smp.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707
  1. /*
  2. * linux/arch/arm/kernel/smp.c
  3. *
  4. * Copyright (C) 2002 ARM Limited, All Rights Reserved.
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #include <linux/module.h>
  11. #include <linux/delay.h>
  12. #include <linux/init.h>
  13. #include <linux/spinlock.h>
  14. #include <linux/sched.h>
  15. #include <linux/interrupt.h>
  16. #include <linux/cache.h>
  17. #include <linux/profile.h>
  18. #include <linux/errno.h>
  19. #include <linux/mm.h>
  20. #include <linux/err.h>
  21. #include <linux/cpu.h>
  22. #include <linux/seq_file.h>
  23. #include <linux/irq.h>
  24. #include <linux/percpu.h>
  25. #include <linux/clockchips.h>
  26. #include <linux/completion.h>
  27. #include <linux/cpufreq.h>
  28. #include <linux/irq_work.h>
  29. #include <linux/atomic.h>
  30. #include <asm/smp.h>
  31. #include <asm/cacheflush.h>
  32. #include <asm/cpu.h>
  33. #include <asm/cputype.h>
  34. #include <asm/exception.h>
  35. #include <asm/idmap.h>
  36. #include <asm/topology.h>
  37. #include <asm/mmu_context.h>
  38. #include <asm/pgtable.h>
  39. #include <asm/pgalloc.h>
  40. #include <asm/processor.h>
  41. #include <asm/sections.h>
  42. #include <asm/tlbflush.h>
  43. #include <asm/ptrace.h>
  44. #include <asm/smp_plat.h>
  45. #include <asm/virt.h>
  46. #include <asm/mach/arch.h>
  47. #include <asm/mpu.h>
  48. #define CREATE_TRACE_POINTS
  49. #include <trace/events/ipi.h>
  50. /*
  51. * as from 2.5, kernels no longer have an init_tasks structure
  52. * so we need some other way of telling a new secondary core
  53. * where to place its SVC stack
  54. */
  55. struct secondary_data secondary_data;
  56. /*
  57. * control for which core is the next to come out of the secondary
  58. * boot "holding pen"
  59. */
  60. volatile int pen_release = -1;
  61. enum ipi_msg_type {
  62. IPI_WAKEUP,
  63. IPI_TIMER,
  64. IPI_RESCHEDULE,
  65. IPI_CALL_FUNC,
  66. IPI_CALL_FUNC_SINGLE,
  67. IPI_CPU_STOP,
  68. IPI_IRQ_WORK,
  69. IPI_COMPLETION,
  70. };
  71. static DECLARE_COMPLETION(cpu_running);
  72. static struct smp_operations smp_ops;
  73. void __init smp_set_ops(struct smp_operations *ops)
  74. {
  75. if (ops)
  76. smp_ops = *ops;
  77. };
  78. static unsigned long get_arch_pgd(pgd_t *pgd)
  79. {
  80. phys_addr_t pgdir = virt_to_idmap(pgd);
  81. BUG_ON(pgdir & ARCH_PGD_MASK);
  82. return pgdir >> ARCH_PGD_SHIFT;
  83. }
  84. int __cpu_up(unsigned int cpu, struct task_struct *idle)
  85. {
  86. int ret;
  87. if (!smp_ops.smp_boot_secondary)
  88. return -ENOSYS;
  89. /*
  90. * We need to tell the secondary core where to find
  91. * its stack and the page tables.
  92. */
  93. secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
  94. #ifdef CONFIG_ARM_MPU
  95. secondary_data.mpu_rgn_szr = mpu_rgn_info.rgns[MPU_RAM_REGION].drsr;
  96. #endif
  97. #ifdef CONFIG_MMU
  98. secondary_data.pgdir = get_arch_pgd(idmap_pgd);
  99. secondary_data.swapper_pg_dir = get_arch_pgd(swapper_pg_dir);
  100. #endif
  101. sync_cache_w(&secondary_data);
  102. /*
  103. * Now bring the CPU into our world.
  104. */
  105. ret = smp_ops.smp_boot_secondary(cpu, idle);
  106. if (ret == 0) {
  107. /*
  108. * CPU was successfully started, wait for it
  109. * to come online or time out.
  110. */
  111. wait_for_completion_timeout(&cpu_running,
  112. msecs_to_jiffies(1000));
  113. if (!cpu_online(cpu)) {
  114. pr_crit("CPU%u: failed to come online\n", cpu);
  115. ret = -EIO;
  116. }
  117. } else {
  118. pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
  119. }
  120. memset(&secondary_data, 0, sizeof(secondary_data));
  121. return ret;
  122. }
  123. /* platform specific SMP operations */
  124. void __init smp_init_cpus(void)
  125. {
  126. if (smp_ops.smp_init_cpus)
  127. smp_ops.smp_init_cpus();
  128. }
  129. int platform_can_cpu_hotplug(void)
  130. {
  131. #ifdef CONFIG_HOTPLUG_CPU
  132. if (smp_ops.cpu_kill)
  133. return 1;
  134. #endif
  135. return 0;
  136. }
  137. #ifdef CONFIG_HOTPLUG_CPU
  138. static int platform_cpu_kill(unsigned int cpu)
  139. {
  140. if (smp_ops.cpu_kill)
  141. return smp_ops.cpu_kill(cpu);
  142. return 1;
  143. }
  144. static int platform_cpu_disable(unsigned int cpu)
  145. {
  146. if (smp_ops.cpu_disable)
  147. return smp_ops.cpu_disable(cpu);
  148. /*
  149. * By default, allow disabling all CPUs except the first one,
  150. * since this is special on a lot of platforms, e.g. because
  151. * of clock tick interrupts.
  152. */
  153. return cpu == 0 ? -EPERM : 0;
  154. }
  155. /*
  156. * __cpu_disable runs on the processor to be shutdown.
  157. */
  158. int __cpu_disable(void)
  159. {
  160. unsigned int cpu = smp_processor_id();
  161. int ret;
  162. ret = platform_cpu_disable(cpu);
  163. if (ret)
  164. return ret;
  165. /*
  166. * Take this CPU offline. Once we clear this, we can't return,
  167. * and we must not schedule until we're ready to give up the cpu.
  168. */
  169. set_cpu_online(cpu, false);
  170. /*
  171. * OK - migrate IRQs away from this CPU
  172. */
  173. migrate_irqs();
  174. /*
  175. * Flush user cache and TLB mappings, and then remove this CPU
  176. * from the vm mask set of all processes.
  177. *
  178. * Caches are flushed to the Level of Unification Inner Shareable
  179. * to write-back dirty lines to unified caches shared by all CPUs.
  180. */
  181. flush_cache_louis();
  182. local_flush_tlb_all();
  183. clear_tasks_mm_cpumask(cpu);
  184. return 0;
  185. }
  186. static DECLARE_COMPLETION(cpu_died);
  187. /*
  188. * called on the thread which is asking for a CPU to be shutdown -
  189. * waits until shutdown has completed, or it is timed out.
  190. */
  191. void __cpu_die(unsigned int cpu)
  192. {
  193. if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
  194. pr_err("CPU%u: cpu didn't die\n", cpu);
  195. return;
  196. }
  197. pr_notice("CPU%u: shutdown\n", cpu);
  198. /*
  199. * platform_cpu_kill() is generally expected to do the powering off
  200. * and/or cutting of clocks to the dying CPU. Optionally, this may
  201. * be done by the CPU which is dying in preference to supporting
  202. * this call, but that means there is _no_ synchronisation between
  203. * the requesting CPU and the dying CPU actually losing power.
  204. */
  205. if (!platform_cpu_kill(cpu))
  206. pr_err("CPU%u: unable to kill\n", cpu);
  207. }
  208. /*
  209. * Called from the idle thread for the CPU which has been shutdown.
  210. *
  211. * Note that we disable IRQs here, but do not re-enable them
  212. * before returning to the caller. This is also the behaviour
  213. * of the other hotplug-cpu capable cores, so presumably coming
  214. * out of idle fixes this.
  215. */
  216. void __ref cpu_die(void)
  217. {
  218. unsigned int cpu = smp_processor_id();
  219. idle_task_exit();
  220. local_irq_disable();
  221. /*
  222. * Flush the data out of the L1 cache for this CPU. This must be
  223. * before the completion to ensure that data is safely written out
  224. * before platform_cpu_kill() gets called - which may disable
  225. * *this* CPU and power down its cache.
  226. */
  227. flush_cache_louis();
  228. /*
  229. * Tell __cpu_die() that this CPU is now safe to dispose of. Once
  230. * this returns, power and/or clocks can be removed at any point
  231. * from this CPU and its cache by platform_cpu_kill().
  232. */
  233. complete(&cpu_died);
  234. /*
  235. * Ensure that the cache lines associated with that completion are
  236. * written out. This covers the case where _this_ CPU is doing the
  237. * powering down, to ensure that the completion is visible to the
  238. * CPU waiting for this one.
  239. */
  240. flush_cache_louis();
  241. /*
  242. * The actual CPU shutdown procedure is at least platform (if not
  243. * CPU) specific. This may remove power, or it may simply spin.
  244. *
  245. * Platforms are generally expected *NOT* to return from this call,
  246. * although there are some which do because they have no way to
  247. * power down the CPU. These platforms are the _only_ reason we
  248. * have a return path which uses the fragment of assembly below.
  249. *
  250. * The return path should not be used for platforms which can
  251. * power off the CPU.
  252. */
  253. if (smp_ops.cpu_die)
  254. smp_ops.cpu_die(cpu);
  255. pr_warn("CPU%u: smp_ops.cpu_die() returned, trying to resuscitate\n",
  256. cpu);
  257. /*
  258. * Do not return to the idle loop - jump back to the secondary
  259. * cpu initialisation. There's some initialisation which needs
  260. * to be repeated to undo the effects of taking the CPU offline.
  261. */
  262. __asm__("mov sp, %0\n"
  263. " mov fp, #0\n"
  264. " b secondary_start_kernel"
  265. :
  266. : "r" (task_stack_page(current) + THREAD_SIZE - 8));
  267. }
  268. #endif /* CONFIG_HOTPLUG_CPU */
  269. /*
  270. * Called by both boot and secondaries to move global data into
  271. * per-processor storage.
  272. */
  273. static void smp_store_cpu_info(unsigned int cpuid)
  274. {
  275. struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
  276. cpu_info->loops_per_jiffy = loops_per_jiffy;
  277. cpu_info->cpuid = read_cpuid_id();
  278. store_cpu_topology(cpuid);
  279. }
  280. /*
  281. * This is the secondary CPU boot entry. We're using this CPUs
  282. * idle thread stack, but a set of temporary page tables.
  283. */
  284. asmlinkage void secondary_start_kernel(void)
  285. {
  286. struct mm_struct *mm = &init_mm;
  287. unsigned int cpu;
  288. /*
  289. * The identity mapping is uncached (strongly ordered), so
  290. * switch away from it before attempting any exclusive accesses.
  291. */
  292. cpu_switch_mm(mm->pgd, mm);
  293. local_flush_bp_all();
  294. enter_lazy_tlb(mm, current);
  295. local_flush_tlb_all();
  296. /*
  297. * All kernel threads share the same mm context; grab a
  298. * reference and switch to it.
  299. */
  300. cpu = smp_processor_id();
  301. atomic_inc(&mm->mm_count);
  302. current->active_mm = mm;
  303. cpumask_set_cpu(cpu, mm_cpumask(mm));
  304. cpu_init();
  305. pr_debug("CPU%u: Booted secondary processor\n", cpu);
  306. preempt_disable();
  307. trace_hardirqs_off();
  308. /*
  309. * Give the platform a chance to do its own initialisation.
  310. */
  311. if (smp_ops.smp_secondary_init)
  312. smp_ops.smp_secondary_init(cpu);
  313. notify_cpu_starting(cpu);
  314. calibrate_delay();
  315. smp_store_cpu_info(cpu);
  316. /*
  317. * OK, now it's safe to let the boot CPU continue. Wait for
  318. * the CPU migration code to notice that the CPU is online
  319. * before we continue - which happens after __cpu_up returns.
  320. */
  321. set_cpu_online(cpu, true);
  322. complete(&cpu_running);
  323. local_irq_enable();
  324. local_fiq_enable();
  325. /*
  326. * OK, it's off to the idle thread for us
  327. */
  328. cpu_startup_entry(CPUHP_ONLINE);
  329. }
  330. void __init smp_cpus_done(unsigned int max_cpus)
  331. {
  332. hyp_mode_check();
  333. }
  334. void __init smp_prepare_boot_cpu(void)
  335. {
  336. set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
  337. }
  338. void __init smp_prepare_cpus(unsigned int max_cpus)
  339. {
  340. unsigned int ncores = num_possible_cpus();
  341. init_cpu_topology();
  342. smp_store_cpu_info(smp_processor_id());
  343. /*
  344. * are we trying to boot more cores than exist?
  345. */
  346. if (max_cpus > ncores)
  347. max_cpus = ncores;
  348. if (ncores > 1 && max_cpus) {
  349. /*
  350. * Initialise the present map, which describes the set of CPUs
  351. * actually populated at the present time. A platform should
  352. * re-initialize the map in the platforms smp_prepare_cpus()
  353. * if present != possible (e.g. physical hotplug).
  354. */
  355. init_cpu_present(cpu_possible_mask);
  356. /*
  357. * Initialise the SCU if there are more than one CPU
  358. * and let them know where to start.
  359. */
  360. if (smp_ops.smp_prepare_cpus)
  361. smp_ops.smp_prepare_cpus(max_cpus);
  362. }
  363. }
  364. static void (*__smp_cross_call)(const struct cpumask *, unsigned int);
  365. void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
  366. {
  367. if (!__smp_cross_call)
  368. __smp_cross_call = fn;
  369. }
  370. static const char *ipi_types[NR_IPI] __tracepoint_string = {
  371. #define S(x,s) [x] = s
  372. S(IPI_WAKEUP, "CPU wakeup interrupts"),
  373. S(IPI_TIMER, "Timer broadcast interrupts"),
  374. S(IPI_RESCHEDULE, "Rescheduling interrupts"),
  375. S(IPI_CALL_FUNC, "Function call interrupts"),
  376. S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"),
  377. S(IPI_CPU_STOP, "CPU stop interrupts"),
  378. S(IPI_IRQ_WORK, "IRQ work interrupts"),
  379. S(IPI_COMPLETION, "completion interrupts"),
  380. };
  381. static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
  382. {
  383. trace_ipi_raise(target, ipi_types[ipinr]);
  384. __smp_cross_call(target, ipinr);
  385. }
  386. void show_ipi_list(struct seq_file *p, int prec)
  387. {
  388. unsigned int cpu, i;
  389. for (i = 0; i < NR_IPI; i++) {
  390. seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
  391. for_each_online_cpu(cpu)
  392. seq_printf(p, "%10u ",
  393. __get_irq_stat(cpu, ipi_irqs[i]));
  394. seq_printf(p, " %s\n", ipi_types[i]);
  395. }
  396. }
  397. u64 smp_irq_stat_cpu(unsigned int cpu)
  398. {
  399. u64 sum = 0;
  400. int i;
  401. for (i = 0; i < NR_IPI; i++)
  402. sum += __get_irq_stat(cpu, ipi_irqs[i]);
  403. return sum;
  404. }
  405. void arch_send_call_function_ipi_mask(const struct cpumask *mask)
  406. {
  407. smp_cross_call(mask, IPI_CALL_FUNC);
  408. }
  409. void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
  410. {
  411. smp_cross_call(mask, IPI_WAKEUP);
  412. }
  413. void arch_send_call_function_single_ipi(int cpu)
  414. {
  415. smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
  416. }
  417. #ifdef CONFIG_IRQ_WORK
  418. void arch_irq_work_raise(void)
  419. {
  420. if (arch_irq_work_has_interrupt())
  421. smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
  422. }
  423. #endif
  424. #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
  425. void tick_broadcast(const struct cpumask *mask)
  426. {
  427. smp_cross_call(mask, IPI_TIMER);
  428. }
  429. #endif
  430. static DEFINE_RAW_SPINLOCK(stop_lock);
  431. /*
  432. * ipi_cpu_stop - handle IPI from smp_send_stop()
  433. */
  434. static void ipi_cpu_stop(unsigned int cpu)
  435. {
  436. if (system_state == SYSTEM_BOOTING ||
  437. system_state == SYSTEM_RUNNING) {
  438. raw_spin_lock(&stop_lock);
  439. pr_crit("CPU%u: stopping\n", cpu);
  440. dump_stack();
  441. raw_spin_unlock(&stop_lock);
  442. }
  443. set_cpu_online(cpu, false);
  444. local_fiq_disable();
  445. local_irq_disable();
  446. while (1)
  447. cpu_relax();
  448. }
  449. static DEFINE_PER_CPU(struct completion *, cpu_completion);
  450. int register_ipi_completion(struct completion *completion, int cpu)
  451. {
  452. per_cpu(cpu_completion, cpu) = completion;
  453. return IPI_COMPLETION;
  454. }
  455. static void ipi_complete(unsigned int cpu)
  456. {
  457. complete(per_cpu(cpu_completion, cpu));
  458. }
  459. /*
  460. * Main handler for inter-processor interrupts
  461. */
  462. asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
  463. {
  464. handle_IPI(ipinr, regs);
  465. }
  466. void handle_IPI(int ipinr, struct pt_regs *regs)
  467. {
  468. unsigned int cpu = smp_processor_id();
  469. struct pt_regs *old_regs = set_irq_regs(regs);
  470. if ((unsigned)ipinr < NR_IPI) {
  471. trace_ipi_entry(ipi_types[ipinr]);
  472. __inc_irq_stat(cpu, ipi_irqs[ipinr]);
  473. }
  474. switch (ipinr) {
  475. case IPI_WAKEUP:
  476. break;
  477. #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
  478. case IPI_TIMER:
  479. irq_enter();
  480. tick_receive_broadcast();
  481. irq_exit();
  482. break;
  483. #endif
  484. case IPI_RESCHEDULE:
  485. scheduler_ipi();
  486. break;
  487. case IPI_CALL_FUNC:
  488. irq_enter();
  489. generic_smp_call_function_interrupt();
  490. irq_exit();
  491. break;
  492. case IPI_CALL_FUNC_SINGLE:
  493. irq_enter();
  494. generic_smp_call_function_single_interrupt();
  495. irq_exit();
  496. break;
  497. case IPI_CPU_STOP:
  498. irq_enter();
  499. ipi_cpu_stop(cpu);
  500. irq_exit();
  501. break;
  502. #ifdef CONFIG_IRQ_WORK
  503. case IPI_IRQ_WORK:
  504. irq_enter();
  505. irq_work_run();
  506. irq_exit();
  507. break;
  508. #endif
  509. case IPI_COMPLETION:
  510. irq_enter();
  511. ipi_complete(cpu);
  512. irq_exit();
  513. break;
  514. default:
  515. pr_crit("CPU%u: Unknown IPI message 0x%x\n",
  516. cpu, ipinr);
  517. break;
  518. }
  519. if ((unsigned)ipinr < NR_IPI)
  520. trace_ipi_exit(ipi_types[ipinr]);
  521. set_irq_regs(old_regs);
  522. }
  523. void smp_send_reschedule(int cpu)
  524. {
  525. smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
  526. }
  527. void smp_send_stop(void)
  528. {
  529. unsigned long timeout;
  530. struct cpumask mask;
  531. cpumask_copy(&mask, cpu_online_mask);
  532. cpumask_clear_cpu(smp_processor_id(), &mask);
  533. if (!cpumask_empty(&mask))
  534. smp_cross_call(&mask, IPI_CPU_STOP);
  535. /* Wait up to one second for other CPUs to stop */
  536. timeout = USEC_PER_SEC;
  537. while (num_online_cpus() > 1 && timeout--)
  538. udelay(1);
  539. if (num_online_cpus() > 1)
  540. pr_warn("SMP: failed to stop secondary CPUs\n");
  541. }
  542. /*
  543. * not supported here
  544. */
  545. int setup_profiling_timer(unsigned int multiplier)
  546. {
  547. return -EINVAL;
  548. }
  549. #ifdef CONFIG_CPU_FREQ
  550. static DEFINE_PER_CPU(unsigned long, l_p_j_ref);
  551. static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq);
  552. static unsigned long global_l_p_j_ref;
  553. static unsigned long global_l_p_j_ref_freq;
  554. static int cpufreq_callback(struct notifier_block *nb,
  555. unsigned long val, void *data)
  556. {
  557. struct cpufreq_freqs *freq = data;
  558. int cpu = freq->cpu;
  559. if (freq->flags & CPUFREQ_CONST_LOOPS)
  560. return NOTIFY_OK;
  561. if (!per_cpu(l_p_j_ref, cpu)) {
  562. per_cpu(l_p_j_ref, cpu) =
  563. per_cpu(cpu_data, cpu).loops_per_jiffy;
  564. per_cpu(l_p_j_ref_freq, cpu) = freq->old;
  565. if (!global_l_p_j_ref) {
  566. global_l_p_j_ref = loops_per_jiffy;
  567. global_l_p_j_ref_freq = freq->old;
  568. }
  569. }
  570. if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
  571. (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
  572. loops_per_jiffy = cpufreq_scale(global_l_p_j_ref,
  573. global_l_p_j_ref_freq,
  574. freq->new);
  575. per_cpu(cpu_data, cpu).loops_per_jiffy =
  576. cpufreq_scale(per_cpu(l_p_j_ref, cpu),
  577. per_cpu(l_p_j_ref_freq, cpu),
  578. freq->new);
  579. }
  580. return NOTIFY_OK;
  581. }
  582. static struct notifier_block cpufreq_notifier = {
  583. .notifier_call = cpufreq_callback,
  584. };
  585. static int __init register_cpufreq_notifier(void)
  586. {
  587. return cpufreq_register_notifier(&cpufreq_notifier,
  588. CPUFREQ_TRANSITION_NOTIFIER);
  589. }
  590. core_initcall(register_cpufreq_notifier);
  591. #endif