cpuid.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. * cpuid support routines
  4. *
  5. * derived from arch/x86/kvm/x86.c
  6. *
  7. * Copyright 2011 Red Hat, Inc. and/or its affiliates.
  8. * Copyright IBM Corporation, 2008
  9. *
  10. * This work is licensed under the terms of the GNU GPL, version 2. See
  11. * the COPYING file in the top-level directory.
  12. *
  13. */
  14. #include <linux/kvm_host.h>
  15. #include <linux/module.h>
  16. #include <linux/vmalloc.h>
  17. #include <linux/uaccess.h>
  18. #include <asm/user.h>
  19. #include <asm/xsave.h>
  20. #include "cpuid.h"
  21. #include "lapic.h"
  22. #include "mmu.h"
  23. #include "trace.h"
  24. static u32 xstate_required_size(u64 xstate_bv, bool compacted)
  25. {
  26. int feature_bit = 0;
  27. u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
  28. xstate_bv &= XSTATE_EXTEND_MASK;
  29. while (xstate_bv) {
  30. if (xstate_bv & 0x1) {
  31. u32 eax, ebx, ecx, edx, offset;
  32. cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
  33. offset = compacted ? ret : ebx;
  34. ret = max(ret, offset + eax);
  35. }
  36. xstate_bv >>= 1;
  37. feature_bit++;
  38. }
  39. return ret;
  40. }
  41. u64 kvm_supported_xcr0(void)
  42. {
  43. u64 xcr0 = KVM_SUPPORTED_XCR0 & host_xcr0;
  44. if (!kvm_x86_ops->mpx_supported())
  45. xcr0 &= ~(XSTATE_BNDREGS | XSTATE_BNDCSR);
  46. return xcr0;
  47. }
  48. #define F(x) bit(X86_FEATURE_##x)
  49. int kvm_update_cpuid(struct kvm_vcpu *vcpu)
  50. {
  51. struct kvm_cpuid_entry2 *best;
  52. struct kvm_lapic *apic = vcpu->arch.apic;
  53. best = kvm_find_cpuid_entry(vcpu, 1, 0);
  54. if (!best)
  55. return 0;
  56. /* Update OSXSAVE bit */
  57. if (cpu_has_xsave && best->function == 0x1) {
  58. best->ecx &= ~F(OSXSAVE);
  59. if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
  60. best->ecx |= F(OSXSAVE);
  61. }
  62. if (apic) {
  63. if (best->ecx & F(TSC_DEADLINE_TIMER))
  64. apic->lapic_timer.timer_mode_mask = 3 << 17;
  65. else
  66. apic->lapic_timer.timer_mode_mask = 1 << 17;
  67. }
  68. best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
  69. if (!best) {
  70. vcpu->arch.guest_supported_xcr0 = 0;
  71. vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
  72. } else {
  73. vcpu->arch.guest_supported_xcr0 =
  74. (best->eax | ((u64)best->edx << 32)) &
  75. kvm_supported_xcr0();
  76. vcpu->arch.guest_xstate_size = best->ebx =
  77. xstate_required_size(vcpu->arch.xcr0, false);
  78. }
  79. best = kvm_find_cpuid_entry(vcpu, 0xD, 1);
  80. if (best && (best->eax & (F(XSAVES) | F(XSAVEC))))
  81. best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
  82. /*
  83. * The existing code assumes virtual address is 48-bit in the canonical
  84. * address checks; exit if it is ever changed.
  85. */
  86. best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
  87. if (best && ((best->eax & 0xff00) >> 8) != 48 &&
  88. ((best->eax & 0xff00) >> 8) != 0)
  89. return -EINVAL;
  90. kvm_pmu_cpuid_update(vcpu);
  91. return 0;
  92. }
  93. static int is_efer_nx(void)
  94. {
  95. unsigned long long efer = 0;
  96. rdmsrl_safe(MSR_EFER, &efer);
  97. return efer & EFER_NX;
  98. }
  99. static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
  100. {
  101. int i;
  102. struct kvm_cpuid_entry2 *e, *entry;
  103. entry = NULL;
  104. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  105. e = &vcpu->arch.cpuid_entries[i];
  106. if (e->function == 0x80000001) {
  107. entry = e;
  108. break;
  109. }
  110. }
  111. if (entry && (entry->edx & F(NX)) && !is_efer_nx()) {
  112. entry->edx &= ~F(NX);
  113. printk(KERN_INFO "kvm: guest NX capability removed\n");
  114. }
  115. }
  116. /* when an old userspace process fills a new kernel module */
  117. int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
  118. struct kvm_cpuid *cpuid,
  119. struct kvm_cpuid_entry __user *entries)
  120. {
  121. int r, i;
  122. struct kvm_cpuid_entry *cpuid_entries;
  123. r = -E2BIG;
  124. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  125. goto out;
  126. r = -ENOMEM;
  127. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
  128. if (!cpuid_entries)
  129. goto out;
  130. r = -EFAULT;
  131. if (copy_from_user(cpuid_entries, entries,
  132. cpuid->nent * sizeof(struct kvm_cpuid_entry)))
  133. goto out_free;
  134. for (i = 0; i < cpuid->nent; i++) {
  135. vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
  136. vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
  137. vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
  138. vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
  139. vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
  140. vcpu->arch.cpuid_entries[i].index = 0;
  141. vcpu->arch.cpuid_entries[i].flags = 0;
  142. vcpu->arch.cpuid_entries[i].padding[0] = 0;
  143. vcpu->arch.cpuid_entries[i].padding[1] = 0;
  144. vcpu->arch.cpuid_entries[i].padding[2] = 0;
  145. }
  146. vcpu->arch.cpuid_nent = cpuid->nent;
  147. cpuid_fix_nx_cap(vcpu);
  148. kvm_apic_set_version(vcpu);
  149. kvm_x86_ops->cpuid_update(vcpu);
  150. r = kvm_update_cpuid(vcpu);
  151. out_free:
  152. vfree(cpuid_entries);
  153. out:
  154. return r;
  155. }
  156. int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
  157. struct kvm_cpuid2 *cpuid,
  158. struct kvm_cpuid_entry2 __user *entries)
  159. {
  160. int r;
  161. r = -E2BIG;
  162. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  163. goto out;
  164. r = -EFAULT;
  165. if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
  166. cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
  167. goto out;
  168. vcpu->arch.cpuid_nent = cpuid->nent;
  169. kvm_apic_set_version(vcpu);
  170. kvm_x86_ops->cpuid_update(vcpu);
  171. r = kvm_update_cpuid(vcpu);
  172. out:
  173. return r;
  174. }
  175. int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
  176. struct kvm_cpuid2 *cpuid,
  177. struct kvm_cpuid_entry2 __user *entries)
  178. {
  179. int r;
  180. r = -E2BIG;
  181. if (cpuid->nent < vcpu->arch.cpuid_nent)
  182. goto out;
  183. r = -EFAULT;
  184. if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
  185. vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
  186. goto out;
  187. return 0;
  188. out:
  189. cpuid->nent = vcpu->arch.cpuid_nent;
  190. return r;
  191. }
  192. static void cpuid_mask(u32 *word, int wordnum)
  193. {
  194. *word &= boot_cpu_data.x86_capability[wordnum];
  195. }
  196. static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  197. u32 index)
  198. {
  199. entry->function = function;
  200. entry->index = index;
  201. cpuid_count(entry->function, entry->index,
  202. &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
  203. entry->flags = 0;
  204. }
  205. static int __do_cpuid_ent_emulated(struct kvm_cpuid_entry2 *entry,
  206. u32 func, u32 index, int *nent, int maxnent)
  207. {
  208. switch (func) {
  209. case 0:
  210. entry->eax = 1; /* only one leaf currently */
  211. ++*nent;
  212. break;
  213. case 1:
  214. entry->ecx = F(MOVBE);
  215. ++*nent;
  216. break;
  217. default:
  218. break;
  219. }
  220. entry->function = func;
  221. entry->index = index;
  222. return 0;
  223. }
  224. static inline int __do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  225. u32 index, int *nent, int maxnent)
  226. {
  227. int r;
  228. unsigned f_nx = is_efer_nx() ? F(NX) : 0;
  229. #ifdef CONFIG_X86_64
  230. unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
  231. ? F(GBPAGES) : 0;
  232. unsigned f_lm = F(LM);
  233. #else
  234. unsigned f_gbpages = 0;
  235. unsigned f_lm = 0;
  236. #endif
  237. unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
  238. unsigned f_invpcid = kvm_x86_ops->invpcid_supported() ? F(INVPCID) : 0;
  239. unsigned f_mpx = kvm_x86_ops->mpx_supported() ? F(MPX) : 0;
  240. unsigned f_xsaves = kvm_x86_ops->xsaves_supported() ? F(XSAVES) : 0;
  241. /* cpuid 1.edx */
  242. const u32 kvm_supported_word0_x86_features =
  243. F(FPU) | F(VME) | F(DE) | F(PSE) |
  244. F(TSC) | F(MSR) | F(PAE) | F(MCE) |
  245. F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
  246. F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
  247. F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
  248. 0 /* Reserved, DS, ACPI */ | F(MMX) |
  249. F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
  250. 0 /* HTT, TM, Reserved, PBE */;
  251. /* cpuid 0x80000001.edx */
  252. const u32 kvm_supported_word1_x86_features =
  253. F(FPU) | F(VME) | F(DE) | F(PSE) |
  254. F(TSC) | F(MSR) | F(PAE) | F(MCE) |
  255. F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
  256. F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
  257. F(PAT) | F(PSE36) | 0 /* Reserved */ |
  258. f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
  259. F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
  260. 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
  261. /* cpuid 1.ecx */
  262. const u32 kvm_supported_word4_x86_features =
  263. /* NOTE: MONITOR (and MWAIT) are emulated as NOP,
  264. * but *not* advertised to guests via CPUID ! */
  265. F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
  266. 0 /* DS-CPL, VMX, SMX, EST */ |
  267. 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
  268. F(FMA) | F(CX16) | 0 /* xTPR Update, PDCM */ |
  269. F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
  270. F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
  271. 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
  272. F(F16C) | F(RDRAND);
  273. /* cpuid 0x80000001.ecx */
  274. const u32 kvm_supported_word6_x86_features =
  275. F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
  276. F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
  277. F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
  278. 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM);
  279. /* cpuid 0xC0000001.edx */
  280. const u32 kvm_supported_word5_x86_features =
  281. F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
  282. F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
  283. F(PMM) | F(PMM_EN);
  284. /* cpuid 7.0.ebx */
  285. const u32 kvm_supported_word9_x86_features =
  286. F(FSGSBASE) | F(BMI1) | F(HLE) | F(AVX2) | F(SMEP) |
  287. F(BMI2) | F(ERMS) | f_invpcid | F(RTM) | f_mpx | F(RDSEED) |
  288. F(ADX) | F(SMAP) | F(AVX512F) | F(AVX512PF) | F(AVX512ER) |
  289. F(AVX512CD);
  290. /* cpuid 0xD.1.eax */
  291. const u32 kvm_supported_word10_x86_features =
  292. F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | f_xsaves;
  293. /* all calls to cpuid_count() should be made on the same cpu */
  294. get_cpu();
  295. r = -E2BIG;
  296. if (*nent >= maxnent)
  297. goto out;
  298. do_cpuid_1_ent(entry, function, index);
  299. ++*nent;
  300. switch (function) {
  301. case 0:
  302. entry->eax = min(entry->eax, (u32)0xd);
  303. break;
  304. case 1:
  305. entry->edx &= kvm_supported_word0_x86_features;
  306. cpuid_mask(&entry->edx, 0);
  307. entry->ecx &= kvm_supported_word4_x86_features;
  308. cpuid_mask(&entry->ecx, 4);
  309. /* we support x2apic emulation even if host does not support
  310. * it since we emulate x2apic in software */
  311. entry->ecx |= F(X2APIC);
  312. break;
  313. /* function 2 entries are STATEFUL. That is, repeated cpuid commands
  314. * may return different values. This forces us to get_cpu() before
  315. * issuing the first command, and also to emulate this annoying behavior
  316. * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
  317. case 2: {
  318. int t, times = entry->eax & 0xff;
  319. entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  320. entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  321. for (t = 1; t < times; ++t) {
  322. if (*nent >= maxnent)
  323. goto out;
  324. do_cpuid_1_ent(&entry[t], function, 0);
  325. entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  326. ++*nent;
  327. }
  328. break;
  329. }
  330. /* function 4 has additional index. */
  331. case 4: {
  332. int i, cache_type;
  333. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  334. /* read more entries until cache_type is zero */
  335. for (i = 1; ; ++i) {
  336. if (*nent >= maxnent)
  337. goto out;
  338. cache_type = entry[i - 1].eax & 0x1f;
  339. if (!cache_type)
  340. break;
  341. do_cpuid_1_ent(&entry[i], function, i);
  342. entry[i].flags |=
  343. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  344. ++*nent;
  345. }
  346. break;
  347. }
  348. case 7: {
  349. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  350. /* Mask ebx against host capability word 9 */
  351. if (index == 0) {
  352. entry->ebx &= kvm_supported_word9_x86_features;
  353. cpuid_mask(&entry->ebx, 9);
  354. // TSC_ADJUST is emulated
  355. entry->ebx |= F(TSC_ADJUST);
  356. } else
  357. entry->ebx = 0;
  358. entry->eax = 0;
  359. entry->ecx = 0;
  360. entry->edx = 0;
  361. break;
  362. }
  363. case 9:
  364. break;
  365. case 0xa: { /* Architectural Performance Monitoring */
  366. struct x86_pmu_capability cap;
  367. union cpuid10_eax eax;
  368. union cpuid10_edx edx;
  369. perf_get_x86_pmu_capability(&cap);
  370. /*
  371. * Only support guest architectural pmu on a host
  372. * with architectural pmu.
  373. */
  374. if (!cap.version)
  375. memset(&cap, 0, sizeof(cap));
  376. eax.split.version_id = min(cap.version, 2);
  377. eax.split.num_counters = cap.num_counters_gp;
  378. eax.split.bit_width = cap.bit_width_gp;
  379. eax.split.mask_length = cap.events_mask_len;
  380. edx.split.num_counters_fixed = cap.num_counters_fixed;
  381. edx.split.bit_width_fixed = cap.bit_width_fixed;
  382. edx.split.reserved = 0;
  383. entry->eax = eax.full;
  384. entry->ebx = cap.events_mask;
  385. entry->ecx = 0;
  386. entry->edx = edx.full;
  387. break;
  388. }
  389. /* function 0xb has additional index. */
  390. case 0xb: {
  391. int i, level_type;
  392. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  393. /* read more entries until level_type is zero */
  394. for (i = 1; ; ++i) {
  395. if (*nent >= maxnent)
  396. goto out;
  397. level_type = entry[i - 1].ecx & 0xff00;
  398. if (!level_type)
  399. break;
  400. do_cpuid_1_ent(&entry[i], function, i);
  401. entry[i].flags |=
  402. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  403. ++*nent;
  404. }
  405. break;
  406. }
  407. case 0xd: {
  408. int idx, i;
  409. u64 supported = kvm_supported_xcr0();
  410. entry->eax &= supported;
  411. entry->ebx = xstate_required_size(supported, false);
  412. entry->ecx = entry->ebx;
  413. entry->edx &= supported >> 32;
  414. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  415. if (!supported)
  416. break;
  417. for (idx = 1, i = 1; idx < 64; ++idx) {
  418. u64 mask = ((u64)1 << idx);
  419. if (*nent >= maxnent)
  420. goto out;
  421. do_cpuid_1_ent(&entry[i], function, idx);
  422. if (idx == 1) {
  423. entry[i].eax &= kvm_supported_word10_x86_features;
  424. entry[i].ebx = 0;
  425. if (entry[i].eax & (F(XSAVES)|F(XSAVEC)))
  426. entry[i].ebx =
  427. xstate_required_size(supported,
  428. true);
  429. } else {
  430. if (entry[i].eax == 0 || !(supported & mask))
  431. continue;
  432. if (WARN_ON_ONCE(entry[i].ecx & 1))
  433. continue;
  434. }
  435. entry[i].ecx = 0;
  436. entry[i].edx = 0;
  437. entry[i].flags |=
  438. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  439. ++*nent;
  440. ++i;
  441. }
  442. break;
  443. }
  444. case KVM_CPUID_SIGNATURE: {
  445. static const char signature[12] = "KVMKVMKVM\0\0";
  446. const u32 *sigptr = (const u32 *)signature;
  447. entry->eax = KVM_CPUID_FEATURES;
  448. entry->ebx = sigptr[0];
  449. entry->ecx = sigptr[1];
  450. entry->edx = sigptr[2];
  451. break;
  452. }
  453. case KVM_CPUID_FEATURES:
  454. entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
  455. (1 << KVM_FEATURE_NOP_IO_DELAY) |
  456. (1 << KVM_FEATURE_CLOCKSOURCE2) |
  457. (1 << KVM_FEATURE_ASYNC_PF) |
  458. (1 << KVM_FEATURE_PV_EOI) |
  459. (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
  460. (1 << KVM_FEATURE_PV_UNHALT);
  461. if (sched_info_on())
  462. entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
  463. entry->ebx = 0;
  464. entry->ecx = 0;
  465. entry->edx = 0;
  466. break;
  467. case 0x80000000:
  468. entry->eax = min(entry->eax, 0x8000001a);
  469. break;
  470. case 0x80000001:
  471. entry->edx &= kvm_supported_word1_x86_features;
  472. cpuid_mask(&entry->edx, 1);
  473. entry->ecx &= kvm_supported_word6_x86_features;
  474. cpuid_mask(&entry->ecx, 6);
  475. break;
  476. case 0x80000007: /* Advanced power management */
  477. /* invariant TSC is CPUID.80000007H:EDX[8] */
  478. entry->edx &= (1 << 8);
  479. /* mask against host */
  480. entry->edx &= boot_cpu_data.x86_power;
  481. entry->eax = entry->ebx = entry->ecx = 0;
  482. break;
  483. case 0x80000008: {
  484. unsigned g_phys_as = (entry->eax >> 16) & 0xff;
  485. unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
  486. unsigned phys_as = entry->eax & 0xff;
  487. if (!g_phys_as)
  488. g_phys_as = phys_as;
  489. entry->eax = g_phys_as | (virt_as << 8);
  490. entry->ebx = entry->edx = 0;
  491. break;
  492. }
  493. case 0x80000019:
  494. entry->ecx = entry->edx = 0;
  495. break;
  496. case 0x8000001a:
  497. break;
  498. case 0x8000001d:
  499. break;
  500. /*Add support for Centaur's CPUID instruction*/
  501. case 0xC0000000:
  502. /*Just support up to 0xC0000004 now*/
  503. entry->eax = min(entry->eax, 0xC0000004);
  504. break;
  505. case 0xC0000001:
  506. entry->edx &= kvm_supported_word5_x86_features;
  507. cpuid_mask(&entry->edx, 5);
  508. break;
  509. case 3: /* Processor serial number */
  510. case 5: /* MONITOR/MWAIT */
  511. case 6: /* Thermal management */
  512. case 0xC0000002:
  513. case 0xC0000003:
  514. case 0xC0000004:
  515. default:
  516. entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
  517. break;
  518. }
  519. kvm_x86_ops->set_supported_cpuid(function, entry);
  520. r = 0;
  521. out:
  522. put_cpu();
  523. return r;
  524. }
  525. static int do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 func,
  526. u32 idx, int *nent, int maxnent, unsigned int type)
  527. {
  528. if (type == KVM_GET_EMULATED_CPUID)
  529. return __do_cpuid_ent_emulated(entry, func, idx, nent, maxnent);
  530. return __do_cpuid_ent(entry, func, idx, nent, maxnent);
  531. }
  532. #undef F
  533. struct kvm_cpuid_param {
  534. u32 func;
  535. u32 idx;
  536. bool has_leaf_count;
  537. bool (*qualifier)(const struct kvm_cpuid_param *param);
  538. };
  539. static bool is_centaur_cpu(const struct kvm_cpuid_param *param)
  540. {
  541. return boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR;
  542. }
  543. static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
  544. __u32 num_entries, unsigned int ioctl_type)
  545. {
  546. int i;
  547. __u32 pad[3];
  548. if (ioctl_type != KVM_GET_EMULATED_CPUID)
  549. return false;
  550. /*
  551. * We want to make sure that ->padding is being passed clean from
  552. * userspace in case we want to use it for something in the future.
  553. *
  554. * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
  555. * have to give ourselves satisfied only with the emulated side. /me
  556. * sheds a tear.
  557. */
  558. for (i = 0; i < num_entries; i++) {
  559. if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
  560. return true;
  561. if (pad[0] || pad[1] || pad[2])
  562. return true;
  563. }
  564. return false;
  565. }
  566. int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
  567. struct kvm_cpuid_entry2 __user *entries,
  568. unsigned int type)
  569. {
  570. struct kvm_cpuid_entry2 *cpuid_entries;
  571. int limit, nent = 0, r = -E2BIG, i;
  572. u32 func;
  573. static const struct kvm_cpuid_param param[] = {
  574. { .func = 0, .has_leaf_count = true },
  575. { .func = 0x80000000, .has_leaf_count = true },
  576. { .func = 0xC0000000, .qualifier = is_centaur_cpu, .has_leaf_count = true },
  577. { .func = KVM_CPUID_SIGNATURE },
  578. { .func = KVM_CPUID_FEATURES },
  579. };
  580. if (cpuid->nent < 1)
  581. goto out;
  582. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  583. cpuid->nent = KVM_MAX_CPUID_ENTRIES;
  584. if (sanity_check_entries(entries, cpuid->nent, type))
  585. return -EINVAL;
  586. r = -ENOMEM;
  587. cpuid_entries = vzalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
  588. if (!cpuid_entries)
  589. goto out;
  590. r = 0;
  591. for (i = 0; i < ARRAY_SIZE(param); i++) {
  592. const struct kvm_cpuid_param *ent = &param[i];
  593. if (ent->qualifier && !ent->qualifier(ent))
  594. continue;
  595. r = do_cpuid_ent(&cpuid_entries[nent], ent->func, ent->idx,
  596. &nent, cpuid->nent, type);
  597. if (r)
  598. goto out_free;
  599. if (!ent->has_leaf_count)
  600. continue;
  601. limit = cpuid_entries[nent - 1].eax;
  602. for (func = ent->func + 1; func <= limit && nent < cpuid->nent && r == 0; ++func)
  603. r = do_cpuid_ent(&cpuid_entries[nent], func, ent->idx,
  604. &nent, cpuid->nent, type);
  605. if (r)
  606. goto out_free;
  607. }
  608. r = -EFAULT;
  609. if (copy_to_user(entries, cpuid_entries,
  610. nent * sizeof(struct kvm_cpuid_entry2)))
  611. goto out_free;
  612. cpuid->nent = nent;
  613. r = 0;
  614. out_free:
  615. vfree(cpuid_entries);
  616. out:
  617. return r;
  618. }
  619. static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
  620. {
  621. struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
  622. int j, nent = vcpu->arch.cpuid_nent;
  623. e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
  624. /* when no next entry is found, the current entry[i] is reselected */
  625. for (j = i + 1; ; j = (j + 1) % nent) {
  626. struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
  627. if (ej->function == e->function) {
  628. ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  629. return j;
  630. }
  631. }
  632. return 0; /* silence gcc, even though control never reaches here */
  633. }
  634. /* find an entry with matching function, matching index (if needed), and that
  635. * should be read next (if it's stateful) */
  636. static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
  637. u32 function, u32 index)
  638. {
  639. if (e->function != function)
  640. return 0;
  641. if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
  642. return 0;
  643. if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
  644. !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
  645. return 0;
  646. return 1;
  647. }
  648. struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
  649. u32 function, u32 index)
  650. {
  651. int i;
  652. struct kvm_cpuid_entry2 *best = NULL;
  653. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  654. struct kvm_cpuid_entry2 *e;
  655. e = &vcpu->arch.cpuid_entries[i];
  656. if (is_matching_cpuid_entry(e, function, index)) {
  657. if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
  658. move_to_next_stateful_cpuid_entry(vcpu, i);
  659. best = e;
  660. break;
  661. }
  662. }
  663. return best;
  664. }
  665. EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
  666. int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
  667. {
  668. struct kvm_cpuid_entry2 *best;
  669. best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
  670. if (!best || best->eax < 0x80000008)
  671. goto not_found;
  672. best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
  673. if (best)
  674. return best->eax & 0xff;
  675. not_found:
  676. return 36;
  677. }
  678. EXPORT_SYMBOL_GPL(cpuid_maxphyaddr);
  679. /*
  680. * If no match is found, check whether we exceed the vCPU's limit
  681. * and return the content of the highest valid _standard_ leaf instead.
  682. * This is to satisfy the CPUID specification.
  683. */
  684. static struct kvm_cpuid_entry2* check_cpuid_limit(struct kvm_vcpu *vcpu,
  685. u32 function, u32 index)
  686. {
  687. struct kvm_cpuid_entry2 *maxlevel;
  688. maxlevel = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
  689. if (!maxlevel || maxlevel->eax >= function)
  690. return NULL;
  691. if (function & 0x80000000) {
  692. maxlevel = kvm_find_cpuid_entry(vcpu, 0, 0);
  693. if (!maxlevel)
  694. return NULL;
  695. }
  696. return kvm_find_cpuid_entry(vcpu, maxlevel->eax, index);
  697. }
  698. void kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
  699. {
  700. u32 function = *eax, index = *ecx;
  701. struct kvm_cpuid_entry2 *best;
  702. best = kvm_find_cpuid_entry(vcpu, function, index);
  703. if (!best)
  704. best = check_cpuid_limit(vcpu, function, index);
  705. /*
  706. * Perfmon not yet supported for L2 guest.
  707. */
  708. if (is_guest_mode(vcpu) && function == 0xa)
  709. best = NULL;
  710. if (best) {
  711. *eax = best->eax;
  712. *ebx = best->ebx;
  713. *ecx = best->ecx;
  714. *edx = best->edx;
  715. } else
  716. *eax = *ebx = *ecx = *edx = 0;
  717. trace_kvm_cpuid(function, *eax, *ebx, *ecx, *edx);
  718. }
  719. EXPORT_SYMBOL_GPL(kvm_cpuid);
  720. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  721. {
  722. u32 function, eax, ebx, ecx, edx;
  723. function = eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  724. ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  725. kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx);
  726. kvm_register_write(vcpu, VCPU_REGS_RAX, eax);
  727. kvm_register_write(vcpu, VCPU_REGS_RBX, ebx);
  728. kvm_register_write(vcpu, VCPU_REGS_RCX, ecx);
  729. kvm_register_write(vcpu, VCPU_REGS_RDX, edx);
  730. kvm_x86_ops->skip_emulated_instruction(vcpu);
  731. }
  732. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);