init_64.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461
  1. /*
  2. * PowerPC version
  3. * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
  4. *
  5. * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
  6. * and Cort Dougan (PReP) (cort@cs.nmt.edu)
  7. * Copyright (C) 1996 Paul Mackerras
  8. *
  9. * Derived from "arch/i386/mm/init.c"
  10. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  11. *
  12. * Dave Engebretsen <engebret@us.ibm.com>
  13. * Rework for PPC64 port.
  14. *
  15. * This program is free software; you can redistribute it and/or
  16. * modify it under the terms of the GNU General Public License
  17. * as published by the Free Software Foundation; either version
  18. * 2 of the License, or (at your option) any later version.
  19. *
  20. */
  21. #undef DEBUG
  22. #include <linux/signal.h>
  23. #include <linux/sched.h>
  24. #include <linux/kernel.h>
  25. #include <linux/errno.h>
  26. #include <linux/string.h>
  27. #include <linux/types.h>
  28. #include <linux/mman.h>
  29. #include <linux/mm.h>
  30. #include <linux/swap.h>
  31. #include <linux/stddef.h>
  32. #include <linux/vmalloc.h>
  33. #include <linux/init.h>
  34. #include <linux/delay.h>
  35. #include <linux/highmem.h>
  36. #include <linux/idr.h>
  37. #include <linux/nodemask.h>
  38. #include <linux/module.h>
  39. #include <linux/poison.h>
  40. #include <linux/memblock.h>
  41. #include <linux/hugetlb.h>
  42. #include <linux/slab.h>
  43. #include <asm/pgalloc.h>
  44. #include <asm/page.h>
  45. #include <asm/prom.h>
  46. #include <asm/rtas.h>
  47. #include <asm/io.h>
  48. #include <asm/mmu_context.h>
  49. #include <asm/pgtable.h>
  50. #include <asm/mmu.h>
  51. #include <asm/uaccess.h>
  52. #include <asm/smp.h>
  53. #include <asm/machdep.h>
  54. #include <asm/tlb.h>
  55. #include <asm/eeh.h>
  56. #include <asm/processor.h>
  57. #include <asm/mmzone.h>
  58. #include <asm/cputable.h>
  59. #include <asm/sections.h>
  60. #include <asm/iommu.h>
  61. #include <asm/vdso.h>
  62. #include "mmu_decl.h"
  63. #ifdef CONFIG_PPC_STD_MMU_64
  64. #if PGTABLE_RANGE > USER_VSID_RANGE
  65. #warning Limited user VSID range means pagetable space is wasted
  66. #endif
  67. #if (TASK_SIZE_USER64 < PGTABLE_RANGE) && (TASK_SIZE_USER64 < USER_VSID_RANGE)
  68. #warning TASK_SIZE is smaller than it needs to be.
  69. #endif
  70. #endif /* CONFIG_PPC_STD_MMU_64 */
  71. phys_addr_t memstart_addr = ~0;
  72. EXPORT_SYMBOL_GPL(memstart_addr);
  73. phys_addr_t kernstart_addr;
  74. EXPORT_SYMBOL_GPL(kernstart_addr);
  75. static void pgd_ctor(void *addr)
  76. {
  77. memset(addr, 0, PGD_TABLE_SIZE);
  78. }
  79. static void pmd_ctor(void *addr)
  80. {
  81. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  82. memset(addr, 0, PMD_TABLE_SIZE * 2);
  83. #else
  84. memset(addr, 0, PMD_TABLE_SIZE);
  85. #endif
  86. }
  87. struct kmem_cache *pgtable_cache[MAX_PGTABLE_INDEX_SIZE];
  88. /*
  89. * Create a kmem_cache() for pagetables. This is not used for PTE
  90. * pages - they're linked to struct page, come from the normal free
  91. * pages pool and have a different entry size (see real_pte_t) to
  92. * everything else. Caches created by this function are used for all
  93. * the higher level pagetables, and for hugepage pagetables.
  94. */
  95. void pgtable_cache_add(unsigned shift, void (*ctor)(void *))
  96. {
  97. char *name;
  98. unsigned long table_size = sizeof(void *) << shift;
  99. unsigned long align = table_size;
  100. /* When batching pgtable pointers for RCU freeing, we store
  101. * the index size in the low bits. Table alignment must be
  102. * big enough to fit it.
  103. *
  104. * Likewise, hugeapge pagetable pointers contain a (different)
  105. * shift value in the low bits. All tables must be aligned so
  106. * as to leave enough 0 bits in the address to contain it. */
  107. unsigned long minalign = max(MAX_PGTABLE_INDEX_SIZE + 1,
  108. HUGEPD_SHIFT_MASK + 1);
  109. struct kmem_cache *new;
  110. /* It would be nice if this was a BUILD_BUG_ON(), but at the
  111. * moment, gcc doesn't seem to recognize is_power_of_2 as a
  112. * constant expression, so so much for that. */
  113. BUG_ON(!is_power_of_2(minalign));
  114. BUG_ON((shift < 1) || (shift > MAX_PGTABLE_INDEX_SIZE));
  115. if (PGT_CACHE(shift))
  116. return; /* Already have a cache of this size */
  117. align = max_t(unsigned long, align, minalign);
  118. name = kasprintf(GFP_KERNEL, "pgtable-2^%d", shift);
  119. new = kmem_cache_create(name, table_size, align, 0, ctor);
  120. pgtable_cache[shift - 1] = new;
  121. pr_debug("Allocated pgtable cache for order %d\n", shift);
  122. }
  123. void pgtable_cache_init(void)
  124. {
  125. pgtable_cache_add(PGD_INDEX_SIZE, pgd_ctor);
  126. pgtable_cache_add(PMD_CACHE_INDEX, pmd_ctor);
  127. if (!PGT_CACHE(PGD_INDEX_SIZE) || !PGT_CACHE(PMD_CACHE_INDEX))
  128. panic("Couldn't allocate pgtable caches");
  129. /* In all current configs, when the PUD index exists it's the
  130. * same size as either the pgd or pmd index. Verify that the
  131. * initialization above has also created a PUD cache. This
  132. * will need re-examiniation if we add new possibilities for
  133. * the pagetable layout. */
  134. BUG_ON(PUD_INDEX_SIZE && !PGT_CACHE(PUD_INDEX_SIZE));
  135. }
  136. #ifdef CONFIG_SPARSEMEM_VMEMMAP
  137. /*
  138. * Given an address within the vmemmap, determine the pfn of the page that
  139. * represents the start of the section it is within. Note that we have to
  140. * do this by hand as the proffered address may not be correctly aligned.
  141. * Subtraction of non-aligned pointers produces undefined results.
  142. */
  143. static unsigned long __meminit vmemmap_section_start(unsigned long page)
  144. {
  145. unsigned long offset = page - ((unsigned long)(vmemmap));
  146. /* Return the pfn of the start of the section. */
  147. return (offset / sizeof(struct page)) & PAGE_SECTION_MASK;
  148. }
  149. /*
  150. * Check if this vmemmap page is already initialised. If any section
  151. * which overlaps this vmemmap page is initialised then this page is
  152. * initialised already.
  153. */
  154. static int __meminit vmemmap_populated(unsigned long start, int page_size)
  155. {
  156. unsigned long end = start + page_size;
  157. start = (unsigned long)(pfn_to_page(vmemmap_section_start(start)));
  158. for (; start < end; start += (PAGES_PER_SECTION * sizeof(struct page)))
  159. if (pfn_valid(page_to_pfn((struct page *)start)))
  160. return 1;
  161. return 0;
  162. }
  163. /* On hash-based CPUs, the vmemmap is bolted in the hash table.
  164. *
  165. * On Book3E CPUs, the vmemmap is currently mapped in the top half of
  166. * the vmalloc space using normal page tables, though the size of
  167. * pages encoded in the PTEs can be different
  168. */
  169. #ifdef CONFIG_PPC_BOOK3E
  170. static void __meminit vmemmap_create_mapping(unsigned long start,
  171. unsigned long page_size,
  172. unsigned long phys)
  173. {
  174. /* Create a PTE encoding without page size */
  175. unsigned long i, flags = _PAGE_PRESENT | _PAGE_ACCESSED |
  176. _PAGE_KERNEL_RW;
  177. /* PTEs only contain page size encodings up to 32M */
  178. BUG_ON(mmu_psize_defs[mmu_vmemmap_psize].enc > 0xf);
  179. /* Encode the size in the PTE */
  180. flags |= mmu_psize_defs[mmu_vmemmap_psize].enc << 8;
  181. /* For each PTE for that area, map things. Note that we don't
  182. * increment phys because all PTEs are of the large size and
  183. * thus must have the low bits clear
  184. */
  185. for (i = 0; i < page_size; i += PAGE_SIZE)
  186. BUG_ON(map_kernel_page(start + i, phys, flags));
  187. }
  188. #ifdef CONFIG_MEMORY_HOTPLUG
  189. static void vmemmap_remove_mapping(unsigned long start,
  190. unsigned long page_size)
  191. {
  192. }
  193. #endif
  194. #else /* CONFIG_PPC_BOOK3E */
  195. static void __meminit vmemmap_create_mapping(unsigned long start,
  196. unsigned long page_size,
  197. unsigned long phys)
  198. {
  199. int mapped = htab_bolt_mapping(start, start + page_size, phys,
  200. pgprot_val(PAGE_KERNEL),
  201. mmu_vmemmap_psize,
  202. mmu_kernel_ssize);
  203. BUG_ON(mapped < 0);
  204. }
  205. #ifdef CONFIG_MEMORY_HOTPLUG
  206. static void vmemmap_remove_mapping(unsigned long start,
  207. unsigned long page_size)
  208. {
  209. int mapped = htab_remove_mapping(start, start + page_size,
  210. mmu_vmemmap_psize,
  211. mmu_kernel_ssize);
  212. BUG_ON(mapped < 0);
  213. }
  214. #endif
  215. #endif /* CONFIG_PPC_BOOK3E */
  216. struct vmemmap_backing *vmemmap_list;
  217. static struct vmemmap_backing *next;
  218. static int num_left;
  219. static int num_freed;
  220. static __meminit struct vmemmap_backing * vmemmap_list_alloc(int node)
  221. {
  222. struct vmemmap_backing *vmem_back;
  223. /* get from freed entries first */
  224. if (num_freed) {
  225. num_freed--;
  226. vmem_back = next;
  227. next = next->list;
  228. return vmem_back;
  229. }
  230. /* allocate a page when required and hand out chunks */
  231. if (!num_left) {
  232. next = vmemmap_alloc_block(PAGE_SIZE, node);
  233. if (unlikely(!next)) {
  234. WARN_ON(1);
  235. return NULL;
  236. }
  237. num_left = PAGE_SIZE / sizeof(struct vmemmap_backing);
  238. }
  239. num_left--;
  240. return next++;
  241. }
  242. static __meminit void vmemmap_list_populate(unsigned long phys,
  243. unsigned long start,
  244. int node)
  245. {
  246. struct vmemmap_backing *vmem_back;
  247. vmem_back = vmemmap_list_alloc(node);
  248. if (unlikely(!vmem_back)) {
  249. WARN_ON(1);
  250. return;
  251. }
  252. vmem_back->phys = phys;
  253. vmem_back->virt_addr = start;
  254. vmem_back->list = vmemmap_list;
  255. vmemmap_list = vmem_back;
  256. }
  257. int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node)
  258. {
  259. unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
  260. /* Align to the page size of the linear mapping. */
  261. start = _ALIGN_DOWN(start, page_size);
  262. pr_debug("vmemmap_populate %lx..%lx, node %d\n", start, end, node);
  263. for (; start < end; start += page_size) {
  264. void *p;
  265. if (vmemmap_populated(start, page_size))
  266. continue;
  267. p = vmemmap_alloc_block(page_size, node);
  268. if (!p)
  269. return -ENOMEM;
  270. vmemmap_list_populate(__pa(p), start, node);
  271. pr_debug(" * %016lx..%016lx allocated at %p\n",
  272. start, start + page_size, p);
  273. vmemmap_create_mapping(start, page_size, __pa(p));
  274. }
  275. return 0;
  276. }
  277. #ifdef CONFIG_MEMORY_HOTPLUG
  278. static unsigned long vmemmap_list_free(unsigned long start)
  279. {
  280. struct vmemmap_backing *vmem_back, *vmem_back_prev;
  281. vmem_back_prev = vmem_back = vmemmap_list;
  282. /* look for it with prev pointer recorded */
  283. for (; vmem_back; vmem_back = vmem_back->list) {
  284. if (vmem_back->virt_addr == start)
  285. break;
  286. vmem_back_prev = vmem_back;
  287. }
  288. if (unlikely(!vmem_back)) {
  289. WARN_ON(1);
  290. return 0;
  291. }
  292. /* remove it from vmemmap_list */
  293. if (vmem_back == vmemmap_list) /* remove head */
  294. vmemmap_list = vmem_back->list;
  295. else
  296. vmem_back_prev->list = vmem_back->list;
  297. /* next point to this freed entry */
  298. vmem_back->list = next;
  299. next = vmem_back;
  300. num_freed++;
  301. return vmem_back->phys;
  302. }
  303. void __ref vmemmap_free(unsigned long start, unsigned long end)
  304. {
  305. unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
  306. start = _ALIGN_DOWN(start, page_size);
  307. pr_debug("vmemmap_free %lx...%lx\n", start, end);
  308. for (; start < end; start += page_size) {
  309. unsigned long addr;
  310. /*
  311. * the section has already be marked as invalid, so
  312. * vmemmap_populated() true means some other sections still
  313. * in this page, so skip it.
  314. */
  315. if (vmemmap_populated(start, page_size))
  316. continue;
  317. addr = vmemmap_list_free(start);
  318. if (addr) {
  319. struct page *page = pfn_to_page(addr >> PAGE_SHIFT);
  320. if (PageReserved(page)) {
  321. /* allocated from bootmem */
  322. if (page_size < PAGE_SIZE) {
  323. /*
  324. * this shouldn't happen, but if it is
  325. * the case, leave the memory there
  326. */
  327. WARN_ON_ONCE(1);
  328. } else {
  329. unsigned int nr_pages =
  330. 1 << get_order(page_size);
  331. while (nr_pages--)
  332. free_reserved_page(page++);
  333. }
  334. } else
  335. free_pages((unsigned long)(__va(addr)),
  336. get_order(page_size));
  337. vmemmap_remove_mapping(start, page_size);
  338. }
  339. }
  340. }
  341. #endif
  342. void register_page_bootmem_memmap(unsigned long section_nr,
  343. struct page *start_page, unsigned long size)
  344. {
  345. }
  346. /*
  347. * We do not have access to the sparsemem vmemmap, so we fallback to
  348. * walking the list of sparsemem blocks which we already maintain for
  349. * the sake of crashdump. In the long run, we might want to maintain
  350. * a tree if performance of that linear walk becomes a problem.
  351. *
  352. * realmode_pfn_to_page functions can fail due to:
  353. * 1) As real sparsemem blocks do not lay in RAM continously (they
  354. * are in virtual address space which is not available in the real mode),
  355. * the requested page struct can be split between blocks so get_page/put_page
  356. * may fail.
  357. * 2) When huge pages are used, the get_page/put_page API will fail
  358. * in real mode as the linked addresses in the page struct are virtual
  359. * too.
  360. */
  361. struct page *realmode_pfn_to_page(unsigned long pfn)
  362. {
  363. struct vmemmap_backing *vmem_back;
  364. struct page *page;
  365. unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
  366. unsigned long pg_va = (unsigned long) pfn_to_page(pfn);
  367. for (vmem_back = vmemmap_list; vmem_back; vmem_back = vmem_back->list) {
  368. if (pg_va < vmem_back->virt_addr)
  369. continue;
  370. /* After vmemmap_list entry free is possible, need check all */
  371. if ((pg_va + sizeof(struct page)) <=
  372. (vmem_back->virt_addr + page_size)) {
  373. page = (struct page *) (vmem_back->phys + pg_va -
  374. vmem_back->virt_addr);
  375. return page;
  376. }
  377. }
  378. /* Probably that page struct is split between real pages */
  379. return NULL;
  380. }
  381. EXPORT_SYMBOL_GPL(realmode_pfn_to_page);
  382. #elif defined(CONFIG_FLATMEM)
  383. struct page *realmode_pfn_to_page(unsigned long pfn)
  384. {
  385. struct page *page = pfn_to_page(pfn);
  386. return page;
  387. }
  388. EXPORT_SYMBOL_GPL(realmode_pfn_to_page);
  389. #endif /* CONFIG_SPARSEMEM_VMEMMAP/CONFIG_FLATMEM */