type = OP_IMM;
  2555. ctxt->src.val = 0;
  2556. ctxt->src.bytes = 1;
  2557. fastop(ctxt, em_or);
  2558. return X86EMUL_CONTINUE;
  2559. }
  2560. static int em_aad(struct x86_emulate_ctxt *ctxt)
  2561. {
  2562. u8 al = ctxt->dst.val & 0xff;
  2563. u8 ah = (ctxt->dst.val >> 8) & 0xff;
  2564. al = (al + (ah * ctxt->src.val)) & 0xff;
  2565. ctxt->dst.val = (ctxt->dst.val & 0xffff0000) | al;
  2566. /* Set PF, ZF, SF */
  2567. ctxt->src.type = OP_IMM;
  2568. ctxt->src.val = 0;
  2569. ctxt->src.bytes = 1;
  2570. fastop(ctxt, em_or);
  2571. return X86EMUL_CONTINUE;
  2572. }
  2573. static int em_call(struct x86_emulate_ctxt *ctxt)
  2574. {
  2575. int rc;
  2576. long rel = ctxt->src.val;
  2577. ctxt->src.val = (unsigned long)ctxt->_eip;
  2578. rc = jmp_rel(ctxt, rel);
  2579. if (rc != X86EMUL_CONTINUE)
  2580. return rc;
  2581. return em_push(ctxt);
  2582. }
  2583. static int em_call_far(struct x86_emulate_ctxt *ctxt)
  2584. {
  2585. u16 sel, old_cs;
  2586. ulong old_eip;
  2587. int rc;
  2588. struct desc_struct old_desc, new_desc;
  2589. const struct x86_emulate_ops *ops = ctxt->ops;
  2590. int cpl = ctxt->ops->cpl(ctxt);
  2591. old_eip = ctxt->_eip;
  2592. ops->get_segment(ctxt, &old_cs, &old_desc, NULL, VCPU_SREG_CS);
  2593. memcpy(&sel, ctxt->src.valptr + ctxt->op_bytes, 2);
  2594. rc = __load_segment_descriptor(ctxt, sel, VCPU_SREG_CS, cpl, false,
  2595. &new_desc);
  2596. if (rc != X86EMUL_CONTINUE)
  2597. return X86EMUL_CONTINUE;
  2598. rc = assign_eip_far(ctxt, ctxt->src.val, &new_desc);
  2599. if (rc != X86EMUL_CONTINUE)
  2600. goto fail;
  2601. ctxt->src.val = old_cs;
  2602. rc = em_push(ctxt);
  2603. if (rc != X86EMUL_CONTINUE)
  2604. goto fail;
  2605. ctxt->src.val = old_eip;
  2606. rc = em_push(ctxt);
  2607. /* If we failed, we tainted the memory, but the very least we should
  2608. restore cs */
  2609. if (rc != X86EMUL_CONTINUE)
  2610. goto fail;
  2611. return rc;
  2612. fail:
  2613. ops->set_segment(ctxt, old_cs, &old_desc, 0, VCPU_SREG_CS);
  2614. return rc;
  2615. }
  2616. static int em_ret_near_imm(struct x86_emulate_ctxt *ctxt)
  2617. {
  2618. int rc;
  2619. unsigned long eip;
  2620. rc = emulate_pop(ctxt, &eip, ctxt->op_bytes);
  2621. if (rc != X86EMUL_CONTINUE)
  2622. return rc;
  2623. rc = assign_eip_near(ctxt, eip);
  2624. if (rc != X86EMUL_CONTINUE)
  2625. return rc;
  2626. rsp_increment(ctxt, ctxt->src.val);
  2627. return X86EMUL_CONTINUE;
  2628. }
  2629. static int em_xchg(struct x86_emulate_ctxt *ctxt)
  2630. {
  2631. /* Write back the register source. */
  2632. ctxt->src.val = ctxt->dst.val;
  2633. write_register_operand(&ctxt->src);
  2634. /* Write back the memory destination with implicit LOCK prefix. */
  2635. ctxt->dst.val = ctxt->src.orig_val;
  2636. ctxt->lock_prefix = 1;
  2637. return X86EMUL_CONTINUE;
  2638. }
  2639. static int em_imul_3op(struct x86_emulate_ctxt *ctxt)
  2640. {
  2641. ctxt->dst.val = ctxt->src2.val;
  2642. return fastop(ctxt, em_imul);
  2643. }
  2644. static int em_cwd(struct x86_emulate_ctxt *ctxt)
  2645. {
  2646. ctxt->dst.type = OP_REG;
  2647. ctxt->dst.bytes = ctxt->src.bytes;
  2648. ctxt->dst.addr.reg = reg_rmw(ctxt, VCPU_REGS_RDX);
  2649. ctxt->dst.val = ~((ctxt->src.val >> (ctxt->src.bytes * 8 - 1)) - 1);
  2650. return X86EMUL_CONTINUE;
  2651. }
  2652. static int em_rdtsc(struct x86_emulate_ctxt *ctxt)
  2653. {
  2654. u64 tsc = 0;
  2655. ctxt->ops->get_msr(ctxt, MSR_IA32_TSC, &tsc);
  2656. *reg_write(ctxt, VCPU_REGS_RAX) = (u32)tsc;
  2657. *reg_write(ctxt, VCPU_REGS_RDX) = tsc >> 32;
  2658. return X86EMUL_CONTINUE;
  2659. }
  2660. static int em_rdpmc(struct x86_emulate_ctxt *ctxt)
  2661. {
  2662. u64 pmc;
  2663. if (ctxt->ops->read_pmc(ctxt, reg_read(ctxt, VCPU_REGS_RCX), &pmc))
  2664. return emulate_gp(ctxt, 0);
  2665. *reg_write(ctxt, VCPU_REGS_RAX) = (u32)pmc;
  2666. *reg_write(ctxt, VCPU_REGS_RDX) = pmc >> 32;
  2667. return X86EMUL_CONTINUE;
  2668. }
  2669. static int em_mov(struct x86_emulate_ctxt *ctxt)
  2670. {
  2671. memcpy(ctxt->dst.valptr, ctxt->src.valptr, sizeof(ctxt->src.valptr));
  2672. return X86EMUL_CONTINUE;
  2673. }
  2674. #define FFL(x) bit(X86_FEATURE_##x)
  2675. static int em_movbe(struct x86_emulate_ctxt *ctxt)
  2676. {
  2677. u32 ebx, ecx, edx, eax = 1;
  2678. u16 tmp;
  2679. /*
  2680. * Check MOVBE is set in the guest-visible CPUID leaf.
  2681. */
  2682. ctxt->ops->get_cpuid(ctxt, &eax, &ebx, &ecx, &edx);
  2683. if (!(ecx & FFL(MOVBE)))
  2684. return emulate_ud(ctxt);
  2685. switch (ctxt->op_bytes) {
  2686. case 2:
  2687. /*
  2688. * From MOVBE definition: "...When the operand size is 16 bits,
  2689. * the upper word of the destination register remains unchanged
  2690. * ..."
  2691. *
  2692. * Both casting ->valptr and ->val to u16 breaks strict aliasing
  2693. * rules so we have to do the operation almost per hand.
  2694. */
  2695. tmp = (u16)ctxt->src.val;
  2696. ctxt->dst.val &= ~0xffffUL;
  2697. ctxt->dst.val |= (unsigned long)swab16(tmp);
  2698. break;
  2699. case 4:
  2700. ctxt->dst.val = swab32((u32)ctxt->src.val);
  2701. break;
  2702. case 8:
  2703. ctxt->dst.val = swab64(ctxt->src.val);
  2704. break;
  2705. default:
  2706. BUG();
  2707. }
  2708. return X86EMUL_CONTINUE;
  2709. }
  2710. static int em_cr_write(struct x86_emulate_ctxt *ctxt)
  2711. {
  2712. if (ctxt->ops->set_cr(ctxt, ctxt->modrm_reg, ctxt->src.val))
  2713. return emulate_gp(ctxt, 0);
  2714. /* Disable writeback. */
  2715. ctxt->dst.type = OP_NONE;
  2716. return X86EMUL_CONTINUE;
  2717. }
  2718. static int em_dr_write(struct x86_emulate_ctxt *ctxt)
  2719. {
  2720. unsigned long val;
  2721. if (ctxt->mode == X86EMUL_MODE_PROT64)
  2722. val = ctxt->src.val & ~0ULL;
  2723. else
  2724. val = ctxt->src.val & ~0U;
  2725. /* #UD condition is already handled. */
  2726. if (ctxt->ops->set_dr(ctxt, ctxt->modrm_reg, val) < 0)
  2727. return emulate_gp(ctxt, 0);
  2728. /* Disable writeback. */
  2729. ctxt->dst.type = OP_NONE;
  2730. return X86EMUL_CONTINUE;
  2731. }
  2732. static int em_wrmsr(struct x86_emulate_ctxt *ctxt)
  2733. {
  2734. u64 msr_data;
  2735. msr_data = (u32)reg_read(ctxt, VCPU_REGS_RAX)
  2736. | ((u64)reg_read(ctxt, VCPU_REGS_RDX) << 32);
  2737. if (ctxt->ops->set_msr(ctxt, reg_read(ctxt, VCPU_REGS_RCX), msr_data))
  2738. return emulate_gp(ctxt, 0);
  2739. return X86EMUL_CONTINUE;
  2740. }
  2741. static int em_rdmsr(struct x86_emulate_ctxt *ctxt)
  2742. {
  2743. u64 msr_data;
  2744. if (ctxt->ops->get_msr(ctxt, reg_read(ctxt, VCPU_REGS_RCX), &msr_data))
  2745. return emulate_gp(ctxt, 0);
  2746. *reg_write(ctxt, VCPU_REGS_RAX) = (u32)msr_data;
  2747. *reg_write(ctxt, VCPU_REGS_RDX) = msr_data >> 32;
  2748. return X86EMUL_CONTINUE;
  2749. }
  2750. static int em_mov_rm_sreg(struct x86_emulate_ctxt *ctxt)
  2751. {
  2752. if (ctxt->modrm_reg > VCPU_SREG_GS)
  2753. return emulate_ud(ctxt);
  2754. ctxt->dst.val = get_segment_selector(ctxt, ctxt->modrm_reg);
  2755. if (ctxt->dst.bytes == 4 && ctxt->dst.type == OP_MEM)
  2756. ctxt->dst.bytes = 2;
  2757. return X86EMUL_CONTINUE;
  2758. }
  2759. static int em_mov_sreg_rm(struct x86_emulate_ctxt *ctxt)
  2760. {
  2761. u16 sel = ctxt->src.val;
  2762. if (ctxt->modrm_reg == VCPU_SREG_CS || ctxt->modrm_reg > VCPU_SREG_GS)
  2763. return emulate_ud(ctxt);
  2764. if (ctxt->modrm_reg == VCPU_SREG_SS)
  2765. ctxt->interruptibility = KVM_X86_SHADOW_INT_MOV_SS;
  2766. /* Disable writeback. */
  2767. ctxt->dst.type = OP_NONE;
  2768. return load_segment_descriptor(ctxt, sel, ctxt->modrm_reg);
  2769. }
  2770. static int em_lldt(struct x86_emulate_ctxt *ctxt)
  2771. {
  2772. u16 sel = ctxt->src.val;
  2773. /* Disable writeback. */
  2774. ctxt->dst.type = OP_NONE;
  2775. return load_segment_descriptor(ctxt, sel, VCPU_SREG_LDTR);
  2776. }
  2777. static int em_ltr(struct x86_emulate_ctxt *ctxt)
  2778. {
  2779. u16 sel = ctxt->src.val;
  2780. /* Disable writeback. */
  2781. ctxt->dst.type = OP_NONE;
  2782. return load_segment_descriptor(ctxt, sel, VCPU_SREG_TR);
  2783. }
  2784. static int em_invlpg(struct x86_emulate_ctxt *ctxt)
  2785. {
  2786. int rc;
  2787. ulong linear;
  2788. rc = linearize(ctxt, ctxt->src.addr.mem, 1, false, &linear);
  2789. if (rc == X86EMUL_CONTINUE)
  2790. ctxt->ops->invlpg(ctxt, linear);
  2791. /* Disable writeback. */
  2792. ctxt->dst.type = OP_NONE;
  2793. return X86EMUL_CONTINUE;
  2794. }
  2795. static int em_clts(struct x86_emulate_ctxt *ctxt)
  2796. {
  2797. ulong cr0;
  2798. cr0 = ctxt->ops->get_cr(ctxt, 0);
  2799. cr0 &= ~X86_CR0_TS;
  2800. ctxt->ops->set_cr(ctxt, 0, cr0);
  2801. return X86EMUL_CONTINUE;
  2802. }
  2803. static int em_vmcall(struct x86_emulate_ctxt *ctxt)
  2804. {
  2805. int rc = ctxt->ops->fix_hypercall(ctxt);
  2806. if (rc != X86EMUL_CONTINUE)
  2807. return rc;
  2808. /* Let the processor re-execute the fixed hypercall */
  2809. ctxt->_eip = ctxt->eip;
  2810. /* Disable writeback. */
  2811. ctxt->dst.type = OP_NONE;
  2812. return X86EMUL_CONTINUE;
  2813. }
  2814. static int emulate_store_desc_ptr(struct x86_emulate_ctxt *ctxt,
  2815. void (*get)(struct x86_emulate_ctxt *ctxt,
  2816. struct desc_ptr *ptr))
  2817. {
  2818. struct desc_ptr desc_ptr;
  2819. if (ctxt->mode == X86EMUL_MODE_PROT64)
  2820. ctxt->op_bytes = 8;
  2821. get(ctxt, &desc_ptr);
  2822. if (ctxt->op_bytes == 2) {
  2823. ctxt->op_bytes = 4;
  2824. desc_ptr.address &= 0x00ffffff;
  2825. }
  2826. /* Disable writeback. */
  2827. ctxt->dst.type = OP_NONE;
  2828. return segmented_write(ctxt, ctxt->dst.addr.mem,
  2829. &desc_ptr, 2 + ctxt->op_bytes);
  2830. }
  2831. static int em_sgdt(struct x86_emulate_ctxt *ctxt)
  2832. {
  2833. return emulate_store_desc_ptr(ctxt, ctxt->ops->get_gdt);
  2834. }
  2835. static int em_sidt(struct x86_emulate_ctxt *ctxt)
  2836. {
  2837. return emulate_store_desc_ptr(ctxt, ctxt->ops->get_idt);
  2838. }
  2839. static int em_lgdt_lidt(struct x86_emulate_ctxt *ctxt, bool lgdt)
  2840. {
  2841. struct desc_ptr desc_ptr;
  2842. int rc;
  2843. if (ctxt->mode == X86EMUL_MODE_PROT64)
  2844. ctxt->op_bytes = 8;
  2845. rc = read_descriptor(ctxt, ctxt->src.addr.mem,
  2846. &desc_ptr.size, &desc_ptr.address,
  2847. ctxt->op_bytes);
  2848. if (rc != X86EMUL_CONTINUE)
  2849. return rc;
  2850. if (ctxt->mode == X86EMUL_MODE_PROT64 &&
  2851. is_noncanonical_address(desc_ptr.address))
  2852. return emulate_gp(ctxt, 0);
  2853. if (lgdt)
  2854. ctxt->ops->set_gdt(ctxt, &desc_ptr);
  2855. else
  2856. ctxt->ops->set_idt(ctxt, &desc_ptr);
  2857. /* Disable writeback. */
  2858. ctxt->dst.type = OP_NONE;
  2859. return X86EMUL_CONTINUE;
  2860. }
  2861. static int em_lgdt(struct x86_emulate_ctxt *ctxt)
  2862. {
  2863. return em_lgdt_lidt(ctxt, true);
  2864. }
  2865. static int em_vmmcall(struct x86_emulate_ctxt *ctxt)
  2866. {
  2867. int rc;
  2868. rc = ctxt->ops->fix_hypercall(ctxt);
  2869. /* Disable writeback. */
  2870. ctxt->dst.type = OP_NONE;
  2871. return rc;
  2872. }
  2873. static int em_lidt(struct x86_emulate_ctxt *ctxt)
  2874. {
  2875. return em_lgdt_lidt(ctxt, false);
  2876. }
  2877. static int em_smsw(struct x86_emulate_ctxt *ctxt)
  2878. {
  2879. if (ctxt->dst.type == OP_MEM)
  2880. ctxt->dst.bytes = 2;
  2881. ctxt->dst.val = ctxt->ops->get_cr(ctxt, 0);
  2882. return X86EMUL_CONTINUE;
  2883. }
  2884. static int em_lmsw(struct x86_emulate_ctxt *ctxt)
  2885. {
  2886. ctxt->ops->set_cr(ctxt, 0, (ctxt->ops->get_cr(ctxt, 0) & ~0x0eul)
  2887. | (ctxt->src.val & 0x0f));
  2888. ctxt->dst.type = OP_NONE;
  2889. return X86EMUL_CONTINUE;
  2890. }
  2891. static int em_loop(struct x86_emulate_ctxt *ctxt)
  2892. {
  2893. int rc = X86EMUL_CONTINUE;
  2894. register_address_increment(ctxt, VCPU_REGS_RCX, -1);
  2895. if ((address_mask(ctxt, reg_read(ctxt, VCPU_REGS_RCX)) != 0) &&
  2896. (ctxt->b == 0xe2 || test_cc(ctxt->b ^ 0x5, ctxt->eflags)))
  2897. rc = jmp_rel(ctxt, ctxt->src.val);
  2898. return rc;
  2899. }
  2900. static int em_jcxz(struct x86_emulate_ctxt *ctxt)
  2901. {
  2902. int rc = X86EMUL_CONTINUE;
  2903. if (address_mask(ctxt, reg_read(ctxt, VCPU_REGS_RCX)) == 0)
  2904. rc = jmp_rel(ctxt, ctxt->src.val);
  2905. return rc;
  2906. }
  2907. static int em_in(struct x86_emulate_ctxt *ctxt)
  2908. {
  2909. if (!pio_in_emulated(ctxt, ctxt->dst.bytes, ctxt->src.val,
  2910. &ctxt->dst.val))
  2911. return X86EMUL_IO_NEEDED;
  2912. return X86EMUL_CONTINUE;
  2913. }
  2914. static int em_out(struct x86_emulate_ctxt *ctxt)
  2915. {
  2916. ctxt->ops->pio_out_emulated(ctxt, ctxt->src.bytes, ctxt->dst.val,
  2917. &ctxt->src.val, 1);
  2918. /* Disable writeback. */
  2919. ctxt->dst.type = OP_NONE;
  2920. return X86EMUL_CONTINUE;
  2921. }
  2922. static int em_cli(struct x86_emulate_ctxt *ctxt)
  2923. {
  2924. if (emulator_bad_iopl(ctxt))
  2925. return emulate_gp(ctxt, 0);
  2926. ctxt->eflags &= ~X86_EFLAGS_IF;
  2927. return X86EMUL_CONTINUE;
  2928. }
  2929. static int em_sti(struct x86_emulate_ctxt *ctxt)
  2930. {
  2931. if (emulator_bad_iopl(ctxt))
  2932. return emulate_gp(ctxt, 0);
  2933. ctxt->interruptibility = KVM_X86_SHADOW_INT_STI;
  2934. ctxt->eflags |= X86_EFLAGS_IF;
  2935. return X86EMUL_CONTINUE;
  2936. }
  2937. static int em_cpuid(struct x86_emulate_ctxt *ctxt)
  2938. {
  2939. u32 eax, ebx, ecx, edx;
  2940. eax = reg_read(ctxt, VCPU_REGS_RAX);
  2941. ecx = reg_read(ctxt, VCPU_REGS_RCX);
  2942. ctxt->ops->get_cpuid(ctxt, &eax, &ebx, &ecx, &edx);
  2943. *reg_write(ctxt, VCPU_REGS_RAX) = eax;
  2944. *reg_write(ctxt, VCPU_REGS_RBX) = ebx;
  2945. *reg_write(ctxt, VCPU_REGS_RCX) = ecx;
  2946. *reg_write(ctxt, VCPU_REGS_RDX) = edx;
  2947. return X86EMUL_CONTINUE;
  2948. }
  2949. static int em_sahf(struct x86_emulate_ctxt *ctxt)
  2950. {
  2951. u32 flags;
  2952. flags = EFLG_CF | EFLG_PF | EFLG_AF | EFLG_ZF | EFLG_SF;
  2953. flags &= *reg_rmw(ctxt, VCPU_REGS_RAX) >> 8;
  2954. ctxt->eflags &= ~0xffUL;
  2955. ctxt->eflags |= flags | X86_EFLAGS_FIXED;
  2956. return X86EMUL_CONTINUE;
  2957. }
  2958. static int em_lahf(struct x86_emulate_ctxt *ctxt)
  2959. {
  2960. *reg_rmw(ctxt, VCPU_REGS_RAX) &= ~0xff00UL;
  2961. *reg_rmw(ctxt, VCPU_REGS_RAX) |= (ctxt->eflags & 0xff) << 8;
  2962. return X86EMUL_CONTINUE;
  2963. }
  2964. static int em_bswap(struct x86_emulate_ctxt *ctxt)
  2965. {
  2966. switch (ctxt->op_bytes) {
  2967. #ifdef CONFIG_X86_64
  2968. case 8:
  2969. asm("bswap %0" : "+r"(ctxt->dst.val));
  2970. break;
  2971. #endif
  2972. default:
  2973. asm("bswap %0" : "+r"(*(u32 *)&ctxt->dst.val));
  2974. break;
  2975. }
  2976. return X86EMUL_CONTINUE;
  2977. }
  2978. static int em_clflush(struct x86_emulate_ctxt *ctxt)
  2979. {
  2980. /* emulating clflush regardless of cpuid */
  2981. return X86EMUL_CONTINUE;
  2982. }
  2983. static bool valid_cr(int nr)
  2984. {
  2985. switch (nr) {
  2986. case 0:
  2987. case 2 ... 4:
  2988. case 8:
  2989. return true;
  2990. default:
  2991. return false;
  2992. }
  2993. }
  2994. static int check_cr_read(struct x86_emulate_ctxt *ctxt)
  2995. {
  2996. if (!valid_cr(ctxt->modrm_reg))
  2997. return emulate_ud(ctxt);
  2998. return X86EMUL_CONTINUE;
  2999. }
  3000. static int check_cr_write(struct x86_emulate_ctxt *ctxt)
  3001. {
  3002. u64 new_val = ctxt->src.val64;
  3003. int cr = ctxt->modrm_reg;
  3004. u64 efer = 0;
  3005. static u64 cr_reserved_bits[] = {
  3006. 0xffffffff00000000ULL,
  3007. 0, 0, 0, /* CR3 checked later */
  3008. CR4_RESERVED_BITS,
  3009. 0, 0, 0,
  3010. CR8_RESERVED_BITS,
  3011. };
  3012. if (!valid_cr(cr))
  3013. return emulate_ud(ctxt);
  3014. if (new_val & cr_reserved_bits[cr])
  3015. return emulate_gp(ctxt, 0);
  3016. switch (cr) {
  3017. case 0: {
  3018. u64 cr4;
  3019. if (((new_val & X86_CR0_PG) && !(new_val & X86_CR0_PE)) ||
  3020. ((new_val & X86_CR0_NW) && !(new_val & X86_CR0_CD)))
  3021. return emulate_gp(ctxt, 0);
  3022. cr4 = ctxt->ops->get_cr(ctxt, 4);
  3023. ctxt->ops->get_msr(ctxt, MSR_EFER, &efer);
  3024. if ((new_val & X86_CR0_PG) && (efer & EFER_LME) &&
  3025. !(cr4 & X86_CR4_PAE))
  3026. return emulate_gp(ctxt, 0);
  3027. break;
  3028. }
  3029. case 3: {
  3030. u64 rsvd = 0;
  3031. ctxt->ops->get_msr(ctxt, MSR_EFER, &efer);
  3032. if (efer & EFER_LMA)
  3033. rsvd = CR3_L_MODE_RESERVED_BITS & ~CR3_PCID_INVD;
  3034. if (new_val & rsvd)
  3035. return emulate_gp(ctxt, 0);
  3036. break;
  3037. }
  3038. case 4: {
  3039. ctxt->ops->get_msr(ctxt, MSR_EFER, &efer);
  3040. if ((efer & EFER_LMA) && !(new_val & X86_CR4_PAE))
  3041. return emulate_gp(ctxt, 0);
  3042. break;
  3043. }
  3044. }
  3045. return X86EMUL_CONTINUE;
  3046. }
  3047. static int check_dr7_gd(struct x86_emulate_ctxt *ctxt)
  3048. {
  3049. unsigned long dr7;
  3050. ctxt->ops->get_dr(ctxt, 7, &dr7);
  3051. /* Check if DR7.Global_Enable is set */
  3052. return dr7 & (1 << 13);
  3053. }
  3054. static int check_dr_read(struct x86_emulate_ctxt *ctxt)
  3055. {
  3056. int dr = ctxt->modrm_reg;
  3057. u64 cr4;
  3058. if (dr > 7)
  3059. return emulate_ud(ctxt);
  3060. cr4 = ctxt->ops->get_cr(ctxt, 4);
  3061. if ((cr4 & X86_CR4_DE) && (dr == 4 || dr == 5))
  3062. return emulate_ud(ctxt);
  3063. if (check_dr7_gd(ctxt)) {
  3064. ulong dr6;
  3065. ctxt->ops->get_dr(ctxt, 6, &dr6);
  3066. dr6 &= ~15;
  3067. dr6 |= DR6_BD | DR6_RTM;
  3068. ctxt->ops->set_dr(ctxt, 6, dr6);
  3069. return emulate_db(ctxt);
  3070. }
  3071. return X86EMUL_CONTINUE;
  3072. }
  3073. static int check_dr_write(struct x86_emulate_ctxt *ctxt)
  3074. {
  3075. u64 new_val = ctxt->src.val64;
  3076. int dr = ctxt->modrm_reg;
  3077. if ((dr == 6 || dr == 7) && (new_val & 0xffffffff00000000ULL))
  3078. return emulate_gp(ctxt, 0);
  3079. return check_dr_read(ctxt);
  3080. }
  3081. static int check_svme(struct x86_emulate_ctxt *ctxt)
  3082. {
  3083. u64 efer;
  3084. ctxt->ops->get_msr(ctxt, MSR_EFER, &efer);
  3085. if (!(efer & EFER_SVME))
  3086. return emulate_ud(ctxt);
  3087. return X86EMUL_CONTINUE;
  3088. }
  3089. static int check_svme_pa(struct x86_emulate_ctxt *ctxt)
  3090. {
  3091. u64 rax = reg_read(ctxt, VCPU_REGS_RAX);
  3092. /* Valid physical address? */
  3093. if (rax & 0xffff000000000000ULL)
  3094. return emulate_gp(ctxt, 0);
  3095. return check_svme(ctxt);
  3096. }
  3097. static int check_rdtsc(struct x86_emulate_ctxt *ctxt)
  3098. {
  3099. u64 cr4 = ctxt->ops->get_cr(ctxt, 4);
  3100. if (cr4 & X86_CR4_TSD && ctxt->ops->cpl(ctxt))
  3101. return emulate_ud(ctxt);
  3102. return X86EMUL_CONTINUE;
  3103. }
  3104. static int check_rdpmc(struct x86_emulate_ctxt *ctxt)
  3105. {
  3106. u64 cr4 = ctxt->ops->get_cr(ctxt, 4);
  3107. u64 rcx = reg_read(ctxt, VCPU_REGS_RCX);
  3108. if ((!(cr4 & X86_CR4_PCE) && ctxt->ops->cpl(ctxt)) ||
  3109. ctxt->ops->check_pmc(ctxt, rcx))
  3110. return emulate_gp(ctxt, 0);
  3111. return X86EMUL_CONTINUE;
  3112. }
  3113. static int check_perm_in(struct x86_emulate_ctxt *ctxt)
  3114. {
  3115. ctxt->dst.bytes = min(ctxt->dst.bytes, 4u);
  3116. if (!emulator_io_permited(ctxt, ctxt->src.val, ctxt->dst.bytes))
  3117. return emulate_gp(ctxt, 0);
  3118. return X86EMUL_CONTINUE;
  3119. }
  3120. static int check_perm_out(struct x86_emulate_ctxt *ctxt)
  3121. {
  3122. ctxt->src.bytes = min(ctxt->src.bytes, 4u);
  3123. if (!emulator_io_permited(ctxt, ctxt->dst.val, ctxt->src.bytes))
  3124. return emulate_gp(ctxt, 0);
  3125. return X86EMUL_CONTINUE;
  3126. }
  3127. #define D(_y) { .flags = (_y) }
  3128. #define DI(_y, _i) { .flags = (_y)|Intercept, .intercept = x86_intercept_##_i }
  3129. #define DIP(_y, _i, _p) { .flags = (_y)|Intercept|CheckPerm, \
  3130. .intercept = x86_intercept_##_i, .check_perm = (_p) }
  3131. #define N D(NotImpl)
  3132. #define EXT(_f, _e) { .flags = ((_f) | RMExt), .u.group = (_e) }
  3133. #define G(_f, _g) { .flags = ((_f) | Group | ModRM), .u.group = (_g) }
  3134. #define GD(_f, _g) { .flags = ((_f) | GroupDual | ModRM), .u.gdual = (_g) }
  3135. #define ID(_f, _i) { .flags = ((_f) | InstrDual | ModRM), .u.idual = (_i) }
  3136. #define E(_f, _e) { .flags = ((_f) | Escape | ModRM), .u.esc = (_e) }
  3137. #define I(_f, _e) { .flags = (_f), .u.execute = (_e) }
  3138. #define F(_f, _e) { .flags = (_f) | Fastop, .u.fastop = (_e) }
  3139. #define II(_f, _e, _i) \
  3140. { .flags = (_f)|Intercept, .u.execute = (_e), .intercept = x86_intercept_##_i }
  3141. #define IIP(_f, _e, _i, _p) \
  3142. { .flags = (_f)|Intercept|CheckPerm, .u.execute = (_e), \
  3143. .intercept = x86_intercept_##_i, .check_perm = (_p) }
  3144. #define GP(_f, _g) { .flags = ((_f) | Prefix), .u.gprefix = (_g) }
  3145. #define D2bv(_f) D((_f) | ByteOp), D(_f)
  3146. #define D2bvIP(_f, _i, _p) DIP((_f) | ByteOp, _i, _p), DIP(_f, _i, _p)
  3147. #define I2bv(_f, _e) I((_f) | ByteOp, _e), I(_f, _e)
  3148. #define F2bv(_f, _e) F((_f) | ByteOp, _e), F(_f, _e)
  3149. #define I2bvIP(_f, _e, _i, _p) \
  3150. IIP((_f) | ByteOp, _e, _i, _p), IIP(_f, _e, _i, _p)
  3151. #define F6ALU(_f, _e) F2bv((_f) | DstMem | SrcReg | ModRM, _e), \
  3152. F2bv(((_f) | DstReg | SrcMem | ModRM) & ~Lock, _e), \
  3153. F2bv(((_f) & ~Lock) | DstAcc | SrcImm, _e)
  3154. static const struct opcode group7_rm0[] = {
  3155. N,
  3156. I(SrcNone | Priv | EmulateOnUD, em_vmcall),
  3157. N, N, N, N, N, N,
  3158. };
  3159. static const struct opcode group7_rm1[] = {
  3160. DI(SrcNone | Priv, monitor),
  3161. DI(SrcNone | Priv, mwait),
  3162. N, N, N, N, N, N,
  3163. };
  3164. static const struct opcode group7_rm3[] = {
  3165. DIP(SrcNone | Prot | Priv, vmrun, check_svme_pa),
  3166. II(SrcNone | Prot | EmulateOnUD, em_vmmcall, vmmcall),
  3167. DIP(SrcNone | Prot | Priv, vmload, check_svme_pa),
  3168. DIP(SrcNone | Prot | Priv, vmsave, check_svme_pa),
  3169. DIP(SrcNone | Prot | Priv, stgi, check_svme),
  3170. DIP(SrcNone | Prot | Priv, clgi, check_svme),
  3171. DIP(SrcNone | Prot | Priv, skinit, check_svme),
  3172. DIP(SrcNone | Prot | Priv, invlpga, check_svme),
  3173. };
  3174. static const struct opcode group7_rm7[] = {
  3175. N,
  3176. DIP(SrcNone, rdtscp, check_rdtsc),
  3177. N, N, N, N, N, N,
  3178. };
  3179. static const struct opcode group1[] = {
  3180. F(Lock, em_add),
  3181. F(Lock | PageTable, em_or),
  3182. F(Lock, em_adc),
  3183. F(Lock, em_sbb),
  3184. F(Lock | PageTable, em_and),
  3185. F(Lock, em_sub),
  3186. F(Lock, em_xor),
  3187. F(NoWrite, em_cmp),
  3188. };
  3189. static const struct opcode group1A[] = {
  3190. I(DstMem | SrcNone | Mov | Stack, em_pop), N, N, N, N, N, N, N,
  3191. };
  3192. static const struct opcode group2[] = {
  3193. F(DstMem | ModRM, em_rol),
  3194. F(DstMem | ModRM, em_ror),
  3195. F(DstMem | ModRM, em_rcl),
  3196. F(DstMem | ModRM, em_rcr),
  3197. F(DstMem | ModRM, em_shl),
  3198. F(DstMem | ModRM, em_shr),
  3199. F(DstMem | ModRM, em_shl),
  3200. F(DstMem | ModRM, em_sar),
  3201. };
  3202. static const struct opcode group3[] = {
  3203. F(DstMem | SrcImm | NoWrite, em_test),
  3204. F(DstMem | SrcImm | NoWrite, em_test),
  3205. F(DstMem | SrcNone | Lock, em_not),
  3206. F(DstMem | SrcNone | Lock, em_neg),
  3207. F(DstXacc | Src2Mem, em_mul_ex),
  3208. F(DstXacc | Src2Mem, em_imul_ex),
  3209. F(DstXacc | Src2Mem, em_div_ex),
  3210. F(DstXacc | Src2Mem, em_idiv_ex),
  3211. };
  3212. static const struct opcode group4[] = {
  3213. F(ByteOp | DstMem | SrcNone | Lock, em_inc),
  3214. F(ByteOp | DstMem | SrcNone | Lock, em_dec),
  3215. N, N, N, N, N, N,
  3216. };
  3217. static const struct opcode group5[] = {
  3218. F(DstMem | SrcNone | Lock, em_inc),
  3219. F(DstMem | SrcNone | Lock, em_dec),
  3220. I(SrcMem | NearBranch, em_call_near_abs),
  3221. I(SrcMemFAddr | ImplicitOps | Stack, em_call_far),
  3222. I(SrcMem | NearBranch, em_jmp_abs),
  3223. I(SrcMemFAddr | ImplicitOps, em_jmp_far),
  3224. I(SrcMem | Stack, em_push), D(Undefined),
  3225. };
  3226. static const struct opcode group6[] = {
  3227. DI(Prot, sldt),
  3228. DI(Prot, str),
  3229. II(Prot | Priv | SrcMem16, em_lldt, lldt),
  3230. II(Prot | Priv | SrcMem16, em_ltr, ltr),
  3231. N, N, N, N,
  3232. };
  3233. static const struct group_dual group7 = { {
  3234. II(Mov | DstMem, em_sgdt, sgdt),
  3235. II(Mov | DstMem, em_sidt, sidt),
  3236. II(SrcMem | Priv, em_lgdt, lgdt),
  3237. II(SrcMem | Priv, em_lidt, lidt),
  3238. II(SrcNone | DstMem | Mov, em_smsw, smsw), N,
  3239. II(SrcMem16 | Mov | Priv, em_lmsw, lmsw),
  3240. II(SrcMem | ByteOp | Priv | NoAccess, em_invlpg, invlpg),
  3241. }, {
  3242. EXT(0, group7_rm0),
  3243. EXT(0, group7_rm1),
  3244. N, EXT(0, group7_rm3),
  3245. II(SrcNone | DstMem | Mov, em_smsw, smsw), N,
  3246. II(SrcMem16 | Mov | Priv, em_lmsw, lmsw),
  3247. EXT(0, group7_rm7),
  3248. } };
  3249. static const struct opcode group8[] = {
  3250. N, N, N, N,
  3251. F(DstMem | SrcImmByte | NoWrite, em_bt),
  3252. F(DstMem | SrcImmByte | Lock | PageTable, em_bts),
  3253. F(DstMem | SrcImmByte | Lock, em_btr),
  3254. F(DstMem | SrcImmByte | Lock | PageTable, em_btc),
  3255. };
  3256. static const struct group_dual group9 = { {
  3257. N, I(DstMem64 | Lock | PageTable, em_cmpxchg8b), N, N, N, N, N, N,
  3258. }, {
  3259. N, N, N, N, N, N, N, N,
  3260. } };
  3261. static const struct opcode group11[] = {
  3262. I(DstMem | SrcImm | Mov | PageTable, em_mov),
  3263. X7(D(Undefined)),
  3264. };
  3265. static const struct gprefix pfx_0f_ae_7 = {
  3266. I(SrcMem | ByteOp, em_clflush), N, N, N,
  3267. };
  3268. static const struct group_dual group15 = { {
  3269. N, N, N, N, N, N, N, GP(0, &pfx_0f_ae_7),
  3270. }, {
  3271. N, N, N, N, N, N, N, N,
  3272. } };
  3273. static const struct gprefix pfx_0f_6f_0f_7f = {
  3274. I(Mmx, em_mov), I(Sse | Aligned, em_mov), N, I(Sse | Unaligned, em_mov),
  3275. };
  3276. static const struct instr_dual instr_dual_0f_2b = {
  3277. I(0, em_mov), N
  3278. };
  3279. static const struct gprefix pfx_0f_2b = {
  3280. ID(0, &instr_dual_0f_2b), ID(0, &instr_dual_0f_2b), N, N,
  3281. };
  3282. static const struct gprefix pfx_0f_28_0f_29 = {
  3283. I(Aligned, em_mov), I(Aligned, em_mov), N, N,
  3284. };
  3285. static const struct gprefix pfx_0f_e7 = {
  3286. N, I(Sse, em_mov), N, N,
  3287. };
  3288. static const struct escape escape_d9 = { {
  3289. N, N, N, N, N, N, N, I(DstMem, em_fnstcw),
  3290. }, {
  3291. /* 0xC0 - 0xC7 */
  3292. N, N, N, N, N, N, N, N,
  3293. /* 0xC8 - 0xCF */
  3294. N, N, N, N, N, N, N, N,
  3295. /* 0xD0 - 0xC7 */
  3296. N, N, N, N, N, N, N, N,
  3297. /* 0xD8 - 0xDF */
  3298. N, N, N, N, N, N, N, N,
  3299. /* 0xE0 - 0xE7 */
  3300. N, N, N, N, N, N, N, N,
  3301. /* 0xE8 - 0xEF */
  3302. N, N, N, N, N, N, N, N,
  3303. /* 0xF0 - 0xF7 */
  3304. N, N, N, N, N, N, N, N,
  3305. /* 0xF8 - 0xFF */
  3306. N, N, N, N, N, N, N, N,
  3307. } };
  3308. static const struct escape escape_db = { {
  3309. N, N, N, N, N, N, N, N,
  3310. }, {
  3311. /* 0xC0 - 0xC7 */
  3312. N, N, N, N, N, N, N, N,
  3313. /* 0xC8 - 0xCF */
  3314. N, N, N, N, N, N, N, N,
  3315. /* 0xD0 - 0xC7 */
  3316. N, N, N, N, N, N, N, N,
  3317. /* 0xD8 - 0xDF */
  3318. N, N, N, N, N, N, N, N,
  3319. /* 0xE0 - 0xE7 */
  3320. N, N, N, I(ImplicitOps, em_fninit), N, N, N, N,
  3321. /* 0xE8 - 0xEF */
  3322. N, N, N, N, N, N, N, N,
  3323. /* 0xF0 - 0xF7 */
  3324. N, N, N, N, N, N, N, N,
  3325. /* 0xF8 - 0xFF */
  3326. N, N, N, N, N, N, N, N,
  3327. } };
  3328. static const struct escape escape_dd = { {
  3329. N, N, N, N, N, N, N, I(DstMem, em_fnstsw),
  3330. }, {
  3331. /* 0xC0 - 0xC7 */
  3332. N, N, N, N, N, N, N, N,
  3333. /* 0xC8 - 0xCF */
  3334. N, N, N, N, N, N, N, N,
  3335. /* 0xD0 - 0xC7 */
  3336. N, N, N, N, N, N, N, N,
  3337. /* 0xD8 - 0xDF */
  3338. N, N, N, N, N, N, N, N,
  3339. /* 0xE0 - 0xE7 */
  3340. N, N, N, N, N, N, N, N,
  3341. /* 0xE8 - 0xEF */
  3342. N, N, N, N, N, N, N, N,
  3343. /* 0xF0 - 0xF7 */
  3344. N, N, N, N, N, N, N, N,
  3345. /* 0xF8 - 0xFF */
  3346. N, N, N, N, N, N, N, N,
  3347. } };
  3348. static const struct instr_dual instr_dual_0f_c3 = {
  3349. I(DstMem | SrcReg | ModRM | No16 | Mov, em_mov), N
  3350. };
  3351. static const struct opcode opcode_table[256] = {
  3352. /* 0x00 - 0x07 */
  3353. F6ALU(Lock, em_add),
  3354. I(ImplicitOps | Stack | No64 | Src2ES, em_push_sreg),
  3355. I(ImplicitOps | Stack | No64 | Src2ES, em_pop_sreg),
  3356. /* 0x08 - 0x0F */
  3357. F6ALU(Lock | PageTable, em_or),
  3358. I(ImplicitOps | Stack | No64 | Src2CS, em_push_sreg),
  3359. N,
  3360. /* 0x10 - 0x17 */
  3361. F6ALU(Lock, em_adc),
  3362. I(ImplicitOps | Stack | No64 | Src2SS, em_push_sreg),
  3363. I(ImplicitOps | Stack | No64 | Src2SS, em_pop_sreg),
  3364. /* 0x18 - 0x1F */
  3365. F6ALU(Lock, em_sbb),
  3366. I(ImplicitOps | Stack | No64 | Src2DS, em_push_sreg),
  3367. I(ImplicitOps | Stack | No64 | Src2DS, em_pop_sreg),
  3368. /* 0x20 - 0x27 */
  3369. F6ALU(Lock | PageTable, em_and), N, N,
  3370. /* 0x28 - 0x2F */
  3371. F6ALU(Lock, em_sub), N, I(ByteOp | DstAcc | No64, em_das),
  3372. /* 0x30 - 0x37 */
  3373. F6ALU(Lock, em_xor), N, N,
  3374. /* 0x38 - 0x3F */
  3375. F6ALU(NoWrite, em_cmp), N, N,
  3376. /* 0x40 - 0x4F */
  3377. X8(F(DstReg, em_inc)), X8(F(DstReg, em_dec)),
  3378. /* 0x50 - 0x57 */
  3379. X8(I(SrcReg | Stack, em_push)),
  3380. /* 0x58 - 0x5F */
  3381. X8(I(DstReg | Stack, em_pop)),
  3382. /* 0x60 - 0x67 */
  3383. I(ImplicitOps | Stack | No64, em_pusha),
  3384. I(ImplicitOps | Stack | No64, em_popa),
  3385. N, D(DstReg | SrcMem32 | ModRM | Mov) /* movsxd (x86/64) */ ,
  3386. N, N, N, N,
  3387. /* 0x68 - 0x6F */
  3388. I(SrcImm | Mov | Stack, em_push),
  3389. I(DstReg | SrcMem | ModRM | Src2Imm, em_imul_3op),
  3390. I(SrcImmByte | Mov | Stack, em_push),
  3391. I(DstReg | SrcMem | ModRM | Src2ImmByte, em_imul_3op),
  3392. I2bvIP(DstDI | SrcDX | Mov | String | Unaligned, em_in, ins, check_perm_in), /* insb, insw/insd */
  3393. I2bvIP(SrcSI | DstDX | String, em_out, outs, check_perm_out), /* outsb, outsw/outsd */
  3394. /* 0x70 - 0x7F */
  3395. X16(D(SrcImmByte | NearBranch)),
  3396. /* 0x80 - 0x87 */
  3397. G(ByteOp | DstMem | SrcImm, group1),
  3398. G(DstMem | SrcImm, group1),
  3399. G(ByteOp | DstMem | SrcImm | No64, group1),
  3400. G(DstMem | SrcImmByte, group1),
  3401. F2bv(DstMem | SrcReg | ModRM | NoWrite, em_test),
  3402. I2bv(DstMem | SrcReg | ModRM | Lock | PageTable, em_xchg),
  3403. /* 0x88 - 0x8F */
  3404. I2bv(DstMem | SrcReg | ModRM | Mov | PageTable, em_mov),
  3405. I2bv(DstReg | SrcMem | ModRM | Mov, em_mov),
  3406. I(DstMem | SrcNone | ModRM | Mov | PageTable, em_mov_rm_sreg),
  3407. D(ModRM | SrcMem | NoAccess | DstReg),
  3408. I(ImplicitOps | SrcMem16 | ModRM, em_mov_sreg_rm),
  3409. G(0, group1A),
  3410. /* 0x90 - 0x97 */
  3411. DI(SrcAcc | DstReg, pause), X7(D(SrcAcc | DstReg)),
  3412. /* 0x98 - 0x9F */
  3413. D(DstAcc | SrcNone), I(ImplicitOps | SrcAcc, em_cwd),
  3414. I(SrcImmFAddr | No64, em_call_far), N,
  3415. II(ImplicitOps | Stack, em_pushf, pushf),
  3416. II(ImplicitOps | Stack, em_popf, popf),
  3417. I(ImplicitOps, em_sahf), I(ImplicitOps, em_lahf),
  3418. /* 0xA0 - 0xA7 */
  3419. I2bv(DstAcc | SrcMem | Mov | MemAbs, em_mov),
  3420. I2bv(DstMem | SrcAcc | Mov | MemAbs | PageTable, em_mov),
  3421. I2bv(SrcSI | DstDI | Mov | String, em_mov),
  3422. F2bv(SrcSI | DstDI | String | NoWrite, em_cmp_r),
  3423. /* 0xA8 - 0xAF */
  3424. F2bv(DstAcc | SrcImm | NoWrite, em_test),
  3425. I2bv(SrcAcc | DstDI | Mov | String, em_mov),
  3426. I2bv(SrcSI | DstAcc | Mov | String, em_mov),
  3427. F2bv(SrcAcc | DstDI | String | NoWrite, em_cmp_r),
  3428. /* 0xB0 - 0xB7 */
  3429. X8(I(ByteOp | DstReg | SrcImm | Mov, em_mov)),
  3430. /* 0xB8 - 0xBF */
  3431. X8(I(DstReg | SrcImm64 | Mov, em_mov)),
  3432. /* 0xC0 - 0xC7 */
  3433. G(ByteOp | Src2ImmByte, group2), G(Src2ImmByte, group2),
  3434. I(ImplicitOps | NearBranch | SrcImmU16, em_ret_near_imm),
  3435. I(ImplicitOps | NearBranch, em_ret),
  3436. I(DstReg | SrcMemFAddr | ModRM | No64 | Src2ES, em_lseg),
  3437. I(DstReg | SrcMemFAddr | ModRM | No64 | Src2DS, em_lseg),
  3438. G(ByteOp, group11), G(0, group11),
  3439. /* 0xC8 - 0xCF */
  3440. I(Stack | SrcImmU16 | Src2ImmByte, em_enter), I(Stack, em_leave),
  3441. I(ImplicitOps | Stack | SrcImmU16, em_ret_far_imm),
  3442. I(ImplicitOps | Stack, em_ret_far),
  3443. D(ImplicitOps), DI(SrcImmByte, intn),
  3444. D(ImplicitOps | No64), II(ImplicitOps, em_iret, iret),
  3445. /* 0xD0 - 0xD7 */
  3446. G(Src2One | ByteOp, group2), G(Src2One, group2),
  3447. G(Src2CL | ByteOp, group2), G(Src2CL, group2),
  3448. I(DstAcc | SrcImmUByte | No64, em_aam),
  3449. I(DstAcc | SrcImmUByte | No64, em_aad),
  3450. F(DstAcc | ByteOp | No64, em_salc),
  3451. I(DstAcc | SrcXLat | ByteOp, em_mov),
  3452. /* 0xD8 - 0xDF */
  3453. N, E(0, &escape_d9), N, E(0, &escape_db), N, E(0, &escape_dd), N, N,
  3454. /* 0xE0 - 0xE7 */
  3455. X3(I(SrcImmByte | NearBranch, em_loop)),
  3456. I(SrcImmByte | NearBranch, em_jcxz),
  3457. I2bvIP(SrcImmUByte | DstAcc, em_in, in, check_perm_in),
  3458. I2bvIP(SrcAcc | DstImmUByte, em_out, out, check_perm_out),
  3459. /* 0xE8 - 0xEF */
  3460. I(SrcImm | NearBranch, em_call), D(SrcImm | ImplicitOps | NearBranch),
  3461. I(SrcImmFAddr | No64, em_jmp_far),
  3462. D(SrcImmByte | ImplicitOps | NearBranch),
  3463. I2bvIP(SrcDX | DstAcc, em_in, in, check_perm_in),
  3464. I2bvIP(SrcAcc | DstDX, em_out, out, check_perm_out),
  3465. /* 0xF0 - 0xF7 */
  3466. N, DI(ImplicitOps, icebp), N, N,
  3467. DI(ImplicitOps | Priv, hlt), D(ImplicitOps),
  3468. G(ByteOp, group3), G(0, group3),
  3469. /* 0xF8 - 0xFF */
  3470. D(ImplicitOps), D(ImplicitOps),
  3471. I(ImplicitOps, em_cli), I(ImplicitOps, em_sti),
  3472. D(ImplicitOps), D(ImplicitOps), G(0, group4), G(0, group5),
  3473. };
  3474. static const struct opcode twobyte_table[256] = {
  3475. /* 0x00 - 0x0F */
  3476. G(0, group6), GD(0, &group7), N, N,
  3477. N, I(ImplicitOps | EmulateOnUD, em_syscall),
  3478. II(ImplicitOps | Priv, em_clts, clts), N,
  3479. DI(ImplicitOps | Priv, invd), DI(ImplicitOps | Priv, wbinvd), N, N,
  3480. N, D(ImplicitOps | ModRM | SrcMem | NoAccess), N, N,
  3481. /* 0x10 - 0x1F */
  3482. N, N, N, N, N, N, N, N,
  3483. D(ImplicitOps | ModRM | SrcMem | NoAccess),
  3484. N, N, N, N, N, N, D(ImplicitOps | ModRM | SrcMem | NoAccess),
  3485. /* 0x20 - 0x2F */
  3486. DIP(ModRM | DstMem | Priv | Op3264 | NoMod, cr_read, check_cr_read),
  3487. DIP(ModRM | DstMem | Priv | Op3264 | NoMod, dr_read, check_dr_read),
  3488. IIP(ModRM | SrcMem | Priv | Op3264 | NoMod, em_cr_write, cr_write,
  3489. check_cr_write),
  3490. IIP(ModRM | SrcMem | Priv | Op3264 | NoMod, em_dr_write, dr_write,
  3491. check_dr_write),
  3492. N, N, N, N,
  3493. GP(ModRM | DstReg | SrcMem | Mov | Sse, &pfx_0f_28_0f_29),
  3494. GP(ModRM | DstMem | SrcReg | Mov | Sse, &pfx_0f_28_0f_29),
  3495. N, GP(ModRM | DstMem | SrcReg | Mov | Sse, &pfx_0f_2b),
  3496. N, N, N, N,
  3497. /* 0x30 - 0x3F */
  3498. II(ImplicitOps | Priv, em_wrmsr, wrmsr),
  3499. IIP(ImplicitOps, em_rdtsc, rdtsc, check_rdtsc),
  3500. II(ImplicitOps | Priv, em_rdmsr, rdmsr),
  3501. IIP(ImplicitOps, em_rdpmc, rdpmc, check_rdpmc),
  3502. I(ImplicitOps | EmulateOnUD, em_sysenter),
  3503. I(ImplicitOps | Priv | EmulateOnUD, em_sysexit),
  3504. N, N,
  3505. N, N, N, N, N, N, N, N,
  3506. /* 0x40 - 0x4F */
  3507. X16(D(DstReg | SrcMem | ModRM)),
  3508. /* 0x50 - 0x5F */
  3509. N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N,
  3510. /* 0x60 - 0x6F */
  3511. N, N, N, N,
  3512. N, N, N, N,
  3513. N, N, N, N,
  3514. N, N, N, GP(SrcMem | DstReg | ModRM | Mov, &pfx_0f_6f_0f_7f),
  3515. /* 0x70 - 0x7F */
  3516. N, N, N, N,
  3517. N, N, N, N,
  3518. N, N, N, N,
  3519. N, N, N, GP(SrcReg | DstMem | ModRM | Mov, &pfx_0f_6f_0f_7f),
  3520. /* 0x80 - 0x8F */
  3521. X16(D(SrcImm | NearBranch)),
  3522. /* 0x90 - 0x9F */
  3523. X16(D(ByteOp | DstMem | SrcNone | ModRM| Mov)),
  3524. /* 0xA0 - 0xA7 */
  3525. I(Stack | Src2FS, em_push_sreg), I(Stack | Src2FS, em_pop_sreg),
  3526. II(ImplicitOps, em_cpuid, cpuid),
  3527. F(DstMem | SrcReg | ModRM | BitOp | NoWrite, em_bt),
  3528. F(DstMem | SrcReg | Src2ImmByte | ModRM, em_shld),
  3529. F(DstMem | SrcReg | Src2CL | ModRM, em_shld), N, N,
  3530. /* 0xA8 - 0xAF */
  3531. I(Stack | Src2GS, em_push_sreg), I(Stack | Src2GS, em_pop_sreg),
  3532. DI(ImplicitOps, rsm),
  3533. F(DstMem | SrcReg | ModRM | BitOp | Lock | PageTable, em_bts),
  3534. F(DstMem | SrcReg | Src2ImmByte | ModRM, em_shrd),
  3535. F(DstMem | SrcReg | Src2CL | ModRM, em_shrd),
  3536. GD(0, &group15), F(DstReg | SrcMem | ModRM, em_imul),
  3537. /* 0xB0 - 0xB7 */
  3538. I2bv(DstMem | SrcReg | ModRM | Lock | PageTable, em_cmpxchg),
  3539. I(DstReg | SrcMemFAddr | ModRM | Src2SS, em_lseg),
  3540. F(DstMem | SrcReg | ModRM | BitOp | Lock, em_btr),
  3541. I(DstReg | SrcMemFAddr | ModRM | Src2FS, em_lseg),
  3542. I(DstReg | SrcMemFAddr | ModRM | Src2GS, em_lseg),
  3543. D(DstReg | SrcMem8 | ModRM | Mov), D(DstReg | SrcMem16 | ModRM | Mov),
  3544. /* 0xB8 - 0xBF */
  3545. N, N,
  3546. G(BitOp, group8),
  3547. F(DstMem | SrcReg | ModRM | BitOp | Lock | PageTable, em_btc),
  3548. F(DstReg | SrcMem | ModRM, em_bsf), F(DstReg | SrcMem | ModRM, em_bsr),
  3549. D(DstReg | SrcMem8 | ModRM | Mov), D(DstReg | SrcMem16 | ModRM | Mov),
  3550. /* 0xC0 - 0xC7 */
  3551. F2bv(DstMem | SrcReg | ModRM | SrcWrite | Lock, em_xadd),
  3552. N, ID(0, &instr_dual_0f_c3),
  3553. N, N, N, GD(0, &group9),
  3554. /* 0xC8 - 0xCF */
  3555. X8(I(DstReg, em_bswap)),
  3556. /* 0xD0 - 0xDF */
  3557. N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N,
  3558. /* 0xE0 - 0xEF */
  3559. N, N, N, N, N, N, N, GP(SrcReg | DstMem | ModRM | Mov, &pfx_0f_e7),
  3560. N, N, N, N, N, N, N, N,
  3561. /* 0xF0 - 0xFF */
  3562. N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N
  3563. };
  3564. static const struct instr_dual instr_dual_0f_38_f0 = {
  3565. I(DstReg | SrcMem | Mov, em_movbe), N
  3566. };
  3567. static const struct instr_dual instr_dual_0f_38_f1 = {
  3568. I(DstMem | SrcReg | Mov, em_movbe), N
  3569. };
  3570. static const struct gprefix three_byte_0f_38_f0 = {
  3571. ID(0, &instr_dual_0f_38_f0), N, N, N
  3572. };
  3573. static const struct gprefix three_byte_0f_38_f1 = {
  3574. ID(0, &instr_dual_0f_38_f1), N, N, N
  3575. };
  3576. /*
  3577. * Insns below are selected by the prefix which indexed by the third opcode
  3578. * byte.
  3579. */
  3580. static const struct opcode opcode_map_0f_38[256] = {
  3581. /* 0x00 - 0x7f */
  3582. X16(N), X16(N), X16(N), X16(N), X16(N), X16(N), X16(N), X16(N),
  3583. /* 0x80 - 0xef */
  3584. X16(N), X16(N), X16(N), X16(N), X16(N), X16(N), X16(N),
  3585. /* 0xf0 - 0xf1 */
  3586. GP(EmulateOnUD | ModRM, &three_byte_0f_38_f0),
  3587. GP(EmulateOnUD | ModRM, &three_byte_0f_38_f1),
  3588. /* 0xf2 - 0xff */
  3589. N, N, X4(N), X8(N)
  3590. };
  3591. #undef D
  3592. #undef N
  3593. #undef G
  3594. #undef GD
  3595. #undef I
  3596. #undef GP
  3597. #undef EXT
  3598. #undef D2bv
  3599. #undef D2bvIP
  3600. #undef I2bv
  3601. #undef I2bvIP
  3602. #undef I6ALU
  3603. static unsigned imm_size(struct x86_emulate_ctxt *ctxt)
  3604. {
  3605. unsigned size;
  3606. size = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
  3607. if (size == 8)
  3608. size = 4;
  3609. return size;
  3610. }
  3611. static int decode_imm(struct x86_emulate_ctxt *ctxt, struct operand *op,
  3612. unsigned size, bool sign_extension)
  3613. {
  3614. int rc = X86EMUL_CONTINUE;
  3615. op->type = OP_IMM;
  3616. op->bytes = size;
  3617. op->addr.mem.ea = ctxt->_eip;
  3618. /* NB. Immediates are sign-extended as necessary. */
  3619. switch (op->bytes) {
  3620. case 1:
  3621. op->val = insn_fetch(s8, ctxt);
  3622. break;
  3623. case 2:
  3624. op->val = insn_fetch(s16, ctxt);
  3625. break;
  3626. case 4:
  3627. op->val = insn_fetch(s32, ctxt);
  3628. break;
  3629. case 8:
  3630. op->val = insn_fetch(s64, ctxt);
  3631. break;
  3632. }
  3633. if (!sign_extension) {
  3634. switch (op->bytes) {
  3635. case 1:
  3636. op->val &= 0xff;
  3637. break;
  3638. case 2:
  3639. op->val &= 0xffff;
  3640. break;
  3641. case 4:
  3642. op->val &= 0xffffffff;
  3643. break;
  3644. }
  3645. }
  3646. done:
  3647. return rc;
  3648. }
  3649. static int decode_operand(struct x86_emulate_ctxt *ctxt, struct operand *op,
  3650. unsigned d)
  3651. {
  3652. int rc = X86EMUL_CONTINUE;
  3653. switch (d) {
  3654. case OpReg:
  3655. decode_register_operand(ctxt, op);
  3656. break;
  3657. case OpImmUByte:
  3658. rc = decode_imm(ctxt, op, 1, false);
  3659. break;
  3660. case OpMem:
  3661. ctxt->memop.bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
  3662. mem_common:
  3663. *op = ctxt->memop;
  3664. ctxt->memopp = op;
  3665. if (ctxt->d & BitOp)
  3666. fetch_bit_operand(ctxt);
  3667. op->orig_val = op->val;
  3668. break;
  3669. case OpMem64:
  3670. ctxt->memop.bytes = (ctxt->op_bytes == 8) ? 16 : 8;
  3671. goto mem_common;
  3672. case OpAcc:
  3673. op->type = OP_REG;
  3674. op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
  3675. op->addr.reg = reg_rmw(ctxt, VCPU_REGS_RAX);
  3676. fetch_register_operand(op);
  3677. op->orig_val = op->val;
  3678. break;
  3679. case OpAccLo:
  3680. op->type = OP_REG;
  3681. op->bytes = (ctxt->d & ByteOp) ? 2 : ctxt->op_bytes;
  3682. op->addr.reg = reg_rmw(ctxt, VCPU_REGS_RAX);
  3683. fetch_register_operand(op);
  3684. op->orig_val = op->val;
  3685. break;
  3686. case OpAccHi:
  3687. if (ctxt->d & ByteOp) {
  3688. op->type = OP_NONE;
  3689. break;
  3690. }
  3691. op->type = OP_REG;
  3692. op->bytes = ctxt->op_bytes;
  3693. op->addr.reg = reg_rmw(ctxt, VCPU_REGS_RDX);
  3694. fetch_register_operand(op);
  3695. op->orig_val = op->val;
  3696. break;
  3697. case OpDI:
  3698. op->type = OP_MEM;
  3699. op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
  3700. op->addr.mem.ea =
  3701. register_address(ctxt, VCPU_REGS_RDI);
  3702. op->addr.mem.seg = VCPU_SREG_ES;
  3703. op->val = 0;
  3704. op->count = 1;
  3705. break;
  3706. case OpDX:
  3707. op->type = OP_REG;
  3708. op->bytes = 2;
  3709. op->addr.reg = reg_rmw(ctxt, VCPU_REGS_RDX);
  3710. fetch_register_operand(op);
  3711. break;
  3712. case OpCL:
  3713. op->type = OP_IMM;
  3714. op->bytes = 1;
  3715. op->val = reg_read(ctxt, VCPU_REGS_RCX) & 0xff;
  3716. break;
  3717. case OpImmByte:
  3718. rc = decode_imm(ctxt, op, 1, true);
  3719. break;
  3720. case OpOne:
  3721. op->type = OP_IMM;
  3722. op->bytes = 1;
  3723. op->val = 1;
  3724. break;
  3725. case OpImm:
  3726. rc = decode_imm(ctxt, op, imm_size(ctxt), true);
  3727. break;
  3728. case OpImm64:
  3729. rc = decode_imm(ctxt, op, ctxt->op_bytes, true);
  3730. break;
  3731. case OpMem8:
  3732. ctxt->memop.bytes = 1;
  3733. if (ctxt->memop.type == OP_REG) {
  3734. ctxt->memop.addr.reg = decode_register(ctxt,
  3735. ctxt->modrm_rm, true);
  3736. fetch_register_operand(&ctxt->memop);
  3737. }
  3738. goto mem_common;
  3739. case OpMem16:
  3740. ctxt->memop.bytes = 2;
  3741. goto mem_common;
  3742. case OpMem32:
  3743. ctxt->memop.bytes = 4;
  3744. goto mem_common;
  3745. case OpImmU16:
  3746. rc = decode_imm(ctxt, op, 2, false);
  3747. break;
  3748. case OpImmU:
  3749. rc = decode_imm(ctxt, op, imm_size(ctxt), false);
  3750. break;
  3751. case OpSI:
  3752. op->type = OP_MEM;
  3753. op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
  3754. op->addr.mem.ea =
  3755. register_address(ctxt, VCPU_REGS_RSI);
  3756. op->addr.mem.seg = ctxt->seg_override;
  3757. op->val = 0;
  3758. op->count = 1;
  3759. break;
  3760. case OpXLat:
  3761. op->type = OP_MEM;
  3762. op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
  3763. op->addr.mem.ea =
  3764. address_mask(ctxt,
  3765. reg_read(ctxt, VCPU_REGS_RBX) +
  3766. (reg_read(ctxt, VCPU_REGS_RAX) & 0xff));
  3767. op->addr.mem.seg = ctxt->seg_override;
  3768. op->val = 0;
  3769. break;
  3770. case OpImmFAddr:
  3771. op->type = OP_IMM;
  3772. op->addr.mem.ea = ctxt->_eip;
  3773. op->bytes = ctxt->op_bytes + 2;
  3774. insn_fetch_arr(op->valptr, op->bytes, ctxt);
  3775. break;
  3776. case OpMemFAddr:
  3777. ctxt->memop.bytes = ctxt->op_bytes + 2;
  3778. goto mem_common;
  3779. case OpES:
  3780. op->type = OP_IMM;
  3781. op->val = VCPU_SREG_ES;
  3782. break;
  3783. case OpCS:
  3784. op->type = OP_IMM;
  3785. op->val = VCPU_SREG_CS;
  3786. break;
  3787. case OpSS:
  3788. op->type = OP_IMM;
  3789. op->val = VCPU_SREG_SS;
  3790. break;
  3791. case OpDS:
  3792. op->type = OP_IMM;
  3793. op->val = VCPU_SREG_DS;
  3794. break;
  3795. case OpFS:
  3796. op->type = OP_IMM;
  3797. op->val = VCPU_SREG_FS;
  3798. break;
  3799. case OpGS:
  3800. op->type = OP_IMM;
  3801. op->val = VCPU_SREG_GS;
  3802. break;
  3803. case OpImplicit:
  3804. /* Special instructions do their own operand decoding. */
  3805. default:
  3806. op->type = OP_NONE; /* Disable writeback. */
  3807. break;
  3808. }
  3809. done:
  3810. return rc;
  3811. }
  3812. int x86_decode_insn(struct x86_emulate_ctxt *ctxt, void *insn, int insn_len)
  3813. {
  3814. int rc = X86EMUL_CONTINUE;
  3815. int mode = ctxt->mode;
  3816. int def_op_bytes, def_ad_bytes, goffset, simd_prefix;
  3817. bool op_prefix = false;
  3818. bool has_seg_override = false;
  3819. struct opcode opcode;
  3820. ctxt->memop.type = OP_NONE;
  3821. ctxt->memopp = NULL;
  3822. ctxt->_eip = ctxt->eip;
  3823. ctxt->fetch.ptr = ctxt->fetch.data;
  3824. ctxt->fetch.end = ctxt->fetch.data + insn_len;
  3825. ctxt->opcode_len = 1;
  3826. if (insn_len > 0)
  3827. memcpy(ctxt->fetch.data, insn, insn_len);
  3828. else {
  3829. rc = __do_insn_fetch_bytes(ctxt, 1);
  3830. if (rc != X86EMUL_CONTINUE)
  3831. return rc;
  3832. }
  3833. switch (mode) {
  3834. case X86EMUL_MODE_REAL:
  3835. case X86EMUL_MODE_VM86:
  3836. case X86EMUL_MODE_PROT16:
  3837. def_op_bytes = def_ad_bytes = 2;
  3838. break;
  3839. case X86EMUL_MODE_PROT32:
  3840. def_op_bytes = def_ad_bytes = 4;
  3841. break;
  3842. #ifdef CONFIG_X86_64
  3843. case X86EMUL_MODE_PROT64:
  3844. def_op_bytes = 4;
  3845. def_ad_bytes = 8;
  3846. break;
  3847. #endif
  3848. default:
  3849. return EMULATION_FAILED;
  3850. }
  3851. ctxt->op_bytes = def_op_bytes;
  3852. ctxt->ad_bytes = def_ad_bytes;
  3853. /* Legacy prefixes. */
  3854. for (;;) {
  3855. switch (ctxt->b = insn_fetch(u8, ctxt)) {
  3856. case 0x66: /* operand-size override */
  3857. op_prefix = true;
  3858. /* switch between 2/4 bytes */
  3859. ctxt->op_bytes = def_op_bytes ^ 6;
  3860. break;
  3861. case 0x67: /* address-size override */
  3862. if (mode == X86EMUL_MODE_PROT64)
  3863. /* switch between 4/8 bytes */
  3864. ctxt->ad_bytes = def_ad_bytes ^ 12;
  3865. else
  3866. /* switch between 2/4 bytes */
  3867. ctxt->ad_bytes = def_ad_bytes ^ 6;
  3868. break;
  3869. case 0x26: /* ES override */
  3870. case 0x2e: /* CS override */
  3871. case 0x36: /* SS override */
  3872. case 0x3e: /* DS override */
  3873. has_seg_override = true;
  3874. ctxt->seg_override = (ctxt->b >> 3) & 3;
  3875. break;
  3876. case 0x64: /* FS override */
  3877. case 0x65: /* GS override */
  3878. has_seg_override = true;
  3879. ctxt->seg_override = ctxt->b & 7;
  3880. break;
  3881. case 0x40 ... 0x4f: /* REX */
  3882. if (mode != X86EMUL_MODE_PROT64)
  3883. goto done_prefixes;
  3884. ctxt->rex_prefix = ctxt->b;
  3885. continue;
  3886. case 0xf0: /* LOCK */
  3887. ctxt->lock_prefix = 1;
  3888. break;
  3889. case 0xf2: /* REPNE/REPNZ */
  3890. case 0xf3: /* REP/REPE/REPZ */
  3891. ctxt->rep_prefix = ctxt->b;
  3892. break;
  3893. default:
  3894. goto done_prefixes;
  3895. }
  3896. /* Any legacy prefix after a REX prefix nullifies its effect. */
  3897. ctxt->rex_prefix = 0;
  3898. }
  3899. done_prefixes:
  3900. /* REX prefix. */
  3901. if (ctxt->rex_prefix & 8)
  3902. ctxt->op_bytes = 8; /* REX.W */
  3903. /* Opcode byte(s). */
  3904. opcode = opcode_table[ctxt->b];
  3905. /* Two-byte opcode? */
  3906. if (ctxt->b == 0x0f) {
  3907. ctxt->opcode_len = 2;
  3908. ctxt->b = insn_fetch(u8, ctxt);
  3909. opcode = twobyte_table[ctxt->b];
  3910. /* 0F_38 opcode map */
  3911. if (ctxt->b == 0x38) {
  3912. ctxt->opcode_len = 3;
  3913. ctxt->b = insn_fetch(u8, ctxt);
  3914. opcode = opcode_map_0f_38[ctxt->b];
  3915. }
  3916. }
  3917. ctxt->d = opcode.flags;
  3918. if (ctxt->d & ModRM)
  3919. ctxt->modrm = insn_fetch(u8, ctxt);
  3920. /* vex-prefix instructions are not implemented */
  3921. if (ctxt->opcode_len == 1 && (ctxt->b == 0xc5 || ctxt->b == 0xc4) &&
  3922. (mode == X86EMUL_MODE_PROT64 || (ctxt->modrm & 0xc0) == 0xc0)) {
  3923. ctxt->d = NotImpl;
  3924. }
  3925. while (ctxt->d & GroupMask) {
  3926. switch (ctxt->d & GroupMask) {
  3927. case Group:
  3928. goffset = (ctxt->modrm >> 3) & 7;
  3929. opcode = opcode.u.group[goffset];
  3930. break;
  3931. case GroupDual:
  3932. goffset = (ctxt->modrm >> 3) & 7;
  3933. if ((ctxt->modrm >> 6) == 3)
  3934. opcode = opcode.u.gdual->mod3[goffset];
  3935. else
  3936. opcode = opcode.u.gdual->mod012[goffset];
  3937. break;
  3938. case RMExt:
  3939. goffset = ctxt->modrm & 7;
  3940. opcode = opcode.u.group[goffset];
  3941. break;
  3942. case Prefix:
  3943. if (ctxt->rep_prefix && op_prefix)
  3944. return EMULATION_FAILED;
  3945. simd_prefix = op_prefix ? 0x66 : ctxt->rep_prefix;
  3946. switch (simd_prefix) {
  3947. case 0x00: opcode = opcode.u.gprefix->pfx_no; break;
  3948. case 0x66: opcode = opcode.u.gprefix->pfx_66; break;
  3949. case 0xf2: opcode = opcode.u.gprefix->pfx_f2; break;
  3950. case 0xf3: opcode = opcode.u.gprefix->pfx_f3; break;
  3951. }
  3952. break;
  3953. case Escape:
  3954. if (ctxt->modrm > 0xbf)
  3955. opcode = opcode.u.esc->high[ctxt->modrm - 0xc0];
  3956. else
  3957. opcode = opcode.u.esc->op[(ctxt->modrm >> 3) & 7];
  3958. break;
  3959. case InstrDual:
  3960. if ((ctxt->modrm >> 6) == 3)
  3961. opcode = opcode.u.idual->mod3;
  3962. else
  3963. opcode = opcode.u.idual->mod012;
  3964. break;
  3965. default:
  3966. return EMULATION_FAILED;
  3967. }
  3968. ctxt->d &= ~(u64)GroupMask;
  3969. ctxt->d |= opcode.flags;
  3970. }
  3971. /* Unrecognised? */
  3972. if (ctxt->d == 0)
  3973. return EMULATION_FAILED;
  3974. ctxt->execute = opcode.u.execute;
  3975. if (unlikely(ctxt->ud) && likely(!(ctxt->d & EmulateOnUD)))
  3976. return EMULATION_FAILED;
  3977. if (unlikely(ctxt->d &
  3978. (NotImpl|Stack|Op3264|Sse|Mmx|Intercept|CheckPerm|NearBranch|
  3979. No16))) {
  3980. /*
  3981. * These are copied unconditionally here, and checked unconditionally
  3982. * in x86_emulate_insn.
  3983. */
  3984. ctxt->check_perm = opcode.check_perm;
  3985. ctxt->intercept = opcode.intercept;
  3986. if (ctxt->d & NotImpl)
  3987. return EMULATION_FAILED;
  3988. if (mode == X86EMUL_MODE_PROT64) {
  3989. if (ctxt->op_bytes == 4 && (ctxt->d & Stack))
  3990. ctxt->op_bytes = 8;
  3991. else if (ctxt->d & NearBranch)
  3992. ctxt->op_bytes = 8;
  3993. }
  3994. if (ctxt->d & Op3264) {
  3995. if (mode == X86EMUL_MODE_PROT64)
  3996. ctxt->op_bytes = 8;
  3997. else
  3998. ctxt->op_bytes = 4;
  3999. }
  4000. if ((ctxt->d & No16) && ctxt->op_bytes == 2)
  4001. ctxt->op_bytes = 4;
  4002. if (ctxt->d & Sse)
  4003. ctxt->op_bytes = 16;
  4004. else if (ctxt->d & Mmx)
  4005. ctxt->op_bytes = 8;
  4006. }
  4007. /* ModRM and SIB bytes. */
  4008. if (ctxt->d & ModRM) {
  4009. rc = decode_modrm(ctxt, &ctxt->memop);
  4010. if (!has_seg_override) {
  4011. has_seg_override = true;
  4012. ctxt->seg_override = ctxt->modrm_seg;
  4013. }
  4014. } else if (ctxt->d & MemAbs)
  4015. rc = decode_abs(ctxt, &ctxt->memop);
  4016. if (rc != X86EMUL_CONTINUE)
  4017. goto done;
  4018. if (!has_seg_override)
  4019. ctxt->seg_override = VCPU_SREG_DS;
  4020. ctxt->memop.addr.mem.seg = ctxt->seg_override;
  4021. /*
  4022. * Decode and fetch the source operand: register, memory
  4023. * or immediate.
  4024. */
  4025. rc = decode_operand(ctxt, &ctxt->src, (ctxt->d >> SrcShift) & OpMask);
  4026. if (rc != X86EMUL_CONTINUE)
  4027. goto done;
  4028. /*
  4029. * Decode and fetch the second source operand: register, memory
  4030. * or immediate.
  4031. */
  4032. rc = decode_operand(ctxt, &ctxt->src2, (ctxt->d >> Src2Shift) & OpMask);
  4033. if (rc != X86EMUL_CONTINUE)
  4034. goto done;
  4035. /* Decode and fetch the destination operand: register or memory. */
  4036. rc = decode_operand(ctxt, &ctxt->dst, (ctxt->d >> DstShift) & OpMask);
  4037. if (ctxt->rip_relative)
  4038. ctxt->memopp->addr.mem.ea = address_mask(ctxt,
  4039. ctxt->memopp->addr.mem.ea + ctxt->_eip);
  4040. done:
  4041. return (rc != X86EMUL_CONTINUE) ? EMULATION_FAILED : EMULATION_OK;
  4042. }
  4043. bool x86_page_table_writing_insn(struct x86_emulate_ctxt *ctxt)
  4044. {
  4045. return ctxt->d & PageTable;
  4046. }
  4047. static bool string_insn_completed(struct x86_emulate_ctxt *ctxt)
  4048. {
  4049. /* The second termination condition only applies for REPE
  4050. * and REPNE. Test if the repeat string operation prefix is
  4051. * REPE/REPZ or REPNE/REPNZ and if it's the case it tests the
  4052. * corresponding termination condition according to:
  4053. * - if REPE/REPZ and ZF = 0 then done
  4054. * - if REPNE/REPNZ and ZF = 1 then done
  4055. */
  4056. if (((ctxt->b == 0xa6) || (ctxt->b == 0xa7) ||
  4057. (ctxt->b == 0xae) || (ctxt->b == 0xaf))
  4058. && (((ctxt->rep_prefix == REPE_PREFIX) &&
  4059. ((ctxt->eflags & EFLG_ZF) == 0))
  4060. || ((ctxt->rep_prefix == REPNE_PREFIX) &&
  4061. ((ctxt->eflags & EFLG_ZF) == EFLG_ZF))))
  4062. return true;
  4063. return false;
  4064. }
  4065. static int flush_pending_x87_faults(struct x86_emulate_ctxt *ctxt)
  4066. {
  4067. bool fault = false;
  4068. ctxt->ops->get_fpu(ctxt);
  4069. asm volatile("1: fwait \n\t"
  4070. "2: \n\t"
  4071. ".pushsection .fixup,\"ax\" \n\t"
  4072. "3: \n\t"
  4073. "movb $1, %[fault] \n\t"
  4074. "jmp 2b \n\t"
  4075. ".popsection \n\t"
  4076. _ASM_EXTABLE(1b, 3b)
  4077. : [fault]"+qm"(fault));
  4078. ctxt->ops->put_fpu(ctxt);
  4079. if (unlikely(fault))
  4080. return emulate_exception(ctxt, MF_VECTOR, 0, false);
  4081. return X86EMUL_CONTINUE;
  4082. }
  4083. static void fetch_possible_mmx_operand(struct x86_emulate_ctxt *ctxt,
  4084. struct operand *op)
  4085. {
  4086. if (op->type == OP_MM)
  4087. read_mmx_reg(ctxt, &op->mm_val, op->addr.mm);
  4088. }
  4089. static int fastop(struct x86_emulate_ctxt *ctxt, void (*fop)(struct fastop *))
  4090. {
  4091. ulong flags = (ctxt->eflags & EFLAGS_MASK) | X86_EFLAGS_IF;
  4092. if (!(ctxt->d & ByteOp))
  4093. fop += __ffs(ctxt->dst.bytes) * FASTOP_SIZE;
  4094. asm("push %[flags]; popf; call *%[fastop]; pushf; pop %[flags]\n"
  4095. : "+a"(ctxt->dst.val), "+d"(ctxt->src.val), [flags]"+D"(flags),
  4096. [fastop]"+S"(fop)
  4097. : "c"(ctxt->src2.val));
  4098. ctxt->eflags = (ctxt->eflags & ~EFLAGS_MASK) | (flags & EFLAGS_MASK);
  4099. if (!fop) /* exception is returned in fop variable */
  4100. return emulate_de(ctxt);
  4101. return X86EMUL_CONTINUE;
  4102. }
  4103. void init_decode_cache(struct x86_emulate_ctxt *ctxt)
  4104. {
  4105. memset(&ctxt->rip_relative, 0,
  4106. (void *)&ctxt->modrm - (void *)&ctxt->rip_relative);
  4107. ctxt->io_read.pos = 0;
  4108. ctxt->io_read.end = 0;
  4109. ctxt->mem_read.end = 0;
  4110. }
  4111. int x86_emulate_insn(struct x86_emulate_ctxt *ctxt)
  4112. {
  4113. const struct x86_emulate_ops *ops = ctxt->ops;
  4114. int rc = X86EMUL_CONTINUE;
  4115. int saved_dst_type = ctxt->dst.type;
  4116. ctxt->mem_read.pos = 0;
  4117. /* LOCK prefix is allowed only with some instructions */
  4118. if (ctxt->lock_prefix && (!(ctxt->d & Lock) || ctxt->dst.type != OP_MEM)) {
  4119. rc = emulate_ud(ctxt);
  4120. goto done;
  4121. }
  4122. if ((ctxt->d & SrcMask) == SrcMemFAddr && ctxt->src.type != OP_MEM) {
  4123. rc = emulate_ud(ctxt);
  4124. goto done;
  4125. }
  4126. if (unlikely(ctxt->d &
  4127. (No64|Undefined|Sse|Mmx|Intercept|CheckPerm|Priv|Prot|String))) {
  4128. if ((ctxt->mode == X86EMUL_MODE_PROT64 && (ctxt->d & No64)) ||
  4129. (ctxt->d & Undefined)) {
  4130. rc = emulate_ud(ctxt);
  4131. goto done;
  4132. }
  4133. if (((ctxt->d & (Sse|Mmx)) && ((ops->get_cr(ctxt, 0) & X86_CR0_EM)))
  4134. || ((ctxt->d & Sse) && !(ops->get_cr(ctxt, 4) & X86_CR4_OSFXSR))) {
  4135. rc = emulate_ud(ctxt);
  4136. goto done;
  4137. }
  4138. if ((ctxt->d & (Sse|Mmx)) && (ops->get_cr(ctxt, 0) & X86_CR0_TS)) {
  4139. rc = emulate_nm(ctxt);
  4140. goto done;
  4141. }
  4142. if (ctxt->d & Mmx) {
  4143. rc = flush_pending_x87_faults(ctxt);
  4144. if (rc != X86EMUL_CONTINUE)
  4145. goto done;
  4146. /*
  4147. * Now that we know the fpu is exception safe, we can fetch
  4148. * operands from it.
  4149. */
  4150. fetch_possible_mmx_operand(ctxt, &ctxt->src);
  4151. fetch_possible_mmx_operand(ctxt, &ctxt->src2);
  4152. if (!(ctxt->d & Mov))
  4153. fetch_possible_mmx_operand(ctxt, &ctxt->dst);
  4154. }
  4155. if (unlikely(ctxt->guest_mode) && (ctxt->d & Intercept)) {
  4156. rc = emulator_check_intercept(ctxt, ctxt->intercept,
  4157. X86_ICPT_PRE_EXCEPT);
  4158. if (rc != X86EMUL_CONTINUE)
  4159. goto done;
  4160. }
  4161. /* Instruction can only be executed in protected mode */
  4162. if ((ctxt->d & Prot) && ctxt->mode < X86EMUL_MODE_PROT16) {
  4163. rc = emulate_ud(ctxt);
  4164. goto done;
  4165. }
  4166. /* Privileged instruction can be executed only in CPL=0 */
  4167. if ((ctxt->d & Priv) && ops->cpl(ctxt)) {
  4168. if (ctxt->d & PrivUD)
  4169. rc = emulate_ud(ctxt);
  4170. else
  4171. rc = emulate_gp(ctxt, 0);
  4172. goto done;
  4173. }
  4174. /* Do instruction specific permission checks */
  4175. if (ctxt->d & CheckPerm) {
  4176. rc = ctxt->check_perm(ctxt);
  4177. if (rc != X86EMUL_CONTINUE)
  4178. goto done;
  4179. }
  4180. if (unlikely(ctxt->guest_mode) && (ctxt->d & Intercept)) {
  4181. rc = emulator_check_intercept(ctxt, ctxt->intercept,
  4182. X86_ICPT_POST_EXCEPT);
  4183. if (rc != X86EMUL_CONTINUE)
  4184. goto done;
  4185. }
  4186. if (ctxt->rep_prefix && (ctxt->d & String)) {
  4187. /* All REP prefixes have the same first termination condition */
  4188. if (address_mask(ctxt, reg_read(ctxt, VCPU_REGS_RCX)) == 0) {
  4189. ctxt->eip = ctxt->_eip;
  4190. ctxt->eflags &= ~EFLG_RF;
  4191. goto done;
  4192. }
  4193. }
  4194. }
  4195. if ((ctxt->src.type == OP_MEM) && !(ctxt->d & NoAccess)) {
  4196. rc = segmented_read(ctxt, ctxt->src.addr.mem,
  4197. ctxt->src.valptr, ctxt->src.bytes);
  4198. if (rc != X86EMUL_CONTINUE)
  4199. goto done;
  4200. ctxt->src.orig_val64 = ctxt->src.val64;
  4201. }
  4202. if (ctxt->src2.type == OP_MEM) {
  4203. rc = segmented_read(ctxt, ctxt->src2.addr.mem,
  4204. &ctxt->src2.val, ctxt->src2.bytes);
  4205. if (rc != X86EMUL_CONTINUE)
  4206. goto done;
  4207. }
  4208. if ((ctxt->d & DstMask) == ImplicitOps)
  4209. goto special_insn;
  4210. if ((ctxt->dst.type == OP_MEM) && !(ctxt->d & Mov)) {
  4211. /* optimisation - avoid slow emulated read if Mov */
  4212. rc = segmented_read(ctxt, ctxt->dst.addr.mem,
  4213. &ctxt->dst.val, ctxt->dst.bytes);
  4214. if (rc != X86EMUL_CONTINUE)
  4215. goto done;
  4216. }
  4217. ctxt->dst.orig_val = ctxt->dst.val;
  4218. special_insn:
  4219. if (unlikely(ctxt->guest_mode) && (ctxt->d & Intercept)) {
  4220. rc = emulator_check_intercept(ctxt, ctxt->intercept,
  4221. X86_ICPT_POST_MEMACCESS);
  4222. if (rc != X86EMUL_CONTINUE)
  4223. goto done;
  4224. }
  4225. if (ctxt->rep_prefix && (ctxt->d & String))
  4226. ctxt->eflags |= EFLG_RF;
  4227. else
  4228. ctxt->eflags &= ~EFLG_RF;
  4229. if (ctxt->execute) {
  4230. if (ctxt->d & Fastop) {
  4231. void (*fop)(struct fastop *) = (void *)ctxt->execute;
  4232. rc = fastop(ctxt, fop);
  4233. if (rc != X86EMUL_CONTINUE)
  4234. goto done;
  4235. goto writeback;
  4236. }
  4237. rc = ctxt->execute(ctxt);
  4238. if (rc != X86EMUL_CONTINUE)
  4239. goto done;
  4240. goto writeback;
  4241. }
  4242. if (ctxt->opcode_len == 2)
  4243. goto twobyte_insn;
  4244. else if (ctxt->opcode_len == 3)
  4245. goto threebyte_insn;
  4246. switch (ctxt->b) {
  4247. case 0x63: /* movsxd */
  4248. if (ctxt->mode != X86EMUL_MODE_PROT64)
  4249. goto cannot_emulate;
  4250. ctxt->dst.val = (s32) ctxt->src.val;
  4251. break;
  4252. case 0x70 ... 0x7f: /* jcc (short) */
  4253. if (test_cc(ctxt->b, ctxt->eflags))
  4254. rc = jmp_rel(ctxt, ctxt->src.val);
  4255. break;
  4256. case 0x8d: /* lea r16/r32, m */
  4257. ctxt->dst.val = ctxt->src.addr.mem.ea;
  4258. break;
  4259. case 0x90 ... 0x97: /* nop / xchg reg, rax */
  4260. if (ctxt->dst.addr.reg == reg_rmw(ctxt, VCPU_REGS_RAX))
  4261. ctxt->dst.type = OP_NONE;
  4262. else
  4263. rc = em_xchg(ctxt);
  4264. break;
  4265. case 0x98: /* cbw/cwde/cdqe */
  4266. switch (ctxt->op_bytes) {
  4267. case 2: ctxt->dst.val = (s8)ctxt->dst.val; break;
  4268. case 4: ctxt->dst.val = (s16)ctxt->dst.val; break;
  4269. case 8: ctxt->dst.val = (s32)ctxt->dst.val; break;
  4270. }
  4271. break;
  4272. case 0xcc: /* int3 */
  4273. rc = emulate_int(ctxt, 3);
  4274. break;
  4275. case 0xcd: /* int n */
  4276. rc = emulate_int(ctxt, ctxt->src.val);
  4277. break;
  4278. case 0xce: /* into */
  4279. if (ctxt->eflags & EFLG_OF)
  4280. rc = emulate_int(ctxt, 4);
  4281. break;
  4282. case 0xe9: /* jmp rel */
  4283. case 0xeb: /* jmp rel short */
  4284. rc = jmp_rel(ctxt, ctxt->src.val);
  4285. ctxt->dst.type = OP_NONE; /* Disable writeback. */
  4286. break;
  4287. case 0xf4: /* hlt */
  4288. ctxt->ops->halt(ctxt);
  4289. break;
  4290. case 0xf5: /* cmc */
  4291. /* complement carry flag from eflags reg */
  4292. ctxt->eflags ^= EFLG_CF;
  4293. break;
  4294. case 0xf8: /* clc */
  4295. ctxt->eflags &= ~EFLG_CF;
  4296. break;
  4297. case 0xf9: /* stc */
  4298. ctxt->eflags |= EFLG_CF;
  4299. break;
  4300. case 0xfc: /* cld */
  4301. ctxt->eflags &= ~EFLG_DF;
  4302. break;
  4303. case 0xfd: /* std */
  4304. ctxt->eflags |= EFLG_DF;
  4305. break;
  4306. default:
  4307. goto cannot_emulate;
  4308. }
  4309. if (rc != X86EMUL_CONTINUE)
  4310. goto done;
  4311. writeback:
  4312. if (ctxt->d & SrcWrite) {
  4313. BUG_ON(ctxt->src.type == OP_MEM || ctxt->src.type == OP_MEM_STR);
  4314. rc = writeback(ctxt, &ctxt->src);
  4315. if (rc != X86EMUL_CONTINUE)
  4316. goto done;
  4317. }
  4318. if (!(ctxt->d & NoWrite)) {
  4319. rc = writeback(ctxt, &ctxt->dst);
  4320. if (rc != X86EMUL_CONTINUE)
  4321. goto done;
  4322. }
  4323. /*
  4324. * restore dst type in case the decoding will be reused
  4325. * (happens for string instruction )
  4326. */
  4327. ctxt->dst.type = saved_dst_type;
  4328. if ((ctxt->d & SrcMask) == SrcSI)
  4329. string_addr_inc(ctxt, VCPU_REGS_RSI, &ctxt->src);
  4330. if ((ctxt->d & DstMask) == DstDI)
  4331. string_addr_inc(ctxt, VCPU_REGS_RDI, &ctxt->dst);
  4332. if (ctxt->rep_prefix && (ctxt->d & String)) {
  4333. unsigned int count;
  4334. struct read_cache *r = &ctxt->io_read;
  4335. if ((ctxt->d & SrcMask) == SrcSI)
  4336. count = ctxt->src.count;
  4337. else
  4338. count = ctxt->dst.count;
  4339. register_address_increment(ctxt, VCPU_REGS_RCX, -count);
  4340. if (!string_insn_completed(ctxt)) {
  4341. /*
  4342. * Re-enter guest when pio read ahead buffer is empty
  4343. * or, if it is not used, after each 1024 iteration.
  4344. */
  4345. if ((r->end != 0 || reg_read(ctxt, VCPU_REGS_RCX) & 0x3ff) &&
  4346. (r->end == 0 || r->end != r->pos)) {
  4347. /*
  4348. * Reset read cache. Usually happens before
  4349. * decode, but since instruction is restarted
  4350. * we have to do it here.
  4351. */
  4352. ctxt->mem_read.end = 0;
  4353. writeback_registers(ctxt);
  4354. return EMULATION_RESTART;
  4355. }
  4356. goto done; /* skip rip writeback */
  4357. }
  4358. ctxt->eflags &= ~EFLG_RF;
  4359. }
  4360. ctxt->eip = ctxt->_eip;
  4361. done:
  4362. if (rc == X86EMUL_PROPAGATE_FAULT) {
  4363. WARN_ON(ctxt->exception.vector > 0x1f);
  4364. ctxt->have_exception = true;
  4365. }
  4366. if (rc == X86EMUL_INTERCEPTED)
  4367. return EMULATION_INTERCEPTED;
  4368. if (rc == X86EMUL_CONTINUE)
  4369. writeback_registers(ctxt);
  4370. return (rc == X86EMUL_UNHANDLEABLE) ? EMULATION_FAILED : EMULATION_OK;
  4371. twobyte_insn:
  4372. switch (ctxt->b) {
  4373. case 0x09: /* wbinvd */
  4374. (ctxt->ops->wbinvd)(ctxt);
  4375. break;
  4376. case 0x08: /* invd */
  4377. case 0x0d: /* GrpP (prefetch) */
  4378. case 0x18: /* Grp16 (prefetch/nop) */
  4379. case 0x1f: /* nop */
  4380. break;
  4381. case 0x20: /* mov cr, reg */
  4382. ctxt->dst.val = ops->get_cr(ctxt, ctxt->modrm_reg);
  4383. break;
  4384. case 0x21: /* mov from dr to reg */
  4385. ops->get_dr(ctxt, ctxt->modrm_reg, &ctxt->dst.val);
  4386. break;
  4387. case 0x40 ... 0x4f: /* cmov */
  4388. if (test_cc(ctxt->b, ctxt->eflags))
  4389. ctxt->dst.val = ctxt->src.val;
  4390. else if (ctxt->mode != X86EMUL_MODE_PROT64 ||
  4391. ctxt->op_bytes != 4)
  4392. ctxt->dst.type = OP_NONE; /* no writeback */
  4393. break;
  4394. case 0x80 ... 0x8f: /* jnz rel, etc*/
  4395. if (test_cc(ctxt->b, ctxt->eflags))
  4396. rc = jmp_rel(ctxt, ctxt->src.val);
  4397. break;
  4398. case 0x90 ... 0x9f: /* setcc r/m8 */
  4399. ctxt->dst.val = test_cc(ctxt->b, ctxt->eflags);
  4400. break;
  4401. case 0xb6 ... 0xb7: /* movzx */
  4402. ctxt->dst.bytes = ctxt->op_bytes;
  4403. ctxt->dst.val = (ctxt->src.bytes == 1) ? (u8) ctxt->src.val
  4404. : (u16) ctxt->src.val;
  4405. break;
  4406. case 0xbe ... 0xbf: /* movsx */
  4407. ctxt->dst.bytes = ctxt->op_bytes;
  4408. ctxt->dst.val = (ctxt->src.bytes == 1) ? (s8) ctxt->src.val :
  4409. (s16) ctxt->src.val;
  4410. break;
  4411. default:
  4412. goto cannot_emulate;
  4413. }
  4414. threebyte_insn:
  4415. if (rc != X86EMUL_CONTINUE)
  4416. goto done;
  4417. goto writeback;
  4418. cannot_emulate:
  4419. return EMULATION_FAILED;
  4420. }
  4421. void emulator_invalidate_register_cache(struct x86_emulate_ctxt *ctxt)
  4422. {
  4423. invalidate_registers(ctxt);
  4424. }
  4425. void emulator_writeback_register_cache(struct x86_emulate_ctxt *ctxt)
  4426. {
  4427. writeback_registers(ctxt);
  4428. }