book3s_hv.c 64 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552
  1. /*
  2. * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
  3. * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
  4. *
  5. * Authors:
  6. * Paul Mackerras <paulus@au1.ibm.com>
  7. * Alexander Graf <agraf@suse.de>
  8. * Kevin Wolf <mail@kevin-wolf.de>
  9. *
  10. * Description: KVM functions specific to running on Book 3S
  11. * processors in hypervisor mode (specifically POWER7 and later).
  12. *
  13. * This file is derived from arch/powerpc/kvm/book3s.c,
  14. * by Alexander Graf <agraf@suse.de>.
  15. *
  16. * This program is free software; you can redistribute it and/or modify
  17. * it under the terms of the GNU General Public License, version 2, as
  18. * published by the Free Software Foundation.
  19. */
  20. #include <linux/kvm_host.h>
  21. #include <linux/err.h>
  22. #include <linux/slab.h>
  23. #include <linux/preempt.h>
  24. #include <linux/sched.h>
  25. #include <linux/delay.h>
  26. #include <linux/export.h>
  27. #include <linux/fs.h>
  28. #include <linux/anon_inodes.h>
  29. #include <linux/cpumask.h>
  30. #include <linux/spinlock.h>
  31. #include <linux/page-flags.h>
  32. #include <linux/srcu.h>
  33. #include <linux/miscdevice.h>
  34. #include <asm/reg.h>
  35. #include <asm/cputable.h>
  36. #include <asm/cache.h>
  37. #include <asm/cacheflush.h>
  38. #include <asm/tlbflush.h>
  39. #include <asm/uaccess.h>
  40. #include <asm/io.h>
  41. #include <asm/kvm_ppc.h>
  42. #include <asm/kvm_book3s.h>
  43. #include <asm/mmu_context.h>
  44. #include <asm/lppaca.h>
  45. #include <asm/processor.h>
  46. #include <asm/cputhreads.h>
  47. #include <asm/page.h>
  48. #include <asm/hvcall.h>
  49. #include <asm/switch_to.h>
  50. #include <asm/smp.h>
  51. #include <linux/gfp.h>
  52. #include <linux/vmalloc.h>
  53. #include <linux/highmem.h>
  54. #include <linux/hugetlb.h>
  55. #include <linux/module.h>
  56. #include "book3s.h"
  57. #define CREATE_TRACE_POINTS
  58. #include "trace_hv.h"
  59. /* #define EXIT_DEBUG */
  60. /* #define EXIT_DEBUG_SIMPLE */
  61. /* #define EXIT_DEBUG_INT */
  62. /* Used to indicate that a guest page fault needs to be handled */
  63. #define RESUME_PAGE_FAULT (RESUME_GUEST | RESUME_FLAG_ARCH1)
  64. /* Used as a "null" value for timebase values */
  65. #define TB_NIL (~(u64)0)
  66. static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
  67. #if defined(CONFIG_PPC_64K_PAGES)
  68. #define MPP_BUFFER_ORDER 0
  69. #elif defined(CONFIG_PPC_4K_PAGES)
  70. #define MPP_BUFFER_ORDER 3
  71. #endif
  72. static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
  73. static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
  74. static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
  75. {
  76. int me;
  77. int cpu = vcpu->cpu;
  78. wait_queue_head_t *wqp;
  79. wqp = kvm_arch_vcpu_wq(vcpu);
  80. if (waitqueue_active(wqp)) {
  81. wake_up_interruptible(wqp);
  82. ++vcpu->stat.halt_wakeup;
  83. }
  84. me = get_cpu();
  85. /* CPU points to the first thread of the core */
  86. if (cpu != me && cpu >= 0 && cpu < nr_cpu_ids) {
  87. #ifdef CONFIG_PPC_ICP_NATIVE
  88. int real_cpu = cpu + vcpu->arch.ptid;
  89. if (paca[real_cpu].kvm_hstate.xics_phys)
  90. xics_wake_cpu(real_cpu);
  91. else
  92. #endif
  93. if (cpu_online(cpu))
  94. smp_send_reschedule(cpu);
  95. }
  96. put_cpu();
  97. }
  98. /*
  99. * We use the vcpu_load/put functions to measure stolen time.
  100. * Stolen time is counted as time when either the vcpu is able to
  101. * run as part of a virtual core, but the task running the vcore
  102. * is preempted or sleeping, or when the vcpu needs something done
  103. * in the kernel by the task running the vcpu, but that task is
  104. * preempted or sleeping. Those two things have to be counted
  105. * separately, since one of the vcpu tasks will take on the job
  106. * of running the core, and the other vcpu tasks in the vcore will
  107. * sleep waiting for it to do that, but that sleep shouldn't count
  108. * as stolen time.
  109. *
  110. * Hence we accumulate stolen time when the vcpu can run as part of
  111. * a vcore using vc->stolen_tb, and the stolen time when the vcpu
  112. * needs its task to do other things in the kernel (for example,
  113. * service a page fault) in busy_stolen. We don't accumulate
  114. * stolen time for a vcore when it is inactive, or for a vcpu
  115. * when it is in state RUNNING or NOTREADY. NOTREADY is a bit of
  116. * a misnomer; it means that the vcpu task is not executing in
  117. * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
  118. * the kernel. We don't have any way of dividing up that time
  119. * between time that the vcpu is genuinely stopped, time that
  120. * the task is actively working on behalf of the vcpu, and time
  121. * that the task is preempted, so we don't count any of it as
  122. * stolen.
  123. *
  124. * Updates to busy_stolen are protected by arch.tbacct_lock;
  125. * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
  126. * lock. The stolen times are measured in units of timebase ticks.
  127. * (Note that the != TB_NIL checks below are purely defensive;
  128. * they should never fail.)
  129. */
  130. static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
  131. {
  132. struct kvmppc_vcore *vc = vcpu->arch.vcore;
  133. unsigned long flags;
  134. /*
  135. * We can test vc->runner without taking the vcore lock,
  136. * because only this task ever sets vc->runner to this
  137. * vcpu, and once it is set to this vcpu, only this task
  138. * ever sets it to NULL.
  139. */
  140. if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE) {
  141. spin_lock_irqsave(&vc->stoltb_lock, flags);
  142. if (vc->preempt_tb != TB_NIL) {
  143. vc->stolen_tb += mftb() - vc->preempt_tb;
  144. vc->preempt_tb = TB_NIL;
  145. }
  146. spin_unlock_irqrestore(&vc->stoltb_lock, flags);
  147. }
  148. spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
  149. if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
  150. vcpu->arch.busy_preempt != TB_NIL) {
  151. vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
  152. vcpu->arch.busy_preempt = TB_NIL;
  153. }
  154. spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
  155. }
  156. static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
  157. {
  158. struct kvmppc_vcore *vc = vcpu->arch.vcore;
  159. unsigned long flags;
  160. if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE) {
  161. spin_lock_irqsave(&vc->stoltb_lock, flags);
  162. vc->preempt_tb = mftb();
  163. spin_unlock_irqrestore(&vc->stoltb_lock, flags);
  164. }
  165. spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
  166. if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
  167. vcpu->arch.busy_preempt = mftb();
  168. spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
  169. }
  170. static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
  171. {
  172. vcpu->arch.shregs.msr = msr;
  173. kvmppc_end_cede(vcpu);
  174. }
  175. void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
  176. {
  177. vcpu->arch.pvr = pvr;
  178. }
  179. int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
  180. {
  181. unsigned long pcr = 0;
  182. struct kvmppc_vcore *vc = vcpu->arch.vcore;
  183. if (arch_compat) {
  184. switch (arch_compat) {
  185. case PVR_ARCH_205:
  186. /*
  187. * If an arch bit is set in PCR, all the defined
  188. * higher-order arch bits also have to be set.
  189. */
  190. pcr = PCR_ARCH_206 | PCR_ARCH_205;
  191. break;
  192. case PVR_ARCH_206:
  193. case PVR_ARCH_206p:
  194. pcr = PCR_ARCH_206;
  195. break;
  196. case PVR_ARCH_207:
  197. break;
  198. default:
  199. return -EINVAL;
  200. }
  201. if (!cpu_has_feature(CPU_FTR_ARCH_207S)) {
  202. /* POWER7 can't emulate POWER8 */
  203. if (!(pcr & PCR_ARCH_206))
  204. return -EINVAL;
  205. pcr &= ~PCR_ARCH_206;
  206. }
  207. }
  208. spin_lock(&vc->lock);
  209. vc->arch_compat = arch_compat;
  210. vc->pcr = pcr;
  211. spin_unlock(&vc->lock);
  212. return 0;
  213. }
  214. void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
  215. {
  216. int r;
  217. pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
  218. pr_err("pc = %.16lx msr = %.16llx trap = %x\n",
  219. vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
  220. for (r = 0; r < 16; ++r)
  221. pr_err("r%2d = %.16lx r%d = %.16lx\n",
  222. r, kvmppc_get_gpr(vcpu, r),
  223. r+16, kvmppc_get_gpr(vcpu, r+16));
  224. pr_err("ctr = %.16lx lr = %.16lx\n",
  225. vcpu->arch.ctr, vcpu->arch.lr);
  226. pr_err("srr0 = %.16llx srr1 = %.16llx\n",
  227. vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
  228. pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
  229. vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
  230. pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
  231. vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
  232. pr_err("cr = %.8x xer = %.16lx dsisr = %.8x\n",
  233. vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
  234. pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
  235. pr_err("fault dar = %.16lx dsisr = %.8x\n",
  236. vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
  237. pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
  238. for (r = 0; r < vcpu->arch.slb_max; ++r)
  239. pr_err(" ESID = %.16llx VSID = %.16llx\n",
  240. vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
  241. pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
  242. vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
  243. vcpu->arch.last_inst);
  244. }
  245. struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
  246. {
  247. int r;
  248. struct kvm_vcpu *v, *ret = NULL;
  249. mutex_lock(&kvm->lock);
  250. kvm_for_each_vcpu(r, v, kvm) {
  251. if (v->vcpu_id == id) {
  252. ret = v;
  253. break;
  254. }
  255. }
  256. mutex_unlock(&kvm->lock);
  257. return ret;
  258. }
  259. static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
  260. {
  261. vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
  262. vpa->yield_count = cpu_to_be32(1);
  263. }
  264. static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
  265. unsigned long addr, unsigned long len)
  266. {
  267. /* check address is cacheline aligned */
  268. if (addr & (L1_CACHE_BYTES - 1))
  269. return -EINVAL;
  270. spin_lock(&vcpu->arch.vpa_update_lock);
  271. if (v->next_gpa != addr || v->len != len) {
  272. v->next_gpa = addr;
  273. v->len = addr ? len : 0;
  274. v->update_pending = 1;
  275. }
  276. spin_unlock(&vcpu->arch.vpa_update_lock);
  277. return 0;
  278. }
  279. /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
  280. struct reg_vpa {
  281. u32 dummy;
  282. union {
  283. __be16 hword;
  284. __be32 word;
  285. } length;
  286. };
  287. static int vpa_is_registered(struct kvmppc_vpa *vpap)
  288. {
  289. if (vpap->update_pending)
  290. return vpap->next_gpa != 0;
  291. return vpap->pinned_addr != NULL;
  292. }
  293. static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
  294. unsigned long flags,
  295. unsigned long vcpuid, unsigned long vpa)
  296. {
  297. struct kvm *kvm = vcpu->kvm;
  298. unsigned long len, nb;
  299. void *va;
  300. struct kvm_vcpu *tvcpu;
  301. int err;
  302. int subfunc;
  303. struct kvmppc_vpa *vpap;
  304. tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
  305. if (!tvcpu)
  306. return H_PARAMETER;
  307. subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
  308. if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
  309. subfunc == H_VPA_REG_SLB) {
  310. /* Registering new area - address must be cache-line aligned */
  311. if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
  312. return H_PARAMETER;
  313. /* convert logical addr to kernel addr and read length */
  314. va = kvmppc_pin_guest_page(kvm, vpa, &nb);
  315. if (va == NULL)
  316. return H_PARAMETER;
  317. if (subfunc == H_VPA_REG_VPA)
  318. len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
  319. else
  320. len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
  321. kvmppc_unpin_guest_page(kvm, va, vpa, false);
  322. /* Check length */
  323. if (len > nb || len < sizeof(struct reg_vpa))
  324. return H_PARAMETER;
  325. } else {
  326. vpa = 0;
  327. len = 0;
  328. }
  329. err = H_PARAMETER;
  330. vpap = NULL;
  331. spin_lock(&tvcpu->arch.vpa_update_lock);
  332. switch (subfunc) {
  333. case H_VPA_REG_VPA: /* register VPA */
  334. if (len < sizeof(struct lppaca))
  335. break;
  336. vpap = &tvcpu->arch.vpa;
  337. err = 0;
  338. break;
  339. case H_VPA_REG_DTL: /* register DTL */
  340. if (len < sizeof(struct dtl_entry))
  341. break;
  342. len -= len % sizeof(struct dtl_entry);
  343. /* Check that they have previously registered a VPA */
  344. err = H_RESOURCE;
  345. if (!vpa_is_registered(&tvcpu->arch.vpa))
  346. break;
  347. vpap = &tvcpu->arch.dtl;
  348. err = 0;
  349. break;
  350. case H_VPA_REG_SLB: /* register SLB shadow buffer */
  351. /* Check that they have previously registered a VPA */
  352. err = H_RESOURCE;
  353. if (!vpa_is_registered(&tvcpu->arch.vpa))
  354. break;
  355. vpap = &tvcpu->arch.slb_shadow;
  356. err = 0;
  357. break;
  358. case H_VPA_DEREG_VPA: /* deregister VPA */
  359. /* Check they don't still have a DTL or SLB buf registered */
  360. err = H_RESOURCE;
  361. if (vpa_is_registered(&tvcpu->arch.dtl) ||
  362. vpa_is_registered(&tvcpu->arch.slb_shadow))
  363. break;
  364. vpap = &tvcpu->arch.vpa;
  365. err = 0;
  366. break;
  367. case H_VPA_DEREG_DTL: /* deregister DTL */
  368. vpap = &tvcpu->arch.dtl;
  369. err = 0;
  370. break;
  371. case H_VPA_DEREG_SLB: /* deregister SLB shadow buffer */
  372. vpap = &tvcpu->arch.slb_shadow;
  373. err = 0;
  374. break;
  375. }
  376. if (vpap) {
  377. vpap->next_gpa = vpa;
  378. vpap->len = len;
  379. vpap->update_pending = 1;
  380. }
  381. spin_unlock(&tvcpu->arch.vpa_update_lock);
  382. return err;
  383. }
  384. static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
  385. {
  386. struct kvm *kvm = vcpu->kvm;
  387. void *va;
  388. unsigned long nb;
  389. unsigned long gpa;
  390. /*
  391. * We need to pin the page pointed to by vpap->next_gpa,
  392. * but we can't call kvmppc_pin_guest_page under the lock
  393. * as it does get_user_pages() and down_read(). So we
  394. * have to drop the lock, pin the page, then get the lock
  395. * again and check that a new area didn't get registered
  396. * in the meantime.
  397. */
  398. for (;;) {
  399. gpa = vpap->next_gpa;
  400. spin_unlock(&vcpu->arch.vpa_update_lock);
  401. va = NULL;
  402. nb = 0;
  403. if (gpa)
  404. va = kvmppc_pin_guest_page(kvm, gpa, &nb);
  405. spin_lock(&vcpu->arch.vpa_update_lock);
  406. if (gpa == vpap->next_gpa)
  407. break;
  408. /* sigh... unpin that one and try again */
  409. if (va)
  410. kvmppc_unpin_guest_page(kvm, va, gpa, false);
  411. }
  412. vpap->update_pending = 0;
  413. if (va && nb < vpap->len) {
  414. /*
  415. * If it's now too short, it must be that userspace
  416. * has changed the mappings underlying guest memory,
  417. * so unregister the region.
  418. */
  419. kvmppc_unpin_guest_page(kvm, va, gpa, false);
  420. va = NULL;
  421. }
  422. if (vpap->pinned_addr)
  423. kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
  424. vpap->dirty);
  425. vpap->gpa = gpa;
  426. vpap->pinned_addr = va;
  427. vpap->dirty = false;
  428. if (va)
  429. vpap->pinned_end = va + vpap->len;
  430. }
  431. static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
  432. {
  433. if (!(vcpu->arch.vpa.update_pending ||
  434. vcpu->arch.slb_shadow.update_pending ||
  435. vcpu->arch.dtl.update_pending))
  436. return;
  437. spin_lock(&vcpu->arch.vpa_update_lock);
  438. if (vcpu->arch.vpa.update_pending) {
  439. kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
  440. if (vcpu->arch.vpa.pinned_addr)
  441. init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
  442. }
  443. if (vcpu->arch.dtl.update_pending) {
  444. kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
  445. vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
  446. vcpu->arch.dtl_index = 0;
  447. }
  448. if (vcpu->arch.slb_shadow.update_pending)
  449. kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
  450. spin_unlock(&vcpu->arch.vpa_update_lock);
  451. }
  452. /*
  453. * Return the accumulated stolen time for the vcore up until `now'.
  454. * The caller should hold the vcore lock.
  455. */
  456. static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
  457. {
  458. u64 p;
  459. unsigned long flags;
  460. spin_lock_irqsave(&vc->stoltb_lock, flags);
  461. p = vc->stolen_tb;
  462. if (vc->vcore_state != VCORE_INACTIVE &&
  463. vc->preempt_tb != TB_NIL)
  464. p += now - vc->preempt_tb;
  465. spin_unlock_irqrestore(&vc->stoltb_lock, flags);
  466. return p;
  467. }
  468. static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
  469. struct kvmppc_vcore *vc)
  470. {
  471. struct dtl_entry *dt;
  472. struct lppaca *vpa;
  473. unsigned long stolen;
  474. unsigned long core_stolen;
  475. u64 now;
  476. dt = vcpu->arch.dtl_ptr;
  477. vpa = vcpu->arch.vpa.pinned_addr;
  478. now = mftb();
  479. core_stolen = vcore_stolen_time(vc, now);
  480. stolen = core_stolen - vcpu->arch.stolen_logged;
  481. vcpu->arch.stolen_logged = core_stolen;
  482. spin_lock_irq(&vcpu->arch.tbacct_lock);
  483. stolen += vcpu->arch.busy_stolen;
  484. vcpu->arch.busy_stolen = 0;
  485. spin_unlock_irq(&vcpu->arch.tbacct_lock);
  486. if (!dt || !vpa)
  487. return;
  488. memset(dt, 0, sizeof(struct dtl_entry));
  489. dt->dispatch_reason = 7;
  490. dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
  491. dt->timebase = cpu_to_be64(now + vc->tb_offset);
  492. dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
  493. dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
  494. dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
  495. ++dt;
  496. if (dt == vcpu->arch.dtl.pinned_end)
  497. dt = vcpu->arch.dtl.pinned_addr;
  498. vcpu->arch.dtl_ptr = dt;
  499. /* order writing *dt vs. writing vpa->dtl_idx */
  500. smp_wmb();
  501. vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
  502. vcpu->arch.dtl.dirty = true;
  503. }
  504. static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
  505. {
  506. if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
  507. return true;
  508. if ((!vcpu->arch.vcore->arch_compat) &&
  509. cpu_has_feature(CPU_FTR_ARCH_207S))
  510. return true;
  511. return false;
  512. }
  513. static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
  514. unsigned long resource, unsigned long value1,
  515. unsigned long value2)
  516. {
  517. switch (resource) {
  518. case H_SET_MODE_RESOURCE_SET_CIABR:
  519. if (!kvmppc_power8_compatible(vcpu))
  520. return H_P2;
  521. if (value2)
  522. return H_P4;
  523. if (mflags)
  524. return H_UNSUPPORTED_FLAG_START;
  525. /* Guests can't breakpoint the hypervisor */
  526. if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
  527. return H_P3;
  528. vcpu->arch.ciabr = value1;
  529. return H_SUCCESS;
  530. case H_SET_MODE_RESOURCE_SET_DAWR:
  531. if (!kvmppc_power8_compatible(vcpu))
  532. return H_P2;
  533. if (mflags)
  534. return H_UNSUPPORTED_FLAG_START;
  535. if (value2 & DABRX_HYP)
  536. return H_P4;
  537. vcpu->arch.dawr = value1;
  538. vcpu->arch.dawrx = value2;
  539. return H_SUCCESS;
  540. default:
  541. return H_TOO_HARD;
  542. }
  543. }
  544. static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
  545. {
  546. struct kvmppc_vcore *vcore = target->arch.vcore;
  547. /*
  548. * We expect to have been called by the real mode handler
  549. * (kvmppc_rm_h_confer()) which would have directly returned
  550. * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
  551. * have useful work to do and should not confer) so we don't
  552. * recheck that here.
  553. */
  554. spin_lock(&vcore->lock);
  555. if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
  556. vcore->vcore_state != VCORE_INACTIVE)
  557. target = vcore->runner;
  558. spin_unlock(&vcore->lock);
  559. return kvm_vcpu_yield_to(target);
  560. }
  561. static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
  562. {
  563. int yield_count = 0;
  564. struct lppaca *lppaca;
  565. spin_lock(&vcpu->arch.vpa_update_lock);
  566. lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
  567. if (lppaca)
  568. yield_count = lppaca->yield_count;
  569. spin_unlock(&vcpu->arch.vpa_update_lock);
  570. return yield_count;
  571. }
  572. int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
  573. {
  574. unsigned long req = kvmppc_get_gpr(vcpu, 3);
  575. unsigned long target, ret = H_SUCCESS;
  576. int yield_count;
  577. struct kvm_vcpu *tvcpu;
  578. int idx, rc;
  579. if (req <= MAX_HCALL_OPCODE &&
  580. !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
  581. return RESUME_HOST;
  582. switch (req) {
  583. case H_CEDE:
  584. break;
  585. case H_PROD:
  586. target = kvmppc_get_gpr(vcpu, 4);
  587. tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
  588. if (!tvcpu) {
  589. ret = H_PARAMETER;
  590. break;
  591. }
  592. tvcpu->arch.prodded = 1;
  593. smp_mb();
  594. if (vcpu->arch.ceded) {
  595. if (waitqueue_active(&vcpu->wq)) {
  596. wake_up_interruptible(&vcpu->wq);
  597. vcpu->stat.halt_wakeup++;
  598. }
  599. }
  600. break;
  601. case H_CONFER:
  602. target = kvmppc_get_gpr(vcpu, 4);
  603. if (target == -1)
  604. break;
  605. tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
  606. if (!tvcpu) {
  607. ret = H_PARAMETER;
  608. break;
  609. }
  610. yield_count = kvmppc_get_gpr(vcpu, 5);
  611. if (kvmppc_get_yield_count(tvcpu) != yield_count)
  612. break;
  613. kvm_arch_vcpu_yield_to(tvcpu);
  614. break;
  615. case H_REGISTER_VPA:
  616. ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
  617. kvmppc_get_gpr(vcpu, 5),
  618. kvmppc_get_gpr(vcpu, 6));
  619. break;
  620. case H_RTAS:
  621. if (list_empty(&vcpu->kvm->arch.rtas_tokens))
  622. return RESUME_HOST;
  623. idx = srcu_read_lock(&vcpu->kvm->srcu);
  624. rc = kvmppc_rtas_hcall(vcpu);
  625. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  626. if (rc == -ENOENT)
  627. return RESUME_HOST;
  628. else if (rc == 0)
  629. break;
  630. /* Send the error out to userspace via KVM_RUN */
  631. return rc;
  632. case H_SET_MODE:
  633. ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
  634. kvmppc_get_gpr(vcpu, 5),
  635. kvmppc_get_gpr(vcpu, 6),
  636. kvmppc_get_gpr(vcpu, 7));
  637. if (ret == H_TOO_HARD)
  638. return RESUME_HOST;
  639. break;
  640. case H_XIRR:
  641. case H_CPPR:
  642. case H_EOI:
  643. case H_IPI:
  644. case H_IPOLL:
  645. case H_XIRR_X:
  646. if (kvmppc_xics_enabled(vcpu)) {
  647. ret = kvmppc_xics_hcall(vcpu, req);
  648. break;
  649. } /* fallthrough */
  650. default:
  651. return RESUME_HOST;
  652. }
  653. kvmppc_set_gpr(vcpu, 3, ret);
  654. vcpu->arch.hcall_needed = 0;
  655. return RESUME_GUEST;
  656. }
  657. static int kvmppc_hcall_impl_hv(unsigned long cmd)
  658. {
  659. switch (cmd) {
  660. case H_CEDE:
  661. case H_PROD:
  662. case H_CONFER:
  663. case H_REGISTER_VPA:
  664. case H_SET_MODE:
  665. #ifdef CONFIG_KVM_XICS
  666. case H_XIRR:
  667. case H_CPPR:
  668. case H_EOI:
  669. case H_IPI:
  670. case H_IPOLL:
  671. case H_XIRR_X:
  672. #endif
  673. return 1;
  674. }
  675. /* See if it's in the real-mode table */
  676. return kvmppc_hcall_impl_hv_realmode(cmd);
  677. }
  678. static int kvmppc_emulate_debug_inst(struct kvm_run *run,
  679. struct kvm_vcpu *vcpu)
  680. {
  681. u32 last_inst;
  682. if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
  683. EMULATE_DONE) {
  684. /*
  685. * Fetch failed, so return to guest and
  686. * try executing it again.
  687. */
  688. return RESUME_GUEST;
  689. }
  690. if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
  691. run->exit_reason = KVM_EXIT_DEBUG;
  692. run->debug.arch.address = kvmppc_get_pc(vcpu);
  693. return RESUME_HOST;
  694. } else {
  695. kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
  696. return RESUME_GUEST;
  697. }
  698. }
  699. static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
  700. struct task_struct *tsk)
  701. {
  702. int r = RESUME_HOST;
  703. vcpu->stat.sum_exits++;
  704. run->exit_reason = KVM_EXIT_UNKNOWN;
  705. run->ready_for_interrupt_injection = 1;
  706. switch (vcpu->arch.trap) {
  707. /* We're good on these - the host merely wanted to get our attention */
  708. case BOOK3S_INTERRUPT_HV_DECREMENTER:
  709. vcpu->stat.dec_exits++;
  710. r = RESUME_GUEST;
  711. break;
  712. case BOOK3S_INTERRUPT_EXTERNAL:
  713. case BOOK3S_INTERRUPT_H_DOORBELL:
  714. vcpu->stat.ext_intr_exits++;
  715. r = RESUME_GUEST;
  716. break;
  717. /* HMI is hypervisor interrupt and host has handled it. Resume guest.*/
  718. case BOOK3S_INTERRUPT_HMI:
  719. case BOOK3S_INTERRUPT_PERFMON:
  720. r = RESUME_GUEST;
  721. break;
  722. case BOOK3S_INTERRUPT_MACHINE_CHECK:
  723. /*
  724. * Deliver a machine check interrupt to the guest.
  725. * We have to do this, even if the host has handled the
  726. * machine check, because machine checks use SRR0/1 and
  727. * the interrupt might have trashed guest state in them.
  728. */
  729. kvmppc_book3s_queue_irqprio(vcpu,
  730. BOOK3S_INTERRUPT_MACHINE_CHECK);
  731. r = RESUME_GUEST;
  732. break;
  733. case BOOK3S_INTERRUPT_PROGRAM:
  734. {
  735. ulong flags;
  736. /*
  737. * Normally program interrupts are delivered directly
  738. * to the guest by the hardware, but we can get here
  739. * as a result of a hypervisor emulation interrupt
  740. * (e40) getting turned into a 700 by BML RTAS.
  741. */
  742. flags = vcpu->arch.shregs.msr & 0x1f0000ull;
  743. kvmppc_core_queue_program(vcpu, flags);
  744. r = RESUME_GUEST;
  745. break;
  746. }
  747. case BOOK3S_INTERRUPT_SYSCALL:
  748. {
  749. /* hcall - punt to userspace */
  750. int i;
  751. /* hypercall with MSR_PR has already been handled in rmode,
  752. * and never reaches here.
  753. */
  754. run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
  755. for (i = 0; i < 9; ++i)
  756. run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
  757. run->exit_reason = KVM_EXIT_PAPR_HCALL;
  758. vcpu->arch.hcall_needed = 1;
  759. r = RESUME_HOST;
  760. break;
  761. }
  762. /*
  763. * We get these next two if the guest accesses a page which it thinks
  764. * it has mapped but which is not actually present, either because
  765. * it is for an emulated I/O device or because the corresonding
  766. * host page has been paged out. Any other HDSI/HISI interrupts
  767. * have been handled already.
  768. */
  769. case BOOK3S_INTERRUPT_H_DATA_STORAGE:
  770. r = RESUME_PAGE_FAULT;
  771. break;
  772. case BOOK3S_INTERRUPT_H_INST_STORAGE:
  773. vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
  774. vcpu->arch.fault_dsisr = 0;
  775. r = RESUME_PAGE_FAULT;
  776. break;
  777. /*
  778. * This occurs if the guest executes an illegal instruction.
  779. * If the guest debug is disabled, generate a program interrupt
  780. * to the guest. If guest debug is enabled, we need to check
  781. * whether the instruction is a software breakpoint instruction.
  782. * Accordingly return to Guest or Host.
  783. */
  784. case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
  785. if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
  786. vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
  787. swab32(vcpu->arch.emul_inst) :
  788. vcpu->arch.emul_inst;
  789. if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
  790. r = kvmppc_emulate_debug_inst(run, vcpu);
  791. } else {
  792. kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
  793. r = RESUME_GUEST;
  794. }
  795. break;
  796. /*
  797. * This occurs if the guest (kernel or userspace), does something that
  798. * is prohibited by HFSCR. We just generate a program interrupt to
  799. * the guest.
  800. */
  801. case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
  802. kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
  803. r = RESUME_GUEST;
  804. break;
  805. default:
  806. kvmppc_dump_regs(vcpu);
  807. printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
  808. vcpu->arch.trap, kvmppc_get_pc(vcpu),
  809. vcpu->arch.shregs.msr);
  810. run->hw.hardware_exit_reason = vcpu->arch.trap;
  811. r = RESUME_HOST;
  812. break;
  813. }
  814. return r;
  815. }
  816. static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
  817. struct kvm_sregs *sregs)
  818. {
  819. int i;
  820. memset(sregs, 0, sizeof(struct kvm_sregs));
  821. sregs->pvr = vcpu->arch.pvr;
  822. for (i = 0; i < vcpu->arch.slb_max; i++) {
  823. sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
  824. sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
  825. }
  826. return 0;
  827. }
  828. static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
  829. struct kvm_sregs *sregs)
  830. {
  831. int i, j;
  832. /* Only accept the same PVR as the host's, since we can't spoof it */
  833. if (sregs->pvr != vcpu->arch.pvr)
  834. return -EINVAL;
  835. j = 0;
  836. for (i = 0; i < vcpu->arch.slb_nr; i++) {
  837. if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
  838. vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
  839. vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
  840. ++j;
  841. }
  842. }
  843. vcpu->arch.slb_max = j;
  844. return 0;
  845. }
  846. static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
  847. bool preserve_top32)
  848. {
  849. struct kvmppc_vcore *vc = vcpu->arch.vcore;
  850. u64 mask;
  851. spin_lock(&vc->lock);
  852. /*
  853. * If ILE (interrupt little-endian) has changed, update the
  854. * MSR_LE bit in the intr_msr for each vcpu in this vcore.
  855. */
  856. if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
  857. struct kvm *kvm = vcpu->kvm;
  858. struct kvm_vcpu *vcpu;
  859. int i;
  860. mutex_lock(&kvm->lock);
  861. kvm_for_each_vcpu(i, vcpu, kvm) {
  862. if (vcpu->arch.vcore != vc)
  863. continue;
  864. if (new_lpcr & LPCR_ILE)
  865. vcpu->arch.intr_msr |= MSR_LE;
  866. else
  867. vcpu->arch.intr_msr &= ~MSR_LE;
  868. }
  869. mutex_unlock(&kvm->lock);
  870. }
  871. /*
  872. * Userspace can only modify DPFD (default prefetch depth),
  873. * ILE (interrupt little-endian) and TC (translation control).
  874. * On POWER8 userspace can also modify AIL (alt. interrupt loc.)
  875. */
  876. mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
  877. if (cpu_has_feature(CPU_FTR_ARCH_207S))
  878. mask |= LPCR_AIL;
  879. /* Broken 32-bit version of LPCR must not clear top bits */
  880. if (preserve_top32)
  881. mask &= 0xFFFFFFFF;
  882. vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
  883. spin_unlock(&vc->lock);
  884. }
  885. static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
  886. union kvmppc_one_reg *val)
  887. {
  888. int r = 0;
  889. long int i;
  890. switch (id) {
  891. case KVM_REG_PPC_DEBUG_INST:
  892. *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
  893. break;
  894. case KVM_REG_PPC_HIOR:
  895. *val = get_reg_val(id, 0);
  896. break;
  897. case KVM_REG_PPC_DABR:
  898. *val = get_reg_val(id, vcpu->arch.dabr);
  899. break;
  900. case KVM_REG_PPC_DABRX:
  901. *val = get_reg_val(id, vcpu->arch.dabrx);
  902. break;
  903. case KVM_REG_PPC_DSCR:
  904. *val = get_reg_val(id, vcpu->arch.dscr);
  905. break;
  906. case KVM_REG_PPC_PURR:
  907. *val = get_reg_val(id, vcpu->arch.purr);
  908. break;
  909. case KVM_REG_PPC_SPURR:
  910. *val = get_reg_val(id, vcpu->arch.spurr);
  911. break;
  912. case KVM_REG_PPC_AMR:
  913. *val = get_reg_val(id, vcpu->arch.amr);
  914. break;
  915. case KVM_REG_PPC_UAMOR:
  916. *val = get_reg_val(id, vcpu->arch.uamor);
  917. break;
  918. case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
  919. i = id - KVM_REG_PPC_MMCR0;
  920. *val = get_reg_val(id, vcpu->arch.mmcr[i]);
  921. break;
  922. case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
  923. i = id - KVM_REG_PPC_PMC1;
  924. *val = get_reg_val(id, vcpu->arch.pmc[i]);
  925. break;
  926. case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
  927. i = id - KVM_REG_PPC_SPMC1;
  928. *val = get_reg_val(id, vcpu->arch.spmc[i]);
  929. break;
  930. case KVM_REG_PPC_SIAR:
  931. *val = get_reg_val(id, vcpu->arch.siar);
  932. break;
  933. case KVM_REG_PPC_SDAR:
  934. *val = get_reg_val(id, vcpu->arch.sdar);
  935. break;
  936. case KVM_REG_PPC_SIER:
  937. *val = get_reg_val(id, vcpu->arch.sier);
  938. break;
  939. case KVM_REG_PPC_IAMR:
  940. *val = get_reg_val(id, vcpu->arch.iamr);
  941. break;
  942. case KVM_REG_PPC_PSPB:
  943. *val = get_reg_val(id, vcpu->arch.pspb);
  944. break;
  945. case KVM_REG_PPC_DPDES:
  946. *val = get_reg_val(id, vcpu->arch.vcore->dpdes);
  947. break;
  948. case KVM_REG_PPC_DAWR:
  949. *val = get_reg_val(id, vcpu->arch.dawr);
  950. break;
  951. case KVM_REG_PPC_DAWRX:
  952. *val = get_reg_val(id, vcpu->arch.dawrx);
  953. break;
  954. case KVM_REG_PPC_CIABR:
  955. *val = get_reg_val(id, vcpu->arch.ciabr);
  956. break;
  957. case KVM_REG_PPC_CSIGR:
  958. *val = get_reg_val(id, vcpu->arch.csigr);
  959. break;
  960. case KVM_REG_PPC_TACR:
  961. *val = get_reg_val(id, vcpu->arch.tacr);
  962. break;
  963. case KVM_REG_PPC_TCSCR:
  964. *val = get_reg_val(id, vcpu->arch.tcscr);
  965. break;
  966. case KVM_REG_PPC_PID:
  967. *val = get_reg_val(id, vcpu->arch.pid);
  968. break;
  969. case KVM_REG_PPC_ACOP:
  970. *val = get_reg_val(id, vcpu->arch.acop);
  971. break;
  972. case KVM_REG_PPC_WORT:
  973. *val = get_reg_val(id, vcpu->arch.wort);
  974. break;
  975. case KVM_REG_PPC_VPA_ADDR:
  976. spin_lock(&vcpu->arch.vpa_update_lock);
  977. *val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
  978. spin_unlock(&vcpu->arch.vpa_update_lock);
  979. break;
  980. case KVM_REG_PPC_VPA_SLB:
  981. spin_lock(&vcpu->arch.vpa_update_lock);
  982. val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
  983. val->vpaval.length = vcpu->arch.slb_shadow.len;
  984. spin_unlock(&vcpu->arch.vpa_update_lock);
  985. break;
  986. case KVM_REG_PPC_VPA_DTL:
  987. spin_lock(&vcpu->arch.vpa_update_lock);
  988. val->vpaval.addr = vcpu->arch.dtl.next_gpa;
  989. val->vpaval.length = vcpu->arch.dtl.len;
  990. spin_unlock(&vcpu->arch.vpa_update_lock);
  991. break;
  992. case KVM_REG_PPC_TB_OFFSET:
  993. *val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
  994. break;
  995. case KVM_REG_PPC_LPCR:
  996. case KVM_REG_PPC_LPCR_64:
  997. *val = get_reg_val(id, vcpu->arch.vcore->lpcr);
  998. break;
  999. case KVM_REG_PPC_PPR:
  1000. *val = get_reg_val(id, vcpu->arch.ppr);
  1001. break;
  1002. #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
  1003. case KVM_REG_PPC_TFHAR:
  1004. *val = get_reg_val(id, vcpu->arch.tfhar);
  1005. break;
  1006. case KVM_REG_PPC_TFIAR:
  1007. *val = get_reg_val(id, vcpu->arch.tfiar);
  1008. break;
  1009. case KVM_REG_PPC_TEXASR:
  1010. *val = get_reg_val(id, vcpu->arch.texasr);
  1011. break;
  1012. case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
  1013. i = id - KVM_REG_PPC_TM_GPR0;
  1014. *val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
  1015. break;
  1016. case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
  1017. {
  1018. int j;
  1019. i = id - KVM_REG_PPC_TM_VSR0;
  1020. if (i < 32)
  1021. for (j = 0; j < TS_FPRWIDTH; j++)
  1022. val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
  1023. else {
  1024. if (cpu_has_feature(CPU_FTR_ALTIVEC))
  1025. val->vval = vcpu->arch.vr_tm.vr[i-32];
  1026. else
  1027. r = -ENXIO;
  1028. }
  1029. break;
  1030. }
  1031. case KVM_REG_PPC_TM_CR:
  1032. *val = get_reg_val(id, vcpu->arch.cr_tm);
  1033. break;
  1034. case KVM_REG_PPC_TM_LR:
  1035. *val = get_reg_val(id, vcpu->arch.lr_tm);
  1036. break;
  1037. case KVM_REG_PPC_TM_CTR:
  1038. *val = get_reg_val(id, vcpu->arch.ctr_tm);
  1039. break;
  1040. case KVM_REG_PPC_TM_FPSCR:
  1041. *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
  1042. break;
  1043. case KVM_REG_PPC_TM_AMR:
  1044. *val = get_reg_val(id, vcpu->arch.amr_tm);
  1045. break;
  1046. case KVM_REG_PPC_TM_PPR:
  1047. *val = get_reg_val(id, vcpu->arch.ppr_tm);
  1048. break;
  1049. case KVM_REG_PPC_TM_VRSAVE:
  1050. *val = get_reg_val(id, vcpu->arch.vrsave_tm);
  1051. break;
  1052. case KVM_REG_PPC_TM_VSCR:
  1053. if (cpu_has_feature(CPU_FTR_ALTIVEC))
  1054. *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
  1055. else
  1056. r = -ENXIO;
  1057. break;
  1058. case KVM_REG_PPC_TM_DSCR:
  1059. *val = get_reg_val(id, vcpu->arch.dscr_tm);
  1060. break;
  1061. case KVM_REG_PPC_TM_TAR:
  1062. *val = get_reg_val(id, vcpu->arch.tar_tm);
  1063. break;
  1064. #endif
  1065. case KVM_REG_PPC_ARCH_COMPAT:
  1066. *val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
  1067. break;
  1068. default:
  1069. r = -EINVAL;
  1070. break;
  1071. }
  1072. return r;
  1073. }
  1074. static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
  1075. union kvmppc_one_reg *val)
  1076. {
  1077. int r = 0;
  1078. long int i;
  1079. unsigned long addr, len;
  1080. switch (id) {
  1081. case KVM_REG_PPC_HIOR:
  1082. /* Only allow this to be set to zero */
  1083. if (set_reg_val(id, *val))
  1084. r = -EINVAL;
  1085. break;
  1086. case KVM_REG_PPC_DABR:
  1087. vcpu->arch.dabr = set_reg_val(id, *val);
  1088. break;
  1089. case KVM_REG_PPC_DABRX:
  1090. vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
  1091. break;
  1092. case KVM_REG_PPC_DSCR:
  1093. vcpu->arch.dscr = set_reg_val(id, *val);
  1094. break;
  1095. case KVM_REG_PPC_PURR:
  1096. vcpu->arch.purr = set_reg_val(id, *val);
  1097. break;
  1098. case KVM_REG_PPC_SPURR:
  1099. vcpu->arch.spurr = set_reg_val(id, *val);
  1100. break;
  1101. case KVM_REG_PPC_AMR:
  1102. vcpu->arch.amr = set_reg_val(id, *val);
  1103. break;
  1104. case KVM_REG_PPC_UAMOR:
  1105. vcpu->arch.uamor = set_reg_val(id, *val);
  1106. break;
  1107. case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
  1108. i = id - KVM_REG_PPC_MMCR0;
  1109. vcpu->arch.mmcr[i] = set_reg_val(id, *val);
  1110. break;
  1111. case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
  1112. i = id - KVM_REG_PPC_PMC1;
  1113. vcpu->arch.pmc[i] = set_reg_val(id, *val);
  1114. break;
  1115. case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
  1116. i = id - KVM_REG_PPC_SPMC1;
  1117. vcpu->arch.spmc[i] = set_reg_val(id, *val);
  1118. break;
  1119. case KVM_REG_PPC_SIAR:
  1120. vcpu->arch.siar = set_reg_val(id, *val);
  1121. break;
  1122. case KVM_REG_PPC_SDAR:
  1123. vcpu->arch.sdar = set_reg_val(id, *val);
  1124. break;
  1125. case KVM_REG_PPC_SIER:
  1126. vcpu->arch.sier = set_reg_val(id, *val);
  1127. break;
  1128. case KVM_REG_PPC_IAMR:
  1129. vcpu->arch.iamr = set_reg_val(id, *val);
  1130. break;
  1131. case KVM_REG_PPC_PSPB:
  1132. vcpu->arch.pspb = set_reg_val(id, *val);
  1133. break;
  1134. case KVM_REG_PPC_DPDES:
  1135. vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
  1136. break;
  1137. case KVM_REG_PPC_DAWR:
  1138. vcpu->arch.dawr = set_reg_val(id, *val);
  1139. break;
  1140. case KVM_REG_PPC_DAWRX:
  1141. vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
  1142. break;
  1143. case KVM_REG_PPC_CIABR:
  1144. vcpu->arch.ciabr = set_reg_val(id, *val);
  1145. /* Don't allow setting breakpoints in hypervisor code */
  1146. if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
  1147. vcpu->arch.ciabr &= ~CIABR_PRIV; /* disable */
  1148. break;
  1149. case KVM_REG_PPC_CSIGR:
  1150. vcpu->arch.csigr = set_reg_val(id, *val);
  1151. break;
  1152. case KVM_REG_PPC_TACR:
  1153. vcpu->arch.tacr = set_reg_val(id, *val);
  1154. break;
  1155. case KVM_REG_PPC_TCSCR:
  1156. vcpu->arch.tcscr = set_reg_val(id, *val);
  1157. break;
  1158. case KVM_REG_PPC_PID:
  1159. vcpu->arch.pid = set_reg_val(id, *val);
  1160. break;
  1161. case KVM_REG_PPC_ACOP:
  1162. vcpu->arch.acop = set_reg_val(id, *val);
  1163. break;
  1164. case KVM_REG_PPC_WORT:
  1165. vcpu->arch.wort = set_reg_val(id, *val);
  1166. break;
  1167. case KVM_REG_PPC_VPA_ADDR:
  1168. addr = set_reg_val(id, *val);
  1169. r = -EINVAL;
  1170. if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
  1171. vcpu->arch.dtl.next_gpa))
  1172. break;
  1173. r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
  1174. break;
  1175. case KVM_REG_PPC_VPA_SLB:
  1176. addr = val->vpaval.addr;
  1177. len = val->vpaval.length;
  1178. r = -EINVAL;
  1179. if (addr && !vcpu->arch.vpa.next_gpa)
  1180. break;
  1181. r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
  1182. break;
  1183. case KVM_REG_PPC_VPA_DTL:
  1184. addr = val->vpaval.addr;
  1185. len = val->vpaval.length;
  1186. r = -EINVAL;
  1187. if (addr && (len < sizeof(struct dtl_entry) ||
  1188. !vcpu->arch.vpa.next_gpa))
  1189. break;
  1190. len -= len % sizeof(struct dtl_entry);
  1191. r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
  1192. break;
  1193. case KVM_REG_PPC_TB_OFFSET:
  1194. /* round up to multiple of 2^24 */
  1195. vcpu->arch.vcore->tb_offset =
  1196. ALIGN(set_reg_val(id, *val), 1UL << 24);
  1197. break;
  1198. case KVM_REG_PPC_LPCR:
  1199. kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
  1200. break;
  1201. case KVM_REG_PPC_LPCR_64:
  1202. kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
  1203. break;
  1204. case KVM_REG_PPC_PPR:
  1205. vcpu->arch.ppr = set_reg_val(id, *val);
  1206. break;
  1207. #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
  1208. case KVM_REG_PPC_TFHAR:
  1209. vcpu->arch.tfhar = set_reg_val(id, *val);
  1210. break;
  1211. case KVM_REG_PPC_TFIAR:
  1212. vcpu->arch.tfiar = set_reg_val(id, *val);
  1213. break;
  1214. case KVM_REG_PPC_TEXASR:
  1215. vcpu->arch.texasr = set_reg_val(id, *val);
  1216. break;
  1217. case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
  1218. i = id - KVM_REG_PPC_TM_GPR0;
  1219. vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
  1220. break;
  1221. case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
  1222. {
  1223. int j;
  1224. i = id - KVM_REG_PPC_TM_VSR0;
  1225. if (i < 32)
  1226. for (j = 0; j < TS_FPRWIDTH; j++)
  1227. vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
  1228. else
  1229. if (cpu_has_feature(CPU_FTR_ALTIVEC))
  1230. vcpu->arch.vr_tm.vr[i-32] = val->vval;
  1231. else
  1232. r = -ENXIO;
  1233. break;
  1234. }
  1235. case KVM_REG_PPC_TM_CR:
  1236. vcpu->arch.cr_tm = set_reg_val(id, *val);
  1237. break;
  1238. case KVM_REG_PPC_TM_LR:
  1239. vcpu->arch.lr_tm = set_reg_val(id, *val);
  1240. break;
  1241. case KVM_REG_PPC_TM_CTR:
  1242. vcpu->arch.ctr_tm = set_reg_val(id, *val);
  1243. break;
  1244. case KVM_REG_PPC_TM_FPSCR:
  1245. vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
  1246. break;
  1247. case KVM_REG_PPC_TM_AMR:
  1248. vcpu->arch.amr_tm = set_reg_val(id, *val);
  1249. break;
  1250. case KVM_REG_PPC_TM_PPR:
  1251. vcpu->arch.ppr_tm = set_reg_val(id, *val);
  1252. break;
  1253. case KVM_REG_PPC_TM_VRSAVE:
  1254. vcpu->arch.vrsave_tm = set_reg_val(id, *val);
  1255. break;
  1256. case KVM_REG_PPC_TM_VSCR:
  1257. if (cpu_has_feature(CPU_FTR_ALTIVEC))
  1258. vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
  1259. else
  1260. r = - ENXIO;
  1261. break;
  1262. case KVM_REG_PPC_TM_DSCR:
  1263. vcpu->arch.dscr_tm = set_reg_val(id, *val);
  1264. break;
  1265. case KVM_REG_PPC_TM_TAR:
  1266. vcpu->arch.tar_tm = set_reg_val(id, *val);
  1267. break;
  1268. #endif
  1269. case KVM_REG_PPC_ARCH_COMPAT:
  1270. r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
  1271. break;
  1272. default:
  1273. r = -EINVAL;
  1274. break;
  1275. }
  1276. return r;
  1277. }
  1278. static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int core)
  1279. {
  1280. struct kvmppc_vcore *vcore;
  1281. vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
  1282. if (vcore == NULL)
  1283. return NULL;
  1284. INIT_LIST_HEAD(&vcore->runnable_threads);
  1285. spin_lock_init(&vcore->lock);
  1286. spin_lock_init(&vcore->stoltb_lock);
  1287. init_waitqueue_head(&vcore->wq);
  1288. vcore->preempt_tb = TB_NIL;
  1289. vcore->lpcr = kvm->arch.lpcr;
  1290. vcore->first_vcpuid = core * threads_per_subcore;
  1291. vcore->kvm = kvm;
  1292. vcore->mpp_buffer_is_valid = false;
  1293. if (cpu_has_feature(CPU_FTR_ARCH_207S))
  1294. vcore->mpp_buffer = (void *)__get_free_pages(
  1295. GFP_KERNEL|__GFP_ZERO,
  1296. MPP_BUFFER_ORDER);
  1297. return vcore;
  1298. }
  1299. static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm,
  1300. unsigned int id)
  1301. {
  1302. struct kvm_vcpu *vcpu;
  1303. int err = -EINVAL;
  1304. int core;
  1305. struct kvmppc_vcore *vcore;
  1306. core = id / threads_per_subcore;
  1307. if (core >= KVM_MAX_VCORES)
  1308. goto out;
  1309. err = -ENOMEM;
  1310. vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  1311. if (!vcpu)
  1312. goto out;
  1313. err = kvm_vcpu_init(vcpu, kvm, id);
  1314. if (err)
  1315. goto free_vcpu;
  1316. vcpu->arch.shared = &vcpu->arch.shregs;
  1317. #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
  1318. /*
  1319. * The shared struct is never shared on HV,
  1320. * so we can always use host endianness
  1321. */
  1322. #ifdef __BIG_ENDIAN__
  1323. vcpu->arch.shared_big_endian = true;
  1324. #else
  1325. vcpu->arch.shared_big_endian = false;
  1326. #endif
  1327. #endif
  1328. vcpu->arch.mmcr[0] = MMCR0_FC;
  1329. vcpu->arch.ctrl = CTRL_RUNLATCH;
  1330. /* default to host PVR, since we can't spoof it */
  1331. kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
  1332. spin_lock_init(&vcpu->arch.vpa_update_lock);
  1333. spin_lock_init(&vcpu->arch.tbacct_lock);
  1334. vcpu->arch.busy_preempt = TB_NIL;
  1335. vcpu->arch.intr_msr = MSR_SF | MSR_ME;
  1336. kvmppc_mmu_book3s_hv_init(vcpu);
  1337. vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
  1338. init_waitqueue_head(&vcpu->arch.cpu_run);
  1339. mutex_lock(&kvm->lock);
  1340. vcore = kvm->arch.vcores[core];
  1341. if (!vcore) {
  1342. vcore = kvmppc_vcore_create(kvm, core);
  1343. kvm->arch.vcores[core] = vcore;
  1344. kvm->arch.online_vcores++;
  1345. }
  1346. mutex_unlock(&kvm->lock);
  1347. if (!vcore)
  1348. goto free_vcpu;
  1349. spin_lock(&vcore->lock);
  1350. ++vcore->num_threads;
  1351. spin_unlock(&vcore->lock);
  1352. vcpu->arch.vcore = vcore;
  1353. vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
  1354. vcpu->arch.cpu_type = KVM_CPU_3S_64;
  1355. kvmppc_sanity_check(vcpu);
  1356. return vcpu;
  1357. free_vcpu:
  1358. kmem_cache_free(kvm_vcpu_cache, vcpu);
  1359. out:
  1360. return ERR_PTR(err);
  1361. }
  1362. static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
  1363. {
  1364. if (vpa->pinned_addr)
  1365. kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
  1366. vpa->dirty);
  1367. }
  1368. static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
  1369. {
  1370. spin_lock(&vcpu->arch.vpa_update_lock);
  1371. unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
  1372. unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
  1373. unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
  1374. spin_unlock(&vcpu->arch.vpa_update_lock);
  1375. kvm_vcpu_uninit(vcpu);
  1376. kmem_cache_free(kvm_vcpu_cache, vcpu);
  1377. }
  1378. static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
  1379. {
  1380. /* Indicate we want to get back into the guest */
  1381. return 1;
  1382. }
  1383. static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
  1384. {
  1385. unsigned long dec_nsec, now;
  1386. now = get_tb();
  1387. if (now > vcpu->arch.dec_expires) {
  1388. /* decrementer has already gone negative */
  1389. kvmppc_core_queue_dec(vcpu);
  1390. kvmppc_core_prepare_to_enter(vcpu);
  1391. return;
  1392. }
  1393. dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
  1394. / tb_ticks_per_sec;
  1395. hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec),
  1396. HRTIMER_MODE_REL);
  1397. vcpu->arch.timer_running = 1;
  1398. }
  1399. static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
  1400. {
  1401. vcpu->arch.ceded = 0;
  1402. if (vcpu->arch.timer_running) {
  1403. hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
  1404. vcpu->arch.timer_running = 0;
  1405. }
  1406. }
  1407. extern void __kvmppc_vcore_entry(void);
  1408. static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
  1409. struct kvm_vcpu *vcpu)
  1410. {
  1411. u64 now;
  1412. if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
  1413. return;
  1414. spin_lock_irq(&vcpu->arch.tbacct_lock);
  1415. now = mftb();
  1416. vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
  1417. vcpu->arch.stolen_logged;
  1418. vcpu->arch.busy_preempt = now;
  1419. vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
  1420. spin_unlock_irq(&vcpu->arch.tbacct_lock);
  1421. --vc->n_runnable;
  1422. list_del(&vcpu->arch.run_list);
  1423. }
  1424. static int kvmppc_grab_hwthread(int cpu)
  1425. {
  1426. struct paca_struct *tpaca;
  1427. long timeout = 10000;
  1428. tpaca = &paca[cpu];
  1429. /* Ensure the thread won't go into the kernel if it wakes */
  1430. tpaca->kvm_hstate.hwthread_req = 1;
  1431. tpaca->kvm_hstate.kvm_vcpu = NULL;
  1432. /*
  1433. * If the thread is already executing in the kernel (e.g. handling
  1434. * a stray interrupt), wait for it to get back to nap mode.
  1435. * The smp_mb() is to ensure that our setting of hwthread_req
  1436. * is visible before we look at hwthread_state, so if this
  1437. * races with the code at system_reset_pSeries and the thread
  1438. * misses our setting of hwthread_req, we are sure to see its
  1439. * setting of hwthread_state, and vice versa.
  1440. */
  1441. smp_mb();
  1442. while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
  1443. if (--timeout <= 0) {
  1444. pr_err("KVM: couldn't grab cpu %d\n", cpu);
  1445. return -EBUSY;
  1446. }
  1447. udelay(1);
  1448. }
  1449. return 0;
  1450. }
  1451. static void kvmppc_release_hwthread(int cpu)
  1452. {
  1453. struct paca_struct *tpaca;
  1454. tpaca = &paca[cpu];
  1455. tpaca->kvm_hstate.hwthread_req = 0;
  1456. tpaca->kvm_hstate.kvm_vcpu = NULL;
  1457. }
  1458. static void kvmppc_start_thread(struct kvm_vcpu *vcpu)
  1459. {
  1460. int cpu;
  1461. struct paca_struct *tpaca;
  1462. struct kvmppc_vcore *vc = vcpu->arch.vcore;
  1463. if (vcpu->arch.timer_running) {
  1464. hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
  1465. vcpu->arch.timer_running = 0;
  1466. }
  1467. cpu = vc->pcpu + vcpu->arch.ptid;
  1468. tpaca = &paca[cpu];
  1469. tpaca->kvm_hstate.kvm_vcpu = vcpu;
  1470. tpaca->kvm_hstate.kvm_vcore = vc;
  1471. tpaca->kvm_hstate.ptid = vcpu->arch.ptid;
  1472. vcpu->cpu = vc->pcpu;
  1473. smp_wmb();
  1474. #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
  1475. if (cpu != smp_processor_id()) {
  1476. xics_wake_cpu(cpu);
  1477. if (vcpu->arch.ptid)
  1478. ++vc->n_woken;
  1479. }
  1480. #endif
  1481. }
  1482. static void kvmppc_wait_for_nap(struct kvmppc_vcore *vc)
  1483. {
  1484. int i;
  1485. HMT_low();
  1486. i = 0;
  1487. while (vc->nap_count < vc->n_woken) {
  1488. if (++i >= 1000000) {
  1489. pr_err("kvmppc_wait_for_nap timeout %d %d\n",
  1490. vc->nap_count, vc->n_woken);
  1491. break;
  1492. }
  1493. cpu_relax();
  1494. }
  1495. HMT_medium();
  1496. }
  1497. /*
  1498. * Check that we are on thread 0 and that any other threads in
  1499. * this core are off-line. Then grab the threads so they can't
  1500. * enter the kernel.
  1501. */
  1502. static int on_primary_thread(void)
  1503. {
  1504. int cpu = smp_processor_id();
  1505. int thr;
  1506. /* Are we on a primary subcore? */
  1507. if (cpu_thread_in_subcore(cpu))
  1508. return 0;
  1509. thr = 0;
  1510. while (++thr < threads_per_subcore)
  1511. if (cpu_online(cpu + thr))
  1512. return 0;
  1513. /* Grab all hw threads so they can't go into the kernel */
  1514. for (thr = 1; thr < threads_per_subcore; ++thr) {
  1515. if (kvmppc_grab_hwthread(cpu + thr)) {
  1516. /* Couldn't grab one; let the others go */
  1517. do {
  1518. kvmppc_release_hwthread(cpu + thr);
  1519. } while (--thr > 0);
  1520. return 0;
  1521. }
  1522. }
  1523. return 1;
  1524. }
  1525. static void kvmppc_start_saving_l2_cache(struct kvmppc_vcore *vc)
  1526. {
  1527. phys_addr_t phy_addr, mpp_addr;
  1528. phy_addr = (phys_addr_t)virt_to_phys(vc->mpp_buffer);
  1529. mpp_addr = phy_addr & PPC_MPPE_ADDRESS_MASK;
  1530. mtspr(SPRN_MPPR, mpp_addr | PPC_MPPR_FETCH_ABORT);
  1531. logmpp(mpp_addr | PPC_LOGMPP_LOG_L2);
  1532. vc->mpp_buffer_is_valid = true;
  1533. }
  1534. static void kvmppc_start_restoring_l2_cache(const struct kvmppc_vcore *vc)
  1535. {
  1536. phys_addr_t phy_addr, mpp_addr;
  1537. phy_addr = virt_to_phys(vc->mpp_buffer);
  1538. mpp_addr = phy_addr & PPC_MPPE_ADDRESS_MASK;
  1539. /* We must abort any in-progress save operations to ensure
  1540. * the table is valid so that prefetch engine knows when to
  1541. * stop prefetching. */
  1542. logmpp(mpp_addr | PPC_LOGMPP_LOG_ABORT);
  1543. mtspr(SPRN_MPPR, mpp_addr | PPC_MPPR_FETCH_WHOLE_TABLE);
  1544. }
  1545. /*
  1546. * Run a set of guest threads on a physical core.
  1547. * Called with vc->lock held.
  1548. */
  1549. static void kvmppc_run_core(struct kvmppc_vcore *vc)
  1550. {
  1551. struct kvm_vcpu *vcpu, *vnext;
  1552. long ret;
  1553. u64 now;
  1554. int i, need_vpa_update;
  1555. int srcu_idx;
  1556. struct kvm_vcpu *vcpus_to_update[threads_per_core];
  1557. /* don't start if any threads have a signal pending */
  1558. need_vpa_update = 0;
  1559. list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
  1560. if (signal_pending(vcpu->arch.run_task))
  1561. return;
  1562. if (vcpu->arch.vpa.update_pending ||
  1563. vcpu->arch.slb_shadow.update_pending ||
  1564. vcpu->arch.dtl.update_pending)
  1565. vcpus_to_update[need_vpa_update++] = vcpu;
  1566. }
  1567. /*
  1568. * Initialize *vc, in particular vc->vcore_state, so we can
  1569. * drop the vcore lock if necessary.
  1570. */
  1571. vc->n_woken = 0;
  1572. vc->nap_count = 0;
  1573. vc->entry_exit_count = 0;
  1574. vc->preempt_tb = TB_NIL;
  1575. vc->vcore_state = VCORE_STARTING;
  1576. vc->in_guest = 0;
  1577. vc->napping_threads = 0;
  1578. vc->conferring_threads = 0;
  1579. /*
  1580. * Updating any of the vpas requires calling kvmppc_pin_guest_page,
  1581. * which can't be called with any spinlocks held.
  1582. */
  1583. if (need_vpa_update) {
  1584. spin_unlock(&vc->lock);
  1585. for (i = 0; i < need_vpa_update; ++i)
  1586. kvmppc_update_vpas(vcpus_to_update[i]);
  1587. spin_lock(&vc->lock);
  1588. }
  1589. /*
  1590. * Make sure we are running on primary threads, and that secondary
  1591. * threads are offline. Also check if the number of threads in this
  1592. * guest are greater than the current system threads per guest.
  1593. */
  1594. if ((threads_per_core > 1) &&
  1595. ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) {
  1596. list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
  1597. vcpu->arch.ret = -EBUSY;
  1598. goto out;
  1599. }
  1600. vc->pcpu = smp_processor_id();
  1601. list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
  1602. kvmppc_start_thread(vcpu);
  1603. kvmppc_create_dtl_entry(vcpu, vc);
  1604. trace_kvm_guest_enter(vcpu);
  1605. }
  1606. /* Set this explicitly in case thread 0 doesn't have a vcpu */
  1607. get_paca()->kvm_hstate.kvm_vcore = vc;
  1608. get_paca()->kvm_hstate.ptid = 0;
  1609. vc->vcore_state = VCORE_RUNNING;
  1610. preempt_disable();
  1611. trace_kvmppc_run_core(vc, 0);
  1612. spin_unlock(&vc->lock);
  1613. kvm_guest_enter();
  1614. srcu_idx = srcu_read_lock(&vc->kvm->srcu);
  1615. if (vc->mpp_buffer_is_valid)
  1616. kvmppc_start_restoring_l2_cache(vc);
  1617. __kvmppc_vcore_entry();
  1618. spin_lock(&vc->lock);
  1619. if (vc->mpp_buffer)
  1620. kvmppc_start_saving_l2_cache(vc);
  1621. /* disable sending of IPIs on virtual external irqs */
  1622. list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
  1623. vcpu->cpu = -1;
  1624. /* wait for secondary threads to finish writing their state to memory */
  1625. if (vc->nap_count < vc->n_woken)
  1626. kvmppc_wait_for_nap(vc);
  1627. for (i = 0; i < threads_per_subcore; ++i)
  1628. kvmppc_release_hwthread(vc->pcpu + i);
  1629. /* prevent other vcpu threads from doing kvmppc_start_thread() now */
  1630. vc->vcore_state = VCORE_EXITING;
  1631. spin_unlock(&vc->lock);
  1632. srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
  1633. /* make sure updates to secondary vcpu structs are visible now */
  1634. smp_mb();
  1635. kvm_guest_exit();
  1636. preempt_enable();
  1637. cond_resched();
  1638. spin_lock(&vc->lock);
  1639. now = get_tb();
  1640. list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
  1641. /* cancel pending dec exception if dec is positive */
  1642. if (now < vcpu->arch.dec_expires &&
  1643. kvmppc_core_pending_dec(vcpu))
  1644. kvmppc_core_dequeue_dec(vcpu);
  1645. trace_kvm_guest_exit(vcpu);
  1646. ret = RESUME_GUEST;
  1647. if (vcpu->arch.trap)
  1648. ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
  1649. vcpu->arch.run_task);
  1650. vcpu->arch.ret = ret;
  1651. vcpu->arch.trap = 0;
  1652. if (vcpu->arch.ceded) {
  1653. if (!is_kvmppc_resume_guest(ret))
  1654. kvmppc_end_cede(vcpu);
  1655. else
  1656. kvmppc_set_timer(vcpu);
  1657. }
  1658. }
  1659. out:
  1660. vc->vcore_state = VCORE_INACTIVE;
  1661. list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
  1662. arch.run_list) {
  1663. if (!is_kvmppc_resume_guest(vcpu->arch.ret)) {
  1664. kvmppc_remove_runnable(vc, vcpu);
  1665. wake_up(&vcpu->arch.cpu_run);
  1666. }
  1667. }
  1668. trace_kvmppc_run_core(vc, 1);
  1669. }
  1670. /*
  1671. * Wait for some other vcpu thread to execute us, and
  1672. * wake us up when we need to handle something in the host.
  1673. */
  1674. static void kvmppc_wait_for_exec(struct kvm_vcpu *vcpu, int wait_state)
  1675. {
  1676. DEFINE_WAIT(wait);
  1677. prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
  1678. if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE)
  1679. schedule();
  1680. finish_wait(&vcpu->arch.cpu_run, &wait);
  1681. }
  1682. /*
  1683. * All the vcpus in this vcore are idle, so wait for a decrementer
  1684. * or external interrupt to one of the vcpus. vc->lock is held.
  1685. */
  1686. static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
  1687. {
  1688. struct kvm_vcpu *vcpu;
  1689. int do_sleep = 1;
  1690. DEFINE_WAIT(wait);
  1691. prepare_to_wait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
  1692. /*
  1693. * Check one last time for pending exceptions and ceded state after
  1694. * we put ourselves on the wait queue
  1695. */
  1696. list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
  1697. if (vcpu->arch.pending_exceptions || !vcpu->arch.ceded) {
  1698. do_sleep = 0;
  1699. break;
  1700. }
  1701. }
  1702. if (!do_sleep) {
  1703. finish_wait(&vc->wq, &wait);
  1704. return;
  1705. }
  1706. vc->vcore_state = VCORE_SLEEPING;
  1707. trace_kvmppc_vcore_blocked(vc, 0);
  1708. spin_unlock(&vc->lock);
  1709. schedule();
  1710. finish_wait(&vc->wq, &wait);
  1711. spin_lock(&vc->lock);
  1712. vc->vcore_state = VCORE_INACTIVE;
  1713. trace_kvmppc_vcore_blocked(vc, 1);
  1714. }
  1715. static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
  1716. {
  1717. int n_ceded;
  1718. struct kvmppc_vcore *vc;
  1719. struct kvm_vcpu *v, *vn;
  1720. trace_kvmppc_run_vcpu_enter(vcpu);
  1721. kvm_run->exit_reason = 0;
  1722. vcpu->arch.ret = RESUME_GUEST;
  1723. vcpu->arch.trap = 0;
  1724. kvmppc_update_vpas(vcpu);
  1725. /*
  1726. * Synchronize with other threads in this virtual core
  1727. */
  1728. vc = vcpu->arch.vcore;
  1729. spin_lock(&vc->lock);
  1730. vcpu->arch.ceded = 0;
  1731. vcpu->arch.run_task = current;
  1732. vcpu->arch.kvm_run = kvm_run;
  1733. vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
  1734. vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
  1735. vcpu->arch.busy_preempt = TB_NIL;
  1736. list_add_tail(&vcpu->arch.run_list, &vc->runnable_threads);
  1737. ++vc->n_runnable;
  1738. /*
  1739. * This happens the first time this is called for a vcpu.
  1740. * If the vcore is already running, we may be able to start
  1741. * this thread straight away and have it join in.
  1742. */
  1743. if (!signal_pending(current)) {
  1744. if (vc->vcore_state == VCORE_RUNNING &&
  1745. VCORE_EXIT_COUNT(vc) == 0) {
  1746. kvmppc_create_dtl_entry(vcpu, vc);
  1747. kvmppc_start_thread(vcpu);
  1748. trace_kvm_guest_enter(vcpu);
  1749. } else if (vc->vcore_state == VCORE_SLEEPING) {
  1750. wake_up(&vc->wq);
  1751. }
  1752. }
  1753. while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
  1754. !signal_pending(current)) {
  1755. if (vc->vcore_state != VCORE_INACTIVE) {
  1756. spin_unlock(&vc->lock);
  1757. kvmppc_wait_for_exec(vcpu, TASK_INTERRUPTIBLE);
  1758. spin_lock(&vc->lock);
  1759. continue;
  1760. }
  1761. list_for_each_entry_safe(v, vn, &vc->runnable_threads,
  1762. arch.run_list) {
  1763. kvmppc_core_prepare_to_enter(v);
  1764. if (signal_pending(v->arch.run_task)) {
  1765. kvmppc_remove_runnable(vc, v);
  1766. v->stat.signal_exits++;
  1767. v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
  1768. v->arch.ret = -EINTR;
  1769. wake_up(&v->arch.cpu_run);
  1770. }
  1771. }
  1772. if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
  1773. break;
  1774. vc->runner = vcpu;
  1775. n_ceded = 0;
  1776. list_for_each_entry(v, &vc->runnable_threads, arch.run_list) {
  1777. if (!v->arch.pending_exceptions)
  1778. n_ceded += v->arch.ceded;
  1779. else
  1780. v->arch.ceded = 0;
  1781. }
  1782. if (n_ceded == vc->n_runnable)
  1783. kvmppc_vcore_blocked(vc);
  1784. else
  1785. kvmppc_run_core(vc);
  1786. vc->runner = NULL;
  1787. }
  1788. while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
  1789. (vc->vcore_state == VCORE_RUNNING ||
  1790. vc->vcore_state == VCORE_EXITING)) {
  1791. spin_unlock(&vc->lock);
  1792. kvmppc_wait_for_exec(vcpu, TASK_UNINTERRUPTIBLE);
  1793. spin_lock(&vc->lock);
  1794. }
  1795. if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
  1796. kvmppc_remove_runnable(vc, vcpu);
  1797. vcpu->stat.signal_exits++;
  1798. kvm_run->exit_reason = KVM_EXIT_INTR;
  1799. vcpu->arch.ret = -EINTR;
  1800. }
  1801. if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
  1802. /* Wake up some vcpu to run the core */
  1803. v = list_first_entry(&vc->runnable_threads,
  1804. struct kvm_vcpu, arch.run_list);
  1805. wake_up(&v->arch.cpu_run);
  1806. }
  1807. trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
  1808. spin_unlock(&vc->lock);
  1809. return vcpu->arch.ret;
  1810. }
  1811. static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
  1812. {
  1813. int r;
  1814. int srcu_idx;
  1815. if (!vcpu->arch.sane) {
  1816. run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  1817. return -EINVAL;
  1818. }
  1819. kvmppc_core_prepare_to_enter(vcpu);
  1820. /* No need to go into the guest when all we'll do is come back out */
  1821. if (signal_pending(current)) {
  1822. run->exit_reason = KVM_EXIT_INTR;
  1823. return -EINTR;
  1824. }
  1825. atomic_inc(&vcpu->kvm->arch.vcpus_running);
  1826. /* Order vcpus_running vs. rma_setup_done, see kvmppc_alloc_reset_hpt */
  1827. smp_mb();
  1828. /* On the first time here, set up HTAB and VRMA */
  1829. if (!vcpu->kvm->arch.rma_setup_done) {
  1830. r = kvmppc_hv_setup_htab_rma(vcpu);
  1831. if (r)
  1832. goto out;
  1833. }
  1834. flush_fp_to_thread(current);
  1835. flush_altivec_to_thread(current);
  1836. flush_vsx_to_thread(current);
  1837. vcpu->arch.wqp = &vcpu->arch.vcore->wq;
  1838. vcpu->arch.pgdir = current->mm->pgd;
  1839. vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
  1840. do {
  1841. r = kvmppc_run_vcpu(run, vcpu);
  1842. if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
  1843. !(vcpu->arch.shregs.msr & MSR_PR)) {
  1844. trace_kvm_hcall_enter(vcpu);
  1845. r = kvmppc_pseries_do_hcall(vcpu);
  1846. trace_kvm_hcall_exit(vcpu, r);
  1847. kvmppc_core_prepare_to_enter(vcpu);
  1848. } else if (r == RESUME_PAGE_FAULT) {
  1849. srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  1850. r = kvmppc_book3s_hv_page_fault(run, vcpu,
  1851. vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
  1852. srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
  1853. }
  1854. } while (is_kvmppc_resume_guest(r));
  1855. out:
  1856. vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
  1857. atomic_dec(&vcpu->kvm->arch.vcpus_running);
  1858. return r;
  1859. }
  1860. static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
  1861. int linux_psize)
  1862. {
  1863. struct mmu_psize_def *def = &mmu_psize_defs[linux_psize];
  1864. if (!def->shift)
  1865. return;
  1866. (*sps)->page_shift = def->shift;
  1867. (*sps)->slb_enc = def->sllp;
  1868. (*sps)->enc[0].page_shift = def->shift;
  1869. (*sps)->enc[0].pte_enc = def->penc[linux_psize];
  1870. /*
  1871. * Add 16MB MPSS support if host supports it
  1872. */
  1873. if (linux_psize != MMU_PAGE_16M && def->penc[MMU_PAGE_16M] != -1) {
  1874. (*sps)->enc[1].page_shift = 24;
  1875. (*sps)->enc[1].pte_enc = def->penc[MMU_PAGE_16M];
  1876. }
  1877. (*sps)++;
  1878. }
  1879. static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
  1880. struct kvm_ppc_smmu_info *info)
  1881. {
  1882. struct kvm_ppc_one_seg_page_size *sps;
  1883. info->flags = KVM_PPC_PAGE_SIZES_REAL;
  1884. if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
  1885. info->flags |= KVM_PPC_1T_SEGMENTS;
  1886. info->slb_size = mmu_slb_size;
  1887. /* We only support these sizes for now, and no muti-size segments */
  1888. sps = &info->sps[0];
  1889. kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K);
  1890. kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K);
  1891. kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M);
  1892. return 0;
  1893. }
  1894. /*
  1895. * Get (and clear) the dirty memory log for a memory slot.
  1896. */
  1897. static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
  1898. struct kvm_dirty_log *log)
  1899. {
  1900. struct kvm_memory_slot *memslot;
  1901. int r;
  1902. unsigned long n;
  1903. mutex_lock(&kvm->slots_lock);
  1904. r = -EINVAL;
  1905. if (log->slot >= KVM_USER_MEM_SLOTS)
  1906. goto out;
  1907. memslot = id_to_memslot(kvm->memslots, log->slot);
  1908. r = -ENOENT;
  1909. if (!memslot->dirty_bitmap)
  1910. goto out;
  1911. n = kvm_dirty_bitmap_bytes(memslot);
  1912. memset(memslot->dirty_bitmap, 0, n);
  1913. r = kvmppc_hv_get_dirty_log(kvm, memslot, memslot->dirty_bitmap);
  1914. if (r)
  1915. goto out;
  1916. r = -EFAULT;
  1917. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  1918. goto out;
  1919. r = 0;
  1920. out:
  1921. mutex_unlock(&kvm->slots_lock);
  1922. return r;
  1923. }
  1924. static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free,
  1925. struct kvm_memory_slot *dont)
  1926. {
  1927. if (!dont || free->arch.rmap != dont->arch.rmap) {
  1928. vfree(free->arch.rmap);
  1929. free->arch.rmap = NULL;
  1930. }
  1931. }
  1932. static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot,
  1933. unsigned long npages)
  1934. {
  1935. slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap));
  1936. if (!slot->arch.rmap)
  1937. return -ENOMEM;
  1938. return 0;
  1939. }
  1940. static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
  1941. struct kvm_memory_slot *memslot,
  1942. struct kvm_userspace_memory_region *mem)
  1943. {
  1944. return 0;
  1945. }
  1946. static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
  1947. struct kvm_userspace_memory_region *mem,
  1948. const struct kvm_memory_slot *old)
  1949. {
  1950. unsigned long npages = mem->memory_size >> PAGE_SHIFT;
  1951. struct kvm_memory_slot *memslot;
  1952. if (npages && old->npages) {
  1953. /*
  1954. * If modifying a memslot, reset all the rmap dirty bits.
  1955. * If this is a new memslot, we don't need to do anything
  1956. * since the rmap array starts out as all zeroes,
  1957. * i.e. no pages are dirty.
  1958. */
  1959. memslot = id_to_memslot(kvm->memslots, mem->slot);
  1960. kvmppc_hv_get_dirty_log(kvm, memslot, NULL);
  1961. }
  1962. }
  1963. /*
  1964. * Update LPCR values in kvm->arch and in vcores.
  1965. * Caller must hold kvm->lock.
  1966. */
  1967. void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
  1968. {
  1969. long int i;
  1970. u32 cores_done = 0;
  1971. if ((kvm->arch.lpcr & mask) == lpcr)
  1972. return;
  1973. kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
  1974. for (i = 0; i < KVM_MAX_VCORES; ++i) {
  1975. struct kvmppc_vcore *vc = kvm->arch.vcores[i];
  1976. if (!vc)
  1977. continue;
  1978. spin_lock(&vc->lock);
  1979. vc->lpcr = (vc->lpcr & ~mask) | lpcr;
  1980. spin_unlock(&vc->lock);
  1981. if (++cores_done >= kvm->arch.online_vcores)
  1982. break;
  1983. }
  1984. }
  1985. static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu)
  1986. {
  1987. return;
  1988. }
  1989. static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
  1990. {
  1991. int err = 0;
  1992. struct kvm *kvm = vcpu->kvm;
  1993. unsigned long hva;
  1994. struct kvm_memory_slot *memslot;
  1995. struct vm_area_struct *vma;
  1996. unsigned long lpcr = 0, senc;
  1997. unsigned long psize, porder;
  1998. int srcu_idx;
  1999. mutex_lock(&kvm->lock);
  2000. if (kvm->arch.rma_setup_done)
  2001. goto out; /* another vcpu beat us to it */
  2002. /* Allocate hashed page table (if not done already) and reset it */
  2003. if (!kvm->arch.hpt_virt) {
  2004. err = kvmppc_alloc_hpt(kvm, NULL);
  2005. if (err) {
  2006. pr_err("KVM: Couldn't alloc HPT\n");
  2007. goto out;
  2008. }
  2009. }
  2010. /* Look up the memslot for guest physical address 0 */
  2011. srcu_idx = srcu_read_lock(&kvm->srcu);
  2012. memslot = gfn_to_memslot(kvm, 0);
  2013. /* We must have some memory at 0 by now */
  2014. err = -EINVAL;
  2015. if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
  2016. goto out_srcu;
  2017. /* Look up the VMA for the start of this memory slot */
  2018. hva = memslot->userspace_addr;
  2019. down_read(&current->mm->mmap_sem);
  2020. vma = find_vma(current->mm, hva);
  2021. if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
  2022. goto up_out;
  2023. psize = vma_kernel_pagesize(vma);
  2024. porder = __ilog2(psize);
  2025. up_read(&current->mm->mmap_sem);
  2026. /* We can handle 4k, 64k or 16M pages in the VRMA */
  2027. err = -EINVAL;
  2028. if (!(psize == 0x1000 || psize == 0x10000 ||
  2029. psize == 0x1000000))
  2030. goto out_srcu;
  2031. /* Update VRMASD field in the LPCR */
  2032. senc = slb_pgsize_encoding(psize);
  2033. kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
  2034. (VRMA_VSID << SLB_VSID_SHIFT_1T);
  2035. /* the -4 is to account for senc values starting at 0x10 */
  2036. lpcr = senc << (LPCR_VRMASD_SH - 4);
  2037. /* Create HPTEs in the hash page table for the VRMA */
  2038. kvmppc_map_vrma(vcpu, memslot, porder);
  2039. kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
  2040. /* Order updates to kvm->arch.lpcr etc. vs. rma_setup_done */
  2041. smp_wmb();
  2042. kvm->arch.rma_setup_done = 1;
  2043. err = 0;
  2044. out_srcu:
  2045. srcu_read_unlock(&kvm->srcu, srcu_idx);
  2046. out:
  2047. mutex_unlock(&kvm->lock);
  2048. return err;
  2049. up_out:
  2050. up_read(&current->mm->mmap_sem);
  2051. goto out_srcu;
  2052. }
  2053. static int kvmppc_core_init_vm_hv(struct kvm *kvm)
  2054. {
  2055. unsigned long lpcr, lpid;
  2056. /* Allocate the guest's logical partition ID */
  2057. lpid = kvmppc_alloc_lpid();
  2058. if ((long)lpid < 0)
  2059. return -ENOMEM;
  2060. kvm->arch.lpid = lpid;
  2061. /*
  2062. * Since we don't flush the TLB when tearing down a VM,
  2063. * and this lpid might have previously been used,
  2064. * make sure we flush on each core before running the new VM.
  2065. */
  2066. cpumask_setall(&kvm->arch.need_tlb_flush);
  2067. /* Start out with the default set of hcalls enabled */
  2068. memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
  2069. sizeof(kvm->arch.enabled_hcalls));
  2070. kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
  2071. /* Init LPCR for virtual RMA mode */
  2072. kvm->arch.host_lpid = mfspr(SPRN_LPID);
  2073. kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
  2074. lpcr &= LPCR_PECE | LPCR_LPES;
  2075. lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
  2076. LPCR_VPM0 | LPCR_VPM1;
  2077. kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
  2078. (VRMA_VSID << SLB_VSID_SHIFT_1T);
  2079. /* On POWER8 turn on online bit to enable PURR/SPURR */
  2080. if (cpu_has_feature(CPU_FTR_ARCH_207S))
  2081. lpcr |= LPCR_ONL;
  2082. kvm->arch.lpcr = lpcr;
  2083. /*
  2084. * Track that we now have a HV mode VM active. This blocks secondary
  2085. * CPU threads from coming online.
  2086. */
  2087. kvm_hv_vm_activated();
  2088. return 0;
  2089. }
  2090. static void kvmppc_free_vcores(struct kvm *kvm)
  2091. {
  2092. long int i;
  2093. for (i = 0; i < KVM_MAX_VCORES; ++i) {
  2094. if (kvm->arch.vcores[i] && kvm->arch.vcores[i]->mpp_buffer) {
  2095. struct kvmppc_vcore *vc = kvm->arch.vcores[i];
  2096. free_pages((unsigned long)vc->mpp_buffer,
  2097. MPP_BUFFER_ORDER);
  2098. }
  2099. kfree(kvm->arch.vcores[i]);
  2100. }
  2101. kvm->arch.online_vcores = 0;
  2102. }
  2103. static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
  2104. {
  2105. kvm_hv_vm_deactivated();
  2106. kvmppc_free_vcores(kvm);
  2107. kvmppc_free_hpt(kvm);
  2108. }
  2109. /* We don't need to emulate any privileged instructions or dcbz */
  2110. static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
  2111. unsigned int inst, int *advance)
  2112. {
  2113. return EMULATE_FAIL;
  2114. }
  2115. static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
  2116. ulong spr_val)
  2117. {
  2118. return EMULATE_FAIL;
  2119. }
  2120. static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
  2121. ulong *spr_val)
  2122. {
  2123. return EMULATE_FAIL;
  2124. }
  2125. static int kvmppc_core_check_processor_compat_hv(void)
  2126. {
  2127. if (!cpu_has_feature(CPU_FTR_HVMODE) ||
  2128. !cpu_has_feature(CPU_FTR_ARCH_206))
  2129. return -EIO;
  2130. return 0;
  2131. }
  2132. static long kvm_arch_vm_ioctl_hv(struct file *filp,
  2133. unsigned int ioctl, unsigned long arg)
  2134. {
  2135. struct kvm *kvm __maybe_unused = filp->private_data;
  2136. void __user *argp = (void __user *)arg;
  2137. long r;
  2138. switch (ioctl) {
  2139. case KVM_PPC_ALLOCATE_HTAB: {
  2140. u32 htab_order;
  2141. r = -EFAULT;
  2142. if (get_user(htab_order, (u32 __user *)argp))
  2143. break;
  2144. r = kvmppc_alloc_reset_hpt(kvm, &htab_order);
  2145. if (r)
  2146. break;
  2147. r = -EFAULT;
  2148. if (put_user(htab_order, (u32 __user *)argp))
  2149. break;
  2150. r = 0;
  2151. break;
  2152. }
  2153. case KVM_PPC_GET_HTAB_FD: {
  2154. struct kvm_get_htab_fd ghf;
  2155. r = -EFAULT;
  2156. if (copy_from_user(&ghf, argp, sizeof(ghf)))
  2157. break;
  2158. r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
  2159. break;
  2160. }
  2161. default:
  2162. r = -ENOTTY;
  2163. }
  2164. return r;
  2165. }
  2166. /*
  2167. * List of hcall numbers to enable by default.
  2168. * For compatibility with old userspace, we enable by default
  2169. * all hcalls that were implemented before the hcall-enabling
  2170. * facility was added. Note this list should not include H_RTAS.
  2171. */
  2172. static unsigned int default_hcall_list[] = {
  2173. H_REMOVE,
  2174. H_ENTER,
  2175. H_READ,
  2176. H_PROTECT,
  2177. H_BULK_REMOVE,
  2178. H_GET_TCE,
  2179. H_PUT_TCE,
  2180. H_SET_DABR,
  2181. H_SET_XDABR,
  2182. H_CEDE,
  2183. H_PROD,
  2184. H_CONFER,
  2185. H_REGISTER_VPA,
  2186. #ifdef CONFIG_KVM_XICS
  2187. H_EOI,
  2188. H_CPPR,
  2189. H_IPI,
  2190. H_IPOLL,
  2191. H_XIRR,
  2192. H_XIRR_X,
  2193. #endif
  2194. 0
  2195. };
  2196. static void init_default_hcalls(void)
  2197. {
  2198. int i;
  2199. unsigned int hcall;
  2200. for (i = 0; default_hcall_list[i]; ++i) {
  2201. hcall = default_hcall_list[i];
  2202. WARN_ON(!kvmppc_hcall_impl_hv(hcall));
  2203. __set_bit(hcall / 4, default_enabled_hcalls);
  2204. }
  2205. }
  2206. static struct kvmppc_ops kvm_ops_hv = {
  2207. .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
  2208. .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
  2209. .get_one_reg = kvmppc_get_one_reg_hv,
  2210. .set_one_reg = kvmppc_set_one_reg_hv,
  2211. .vcpu_load = kvmppc_core_vcpu_load_hv,
  2212. .vcpu_put = kvmppc_core_vcpu_put_hv,
  2213. .set_msr = kvmppc_set_msr_hv,
  2214. .vcpu_run = kvmppc_vcpu_run_hv,
  2215. .vcpu_create = kvmppc_core_vcpu_create_hv,
  2216. .vcpu_free = kvmppc_core_vcpu_free_hv,
  2217. .check_requests = kvmppc_core_check_requests_hv,
  2218. .get_dirty_log = kvm_vm_ioctl_get_dirty_log_hv,
  2219. .flush_memslot = kvmppc_core_flush_memslot_hv,
  2220. .prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
  2221. .commit_memory_region = kvmppc_core_commit_memory_region_hv,
  2222. .unmap_hva = kvm_unmap_hva_hv,
  2223. .unmap_hva_range = kvm_unmap_hva_range_hv,
  2224. .age_hva = kvm_age_hva_hv,
  2225. .test_age_hva = kvm_test_age_hva_hv,
  2226. .set_spte_hva = kvm_set_spte_hva_hv,
  2227. .mmu_destroy = kvmppc_mmu_destroy_hv,
  2228. .free_memslot = kvmppc_core_free_memslot_hv,
  2229. .create_memslot = kvmppc_core_create_memslot_hv,
  2230. .init_vm = kvmppc_core_init_vm_hv,
  2231. .destroy_vm = kvmppc_core_destroy_vm_hv,
  2232. .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
  2233. .emulate_op = kvmppc_core_emulate_op_hv,
  2234. .emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
  2235. .emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
  2236. .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
  2237. .arch_vm_ioctl = kvm_arch_vm_ioctl_hv,
  2238. .hcall_implemented = kvmppc_hcall_impl_hv,
  2239. };
  2240. static int kvmppc_book3s_init_hv(void)
  2241. {
  2242. int r;
  2243. /*
  2244. * FIXME!! Do we need to check on all cpus ?
  2245. */
  2246. r = kvmppc_core_check_processor_compat_hv();
  2247. if (r < 0)
  2248. return -ENODEV;
  2249. kvm_ops_hv.owner = THIS_MODULE;
  2250. kvmppc_hv_ops = &kvm_ops_hv;
  2251. init_default_hcalls();
  2252. r = kvmppc_mmu_hv_init();
  2253. return r;
  2254. }
  2255. static void kvmppc_book3s_exit_hv(void)
  2256. {
  2257. kvmppc_hv_ops = NULL;
  2258. }
  2259. module_init(kvmppc_book3s_init_hv);
  2260. module_exit(kvmppc_book3s_exit_hv);
  2261. MODULE_LICENSE("GPL");
  2262. MODULE_ALIAS_MISCDEV(KVM_MINOR);
  2263. MODULE_ALIAS("devname:kvm");