pci.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597
  1. /*
  2. * Copyright 2011 Tilera Corporation. All Rights Reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public License
  6. * as published by the Free Software Foundation, version 2.
  7. *
  8. * This program is distributed in the hope that it will be useful, but
  9. * WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
  11. * NON INFRINGEMENT. See the GNU General Public License for
  12. * more details.
  13. */
  14. #include <linux/kernel.h>
  15. #include <linux/pci.h>
  16. #include <linux/delay.h>
  17. #include <linux/string.h>
  18. #include <linux/init.h>
  19. #include <linux/capability.h>
  20. #include <linux/sched.h>
  21. #include <linux/errno.h>
  22. #include <linux/irq.h>
  23. #include <linux/io.h>
  24. #include <linux/uaccess.h>
  25. #include <linux/export.h>
  26. #include <asm/processor.h>
  27. #include <asm/sections.h>
  28. #include <asm/byteorder.h>
  29. #include <asm/hv_driver.h>
  30. #include <hv/drv_pcie_rc_intf.h>
  31. /*
  32. * Initialization flow and process
  33. * -------------------------------
  34. *
  35. * This files contains the routines to search for PCI buses,
  36. * enumerate the buses, and configure any attached devices.
  37. *
  38. * There are two entry points here:
  39. * 1) tile_pci_init
  40. * This sets up the pci_controller structs, and opens the
  41. * FDs to the hypervisor. This is called from setup_arch() early
  42. * in the boot process.
  43. * 2) pcibios_init
  44. * This probes the PCI bus(es) for any attached hardware. It's
  45. * called by subsys_initcall. All of the real work is done by the
  46. * generic Linux PCI layer.
  47. *
  48. */
  49. static int pci_probe = 1;
  50. /*
  51. * This flag tells if the platform is TILEmpower that needs
  52. * special configuration for the PLX switch chip.
  53. */
  54. int __write_once tile_plx_gen1;
  55. static struct pci_controller controllers[TILE_NUM_PCIE];
  56. static int num_controllers;
  57. static int pci_scan_flags[TILE_NUM_PCIE];
  58. static struct pci_ops tile_cfg_ops;
  59. /*
  60. * We don't need to worry about the alignment of resources.
  61. */
  62. resource_size_t pcibios_align_resource(void *data, const struct resource *res,
  63. resource_size_t size, resource_size_t align)
  64. {
  65. return res->start;
  66. }
  67. EXPORT_SYMBOL(pcibios_align_resource);
  68. /*
  69. * Open a FD to the hypervisor PCI device.
  70. *
  71. * controller_id is the controller number, config type is 0 or 1 for
  72. * config0 or config1 operations.
  73. */
  74. static int tile_pcie_open(int controller_id, int config_type)
  75. {
  76. char filename[32];
  77. int fd;
  78. sprintf(filename, "pcie/%d/config%d", controller_id, config_type);
  79. fd = hv_dev_open((HV_VirtAddr)filename, 0);
  80. return fd;
  81. }
  82. /*
  83. * Get the IRQ numbers from the HV and set up the handlers for them.
  84. */
  85. static int tile_init_irqs(int controller_id, struct pci_controller *controller)
  86. {
  87. char filename[32];
  88. int fd;
  89. int ret;
  90. int x;
  91. struct pcie_rc_config rc_config;
  92. sprintf(filename, "pcie/%d/ctl", controller_id);
  93. fd = hv_dev_open((HV_VirtAddr)filename, 0);
  94. if (fd < 0) {
  95. pr_err("PCI: hv_dev_open(%s) failed\n", filename);
  96. return -1;
  97. }
  98. ret = hv_dev_pread(fd, 0, (HV_VirtAddr)(&rc_config),
  99. sizeof(rc_config), PCIE_RC_CONFIG_MASK_OFF);
  100. hv_dev_close(fd);
  101. if (ret != sizeof(rc_config)) {
  102. pr_err("PCI: wanted %zd bytes, got %d\n",
  103. sizeof(rc_config), ret);
  104. return -1;
  105. }
  106. /* Record irq_base so that we can map INTx to IRQ # later. */
  107. controller->irq_base = rc_config.intr;
  108. for (x = 0; x < 4; x++)
  109. tile_irq_activate(rc_config.intr + x,
  110. TILE_IRQ_HW_CLEAR);
  111. if (rc_config.plx_gen1)
  112. controller->plx_gen1 = 1;
  113. return 0;
  114. }
  115. /*
  116. * First initialization entry point, called from setup_arch().
  117. *
  118. * Find valid controllers and fill in pci_controller structs for each
  119. * of them.
  120. *
  121. * Returns the number of controllers discovered.
  122. */
  123. int __init tile_pci_init(void)
  124. {
  125. int i;
  126. if (!pci_probe) {
  127. pr_info("PCI: disabled by boot argument\n");
  128. return 0;
  129. }
  130. pr_info("PCI: Searching for controllers...\n");
  131. /* Re-init number of PCIe controllers to support hot-plug feature. */
  132. num_controllers = 0;
  133. /* Do any configuration we need before using the PCIe */
  134. for (i = 0; i < TILE_NUM_PCIE; i++) {
  135. /*
  136. * To see whether we need a real config op based on
  137. * the results of pcibios_init(), to support PCIe hot-plug.
  138. */
  139. if (pci_scan_flags[i] == 0) {
  140. int hv_cfg_fd0 = -1;
  141. int hv_cfg_fd1 = -1;
  142. int hv_mem_fd = -1;
  143. char name[32];
  144. struct pci_controller *controller;
  145. /*
  146. * Open the fd to the HV. If it fails then this
  147. * device doesn't exist.
  148. */
  149. hv_cfg_fd0 = tile_pcie_open(i, 0);
  150. if (hv_cfg_fd0 < 0)
  151. continue;
  152. hv_cfg_fd1 = tile_pcie_open(i, 1);
  153. if (hv_cfg_fd1 < 0) {
  154. pr_err("PCI: Couldn't open config fd to HV for controller %d\n",
  155. i);
  156. goto err_cont;
  157. }
  158. sprintf(name, "pcie/%d/mem", i);
  159. hv_mem_fd = hv_dev_open((HV_VirtAddr)name, 0);
  160. if (hv_mem_fd < 0) {
  161. pr_err("PCI: Could not open mem fd to HV!\n");
  162. goto err_cont;
  163. }
  164. pr_info("PCI: Found PCI controller #%d\n", i);
  165. controller = &controllers[i];
  166. controller->index = i;
  167. controller->hv_cfg_fd[0] = hv_cfg_fd0;
  168. controller->hv_cfg_fd[1] = hv_cfg_fd1;
  169. controller->hv_mem_fd = hv_mem_fd;
  170. controller->last_busno = 0xff;
  171. controller->ops = &tile_cfg_ops;
  172. num_controllers++;
  173. continue;
  174. err_cont:
  175. if (hv_cfg_fd0 >= 0)
  176. hv_dev_close(hv_cfg_fd0);
  177. if (hv_cfg_fd1 >= 0)
  178. hv_dev_close(hv_cfg_fd1);
  179. if (hv_mem_fd >= 0)
  180. hv_dev_close(hv_mem_fd);
  181. continue;
  182. }
  183. }
  184. /*
  185. * Before using the PCIe, see if we need to do any platform-specific
  186. * configuration, such as the PLX switch Gen 1 issue on TILEmpower.
  187. */
  188. for (i = 0; i < num_controllers; i++) {
  189. struct pci_controller *controller = &controllers[i];
  190. if (controller->plx_gen1)
  191. tile_plx_gen1 = 1;
  192. }
  193. return num_controllers;
  194. }
  195. /*
  196. * (pin - 1) converts from the PCI standard's [1:4] convention to
  197. * a normal [0:3] range.
  198. */
  199. static int tile_map_irq(const struct pci_dev *dev, u8 slot, u8 pin)
  200. {
  201. struct pci_controller *controller =
  202. (struct pci_controller *)dev->sysdata;
  203. return (pin - 1) + controller->irq_base;
  204. }
  205. static void fixup_read_and_payload_sizes(void)
  206. {
  207. struct pci_dev *dev = NULL;
  208. int smallest_max_payload = 0x1; /* Tile maxes out at 256 bytes. */
  209. int max_read_size = 0x2; /* Limit to 512 byte reads. */
  210. u16 new_values;
  211. /* Scan for the smallest maximum payload size. */
  212. for_each_pci_dev(dev) {
  213. if (!pci_is_pcie(dev))
  214. continue;
  215. if (dev->pcie_mpss < smallest_max_payload)
  216. smallest_max_payload = dev->pcie_mpss;
  217. }
  218. /* Now, set the max_payload_size for all devices to that value. */
  219. new_values = (max_read_size << 12) | (smallest_max_payload << 5);
  220. for_each_pci_dev(dev)
  221. pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
  222. PCI_EXP_DEVCTL_PAYLOAD | PCI_EXP_DEVCTL_READRQ,
  223. new_values);
  224. }
  225. /*
  226. * Second PCI initialization entry point, called by subsys_initcall.
  227. *
  228. * The controllers have been set up by the time we get here, by a call to
  229. * tile_pci_init.
  230. */
  231. int __init pcibios_init(void)
  232. {
  233. int i;
  234. pr_info("PCI: Probing PCI hardware\n");
  235. /*
  236. * Delay a bit in case devices aren't ready. Some devices are
  237. * known to require at least 20ms here, but we use a more
  238. * conservative value.
  239. */
  240. msleep(250);
  241. /* Scan all of the recorded PCI controllers. */
  242. for (i = 0; i < TILE_NUM_PCIE; i++) {
  243. /*
  244. * Do real pcibios init ops if the controller is initialized
  245. * by tile_pci_init() successfully and not initialized by
  246. * pcibios_init() yet to support PCIe hot-plug.
  247. */
  248. if (pci_scan_flags[i] == 0 && controllers[i].ops != NULL) {
  249. struct pci_controller *controller = &controllers[i];
  250. struct pci_bus *bus;
  251. LIST_HEAD(resources);
  252. if (tile_init_irqs(i, controller)) {
  253. pr_err("PCI: Could not initialize IRQs\n");
  254. continue;
  255. }
  256. pr_info("PCI: initializing controller #%d\n", i);
  257. pci_add_resource(&resources, &ioport_resource);
  258. pci_add_resource(&resources, &iomem_resource);
  259. bus = pci_scan_root_bus(NULL, 0, controller->ops,
  260. controller, &resources);
  261. controller->root_bus = bus;
  262. controller->last_busno = bus->busn_res.end;
  263. }
  264. }
  265. /* Do machine dependent PCI interrupt routing */
  266. pci_fixup_irqs(pci_common_swizzle, tile_map_irq);
  267. /*
  268. * This comes from the generic Linux PCI driver.
  269. *
  270. * It allocates all of the resources (I/O memory, etc)
  271. * associated with the devices read in above.
  272. */
  273. pci_assign_unassigned_resources();
  274. /* Configure the max_read_size and max_payload_size values. */
  275. fixup_read_and_payload_sizes();
  276. /* Record the I/O resources in the PCI controller structure. */
  277. for (i = 0; i < TILE_NUM_PCIE; i++) {
  278. /*
  279. * Do real pcibios init ops if the controller is initialized
  280. * by tile_pci_init() successfully and not initialized by
  281. * pcibios_init() yet to support PCIe hot-plug.
  282. */
  283. if (pci_scan_flags[i] == 0 && controllers[i].ops != NULL) {
  284. struct pci_bus *root_bus = controllers[i].root_bus;
  285. struct pci_bus *next_bus;
  286. struct pci_dev *dev;
  287. list_for_each_entry(dev, &root_bus->devices, bus_list) {
  288. /*
  289. * Find the PCI host controller, ie. the 1st
  290. * bridge.
  291. */
  292. if ((dev->class >> 8) == PCI_CLASS_BRIDGE_PCI &&
  293. (PCI_SLOT(dev->devfn) == 0)) {
  294. next_bus = dev->subordinate;
  295. controllers[i].mem_resources[0] =
  296. *next_bus->resource[0];
  297. controllers[i].mem_resources[1] =
  298. *next_bus->resource[1];
  299. controllers[i].mem_resources[2] =
  300. *next_bus->resource[2];
  301. /* Setup flags. */
  302. pci_scan_flags[i] = 1;
  303. break;
  304. }
  305. }
  306. }
  307. }
  308. return 0;
  309. }
  310. subsys_initcall(pcibios_init);
  311. /*
  312. * No bus fixups needed.
  313. */
  314. void pcibios_fixup_bus(struct pci_bus *bus)
  315. {
  316. /* Nothing needs to be done. */
  317. }
  318. void pcibios_set_master(struct pci_dev *dev)
  319. {
  320. /* No special bus mastering setup handling. */
  321. }
  322. /* Process any "pci=" kernel boot arguments. */
  323. char *__init pcibios_setup(char *str)
  324. {
  325. if (!strcmp(str, "off")) {
  326. pci_probe = 0;
  327. return NULL;
  328. }
  329. return str;
  330. }
  331. /*
  332. * Enable memory and/or address decoding, as appropriate, for the
  333. * device described by the 'dev' struct.
  334. *
  335. * This is called from the generic PCI layer, and can be called
  336. * for bridges or endpoints.
  337. */
  338. int pcibios_enable_device(struct pci_dev *dev, int mask)
  339. {
  340. u16 cmd, old_cmd;
  341. u8 header_type;
  342. int i;
  343. struct resource *r;
  344. pci_read_config_byte(dev, PCI_HEADER_TYPE, &header_type);
  345. pci_read_config_word(dev, PCI_COMMAND, &cmd);
  346. old_cmd = cmd;
  347. if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
  348. /*
  349. * For bridges, we enable both memory and I/O decoding
  350. * in call cases.
  351. */
  352. cmd |= PCI_COMMAND_IO;
  353. cmd |= PCI_COMMAND_MEMORY;
  354. } else {
  355. /*
  356. * For endpoints, we enable memory and/or I/O decoding
  357. * only if they have a memory resource of that type.
  358. */
  359. for (i = 0; i < 6; i++) {
  360. r = &dev->resource[i];
  361. if (r->flags & IORESOURCE_UNSET) {
  362. pr_err("PCI: Device %s not available because of resource collisions\n",
  363. pci_name(dev));
  364. return -EINVAL;
  365. }
  366. if (r->flags & IORESOURCE_IO)
  367. cmd |= PCI_COMMAND_IO;
  368. if (r->flags & IORESOURCE_MEM)
  369. cmd |= PCI_COMMAND_MEMORY;
  370. }
  371. }
  372. /*
  373. * We only write the command if it changed.
  374. */
  375. if (cmd != old_cmd)
  376. pci_write_config_word(dev, PCI_COMMAND, cmd);
  377. return 0;
  378. }
  379. /****************************************************************
  380. *
  381. * Tile PCI config space read/write routines
  382. *
  383. ****************************************************************/
  384. /*
  385. * These are the normal read and write ops
  386. * These are expanded with macros from pci_bus_read_config_byte() etc.
  387. *
  388. * devfn is the combined PCI slot & function.
  389. *
  390. * offset is in bytes, from the start of config space for the
  391. * specified bus & slot.
  392. */
  393. static int tile_cfg_read(struct pci_bus *bus, unsigned int devfn, int offset,
  394. int size, u32 *val)
  395. {
  396. struct pci_controller *controller = bus->sysdata;
  397. int busnum = bus->number & 0xff;
  398. int slot = (devfn >> 3) & 0x1f;
  399. int function = devfn & 0x7;
  400. u32 addr;
  401. int config_mode = 1;
  402. /*
  403. * There is no bridge between the Tile and bus 0, so we
  404. * use config0 to talk to bus 0.
  405. *
  406. * If we're talking to a bus other than zero then we
  407. * must have found a bridge.
  408. */
  409. if (busnum == 0) {
  410. /*
  411. * We fake an empty slot for (busnum == 0) && (slot > 0),
  412. * since there is only one slot on bus 0.
  413. */
  414. if (slot) {
  415. *val = 0xFFFFFFFF;
  416. return 0;
  417. }
  418. config_mode = 0;
  419. }
  420. addr = busnum << 20; /* Bus in 27:20 */
  421. addr |= slot << 15; /* Slot (device) in 19:15 */
  422. addr |= function << 12; /* Function is in 14:12 */
  423. addr |= (offset & 0xFFF); /* byte address in 0:11 */
  424. return hv_dev_pread(controller->hv_cfg_fd[config_mode], 0,
  425. (HV_VirtAddr)(val), size, addr);
  426. }
  427. /*
  428. * See tile_cfg_read() for relevant comments.
  429. * Note that "val" is the value to write, not a pointer to that value.
  430. */
  431. static int tile_cfg_write(struct pci_bus *bus, unsigned int devfn, int offset,
  432. int size, u32 val)
  433. {
  434. struct pci_controller *controller = bus->sysdata;
  435. int busnum = bus->number & 0xff;
  436. int slot = (devfn >> 3) & 0x1f;
  437. int function = devfn & 0x7;
  438. u32 addr;
  439. int config_mode = 1;
  440. HV_VirtAddr valp = (HV_VirtAddr)&val;
  441. /*
  442. * For bus 0 slot 0 we use config 0 accesses.
  443. */
  444. if (busnum == 0) {
  445. /*
  446. * We fake an empty slot for (busnum == 0) && (slot > 0),
  447. * since there is only one slot on bus 0.
  448. */
  449. if (slot)
  450. return 0;
  451. config_mode = 0;
  452. }
  453. addr = busnum << 20; /* Bus in 27:20 */
  454. addr |= slot << 15; /* Slot (device) in 19:15 */
  455. addr |= function << 12; /* Function is in 14:12 */
  456. addr |= (offset & 0xFFF); /* byte address in 0:11 */
  457. #ifdef __BIG_ENDIAN
  458. /* Point to the correct part of the 32-bit "val". */
  459. valp += 4 - size;
  460. #endif
  461. return hv_dev_pwrite(controller->hv_cfg_fd[config_mode], 0,
  462. valp, size, addr);
  463. }
  464. static struct pci_ops tile_cfg_ops = {
  465. .read = tile_cfg_read,
  466. .write = tile_cfg_write,
  467. };
  468. /*
  469. * In the following, each PCI controller's mem_resources[1]
  470. * represents its (non-prefetchable) PCI memory resource.
  471. * mem_resources[0] and mem_resources[2] refer to its PCI I/O and
  472. * prefetchable PCI memory resources, respectively.
  473. * For more details, see pci_setup_bridge() in setup-bus.c.
  474. * By comparing the target PCI memory address against the
  475. * end address of controller 0, we can determine the controller
  476. * that should accept the PCI memory access.
  477. */
  478. #define TILE_READ(size, type) \
  479. type _tile_read##size(unsigned long addr) \
  480. { \
  481. type val; \
  482. int idx = 0; \
  483. if (addr > controllers[0].mem_resources[1].end && \
  484. addr > controllers[0].mem_resources[2].end) \
  485. idx = 1; \
  486. if (hv_dev_pread(controllers[idx].hv_mem_fd, 0, \
  487. (HV_VirtAddr)(&val), sizeof(type), addr)) \
  488. pr_err("PCI: read %zd bytes at 0x%lX failed\n", \
  489. sizeof(type), addr); \
  490. return val; \
  491. } \
  492. EXPORT_SYMBOL(_tile_read##size)
  493. TILE_READ(b, u8);
  494. TILE_READ(w, u16);
  495. TILE_READ(l, u32);
  496. TILE_READ(q, u64);
  497. #define TILE_WRITE(size, type) \
  498. void _tile_write##size(type val, unsigned long addr) \
  499. { \
  500. int idx = 0; \
  501. if (addr > controllers[0].mem_resources[1].end && \
  502. addr > controllers[0].mem_resources[2].end) \
  503. idx = 1; \
  504. if (hv_dev_pwrite(controllers[idx].hv_mem_fd, 0, \
  505. (HV_VirtAddr)(&val), sizeof(type), addr)) \
  506. pr_err("PCI: write %zd bytes at 0x%lX failed\n", \
  507. sizeof(type), addr); \
  508. } \
  509. EXPORT_SYMBOL(_tile_write##size)
  510. TILE_WRITE(b, u8);
  511. TILE_WRITE(w, u16);
  512. TILE_WRITE(l, u32);
  513. TILE_WRITE(q, u64);