pci_dma.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577
  1. /*
  2. * Copyright IBM Corp. 2012
  3. *
  4. * Author(s):
  5. * Jan Glauber <jang@linux.vnet.ibm.com>
  6. */
  7. #include <linux/kernel.h>
  8. #include <linux/slab.h>
  9. #include <linux/export.h>
  10. #include <linux/iommu-helper.h>
  11. #include <linux/dma-mapping.h>
  12. #include <linux/vmalloc.h>
  13. #include <linux/pci.h>
  14. #include <asm/pci_dma.h>
  15. static struct kmem_cache *dma_region_table_cache;
  16. static struct kmem_cache *dma_page_table_cache;
  17. static int s390_iommu_strict;
  18. static int zpci_refresh_global(struct zpci_dev *zdev)
  19. {
  20. return zpci_refresh_trans((u64) zdev->fh << 32, zdev->start_dma,
  21. zdev->iommu_pages * PAGE_SIZE);
  22. }
  23. unsigned long *dma_alloc_cpu_table(void)
  24. {
  25. unsigned long *table, *entry;
  26. table = kmem_cache_alloc(dma_region_table_cache, GFP_ATOMIC);
  27. if (!table)
  28. return NULL;
  29. for (entry = table; entry < table + ZPCI_TABLE_ENTRIES; entry++)
  30. *entry = ZPCI_TABLE_INVALID;
  31. return table;
  32. }
  33. static void dma_free_cpu_table(void *table)
  34. {
  35. kmem_cache_free(dma_region_table_cache, table);
  36. }
  37. static unsigned long *dma_alloc_page_table(void)
  38. {
  39. unsigned long *table, *entry;
  40. table = kmem_cache_alloc(dma_page_table_cache, GFP_ATOMIC);
  41. if (!table)
  42. return NULL;
  43. for (entry = table; entry < table + ZPCI_PT_ENTRIES; entry++)
  44. *entry = ZPCI_PTE_INVALID;
  45. return table;
  46. }
  47. static void dma_free_page_table(void *table)
  48. {
  49. kmem_cache_free(dma_page_table_cache, table);
  50. }
  51. static unsigned long *dma_get_seg_table_origin(unsigned long *entry)
  52. {
  53. unsigned long *sto;
  54. if (reg_entry_isvalid(*entry))
  55. sto = get_rt_sto(*entry);
  56. else {
  57. sto = dma_alloc_cpu_table();
  58. if (!sto)
  59. return NULL;
  60. set_rt_sto(entry, sto);
  61. validate_rt_entry(entry);
  62. entry_clr_protected(entry);
  63. }
  64. return sto;
  65. }
  66. static unsigned long *dma_get_page_table_origin(unsigned long *entry)
  67. {
  68. unsigned long *pto;
  69. if (reg_entry_isvalid(*entry))
  70. pto = get_st_pto(*entry);
  71. else {
  72. pto = dma_alloc_page_table();
  73. if (!pto)
  74. return NULL;
  75. set_st_pto(entry, pto);
  76. validate_st_entry(entry);
  77. entry_clr_protected(entry);
  78. }
  79. return pto;
  80. }
  81. unsigned long *dma_walk_cpu_trans(unsigned long *rto, dma_addr_t dma_addr)
  82. {
  83. unsigned long *sto, *pto;
  84. unsigned int rtx, sx, px;
  85. rtx = calc_rtx(dma_addr);
  86. sto = dma_get_seg_table_origin(&rto[rtx]);
  87. if (!sto)
  88. return NULL;
  89. sx = calc_sx(dma_addr);
  90. pto = dma_get_page_table_origin(&sto[sx]);
  91. if (!pto)
  92. return NULL;
  93. px = calc_px(dma_addr);
  94. return &pto[px];
  95. }
  96. void dma_update_cpu_trans(unsigned long *entry, void *page_addr, int flags)
  97. {
  98. if (flags & ZPCI_PTE_INVALID) {
  99. invalidate_pt_entry(entry);
  100. } else {
  101. set_pt_pfaa(entry, page_addr);
  102. validate_pt_entry(entry);
  103. }
  104. if (flags & ZPCI_TABLE_PROTECTED)
  105. entry_set_protected(entry);
  106. else
  107. entry_clr_protected(entry);
  108. }
  109. static int dma_update_trans(struct zpci_dev *zdev, unsigned long pa,
  110. dma_addr_t dma_addr, size_t size, int flags)
  111. {
  112. unsigned int nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
  113. u8 *page_addr = (u8 *) (pa & PAGE_MASK);
  114. dma_addr_t start_dma_addr = dma_addr;
  115. unsigned long irq_flags;
  116. unsigned long *entry;
  117. int i, rc = 0;
  118. if (!nr_pages)
  119. return -EINVAL;
  120. spin_lock_irqsave(&zdev->dma_table_lock, irq_flags);
  121. if (!zdev->dma_table) {
  122. rc = -EINVAL;
  123. goto no_refresh;
  124. }
  125. for (i = 0; i < nr_pages; i++) {
  126. entry = dma_walk_cpu_trans(zdev->dma_table, dma_addr);
  127. if (!entry) {
  128. rc = -ENOMEM;
  129. goto undo_cpu_trans;
  130. }
  131. dma_update_cpu_trans(entry, page_addr, flags);
  132. page_addr += PAGE_SIZE;
  133. dma_addr += PAGE_SIZE;
  134. }
  135. /*
  136. * With zdev->tlb_refresh == 0, rpcit is not required to establish new
  137. * translations when previously invalid translation-table entries are
  138. * validated. With lazy unmap, it also is skipped for previously valid
  139. * entries, but a global rpcit is then required before any address can
  140. * be re-used, i.e. after each iommu bitmap wrap-around.
  141. */
  142. if (!zdev->tlb_refresh &&
  143. (!s390_iommu_strict ||
  144. ((flags & ZPCI_PTE_VALID_MASK) == ZPCI_PTE_VALID)))
  145. goto no_refresh;
  146. rc = zpci_refresh_trans((u64) zdev->fh << 32, start_dma_addr,
  147. nr_pages * PAGE_SIZE);
  148. undo_cpu_trans:
  149. if (rc && ((flags & ZPCI_PTE_VALID_MASK) == ZPCI_PTE_VALID)) {
  150. flags = ZPCI_PTE_INVALID;
  151. while (i-- > 0) {
  152. page_addr -= PAGE_SIZE;
  153. dma_addr -= PAGE_SIZE;
  154. entry = dma_walk_cpu_trans(zdev->dma_table, dma_addr);
  155. if (!entry)
  156. break;
  157. dma_update_cpu_trans(entry, page_addr, flags);
  158. }
  159. }
  160. no_refresh:
  161. spin_unlock_irqrestore(&zdev->dma_table_lock, irq_flags);
  162. return rc;
  163. }
  164. void dma_free_seg_table(unsigned long entry)
  165. {
  166. unsigned long *sto = get_rt_sto(entry);
  167. int sx;
  168. for (sx = 0; sx < ZPCI_TABLE_ENTRIES; sx++)
  169. if (reg_entry_isvalid(sto[sx]))
  170. dma_free_page_table(get_st_pto(sto[sx]));
  171. dma_free_cpu_table(sto);
  172. }
  173. void dma_cleanup_tables(unsigned long *table)
  174. {
  175. int rtx;
  176. if (!table)
  177. return;
  178. for (rtx = 0; rtx < ZPCI_TABLE_ENTRIES; rtx++)
  179. if (reg_entry_isvalid(table[rtx]))
  180. dma_free_seg_table(table[rtx]);
  181. dma_free_cpu_table(table);
  182. }
  183. static unsigned long __dma_alloc_iommu(struct device *dev,
  184. unsigned long start, int size)
  185. {
  186. struct zpci_dev *zdev = to_zpci(to_pci_dev(dev));
  187. unsigned long boundary_size;
  188. boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
  189. PAGE_SIZE) >> PAGE_SHIFT;
  190. return iommu_area_alloc(zdev->iommu_bitmap, zdev->iommu_pages,
  191. start, size, zdev->start_dma >> PAGE_SHIFT,
  192. boundary_size, 0);
  193. }
  194. static unsigned long dma_alloc_iommu(struct device *dev, int size)
  195. {
  196. struct zpci_dev *zdev = to_zpci(to_pci_dev(dev));
  197. unsigned long offset, flags;
  198. int wrap = 0;
  199. spin_lock_irqsave(&zdev->iommu_bitmap_lock, flags);
  200. offset = __dma_alloc_iommu(dev, zdev->next_bit, size);
  201. if (offset == -1) {
  202. /* wrap-around */
  203. offset = __dma_alloc_iommu(dev, 0, size);
  204. wrap = 1;
  205. }
  206. if (offset != -1) {
  207. zdev->next_bit = offset + size;
  208. if (!zdev->tlb_refresh && !s390_iommu_strict && wrap)
  209. /* global flush after wrap-around with lazy unmap */
  210. zpci_refresh_global(zdev);
  211. }
  212. spin_unlock_irqrestore(&zdev->iommu_bitmap_lock, flags);
  213. return offset;
  214. }
  215. static void dma_free_iommu(struct device *dev, unsigned long offset, int size)
  216. {
  217. struct zpci_dev *zdev = to_zpci(to_pci_dev(dev));
  218. unsigned long flags;
  219. spin_lock_irqsave(&zdev->iommu_bitmap_lock, flags);
  220. if (!zdev->iommu_bitmap)
  221. goto out;
  222. bitmap_clear(zdev->iommu_bitmap, offset, size);
  223. /*
  224. * Lazy flush for unmap: need to move next_bit to avoid address re-use
  225. * until wrap-around.
  226. */
  227. if (!s390_iommu_strict && offset >= zdev->next_bit)
  228. zdev->next_bit = offset + size;
  229. out:
  230. spin_unlock_irqrestore(&zdev->iommu_bitmap_lock, flags);
  231. }
  232. static inline void zpci_err_dma(unsigned long rc, unsigned long addr)
  233. {
  234. struct {
  235. unsigned long rc;
  236. unsigned long addr;
  237. } __packed data = {rc, addr};
  238. zpci_err_hex(&data, sizeof(data));
  239. }
  240. static dma_addr_t s390_dma_map_pages(struct device *dev, struct page *page,
  241. unsigned long offset, size_t size,
  242. enum dma_data_direction direction,
  243. unsigned long attrs)
  244. {
  245. struct zpci_dev *zdev = to_zpci(to_pci_dev(dev));
  246. unsigned long nr_pages, iommu_page_index;
  247. unsigned long pa = page_to_phys(page) + offset;
  248. int flags = ZPCI_PTE_VALID;
  249. dma_addr_t dma_addr;
  250. int ret;
  251. /* This rounds up number of pages based on size and offset */
  252. nr_pages = iommu_num_pages(pa, size, PAGE_SIZE);
  253. iommu_page_index = dma_alloc_iommu(dev, nr_pages);
  254. if (iommu_page_index == -1) {
  255. ret = -ENOSPC;
  256. goto out_err;
  257. }
  258. /* Use rounded up size */
  259. size = nr_pages * PAGE_SIZE;
  260. dma_addr = zdev->start_dma + iommu_page_index * PAGE_SIZE;
  261. if (dma_addr + size > zdev->end_dma) {
  262. ret = -ERANGE;
  263. goto out_free;
  264. }
  265. if (direction == DMA_NONE || direction == DMA_TO_DEVICE)
  266. flags |= ZPCI_TABLE_PROTECTED;
  267. ret = dma_update_trans(zdev, pa, dma_addr, size, flags);
  268. if (ret)
  269. goto out_free;
  270. atomic64_add(nr_pages, &zdev->mapped_pages);
  271. return dma_addr + (offset & ~PAGE_MASK);
  272. out_free:
  273. dma_free_iommu(dev, iommu_page_index, nr_pages);
  274. out_err:
  275. zpci_err("map error:\n");
  276. zpci_err_dma(ret, pa);
  277. return DMA_ERROR_CODE;
  278. }
  279. static void s390_dma_unmap_pages(struct device *dev, dma_addr_t dma_addr,
  280. size_t size, enum dma_data_direction direction,
  281. unsigned long attrs)
  282. {
  283. struct zpci_dev *zdev = to_zpci(to_pci_dev(dev));
  284. unsigned long iommu_page_index;
  285. int npages, ret;
  286. npages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
  287. dma_addr = dma_addr & PAGE_MASK;
  288. ret = dma_update_trans(zdev, 0, dma_addr, npages * PAGE_SIZE,
  289. ZPCI_PTE_INVALID);
  290. if (ret) {
  291. zpci_err("unmap error:\n");
  292. zpci_err_dma(ret, dma_addr);
  293. return;
  294. }
  295. atomic64_add(npages, &zdev->unmapped_pages);
  296. iommu_page_index = (dma_addr - zdev->start_dma) >> PAGE_SHIFT;
  297. dma_free_iommu(dev, iommu_page_index, npages);
  298. }
  299. static void *s390_dma_alloc(struct device *dev, size_t size,
  300. dma_addr_t *dma_handle, gfp_t flag,
  301. unsigned long attrs)
  302. {
  303. struct zpci_dev *zdev = to_zpci(to_pci_dev(dev));
  304. struct page *page;
  305. unsigned long pa;
  306. dma_addr_t map;
  307. size = PAGE_ALIGN(size);
  308. page = alloc_pages(flag, get_order(size));
  309. if (!page)
  310. return NULL;
  311. pa = page_to_phys(page);
  312. memset((void *) pa, 0, size);
  313. map = s390_dma_map_pages(dev, page, 0, size, DMA_BIDIRECTIONAL, 0);
  314. if (dma_mapping_error(dev, map)) {
  315. free_pages(pa, get_order(size));
  316. return NULL;
  317. }
  318. atomic64_add(size / PAGE_SIZE, &zdev->allocated_pages);
  319. if (dma_handle)
  320. *dma_handle = map;
  321. return (void *) pa;
  322. }
  323. static void s390_dma_free(struct device *dev, size_t size,
  324. void *pa, dma_addr_t dma_handle,
  325. unsigned long attrs)
  326. {
  327. struct zpci_dev *zdev = to_zpci(to_pci_dev(dev));
  328. size = PAGE_ALIGN(size);
  329. atomic64_sub(size / PAGE_SIZE, &zdev->allocated_pages);
  330. s390_dma_unmap_pages(dev, dma_handle, size, DMA_BIDIRECTIONAL, 0);
  331. free_pages((unsigned long) pa, get_order(size));
  332. }
  333. static int s390_dma_map_sg(struct device *dev, struct scatterlist *sg,
  334. int nr_elements, enum dma_data_direction dir,
  335. unsigned long attrs)
  336. {
  337. int mapped_elements = 0;
  338. struct scatterlist *s;
  339. int i;
  340. for_each_sg(sg, s, nr_elements, i) {
  341. struct page *page = sg_page(s);
  342. s->dma_address = s390_dma_map_pages(dev, page, s->offset,
  343. s->length, dir, 0);
  344. if (!dma_mapping_error(dev, s->dma_address)) {
  345. s->dma_length = s->length;
  346. mapped_elements++;
  347. } else
  348. goto unmap;
  349. }
  350. out:
  351. return mapped_elements;
  352. unmap:
  353. for_each_sg(sg, s, mapped_elements, i) {
  354. if (s->dma_address)
  355. s390_dma_unmap_pages(dev, s->dma_address, s->dma_length,
  356. dir, 0);
  357. s->dma_address = 0;
  358. s->dma_length = 0;
  359. }
  360. mapped_elements = 0;
  361. goto out;
  362. }
  363. static void s390_dma_unmap_sg(struct device *dev, struct scatterlist *sg,
  364. int nr_elements, enum dma_data_direction dir,
  365. unsigned long attrs)
  366. {
  367. struct scatterlist *s;
  368. int i;
  369. for_each_sg(sg, s, nr_elements, i) {
  370. s390_dma_unmap_pages(dev, s->dma_address, s->dma_length, dir,
  371. 0);
  372. s->dma_address = 0;
  373. s->dma_length = 0;
  374. }
  375. }
  376. int zpci_dma_init_device(struct zpci_dev *zdev)
  377. {
  378. int rc;
  379. /*
  380. * At this point, if the device is part of an IOMMU domain, this would
  381. * be a strong hint towards a bug in the IOMMU API (common) code and/or
  382. * simultaneous access via IOMMU and DMA API. So let's issue a warning.
  383. */
  384. WARN_ON(zdev->s390_domain);
  385. spin_lock_init(&zdev->iommu_bitmap_lock);
  386. spin_lock_init(&zdev->dma_table_lock);
  387. zdev->dma_table = dma_alloc_cpu_table();
  388. if (!zdev->dma_table) {
  389. rc = -ENOMEM;
  390. goto out;
  391. }
  392. /*
  393. * Restrict the iommu bitmap size to the minimum of the following:
  394. * - main memory size
  395. * - 3-level pagetable address limit minus start_dma offset
  396. * - DMA address range allowed by the hardware (clp query pci fn)
  397. *
  398. * Also set zdev->end_dma to the actual end address of the usable
  399. * range, instead of the theoretical maximum as reported by hardware.
  400. */
  401. zdev->start_dma = PAGE_ALIGN(zdev->start_dma);
  402. zdev->iommu_size = min3((u64) high_memory,
  403. ZPCI_TABLE_SIZE_RT - zdev->start_dma,
  404. zdev->end_dma - zdev->start_dma + 1);
  405. zdev->end_dma = zdev->start_dma + zdev->iommu_size - 1;
  406. zdev->iommu_pages = zdev->iommu_size >> PAGE_SHIFT;
  407. zdev->iommu_bitmap = vzalloc(zdev->iommu_pages / 8);
  408. if (!zdev->iommu_bitmap) {
  409. rc = -ENOMEM;
  410. goto free_dma_table;
  411. }
  412. rc = zpci_register_ioat(zdev, 0, zdev->start_dma, zdev->end_dma,
  413. (u64) zdev->dma_table);
  414. if (rc)
  415. goto free_bitmap;
  416. return 0;
  417. free_bitmap:
  418. vfree(zdev->iommu_bitmap);
  419. zdev->iommu_bitmap = NULL;
  420. free_dma_table:
  421. dma_free_cpu_table(zdev->dma_table);
  422. zdev->dma_table = NULL;
  423. out:
  424. return rc;
  425. }
  426. void zpci_dma_exit_device(struct zpci_dev *zdev)
  427. {
  428. /*
  429. * At this point, if the device is part of an IOMMU domain, this would
  430. * be a strong hint towards a bug in the IOMMU API (common) code and/or
  431. * simultaneous access via IOMMU and DMA API. So let's issue a warning.
  432. */
  433. WARN_ON(zdev->s390_domain);
  434. zpci_unregister_ioat(zdev, 0);
  435. dma_cleanup_tables(zdev->dma_table);
  436. zdev->dma_table = NULL;
  437. vfree(zdev->iommu_bitmap);
  438. zdev->iommu_bitmap = NULL;
  439. zdev->next_bit = 0;
  440. }
  441. static int __init dma_alloc_cpu_table_caches(void)
  442. {
  443. dma_region_table_cache = kmem_cache_create("PCI_DMA_region_tables",
  444. ZPCI_TABLE_SIZE, ZPCI_TABLE_ALIGN,
  445. 0, NULL);
  446. if (!dma_region_table_cache)
  447. return -ENOMEM;
  448. dma_page_table_cache = kmem_cache_create("PCI_DMA_page_tables",
  449. ZPCI_PT_SIZE, ZPCI_PT_ALIGN,
  450. 0, NULL);
  451. if (!dma_page_table_cache) {
  452. kmem_cache_destroy(dma_region_table_cache);
  453. return -ENOMEM;
  454. }
  455. return 0;
  456. }
  457. int __init zpci_dma_init(void)
  458. {
  459. return dma_alloc_cpu_table_caches();
  460. }
  461. void zpci_dma_exit(void)
  462. {
  463. kmem_cache_destroy(dma_page_table_cache);
  464. kmem_cache_destroy(dma_region_table_cache);
  465. }
  466. #define PREALLOC_DMA_DEBUG_ENTRIES (1 << 16)
  467. static int __init dma_debug_do_init(void)
  468. {
  469. dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
  470. return 0;
  471. }
  472. fs_initcall(dma_debug_do_init);
  473. struct dma_map_ops s390_pci_dma_ops = {
  474. .alloc = s390_dma_alloc,
  475. .free = s390_dma_free,
  476. .map_sg = s390_dma_map_sg,
  477. .unmap_sg = s390_dma_unmap_sg,
  478. .map_page = s390_dma_map_pages,
  479. .unmap_page = s390_dma_unmap_pages,
  480. /* if we support direct DMA this must be conditional */
  481. .is_phys = 0,
  482. /* dma_supported is unconditionally true without a callback */
  483. };
  484. EXPORT_SYMBOL_GPL(s390_pci_dma_ops);
  485. static int __init s390_iommu_setup(char *str)
  486. {
  487. if (!strncmp(str, "strict", 6))
  488. s390_iommu_strict = 1;
  489. return 0;
  490. }
  491. __setup("s390_iommu=", s390_iommu_setup);