|
@@ -23,12 +23,13 @@
|
|
|
#include "bcache.h"
|
|
|
#include "btree.h"
|
|
|
#include "debug.h"
|
|
|
-#include "request.h"
|
|
|
#include "writeback.h"
|
|
|
|
|
|
#include <linux/slab.h>
|
|
|
#include <linux/bitops.h>
|
|
|
+#include <linux/freezer.h>
|
|
|
#include <linux/hash.h>
|
|
|
+#include <linux/kthread.h>
|
|
|
#include <linux/prefetch.h>
|
|
|
#include <linux/random.h>
|
|
|
#include <linux/rcupdate.h>
|
|
@@ -88,15 +89,13 @@
|
|
|
* Test module load/unload
|
|
|
*/
|
|
|
|
|
|
-static const char * const op_types[] = {
|
|
|
- "insert", "replace"
|
|
|
+enum {
|
|
|
+ BTREE_INSERT_STATUS_INSERT,
|
|
|
+ BTREE_INSERT_STATUS_BACK_MERGE,
|
|
|
+ BTREE_INSERT_STATUS_OVERWROTE,
|
|
|
+ BTREE_INSERT_STATUS_FRONT_MERGE,
|
|
|
};
|
|
|
|
|
|
-static const char *op_type(struct btree_op *op)
|
|
|
-{
|
|
|
- return op_types[op->type];
|
|
|
-}
|
|
|
-
|
|
|
#define MAX_NEED_GC 64
|
|
|
#define MAX_SAVE_PRIO 72
|
|
|
|
|
@@ -105,23 +104,89 @@ static const char *op_type(struct btree_op *op)
|
|
|
#define PTR_HASH(c, k) \
|
|
|
(((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0))
|
|
|
|
|
|
-struct workqueue_struct *bch_gc_wq;
|
|
|
static struct workqueue_struct *btree_io_wq;
|
|
|
|
|
|
-void bch_btree_op_init_stack(struct btree_op *op)
|
|
|
+static inline bool should_split(struct btree *b)
|
|
|
{
|
|
|
- memset(op, 0, sizeof(struct btree_op));
|
|
|
- closure_init_stack(&op->cl);
|
|
|
- op->lock = -1;
|
|
|
- bch_keylist_init(&op->keys);
|
|
|
+ struct bset *i = write_block(b);
|
|
|
+ return b->written >= btree_blocks(b) ||
|
|
|
+ (b->written + __set_blocks(i, i->keys + 15, b->c)
|
|
|
+ > btree_blocks(b));
|
|
|
}
|
|
|
|
|
|
+#define insert_lock(s, b) ((b)->level <= (s)->lock)
|
|
|
+
|
|
|
+/*
|
|
|
+ * These macros are for recursing down the btree - they handle the details of
|
|
|
+ * locking and looking up nodes in the cache for you. They're best treated as
|
|
|
+ * mere syntax when reading code that uses them.
|
|
|
+ *
|
|
|
+ * op->lock determines whether we take a read or a write lock at a given depth.
|
|
|
+ * If you've got a read lock and find that you need a write lock (i.e. you're
|
|
|
+ * going to have to split), set op->lock and return -EINTR; btree_root() will
|
|
|
+ * call you again and you'll have the correct lock.
|
|
|
+ */
|
|
|
+
|
|
|
+/**
|
|
|
+ * btree - recurse down the btree on a specified key
|
|
|
+ * @fn: function to call, which will be passed the child node
|
|
|
+ * @key: key to recurse on
|
|
|
+ * @b: parent btree node
|
|
|
+ * @op: pointer to struct btree_op
|
|
|
+ */
|
|
|
+#define btree(fn, key, b, op, ...) \
|
|
|
+({ \
|
|
|
+ int _r, l = (b)->level - 1; \
|
|
|
+ bool _w = l <= (op)->lock; \
|
|
|
+ struct btree *_child = bch_btree_node_get((b)->c, key, l, _w); \
|
|
|
+ if (!IS_ERR(_child)) { \
|
|
|
+ _child->parent = (b); \
|
|
|
+ _r = bch_btree_ ## fn(_child, op, ##__VA_ARGS__); \
|
|
|
+ rw_unlock(_w, _child); \
|
|
|
+ } else \
|
|
|
+ _r = PTR_ERR(_child); \
|
|
|
+ _r; \
|
|
|
+})
|
|
|
+
|
|
|
+/**
|
|
|
+ * btree_root - call a function on the root of the btree
|
|
|
+ * @fn: function to call, which will be passed the child node
|
|
|
+ * @c: cache set
|
|
|
+ * @op: pointer to struct btree_op
|
|
|
+ */
|
|
|
+#define btree_root(fn, c, op, ...) \
|
|
|
+({ \
|
|
|
+ int _r = -EINTR; \
|
|
|
+ do { \
|
|
|
+ struct btree *_b = (c)->root; \
|
|
|
+ bool _w = insert_lock(op, _b); \
|
|
|
+ rw_lock(_w, _b, _b->level); \
|
|
|
+ if (_b == (c)->root && \
|
|
|
+ _w == insert_lock(op, _b)) { \
|
|
|
+ _b->parent = NULL; \
|
|
|
+ _r = bch_btree_ ## fn(_b, op, ##__VA_ARGS__); \
|
|
|
+ } \
|
|
|
+ rw_unlock(_w, _b); \
|
|
|
+ bch_cannibalize_unlock(c); \
|
|
|
+ if (_r == -ENOSPC) { \
|
|
|
+ wait_event((c)->try_wait, \
|
|
|
+ !(c)->try_harder); \
|
|
|
+ _r = -EINTR; \
|
|
|
+ } \
|
|
|
+ } while (_r == -EINTR); \
|
|
|
+ \
|
|
|
+ _r; \
|
|
|
+})
|
|
|
+
|
|
|
/* Btree key manipulation */
|
|
|
|
|
|
-static void bkey_put(struct cache_set *c, struct bkey *k, int level)
|
|
|
+void bkey_put(struct cache_set *c, struct bkey *k)
|
|
|
{
|
|
|
- if ((level && KEY_OFFSET(k)) || !level)
|
|
|
- __bkey_put(c, k);
|
|
|
+ unsigned i;
|
|
|
+
|
|
|
+ for (i = 0; i < KEY_PTRS(k); i++)
|
|
|
+ if (ptr_available(c, k, i))
|
|
|
+ atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin);
|
|
|
}
|
|
|
|
|
|
/* Btree IO */
|
|
@@ -145,6 +210,10 @@ static void bch_btree_node_read_done(struct btree *b)
|
|
|
iter->size = b->c->sb.bucket_size / b->c->sb.block_size;
|
|
|
iter->used = 0;
|
|
|
|
|
|
+#ifdef CONFIG_BCACHE_DEBUG
|
|
|
+ iter->b = b;
|
|
|
+#endif
|
|
|
+
|
|
|
if (!i->seq)
|
|
|
goto err;
|
|
|
|
|
@@ -160,7 +229,7 @@ static void bch_btree_node_read_done(struct btree *b)
|
|
|
goto err;
|
|
|
|
|
|
err = "bad magic";
|
|
|
- if (i->magic != bset_magic(b->c))
|
|
|
+ if (i->magic != bset_magic(&b->c->sb))
|
|
|
goto err;
|
|
|
|
|
|
err = "bad checksum";
|
|
@@ -248,10 +317,7 @@ void bch_btree_node_read(struct btree *b)
|
|
|
goto err;
|
|
|
|
|
|
bch_btree_node_read_done(b);
|
|
|
-
|
|
|
- spin_lock(&b->c->btree_read_time_lock);
|
|
|
bch_time_stats_update(&b->c->btree_read_time, start_time);
|
|
|
- spin_unlock(&b->c->btree_read_time_lock);
|
|
|
|
|
|
return;
|
|
|
err:
|
|
@@ -327,7 +393,7 @@ static void do_btree_node_write(struct btree *b)
|
|
|
b->bio = bch_bbio_alloc(b->c);
|
|
|
|
|
|
b->bio->bi_end_io = btree_node_write_endio;
|
|
|
- b->bio->bi_private = &b->io.cl;
|
|
|
+ b->bio->bi_private = cl;
|
|
|
b->bio->bi_rw = REQ_META|WRITE_SYNC|REQ_FUA;
|
|
|
b->bio->bi_size = set_blocks(i, b->c) * block_bytes(b->c);
|
|
|
bch_bio_map(b->bio, i);
|
|
@@ -383,7 +449,7 @@ void bch_btree_node_write(struct btree *b, struct closure *parent)
|
|
|
BUG_ON(b->written >= btree_blocks(b));
|
|
|
BUG_ON(b->written && !i->keys);
|
|
|
BUG_ON(b->sets->data->seq != i->seq);
|
|
|
- bch_check_key_order(b, i);
|
|
|
+ bch_check_keys(b, "writing");
|
|
|
|
|
|
cancel_delayed_work(&b->work);
|
|
|
|
|
@@ -405,6 +471,15 @@ void bch_btree_node_write(struct btree *b, struct closure *parent)
|
|
|
bch_bset_init_next(b);
|
|
|
}
|
|
|
|
|
|
+static void bch_btree_node_write_sync(struct btree *b)
|
|
|
+{
|
|
|
+ struct closure cl;
|
|
|
+
|
|
|
+ closure_init_stack(&cl);
|
|
|
+ bch_btree_node_write(b, &cl);
|
|
|
+ closure_sync(&cl);
|
|
|
+}
|
|
|
+
|
|
|
static void btree_node_write_work(struct work_struct *w)
|
|
|
{
|
|
|
struct btree *b = container_of(to_delayed_work(w), struct btree, work);
|
|
@@ -416,7 +491,7 @@ static void btree_node_write_work(struct work_struct *w)
|
|
|
rw_unlock(true, b);
|
|
|
}
|
|
|
|
|
|
-static void bch_btree_leaf_dirty(struct btree *b, struct btree_op *op)
|
|
|
+static void bch_btree_leaf_dirty(struct btree *b, atomic_t *journal_ref)
|
|
|
{
|
|
|
struct bset *i = b->sets[b->nsets].data;
|
|
|
struct btree_write *w = btree_current_write(b);
|
|
@@ -429,15 +504,15 @@ static void bch_btree_leaf_dirty(struct btree *b, struct btree_op *op)
|
|
|
|
|
|
set_btree_node_dirty(b);
|
|
|
|
|
|
- if (op && op->journal) {
|
|
|
+ if (journal_ref) {
|
|
|
if (w->journal &&
|
|
|
- journal_pin_cmp(b->c, w, op)) {
|
|
|
+ journal_pin_cmp(b->c, w->journal, journal_ref)) {
|
|
|
atomic_dec_bug(w->journal);
|
|
|
w->journal = NULL;
|
|
|
}
|
|
|
|
|
|
if (!w->journal) {
|
|
|
- w->journal = op->journal;
|
|
|
+ w->journal = journal_ref;
|
|
|
atomic_inc(w->journal);
|
|
|
}
|
|
|
}
|
|
@@ -566,33 +641,32 @@ static struct btree *mca_bucket_alloc(struct cache_set *c,
|
|
|
return b;
|
|
|
}
|
|
|
|
|
|
-static int mca_reap(struct btree *b, struct closure *cl, unsigned min_order)
|
|
|
+static int mca_reap(struct btree *b, unsigned min_order, bool flush)
|
|
|
{
|
|
|
+ struct closure cl;
|
|
|
+
|
|
|
+ closure_init_stack(&cl);
|
|
|
lockdep_assert_held(&b->c->bucket_lock);
|
|
|
|
|
|
if (!down_write_trylock(&b->lock))
|
|
|
return -ENOMEM;
|
|
|
|
|
|
- if (b->page_order < min_order) {
|
|
|
+ BUG_ON(btree_node_dirty(b) && !b->sets[0].data);
|
|
|
+
|
|
|
+ if (b->page_order < min_order ||
|
|
|
+ (!flush &&
|
|
|
+ (btree_node_dirty(b) ||
|
|
|
+ atomic_read(&b->io.cl.remaining) != -1))) {
|
|
|
rw_unlock(true, b);
|
|
|
return -ENOMEM;
|
|
|
}
|
|
|
|
|
|
- BUG_ON(btree_node_dirty(b) && !b->sets[0].data);
|
|
|
-
|
|
|
- if (cl && btree_node_dirty(b))
|
|
|
- bch_btree_node_write(b, NULL);
|
|
|
-
|
|
|
- if (cl)
|
|
|
- closure_wait_event_async(&b->io.wait, cl,
|
|
|
- atomic_read(&b->io.cl.remaining) == -1);
|
|
|
+ if (btree_node_dirty(b))
|
|
|
+ bch_btree_node_write_sync(b);
|
|
|
|
|
|
- if (btree_node_dirty(b) ||
|
|
|
- !closure_is_unlocked(&b->io.cl) ||
|
|
|
- work_pending(&b->work.work)) {
|
|
|
- rw_unlock(true, b);
|
|
|
- return -EAGAIN;
|
|
|
- }
|
|
|
+ /* wait for any in flight btree write */
|
|
|
+ closure_wait_event(&b->io.wait, &cl,
|
|
|
+ atomic_read(&b->io.cl.remaining) == -1);
|
|
|
|
|
|
return 0;
|
|
|
}
|
|
@@ -633,7 +707,7 @@ static unsigned long bch_mca_scan(struct shrinker *shrink,
|
|
|
break;
|
|
|
|
|
|
if (++i > 3 &&
|
|
|
- !mca_reap(b, NULL, 0)) {
|
|
|
+ !mca_reap(b, 0, false)) {
|
|
|
mca_data_free(b);
|
|
|
rw_unlock(true, b);
|
|
|
freed++;
|
|
@@ -652,7 +726,7 @@ static unsigned long bch_mca_scan(struct shrinker *shrink,
|
|
|
list_rotate_left(&c->btree_cache);
|
|
|
|
|
|
if (!b->accessed &&
|
|
|
- !mca_reap(b, NULL, 0)) {
|
|
|
+ !mca_reap(b, 0, false)) {
|
|
|
mca_bucket_free(b);
|
|
|
mca_data_free(b);
|
|
|
rw_unlock(true, b);
|
|
@@ -723,12 +797,9 @@ int bch_btree_cache_alloc(struct cache_set *c)
|
|
|
{
|
|
|
unsigned i;
|
|
|
|
|
|
- /* XXX: doesn't check for errors */
|
|
|
-
|
|
|
- closure_init_unlocked(&c->gc);
|
|
|
-
|
|
|
for (i = 0; i < mca_reserve(c); i++)
|
|
|
- mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL);
|
|
|
+ if (!mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL))
|
|
|
+ return -ENOMEM;
|
|
|
|
|
|
list_splice_init(&c->btree_cache,
|
|
|
&c->btree_cache_freeable);
|
|
@@ -775,52 +846,27 @@ out:
|
|
|
return b;
|
|
|
}
|
|
|
|
|
|
-static struct btree *mca_cannibalize(struct cache_set *c, struct bkey *k,
|
|
|
- int level, struct closure *cl)
|
|
|
+static struct btree *mca_cannibalize(struct cache_set *c, struct bkey *k)
|
|
|
{
|
|
|
- int ret = -ENOMEM;
|
|
|
- struct btree *i;
|
|
|
+ struct btree *b;
|
|
|
|
|
|
trace_bcache_btree_cache_cannibalize(c);
|
|
|
|
|
|
- if (!cl)
|
|
|
- return ERR_PTR(-ENOMEM);
|
|
|
-
|
|
|
- /*
|
|
|
- * Trying to free up some memory - i.e. reuse some btree nodes - may
|
|
|
- * require initiating IO to flush the dirty part of the node. If we're
|
|
|
- * running under generic_make_request(), that IO will never finish and
|
|
|
- * we would deadlock. Returning -EAGAIN causes the cache lookup code to
|
|
|
- * punt to workqueue and retry.
|
|
|
- */
|
|
|
- if (current->bio_list)
|
|
|
- return ERR_PTR(-EAGAIN);
|
|
|
-
|
|
|
- if (c->try_harder && c->try_harder != cl) {
|
|
|
- closure_wait_event_async(&c->try_wait, cl, !c->try_harder);
|
|
|
- return ERR_PTR(-EAGAIN);
|
|
|
- }
|
|
|
+ if (!c->try_harder) {
|
|
|
+ c->try_harder = current;
|
|
|
+ c->try_harder_start = local_clock();
|
|
|
+ } else if (c->try_harder != current)
|
|
|
+ return ERR_PTR(-ENOSPC);
|
|
|
|
|
|
- c->try_harder = cl;
|
|
|
- c->try_harder_start = local_clock();
|
|
|
-retry:
|
|
|
- list_for_each_entry_reverse(i, &c->btree_cache, list) {
|
|
|
- int r = mca_reap(i, cl, btree_order(k));
|
|
|
- if (!r)
|
|
|
- return i;
|
|
|
- if (r != -ENOMEM)
|
|
|
- ret = r;
|
|
|
- }
|
|
|
+ list_for_each_entry_reverse(b, &c->btree_cache, list)
|
|
|
+ if (!mca_reap(b, btree_order(k), false))
|
|
|
+ return b;
|
|
|
|
|
|
- if (ret == -EAGAIN &&
|
|
|
- closure_blocking(cl)) {
|
|
|
- mutex_unlock(&c->bucket_lock);
|
|
|
- closure_sync(cl);
|
|
|
- mutex_lock(&c->bucket_lock);
|
|
|
- goto retry;
|
|
|
- }
|
|
|
+ list_for_each_entry_reverse(b, &c->btree_cache, list)
|
|
|
+ if (!mca_reap(b, btree_order(k), true))
|
|
|
+ return b;
|
|
|
|
|
|
- return ERR_PTR(ret);
|
|
|
+ return ERR_PTR(-ENOMEM);
|
|
|
}
|
|
|
|
|
|
/*
|
|
@@ -829,20 +875,21 @@ retry:
|
|
|
* cannibalize_bucket() will take. This means every time we unlock the root of
|
|
|
* the btree, we need to release this lock if we have it held.
|
|
|
*/
|
|
|
-void bch_cannibalize_unlock(struct cache_set *c, struct closure *cl)
|
|
|
+static void bch_cannibalize_unlock(struct cache_set *c)
|
|
|
{
|
|
|
- if (c->try_harder == cl) {
|
|
|
+ if (c->try_harder == current) {
|
|
|
bch_time_stats_update(&c->try_harder_time, c->try_harder_start);
|
|
|
c->try_harder = NULL;
|
|
|
- __closure_wake_up(&c->try_wait);
|
|
|
+ wake_up(&c->try_wait);
|
|
|
}
|
|
|
}
|
|
|
|
|
|
-static struct btree *mca_alloc(struct cache_set *c, struct bkey *k,
|
|
|
- int level, struct closure *cl)
|
|
|
+static struct btree *mca_alloc(struct cache_set *c, struct bkey *k, int level)
|
|
|
{
|
|
|
struct btree *b;
|
|
|
|
|
|
+ BUG_ON(current->bio_list);
|
|
|
+
|
|
|
lockdep_assert_held(&c->bucket_lock);
|
|
|
|
|
|
if (mca_find(c, k))
|
|
@@ -852,14 +899,14 @@ static struct btree *mca_alloc(struct cache_set *c, struct bkey *k,
|
|
|
* the list. Check if there's any freed nodes there:
|
|
|
*/
|
|
|
list_for_each_entry(b, &c->btree_cache_freeable, list)
|
|
|
- if (!mca_reap(b, NULL, btree_order(k)))
|
|
|
+ if (!mca_reap(b, btree_order(k), false))
|
|
|
goto out;
|
|
|
|
|
|
/* We never free struct btree itself, just the memory that holds the on
|
|
|
* disk node. Check the freed list before allocating a new one:
|
|
|
*/
|
|
|
list_for_each_entry(b, &c->btree_cache_freed, list)
|
|
|
- if (!mca_reap(b, NULL, 0)) {
|
|
|
+ if (!mca_reap(b, 0, false)) {
|
|
|
mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO);
|
|
|
if (!b->sets[0].data)
|
|
|
goto err;
|
|
@@ -884,6 +931,7 @@ out:
|
|
|
|
|
|
lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_);
|
|
|
b->level = level;
|
|
|
+ b->parent = (void *) ~0UL;
|
|
|
|
|
|
mca_reinit(b);
|
|
|
|
|
@@ -892,7 +940,7 @@ err:
|
|
|
if (b)
|
|
|
rw_unlock(true, b);
|
|
|
|
|
|
- b = mca_cannibalize(c, k, level, cl);
|
|
|
+ b = mca_cannibalize(c, k);
|
|
|
if (!IS_ERR(b))
|
|
|
goto out;
|
|
|
|
|
@@ -903,17 +951,15 @@ err:
|
|
|
* bch_btree_node_get - find a btree node in the cache and lock it, reading it
|
|
|
* in from disk if necessary.
|
|
|
*
|
|
|
- * If IO is necessary, it uses the closure embedded in struct btree_op to wait;
|
|
|
- * if that closure is in non blocking mode, will return -EAGAIN.
|
|
|
+ * If IO is necessary and running under generic_make_request, returns -EAGAIN.
|
|
|
*
|
|
|
* The btree node will have either a read or a write lock held, depending on
|
|
|
* level and op->lock.
|
|
|
*/
|
|
|
struct btree *bch_btree_node_get(struct cache_set *c, struct bkey *k,
|
|
|
- int level, struct btree_op *op)
|
|
|
+ int level, bool write)
|
|
|
{
|
|
|
int i = 0;
|
|
|
- bool write = level <= op->lock;
|
|
|
struct btree *b;
|
|
|
|
|
|
BUG_ON(level < 0);
|
|
@@ -925,7 +971,7 @@ retry:
|
|
|
return ERR_PTR(-EAGAIN);
|
|
|
|
|
|
mutex_lock(&c->bucket_lock);
|
|
|
- b = mca_alloc(c, k, level, &op->cl);
|
|
|
+ b = mca_alloc(c, k, level);
|
|
|
mutex_unlock(&c->bucket_lock);
|
|
|
|
|
|
if (!b)
|
|
@@ -971,7 +1017,7 @@ static void btree_node_prefetch(struct cache_set *c, struct bkey *k, int level)
|
|
|
struct btree *b;
|
|
|
|
|
|
mutex_lock(&c->bucket_lock);
|
|
|
- b = mca_alloc(c, k, level, NULL);
|
|
|
+ b = mca_alloc(c, k, level);
|
|
|
mutex_unlock(&c->bucket_lock);
|
|
|
|
|
|
if (!IS_ERR_OR_NULL(b)) {
|
|
@@ -982,17 +1028,12 @@ static void btree_node_prefetch(struct cache_set *c, struct bkey *k, int level)
|
|
|
|
|
|
/* Btree alloc */
|
|
|
|
|
|
-static void btree_node_free(struct btree *b, struct btree_op *op)
|
|
|
+static void btree_node_free(struct btree *b)
|
|
|
{
|
|
|
unsigned i;
|
|
|
|
|
|
trace_bcache_btree_node_free(b);
|
|
|
|
|
|
- /*
|
|
|
- * The BUG_ON() in btree_node_get() implies that we must have a write
|
|
|
- * lock on parent to free or even invalidate a node
|
|
|
- */
|
|
|
- BUG_ON(op->lock <= b->level);
|
|
|
BUG_ON(b == b->c->root);
|
|
|
|
|
|
if (btree_node_dirty(b))
|
|
@@ -1015,27 +1056,26 @@ static void btree_node_free(struct btree *b, struct btree_op *op)
|
|
|
mutex_unlock(&b->c->bucket_lock);
|
|
|
}
|
|
|
|
|
|
-struct btree *bch_btree_node_alloc(struct cache_set *c, int level,
|
|
|
- struct closure *cl)
|
|
|
+struct btree *bch_btree_node_alloc(struct cache_set *c, int level, bool wait)
|
|
|
{
|
|
|
BKEY_PADDED(key) k;
|
|
|
struct btree *b = ERR_PTR(-EAGAIN);
|
|
|
|
|
|
mutex_lock(&c->bucket_lock);
|
|
|
retry:
|
|
|
- if (__bch_bucket_alloc_set(c, WATERMARK_METADATA, &k.key, 1, cl))
|
|
|
+ if (__bch_bucket_alloc_set(c, WATERMARK_METADATA, &k.key, 1, wait))
|
|
|
goto err;
|
|
|
|
|
|
+ bkey_put(c, &k.key);
|
|
|
SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS);
|
|
|
|
|
|
- b = mca_alloc(c, &k.key, level, cl);
|
|
|
+ b = mca_alloc(c, &k.key, level);
|
|
|
if (IS_ERR(b))
|
|
|
goto err_free;
|
|
|
|
|
|
if (!b) {
|
|
|
cache_bug(c,
|
|
|
"Tried to allocate bucket that was in btree cache");
|
|
|
- __bkey_put(c, &k.key);
|
|
|
goto retry;
|
|
|
}
|
|
|
|
|
@@ -1048,7 +1088,6 @@ retry:
|
|
|
return b;
|
|
|
err_free:
|
|
|
bch_bucket_free(c, &k.key);
|
|
|
- __bkey_put(c, &k.key);
|
|
|
err:
|
|
|
mutex_unlock(&c->bucket_lock);
|
|
|
|
|
@@ -1056,16 +1095,31 @@ err:
|
|
|
return b;
|
|
|
}
|
|
|
|
|
|
-static struct btree *btree_node_alloc_replacement(struct btree *b,
|
|
|
- struct closure *cl)
|
|
|
+static struct btree *btree_node_alloc_replacement(struct btree *b, bool wait)
|
|
|
{
|
|
|
- struct btree *n = bch_btree_node_alloc(b->c, b->level, cl);
|
|
|
+ struct btree *n = bch_btree_node_alloc(b->c, b->level, wait);
|
|
|
if (!IS_ERR_OR_NULL(n))
|
|
|
bch_btree_sort_into(b, n);
|
|
|
|
|
|
return n;
|
|
|
}
|
|
|
|
|
|
+static void make_btree_freeing_key(struct btree *b, struct bkey *k)
|
|
|
+{
|
|
|
+ unsigned i;
|
|
|
+
|
|
|
+ bkey_copy(k, &b->key);
|
|
|
+ bkey_copy_key(k, &ZERO_KEY);
|
|
|
+
|
|
|
+ for (i = 0; i < KEY_PTRS(k); i++) {
|
|
|
+ uint8_t g = PTR_BUCKET(b->c, k, i)->gen + 1;
|
|
|
+
|
|
|
+ SET_PTR_GEN(k, i, g);
|
|
|
+ }
|
|
|
+
|
|
|
+ atomic_inc(&b->c->prio_blocked);
|
|
|
+}
|
|
|
+
|
|
|
/* Garbage collection */
|
|
|
|
|
|
uint8_t __bch_btree_mark_key(struct cache_set *c, int level, struct bkey *k)
|
|
@@ -1119,12 +1173,10 @@ uint8_t __bch_btree_mark_key(struct cache_set *c, int level, struct bkey *k)
|
|
|
|
|
|
#define btree_mark_key(b, k) __bch_btree_mark_key(b->c, b->level, k)
|
|
|
|
|
|
-static int btree_gc_mark_node(struct btree *b, unsigned *keys,
|
|
|
- struct gc_stat *gc)
|
|
|
+static bool btree_gc_mark_node(struct btree *b, struct gc_stat *gc)
|
|
|
{
|
|
|
uint8_t stale = 0;
|
|
|
- unsigned last_dev = -1;
|
|
|
- struct bcache_device *d = NULL;
|
|
|
+ unsigned keys = 0, good_keys = 0;
|
|
|
struct bkey *k;
|
|
|
struct btree_iter iter;
|
|
|
struct bset_tree *t;
|
|
@@ -1132,27 +1184,17 @@ static int btree_gc_mark_node(struct btree *b, unsigned *keys,
|
|
|
gc->nodes++;
|
|
|
|
|
|
for_each_key_filter(b, k, &iter, bch_ptr_invalid) {
|
|
|
- if (last_dev != KEY_INODE(k)) {
|
|
|
- last_dev = KEY_INODE(k);
|
|
|
-
|
|
|
- d = KEY_INODE(k) < b->c->nr_uuids
|
|
|
- ? b->c->devices[last_dev]
|
|
|
- : NULL;
|
|
|
- }
|
|
|
-
|
|
|
stale = max(stale, btree_mark_key(b, k));
|
|
|
+ keys++;
|
|
|
|
|
|
if (bch_ptr_bad(b, k))
|
|
|
continue;
|
|
|
|
|
|
- *keys += bkey_u64s(k);
|
|
|
-
|
|
|
gc->key_bytes += bkey_u64s(k);
|
|
|
gc->nkeys++;
|
|
|
+ good_keys++;
|
|
|
|
|
|
gc->data += KEY_SIZE(k);
|
|
|
- if (KEY_DIRTY(k))
|
|
|
- gc->dirty += KEY_SIZE(k);
|
|
|
}
|
|
|
|
|
|
for (t = b->sets; t <= &b->sets[b->nsets]; t++)
|
|
@@ -1161,78 +1203,74 @@ static int btree_gc_mark_node(struct btree *b, unsigned *keys,
|
|
|
bkey_cmp(&b->key, &t->end) < 0,
|
|
|
b, "found short btree key in gc");
|
|
|
|
|
|
- return stale;
|
|
|
-}
|
|
|
-
|
|
|
-static struct btree *btree_gc_alloc(struct btree *b, struct bkey *k,
|
|
|
- struct btree_op *op)
|
|
|
-{
|
|
|
- /*
|
|
|
- * We block priorities from being written for the duration of garbage
|
|
|
- * collection, so we can't sleep in btree_alloc() ->
|
|
|
- * bch_bucket_alloc_set(), or we'd risk deadlock - so we don't pass it
|
|
|
- * our closure.
|
|
|
- */
|
|
|
- struct btree *n = btree_node_alloc_replacement(b, NULL);
|
|
|
-
|
|
|
- if (!IS_ERR_OR_NULL(n)) {
|
|
|
- swap(b, n);
|
|
|
- __bkey_put(b->c, &b->key);
|
|
|
+ if (b->c->gc_always_rewrite)
|
|
|
+ return true;
|
|
|
|
|
|
- memcpy(k->ptr, b->key.ptr,
|
|
|
- sizeof(uint64_t) * KEY_PTRS(&b->key));
|
|
|
+ if (stale > 10)
|
|
|
+ return true;
|
|
|
|
|
|
- btree_node_free(n, op);
|
|
|
- up_write(&n->lock);
|
|
|
- }
|
|
|
+ if ((keys - good_keys) * 2 > keys)
|
|
|
+ return true;
|
|
|
|
|
|
- return b;
|
|
|
+ return false;
|
|
|
}
|
|
|
|
|
|
-/*
|
|
|
- * Leaving this at 2 until we've got incremental garbage collection done; it
|
|
|
- * could be higher (and has been tested with 4) except that garbage collection
|
|
|
- * could take much longer, adversely affecting latency.
|
|
|
- */
|
|
|
-#define GC_MERGE_NODES 2U
|
|
|
+#define GC_MERGE_NODES 4U
|
|
|
|
|
|
struct gc_merge_info {
|
|
|
struct btree *b;
|
|
|
- struct bkey *k;
|
|
|
unsigned keys;
|
|
|
};
|
|
|
|
|
|
-static void btree_gc_coalesce(struct btree *b, struct btree_op *op,
|
|
|
- struct gc_stat *gc, struct gc_merge_info *r)
|
|
|
+static int bch_btree_insert_node(struct btree *, struct btree_op *,
|
|
|
+ struct keylist *, atomic_t *, struct bkey *);
|
|
|
+
|
|
|
+static int btree_gc_coalesce(struct btree *b, struct btree_op *op,
|
|
|
+ struct keylist *keylist, struct gc_stat *gc,
|
|
|
+ struct gc_merge_info *r)
|
|
|
{
|
|
|
- unsigned nodes = 0, keys = 0, blocks;
|
|
|
- int i;
|
|
|
+ unsigned i, nodes = 0, keys = 0, blocks;
|
|
|
+ struct btree *new_nodes[GC_MERGE_NODES];
|
|
|
+ struct closure cl;
|
|
|
+ struct bkey *k;
|
|
|
+
|
|
|
+ memset(new_nodes, 0, sizeof(new_nodes));
|
|
|
+ closure_init_stack(&cl);
|
|
|
|
|
|
- while (nodes < GC_MERGE_NODES && r[nodes].b)
|
|
|
+ while (nodes < GC_MERGE_NODES && !IS_ERR_OR_NULL(r[nodes].b))
|
|
|
keys += r[nodes++].keys;
|
|
|
|
|
|
blocks = btree_default_blocks(b->c) * 2 / 3;
|
|
|
|
|
|
if (nodes < 2 ||
|
|
|
__set_blocks(b->sets[0].data, keys, b->c) > blocks * (nodes - 1))
|
|
|
- return;
|
|
|
-
|
|
|
- for (i = nodes - 1; i >= 0; --i) {
|
|
|
- if (r[i].b->written)
|
|
|
- r[i].b = btree_gc_alloc(r[i].b, r[i].k, op);
|
|
|
+ return 0;
|
|
|
|
|
|
- if (r[i].b->written)
|
|
|
- return;
|
|
|
+ for (i = 0; i < nodes; i++) {
|
|
|
+ new_nodes[i] = btree_node_alloc_replacement(r[i].b, false);
|
|
|
+ if (IS_ERR_OR_NULL(new_nodes[i]))
|
|
|
+ goto out_nocoalesce;
|
|
|
}
|
|
|
|
|
|
for (i = nodes - 1; i > 0; --i) {
|
|
|
- struct bset *n1 = r[i].b->sets->data;
|
|
|
- struct bset *n2 = r[i - 1].b->sets->data;
|
|
|
+ struct bset *n1 = new_nodes[i]->sets->data;
|
|
|
+ struct bset *n2 = new_nodes[i - 1]->sets->data;
|
|
|
struct bkey *k, *last = NULL;
|
|
|
|
|
|
keys = 0;
|
|
|
|
|
|
- if (i == 1) {
|
|
|
+ if (i > 1) {
|
|
|
+ for (k = n2->start;
|
|
|
+ k < end(n2);
|
|
|
+ k = bkey_next(k)) {
|
|
|
+ if (__set_blocks(n1, n1->keys + keys +
|
|
|
+ bkey_u64s(k), b->c) > blocks)
|
|
|
+ break;
|
|
|
+
|
|
|
+ last = k;
|
|
|
+ keys += bkey_u64s(k);
|
|
|
+ }
|
|
|
+ } else {
|
|
|
/*
|
|
|
* Last node we're not getting rid of - we're getting
|
|
|
* rid of the node at r[0]. Have to try and fit all of
|
|
@@ -1241,37 +1279,27 @@ static void btree_gc_coalesce(struct btree *b, struct btree_op *op,
|
|
|
* length keys (shouldn't be possible in practice,
|
|
|
* though)
|
|
|
*/
|
|
|
- if (__set_blocks(n1, n1->keys + r->keys,
|
|
|
- b->c) > btree_blocks(r[i].b))
|
|
|
- return;
|
|
|
+ if (__set_blocks(n1, n1->keys + n2->keys,
|
|
|
+ b->c) > btree_blocks(new_nodes[i]))
|
|
|
+ goto out_nocoalesce;
|
|
|
|
|
|
keys = n2->keys;
|
|
|
+ /* Take the key of the node we're getting rid of */
|
|
|
last = &r->b->key;
|
|
|
- } else
|
|
|
- for (k = n2->start;
|
|
|
- k < end(n2);
|
|
|
- k = bkey_next(k)) {
|
|
|
- if (__set_blocks(n1, n1->keys + keys +
|
|
|
- bkey_u64s(k), b->c) > blocks)
|
|
|
- break;
|
|
|
-
|
|
|
- last = k;
|
|
|
- keys += bkey_u64s(k);
|
|
|
- }
|
|
|
+ }
|
|
|
|
|
|
BUG_ON(__set_blocks(n1, n1->keys + keys,
|
|
|
- b->c) > btree_blocks(r[i].b));
|
|
|
+ b->c) > btree_blocks(new_nodes[i]));
|
|
|
|
|
|
- if (last) {
|
|
|
- bkey_copy_key(&r[i].b->key, last);
|
|
|
- bkey_copy_key(r[i].k, last);
|
|
|
- }
|
|
|
+ if (last)
|
|
|
+ bkey_copy_key(&new_nodes[i]->key, last);
|
|
|
|
|
|
memcpy(end(n1),
|
|
|
n2->start,
|
|
|
(void *) node(n2, keys) - (void *) n2->start);
|
|
|
|
|
|
n1->keys += keys;
|
|
|
+ r[i].keys = n1->keys;
|
|
|
|
|
|
memmove(n2->start,
|
|
|
node(n2, keys),
|
|
@@ -1279,95 +1307,176 @@ static void btree_gc_coalesce(struct btree *b, struct btree_op *op,
|
|
|
|
|
|
n2->keys -= keys;
|
|
|
|
|
|
- r[i].keys = n1->keys;
|
|
|
- r[i - 1].keys = n2->keys;
|
|
|
+ if (bch_keylist_realloc(keylist,
|
|
|
+ KEY_PTRS(&new_nodes[i]->key), b->c))
|
|
|
+ goto out_nocoalesce;
|
|
|
+
|
|
|
+ bch_btree_node_write(new_nodes[i], &cl);
|
|
|
+ bch_keylist_add(keylist, &new_nodes[i]->key);
|
|
|
}
|
|
|
|
|
|
- btree_node_free(r->b, op);
|
|
|
- up_write(&r->b->lock);
|
|
|
+ for (i = 0; i < nodes; i++) {
|
|
|
+ if (bch_keylist_realloc(keylist, KEY_PTRS(&r[i].b->key), b->c))
|
|
|
+ goto out_nocoalesce;
|
|
|
|
|
|
- trace_bcache_btree_gc_coalesce(nodes);
|
|
|
+ make_btree_freeing_key(r[i].b, keylist->top);
|
|
|
+ bch_keylist_push(keylist);
|
|
|
+ }
|
|
|
+
|
|
|
+ /* We emptied out this node */
|
|
|
+ BUG_ON(new_nodes[0]->sets->data->keys);
|
|
|
+ btree_node_free(new_nodes[0]);
|
|
|
+ rw_unlock(true, new_nodes[0]);
|
|
|
+
|
|
|
+ closure_sync(&cl);
|
|
|
+
|
|
|
+ for (i = 0; i < nodes; i++) {
|
|
|
+ btree_node_free(r[i].b);
|
|
|
+ rw_unlock(true, r[i].b);
|
|
|
+
|
|
|
+ r[i].b = new_nodes[i];
|
|
|
+ }
|
|
|
+
|
|
|
+ bch_btree_insert_node(b, op, keylist, NULL, NULL);
|
|
|
+ BUG_ON(!bch_keylist_empty(keylist));
|
|
|
+
|
|
|
+ memmove(r, r + 1, sizeof(r[0]) * (nodes - 1));
|
|
|
+ r[nodes - 1].b = ERR_PTR(-EINTR);
|
|
|
|
|
|
+ trace_bcache_btree_gc_coalesce(nodes);
|
|
|
gc->nodes--;
|
|
|
- nodes--;
|
|
|
|
|
|
- memmove(&r[0], &r[1], sizeof(struct gc_merge_info) * nodes);
|
|
|
- memset(&r[nodes], 0, sizeof(struct gc_merge_info));
|
|
|
+ /* Invalidated our iterator */
|
|
|
+ return -EINTR;
|
|
|
+
|
|
|
+out_nocoalesce:
|
|
|
+ closure_sync(&cl);
|
|
|
+
|
|
|
+ while ((k = bch_keylist_pop(keylist)))
|
|
|
+ if (!bkey_cmp(k, &ZERO_KEY))
|
|
|
+ atomic_dec(&b->c->prio_blocked);
|
|
|
+
|
|
|
+ for (i = 0; i < nodes; i++)
|
|
|
+ if (!IS_ERR_OR_NULL(new_nodes[i])) {
|
|
|
+ btree_node_free(new_nodes[i]);
|
|
|
+ rw_unlock(true, new_nodes[i]);
|
|
|
+ }
|
|
|
+ return 0;
|
|
|
}
|
|
|
|
|
|
-static int btree_gc_recurse(struct btree *b, struct btree_op *op,
|
|
|
- struct closure *writes, struct gc_stat *gc)
|
|
|
+static unsigned btree_gc_count_keys(struct btree *b)
|
|
|
{
|
|
|
- void write(struct btree *r)
|
|
|
- {
|
|
|
- if (!r->written)
|
|
|
- bch_btree_node_write(r, &op->cl);
|
|
|
- else if (btree_node_dirty(r))
|
|
|
- bch_btree_node_write(r, writes);
|
|
|
+ struct bkey *k;
|
|
|
+ struct btree_iter iter;
|
|
|
+ unsigned ret = 0;
|
|
|
|
|
|
- up_write(&r->lock);
|
|
|
- }
|
|
|
+ for_each_key_filter(b, k, &iter, bch_ptr_bad)
|
|
|
+ ret += bkey_u64s(k);
|
|
|
+
|
|
|
+ return ret;
|
|
|
+}
|
|
|
|
|
|
- int ret = 0, stale;
|
|
|
+static int btree_gc_recurse(struct btree *b, struct btree_op *op,
|
|
|
+ struct closure *writes, struct gc_stat *gc)
|
|
|
+{
|
|
|
unsigned i;
|
|
|
+ int ret = 0;
|
|
|
+ bool should_rewrite;
|
|
|
+ struct btree *n;
|
|
|
+ struct bkey *k;
|
|
|
+ struct keylist keys;
|
|
|
+ struct btree_iter iter;
|
|
|
struct gc_merge_info r[GC_MERGE_NODES];
|
|
|
+ struct gc_merge_info *last = r + GC_MERGE_NODES - 1;
|
|
|
|
|
|
- memset(r, 0, sizeof(r));
|
|
|
+ bch_keylist_init(&keys);
|
|
|
+ bch_btree_iter_init(b, &iter, &b->c->gc_done);
|
|
|
|
|
|
- while ((r->k = bch_next_recurse_key(b, &b->c->gc_done))) {
|
|
|
- r->b = bch_btree_node_get(b->c, r->k, b->level - 1, op);
|
|
|
+ for (i = 0; i < GC_MERGE_NODES; i++)
|
|
|
+ r[i].b = ERR_PTR(-EINTR);
|
|
|
|
|
|
- if (IS_ERR(r->b)) {
|
|
|
- ret = PTR_ERR(r->b);
|
|
|
- break;
|
|
|
+ while (1) {
|
|
|
+ k = bch_btree_iter_next_filter(&iter, b, bch_ptr_bad);
|
|
|
+ if (k) {
|
|
|
+ r->b = bch_btree_node_get(b->c, k, b->level - 1, true);
|
|
|
+ if (IS_ERR(r->b)) {
|
|
|
+ ret = PTR_ERR(r->b);
|
|
|
+ break;
|
|
|
+ }
|
|
|
+
|
|
|
+ r->keys = btree_gc_count_keys(r->b);
|
|
|
+
|
|
|
+ ret = btree_gc_coalesce(b, op, &keys, gc, r);
|
|
|
+ if (ret)
|
|
|
+ break;
|
|
|
}
|
|
|
|
|
|
- r->keys = 0;
|
|
|
- stale = btree_gc_mark_node(r->b, &r->keys, gc);
|
|
|
+ if (!last->b)
|
|
|
+ break;
|
|
|
|
|
|
- if (!b->written &&
|
|
|
- (r->b->level || stale > 10 ||
|
|
|
- b->c->gc_always_rewrite))
|
|
|
- r->b = btree_gc_alloc(r->b, r->k, op);
|
|
|
+ if (!IS_ERR(last->b)) {
|
|
|
+ should_rewrite = btree_gc_mark_node(last->b, gc);
|
|
|
+ if (should_rewrite) {
|
|
|
+ n = btree_node_alloc_replacement(last->b,
|
|
|
+ false);
|
|
|
|
|
|
- if (r->b->level)
|
|
|
- ret = btree_gc_recurse(r->b, op, writes, gc);
|
|
|
+ if (!IS_ERR_OR_NULL(n)) {
|
|
|
+ bch_btree_node_write_sync(n);
|
|
|
+ bch_keylist_add(&keys, &n->key);
|
|
|
|
|
|
- if (ret) {
|
|
|
- write(r->b);
|
|
|
- break;
|
|
|
- }
|
|
|
+ make_btree_freeing_key(last->b,
|
|
|
+ keys.top);
|
|
|
+ bch_keylist_push(&keys);
|
|
|
+
|
|
|
+ btree_node_free(last->b);
|
|
|
+
|
|
|
+ bch_btree_insert_node(b, op, &keys,
|
|
|
+ NULL, NULL);
|
|
|
+ BUG_ON(!bch_keylist_empty(&keys));
|
|
|
|
|
|
- bkey_copy_key(&b->c->gc_done, r->k);
|
|
|
+ rw_unlock(true, last->b);
|
|
|
+ last->b = n;
|
|
|
|
|
|
- if (!b->written)
|
|
|
- btree_gc_coalesce(b, op, gc, r);
|
|
|
+ /* Invalidated our iterator */
|
|
|
+ ret = -EINTR;
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ }
|
|
|
|
|
|
- if (r[GC_MERGE_NODES - 1].b)
|
|
|
- write(r[GC_MERGE_NODES - 1].b);
|
|
|
+ if (last->b->level) {
|
|
|
+ ret = btree_gc_recurse(last->b, op, writes, gc);
|
|
|
+ if (ret)
|
|
|
+ break;
|
|
|
+ }
|
|
|
|
|
|
- memmove(&r[1], &r[0],
|
|
|
- sizeof(struct gc_merge_info) * (GC_MERGE_NODES - 1));
|
|
|
+ bkey_copy_key(&b->c->gc_done, &last->b->key);
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Must flush leaf nodes before gc ends, since replace
|
|
|
+ * operations aren't journalled
|
|
|
+ */
|
|
|
+ if (btree_node_dirty(last->b))
|
|
|
+ bch_btree_node_write(last->b, writes);
|
|
|
+ rw_unlock(true, last->b);
|
|
|
+ }
|
|
|
+
|
|
|
+ memmove(r + 1, r, sizeof(r[0]) * (GC_MERGE_NODES - 1));
|
|
|
+ r->b = NULL;
|
|
|
|
|
|
- /* When we've got incremental GC working, we'll want to do
|
|
|
- * if (should_resched())
|
|
|
- * return -EAGAIN;
|
|
|
- */
|
|
|
- cond_resched();
|
|
|
-#if 0
|
|
|
if (need_resched()) {
|
|
|
ret = -EAGAIN;
|
|
|
break;
|
|
|
}
|
|
|
-#endif
|
|
|
}
|
|
|
|
|
|
- for (i = 1; i < GC_MERGE_NODES && r[i].b; i++)
|
|
|
- write(r[i].b);
|
|
|
+ for (i = 0; i < GC_MERGE_NODES; i++)
|
|
|
+ if (!IS_ERR_OR_NULL(r[i].b)) {
|
|
|
+ if (btree_node_dirty(r[i].b))
|
|
|
+ bch_btree_node_write(r[i].b, writes);
|
|
|
+ rw_unlock(true, r[i].b);
|
|
|
+ }
|
|
|
|
|
|
- /* Might have freed some children, must remove their keys */
|
|
|
- if (!b->written)
|
|
|
- bch_btree_sort(b);
|
|
|
+ bch_keylist_free(&keys);
|
|
|
|
|
|
return ret;
|
|
|
}
|
|
@@ -1376,29 +1485,31 @@ static int bch_btree_gc_root(struct btree *b, struct btree_op *op,
|
|
|
struct closure *writes, struct gc_stat *gc)
|
|
|
{
|
|
|
struct btree *n = NULL;
|
|
|
- unsigned keys = 0;
|
|
|
- int ret = 0, stale = btree_gc_mark_node(b, &keys, gc);
|
|
|
-
|
|
|
- if (b->level || stale > 10)
|
|
|
- n = btree_node_alloc_replacement(b, NULL);
|
|
|
+ int ret = 0;
|
|
|
+ bool should_rewrite;
|
|
|
|
|
|
- if (!IS_ERR_OR_NULL(n))
|
|
|
- swap(b, n);
|
|
|
+ should_rewrite = btree_gc_mark_node(b, gc);
|
|
|
+ if (should_rewrite) {
|
|
|
+ n = btree_node_alloc_replacement(b, false);
|
|
|
|
|
|
- if (b->level)
|
|
|
- ret = btree_gc_recurse(b, op, writes, gc);
|
|
|
+ if (!IS_ERR_OR_NULL(n)) {
|
|
|
+ bch_btree_node_write_sync(n);
|
|
|
+ bch_btree_set_root(n);
|
|
|
+ btree_node_free(b);
|
|
|
+ rw_unlock(true, n);
|
|
|
|
|
|
- if (!b->written || btree_node_dirty(b)) {
|
|
|
- bch_btree_node_write(b, n ? &op->cl : NULL);
|
|
|
+ return -EINTR;
|
|
|
+ }
|
|
|
}
|
|
|
|
|
|
- if (!IS_ERR_OR_NULL(n)) {
|
|
|
- closure_sync(&op->cl);
|
|
|
- bch_btree_set_root(b);
|
|
|
- btree_node_free(n, op);
|
|
|
- rw_unlock(true, b);
|
|
|
+ if (b->level) {
|
|
|
+ ret = btree_gc_recurse(b, op, writes, gc);
|
|
|
+ if (ret)
|
|
|
+ return ret;
|
|
|
}
|
|
|
|
|
|
+ bkey_copy_key(&b->c->gc_done, &b->key);
|
|
|
+
|
|
|
return ret;
|
|
|
}
|
|
|
|
|
@@ -1479,9 +1590,8 @@ size_t bch_btree_gc_finish(struct cache_set *c)
|
|
|
return available;
|
|
|
}
|
|
|
|
|
|
-static void bch_btree_gc(struct closure *cl)
|
|
|
+static void bch_btree_gc(struct cache_set *c)
|
|
|
{
|
|
|
- struct cache_set *c = container_of(cl, struct cache_set, gc.cl);
|
|
|
int ret;
|
|
|
unsigned long available;
|
|
|
struct gc_stat stats;
|
|
@@ -1493,47 +1603,73 @@ static void bch_btree_gc(struct closure *cl)
|
|
|
|
|
|
memset(&stats, 0, sizeof(struct gc_stat));
|
|
|
closure_init_stack(&writes);
|
|
|
- bch_btree_op_init_stack(&op);
|
|
|
- op.lock = SHRT_MAX;
|
|
|
+ bch_btree_op_init(&op, SHRT_MAX);
|
|
|
|
|
|
btree_gc_start(c);
|
|
|
|
|
|
- atomic_inc(&c->prio_blocked);
|
|
|
-
|
|
|
- ret = btree_root(gc_root, c, &op, &writes, &stats);
|
|
|
- closure_sync(&op.cl);
|
|
|
- closure_sync(&writes);
|
|
|
-
|
|
|
- if (ret) {
|
|
|
- pr_warn("gc failed!");
|
|
|
- continue_at(cl, bch_btree_gc, bch_gc_wq);
|
|
|
- }
|
|
|
+ do {
|
|
|
+ ret = btree_root(gc_root, c, &op, &writes, &stats);
|
|
|
+ closure_sync(&writes);
|
|
|
|
|
|
- /* Possibly wait for new UUIDs or whatever to hit disk */
|
|
|
- bch_journal_meta(c, &op.cl);
|
|
|
- closure_sync(&op.cl);
|
|
|
+ if (ret && ret != -EAGAIN)
|
|
|
+ pr_warn("gc failed!");
|
|
|
+ } while (ret);
|
|
|
|
|
|
available = bch_btree_gc_finish(c);
|
|
|
-
|
|
|
- atomic_dec(&c->prio_blocked);
|
|
|
wake_up_allocators(c);
|
|
|
|
|
|
bch_time_stats_update(&c->btree_gc_time, start_time);
|
|
|
|
|
|
stats.key_bytes *= sizeof(uint64_t);
|
|
|
- stats.dirty <<= 9;
|
|
|
stats.data <<= 9;
|
|
|
stats.in_use = (c->nbuckets - available) * 100 / c->nbuckets;
|
|
|
memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat));
|
|
|
|
|
|
trace_bcache_gc_end(c);
|
|
|
|
|
|
- continue_at(cl, bch_moving_gc, bch_gc_wq);
|
|
|
+ bch_moving_gc(c);
|
|
|
+}
|
|
|
+
|
|
|
+static int bch_gc_thread(void *arg)
|
|
|
+{
|
|
|
+ struct cache_set *c = arg;
|
|
|
+ struct cache *ca;
|
|
|
+ unsigned i;
|
|
|
+
|
|
|
+ while (1) {
|
|
|
+again:
|
|
|
+ bch_btree_gc(c);
|
|
|
+
|
|
|
+ set_current_state(TASK_INTERRUPTIBLE);
|
|
|
+ if (kthread_should_stop())
|
|
|
+ break;
|
|
|
+
|
|
|
+ mutex_lock(&c->bucket_lock);
|
|
|
+
|
|
|
+ for_each_cache(ca, c, i)
|
|
|
+ if (ca->invalidate_needs_gc) {
|
|
|
+ mutex_unlock(&c->bucket_lock);
|
|
|
+ set_current_state(TASK_RUNNING);
|
|
|
+ goto again;
|
|
|
+ }
|
|
|
+
|
|
|
+ mutex_unlock(&c->bucket_lock);
|
|
|
+
|
|
|
+ try_to_freeze();
|
|
|
+ schedule();
|
|
|
+ }
|
|
|
+
|
|
|
+ return 0;
|
|
|
}
|
|
|
|
|
|
-void bch_queue_gc(struct cache_set *c)
|
|
|
+int bch_gc_thread_start(struct cache_set *c)
|
|
|
{
|
|
|
- closure_trylock_call(&c->gc.cl, bch_btree_gc, bch_gc_wq, &c->cl);
|
|
|
+ c->gc_thread = kthread_create(bch_gc_thread, c, "bcache_gc");
|
|
|
+ if (IS_ERR(c->gc_thread))
|
|
|
+ return PTR_ERR(c->gc_thread);
|
|
|
+
|
|
|
+ set_task_state(c->gc_thread, TASK_INTERRUPTIBLE);
|
|
|
+ return 0;
|
|
|
}
|
|
|
|
|
|
/* Initial partial gc */
|
|
@@ -1541,9 +1677,9 @@ void bch_queue_gc(struct cache_set *c)
|
|
|
static int bch_btree_check_recurse(struct btree *b, struct btree_op *op,
|
|
|
unsigned long **seen)
|
|
|
{
|
|
|
- int ret;
|
|
|
+ int ret = 0;
|
|
|
unsigned i;
|
|
|
- struct bkey *k;
|
|
|
+ struct bkey *k, *p = NULL;
|
|
|
struct bucket *g;
|
|
|
struct btree_iter iter;
|
|
|
|
|
@@ -1570,31 +1706,32 @@ static int bch_btree_check_recurse(struct btree *b, struct btree_op *op,
|
|
|
}
|
|
|
|
|
|
if (b->level) {
|
|
|
- k = bch_next_recurse_key(b, &ZERO_KEY);
|
|
|
+ bch_btree_iter_init(b, &iter, NULL);
|
|
|
|
|
|
- while (k) {
|
|
|
- struct bkey *p = bch_next_recurse_key(b, k);
|
|
|
- if (p)
|
|
|
- btree_node_prefetch(b->c, p, b->level - 1);
|
|
|
+ do {
|
|
|
+ k = bch_btree_iter_next_filter(&iter, b, bch_ptr_bad);
|
|
|
+ if (k)
|
|
|
+ btree_node_prefetch(b->c, k, b->level - 1);
|
|
|
|
|
|
- ret = btree(check_recurse, k, b, op, seen);
|
|
|
- if (ret)
|
|
|
- return ret;
|
|
|
+ if (p)
|
|
|
+ ret = btree(check_recurse, p, b, op, seen);
|
|
|
|
|
|
- k = p;
|
|
|
- }
|
|
|
+ p = k;
|
|
|
+ } while (p && !ret);
|
|
|
}
|
|
|
|
|
|
return 0;
|
|
|
}
|
|
|
|
|
|
-int bch_btree_check(struct cache_set *c, struct btree_op *op)
|
|
|
+int bch_btree_check(struct cache_set *c)
|
|
|
{
|
|
|
int ret = -ENOMEM;
|
|
|
unsigned i;
|
|
|
unsigned long *seen[MAX_CACHES_PER_SET];
|
|
|
+ struct btree_op op;
|
|
|
|
|
|
memset(seen, 0, sizeof(seen));
|
|
|
+ bch_btree_op_init(&op, SHRT_MAX);
|
|
|
|
|
|
for (i = 0; c->cache[i]; i++) {
|
|
|
size_t n = DIV_ROUND_UP(c->cache[i]->sb.nbuckets, 8);
|
|
@@ -1606,7 +1743,7 @@ int bch_btree_check(struct cache_set *c, struct btree_op *op)
|
|
|
memset(seen[i], 0xFF, n);
|
|
|
}
|
|
|
|
|
|
- ret = btree_root(check_recurse, c, op, seen);
|
|
|
+ ret = btree_root(check_recurse, c, &op, seen);
|
|
|
err:
|
|
|
for (i = 0; i < MAX_CACHES_PER_SET; i++)
|
|
|
kfree(seen[i]);
|
|
@@ -1628,10 +1765,9 @@ static void shift_keys(struct btree *b, struct bkey *where, struct bkey *insert)
|
|
|
bch_bset_fix_lookup_table(b, where);
|
|
|
}
|
|
|
|
|
|
-static bool fix_overlapping_extents(struct btree *b,
|
|
|
- struct bkey *insert,
|
|
|
+static bool fix_overlapping_extents(struct btree *b, struct bkey *insert,
|
|
|
struct btree_iter *iter,
|
|
|
- struct btree_op *op)
|
|
|
+ struct bkey *replace_key)
|
|
|
{
|
|
|
void subtract_dirty(struct bkey *k, uint64_t offset, int sectors)
|
|
|
{
|
|
@@ -1659,39 +1795,38 @@ static bool fix_overlapping_extents(struct btree *b,
|
|
|
* We might overlap with 0 size extents; we can't skip these
|
|
|
* because if they're in the set we're inserting to we have to
|
|
|
* adjust them so they don't overlap with the key we're
|
|
|
- * inserting. But we don't want to check them for BTREE_REPLACE
|
|
|
+ * inserting. But we don't want to check them for replace
|
|
|
* operations.
|
|
|
*/
|
|
|
|
|
|
- if (op->type == BTREE_REPLACE &&
|
|
|
- KEY_SIZE(k)) {
|
|
|
+ if (replace_key && KEY_SIZE(k)) {
|
|
|
/*
|
|
|
* k might have been split since we inserted/found the
|
|
|
* key we're replacing
|
|
|
*/
|
|
|
unsigned i;
|
|
|
uint64_t offset = KEY_START(k) -
|
|
|
- KEY_START(&op->replace);
|
|
|
+ KEY_START(replace_key);
|
|
|
|
|
|
/* But it must be a subset of the replace key */
|
|
|
- if (KEY_START(k) < KEY_START(&op->replace) ||
|
|
|
- KEY_OFFSET(k) > KEY_OFFSET(&op->replace))
|
|
|
+ if (KEY_START(k) < KEY_START(replace_key) ||
|
|
|
+ KEY_OFFSET(k) > KEY_OFFSET(replace_key))
|
|
|
goto check_failed;
|
|
|
|
|
|
/* We didn't find a key that we were supposed to */
|
|
|
if (KEY_START(k) > KEY_START(insert) + sectors_found)
|
|
|
goto check_failed;
|
|
|
|
|
|
- if (KEY_PTRS(&op->replace) != KEY_PTRS(k))
|
|
|
+ if (KEY_PTRS(replace_key) != KEY_PTRS(k))
|
|
|
goto check_failed;
|
|
|
|
|
|
/* skip past gen */
|
|
|
offset <<= 8;
|
|
|
|
|
|
- BUG_ON(!KEY_PTRS(&op->replace));
|
|
|
+ BUG_ON(!KEY_PTRS(replace_key));
|
|
|
|
|
|
- for (i = 0; i < KEY_PTRS(&op->replace); i++)
|
|
|
- if (k->ptr[i] != op->replace.ptr[i] + offset)
|
|
|
+ for (i = 0; i < KEY_PTRS(replace_key); i++)
|
|
|
+ if (k->ptr[i] != replace_key->ptr[i] + offset)
|
|
|
goto check_failed;
|
|
|
|
|
|
sectors_found = KEY_OFFSET(k) - KEY_START(insert);
|
|
@@ -1742,6 +1877,9 @@ static bool fix_overlapping_extents(struct btree *b,
|
|
|
if (bkey_cmp(insert, k) < 0) {
|
|
|
bch_cut_front(insert, k);
|
|
|
} else {
|
|
|
+ if (bkey_cmp(&START_KEY(insert), &START_KEY(k)) > 0)
|
|
|
+ old_offset = KEY_START(insert);
|
|
|
+
|
|
|
if (bkey_written(b, k) &&
|
|
|
bkey_cmp(&START_KEY(insert), &START_KEY(k)) <= 0) {
|
|
|
/*
|
|
@@ -1759,9 +1897,8 @@ static bool fix_overlapping_extents(struct btree *b,
|
|
|
}
|
|
|
|
|
|
check_failed:
|
|
|
- if (op->type == BTREE_REPLACE) {
|
|
|
+ if (replace_key) {
|
|
|
if (!sectors_found) {
|
|
|
- op->insert_collision = true;
|
|
|
return true;
|
|
|
} else if (sectors_found < KEY_SIZE(insert)) {
|
|
|
SET_KEY_OFFSET(insert, KEY_OFFSET(insert) -
|
|
@@ -1774,7 +1911,7 @@ check_failed:
|
|
|
}
|
|
|
|
|
|
static bool btree_insert_key(struct btree *b, struct btree_op *op,
|
|
|
- struct bkey *k)
|
|
|
+ struct bkey *k, struct bkey *replace_key)
|
|
|
{
|
|
|
struct bset *i = b->sets[b->nsets].data;
|
|
|
struct bkey *m, *prev;
|
|
@@ -1786,22 +1923,23 @@ static bool btree_insert_key(struct btree *b, struct btree_op *op,
|
|
|
|
|
|
if (!b->level) {
|
|
|
struct btree_iter iter;
|
|
|
- struct bkey search = KEY(KEY_INODE(k), KEY_START(k), 0);
|
|
|
|
|
|
/*
|
|
|
* bset_search() returns the first key that is strictly greater
|
|
|
* than the search key - but for back merging, we want to find
|
|
|
- * the first key that is greater than or equal to KEY_START(k) -
|
|
|
- * unless KEY_START(k) is 0.
|
|
|
+ * the previous key.
|
|
|
*/
|
|
|
- if (KEY_OFFSET(&search))
|
|
|
- SET_KEY_OFFSET(&search, KEY_OFFSET(&search) - 1);
|
|
|
-
|
|
|
prev = NULL;
|
|
|
- m = bch_btree_iter_init(b, &iter, &search);
|
|
|
+ m = bch_btree_iter_init(b, &iter, PRECEDING_KEY(&START_KEY(k)));
|
|
|
|
|
|
- if (fix_overlapping_extents(b, k, &iter, op))
|
|
|
+ if (fix_overlapping_extents(b, k, &iter, replace_key)) {
|
|
|
+ op->insert_collision = true;
|
|
|
return false;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (KEY_DIRTY(k))
|
|
|
+ bcache_dev_sectors_dirty_add(b->c, KEY_INODE(k),
|
|
|
+ KEY_START(k), KEY_SIZE(k));
|
|
|
|
|
|
while (m != end(i) &&
|
|
|
bkey_cmp(k, &START_KEY(m)) > 0)
|
|
@@ -1825,84 +1963,80 @@ static bool btree_insert_key(struct btree *b, struct btree_op *op,
|
|
|
if (m != end(i) &&
|
|
|
bch_bkey_try_merge(b, k, m))
|
|
|
goto copy;
|
|
|
- } else
|
|
|
+ } else {
|
|
|
+ BUG_ON(replace_key);
|
|
|
m = bch_bset_search(b, &b->sets[b->nsets], k);
|
|
|
+ }
|
|
|
|
|
|
insert: shift_keys(b, m, k);
|
|
|
copy: bkey_copy(m, k);
|
|
|
merged:
|
|
|
- if (KEY_DIRTY(k))
|
|
|
- bcache_dev_sectors_dirty_add(b->c, KEY_INODE(k),
|
|
|
- KEY_START(k), KEY_SIZE(k));
|
|
|
-
|
|
|
- bch_check_keys(b, "%u for %s", status, op_type(op));
|
|
|
+ bch_check_keys(b, "%u for %s", status,
|
|
|
+ replace_key ? "replace" : "insert");
|
|
|
|
|
|
if (b->level && !KEY_OFFSET(k))
|
|
|
btree_current_write(b)->prio_blocked++;
|
|
|
|
|
|
- trace_bcache_btree_insert_key(b, k, op->type, status);
|
|
|
+ trace_bcache_btree_insert_key(b, k, replace_key != NULL, status);
|
|
|
|
|
|
return true;
|
|
|
}
|
|
|
|
|
|
-static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op)
|
|
|
+static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op,
|
|
|
+ struct keylist *insert_keys,
|
|
|
+ struct bkey *replace_key)
|
|
|
{
|
|
|
bool ret = false;
|
|
|
- struct bkey *k;
|
|
|
- unsigned oldsize = bch_count_data(b);
|
|
|
-
|
|
|
- while ((k = bch_keylist_pop(&op->keys))) {
|
|
|
- bkey_put(b->c, k, b->level);
|
|
|
- ret |= btree_insert_key(b, op, k);
|
|
|
- }
|
|
|
-
|
|
|
- BUG_ON(bch_count_data(b) < oldsize);
|
|
|
- return ret;
|
|
|
-}
|
|
|
+ int oldsize = bch_count_data(b);
|
|
|
|
|
|
-bool bch_btree_insert_check_key(struct btree *b, struct btree_op *op,
|
|
|
- struct bio *bio)
|
|
|
-{
|
|
|
- bool ret = false;
|
|
|
- uint64_t btree_ptr = b->key.ptr[0];
|
|
|
- unsigned long seq = b->seq;
|
|
|
- BKEY_PADDED(k) tmp;
|
|
|
+ while (!bch_keylist_empty(insert_keys)) {
|
|
|
+ struct bset *i = write_block(b);
|
|
|
+ struct bkey *k = insert_keys->keys;
|
|
|
|
|
|
- rw_unlock(false, b);
|
|
|
- rw_lock(true, b, b->level);
|
|
|
+ if (b->written + __set_blocks(i, i->keys + bkey_u64s(k), b->c)
|
|
|
+ > btree_blocks(b))
|
|
|
+ break;
|
|
|
|
|
|
- if (b->key.ptr[0] != btree_ptr ||
|
|
|
- b->seq != seq + 1 ||
|
|
|
- should_split(b))
|
|
|
- goto out;
|
|
|
+ if (bkey_cmp(k, &b->key) <= 0) {
|
|
|
+ if (!b->level)
|
|
|
+ bkey_put(b->c, k);
|
|
|
|
|
|
- op->replace = KEY(op->inode, bio_end_sector(bio), bio_sectors(bio));
|
|
|
+ ret |= btree_insert_key(b, op, k, replace_key);
|
|
|
+ bch_keylist_pop_front(insert_keys);
|
|
|
+ } else if (bkey_cmp(&START_KEY(k), &b->key) < 0) {
|
|
|
+ BKEY_PADDED(key) temp;
|
|
|
+ bkey_copy(&temp.key, insert_keys->keys);
|
|
|
|
|
|
- SET_KEY_PTRS(&op->replace, 1);
|
|
|
- get_random_bytes(&op->replace.ptr[0], sizeof(uint64_t));
|
|
|
+ bch_cut_back(&b->key, &temp.key);
|
|
|
+ bch_cut_front(&b->key, insert_keys->keys);
|
|
|
|
|
|
- SET_PTR_DEV(&op->replace, 0, PTR_CHECK_DEV);
|
|
|
+ ret |= btree_insert_key(b, op, &temp.key, replace_key);
|
|
|
+ break;
|
|
|
+ } else {
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ }
|
|
|
|
|
|
- bkey_copy(&tmp.k, &op->replace);
|
|
|
+ BUG_ON(!bch_keylist_empty(insert_keys) && b->level);
|
|
|
|
|
|
- BUG_ON(op->type != BTREE_INSERT);
|
|
|
- BUG_ON(!btree_insert_key(b, op, &tmp.k));
|
|
|
- ret = true;
|
|
|
-out:
|
|
|
- downgrade_write(&b->lock);
|
|
|
+ BUG_ON(bch_count_data(b) < oldsize);
|
|
|
return ret;
|
|
|
}
|
|
|
|
|
|
-static int btree_split(struct btree *b, struct btree_op *op)
|
|
|
+static int btree_split(struct btree *b, struct btree_op *op,
|
|
|
+ struct keylist *insert_keys,
|
|
|
+ struct bkey *replace_key)
|
|
|
{
|
|
|
- bool split, root = b == b->c->root;
|
|
|
+ bool split;
|
|
|
struct btree *n1, *n2 = NULL, *n3 = NULL;
|
|
|
uint64_t start_time = local_clock();
|
|
|
+ struct closure cl;
|
|
|
+ struct keylist parent_keys;
|
|
|
|
|
|
- if (b->level)
|
|
|
- set_closure_blocking(&op->cl);
|
|
|
+ closure_init_stack(&cl);
|
|
|
+ bch_keylist_init(&parent_keys);
|
|
|
|
|
|
- n1 = btree_node_alloc_replacement(b, &op->cl);
|
|
|
+ n1 = btree_node_alloc_replacement(b, true);
|
|
|
if (IS_ERR(n1))
|
|
|
goto err;
|
|
|
|
|
@@ -1913,19 +2047,20 @@ static int btree_split(struct btree *b, struct btree_op *op)
|
|
|
|
|
|
trace_bcache_btree_node_split(b, n1->sets[0].data->keys);
|
|
|
|
|
|
- n2 = bch_btree_node_alloc(b->c, b->level, &op->cl);
|
|
|
+ n2 = bch_btree_node_alloc(b->c, b->level, true);
|
|
|
if (IS_ERR(n2))
|
|
|
goto err_free1;
|
|
|
|
|
|
- if (root) {
|
|
|
- n3 = bch_btree_node_alloc(b->c, b->level + 1, &op->cl);
|
|
|
+ if (!b->parent) {
|
|
|
+ n3 = bch_btree_node_alloc(b->c, b->level + 1, true);
|
|
|
if (IS_ERR(n3))
|
|
|
goto err_free2;
|
|
|
}
|
|
|
|
|
|
- bch_btree_insert_keys(n1, op);
|
|
|
+ bch_btree_insert_keys(n1, op, insert_keys, replace_key);
|
|
|
|
|
|
- /* Has to be a linear search because we don't have an auxiliary
|
|
|
+ /*
|
|
|
+ * Has to be a linear search because we don't have an auxiliary
|
|
|
* search tree yet
|
|
|
*/
|
|
|
|
|
@@ -1944,60 +2079,57 @@ static int btree_split(struct btree *b, struct btree_op *op)
|
|
|
|
|
|
bkey_copy_key(&n2->key, &b->key);
|
|
|
|
|
|
- bch_keylist_add(&op->keys, &n2->key);
|
|
|
- bch_btree_node_write(n2, &op->cl);
|
|
|
+ bch_keylist_add(&parent_keys, &n2->key);
|
|
|
+ bch_btree_node_write(n2, &cl);
|
|
|
rw_unlock(true, n2);
|
|
|
} else {
|
|
|
trace_bcache_btree_node_compact(b, n1->sets[0].data->keys);
|
|
|
|
|
|
- bch_btree_insert_keys(n1, op);
|
|
|
+ bch_btree_insert_keys(n1, op, insert_keys, replace_key);
|
|
|
}
|
|
|
|
|
|
- bch_keylist_add(&op->keys, &n1->key);
|
|
|
- bch_btree_node_write(n1, &op->cl);
|
|
|
+ bch_keylist_add(&parent_keys, &n1->key);
|
|
|
+ bch_btree_node_write(n1, &cl);
|
|
|
|
|
|
if (n3) {
|
|
|
+ /* Depth increases, make a new root */
|
|
|
bkey_copy_key(&n3->key, &MAX_KEY);
|
|
|
- bch_btree_insert_keys(n3, op);
|
|
|
- bch_btree_node_write(n3, &op->cl);
|
|
|
+ bch_btree_insert_keys(n3, op, &parent_keys, NULL);
|
|
|
+ bch_btree_node_write(n3, &cl);
|
|
|
|
|
|
- closure_sync(&op->cl);
|
|
|
+ closure_sync(&cl);
|
|
|
bch_btree_set_root(n3);
|
|
|
rw_unlock(true, n3);
|
|
|
- } else if (root) {
|
|
|
- op->keys.top = op->keys.bottom;
|
|
|
- closure_sync(&op->cl);
|
|
|
- bch_btree_set_root(n1);
|
|
|
- } else {
|
|
|
- unsigned i;
|
|
|
|
|
|
- bkey_copy(op->keys.top, &b->key);
|
|
|
- bkey_copy_key(op->keys.top, &ZERO_KEY);
|
|
|
+ btree_node_free(b);
|
|
|
+ } else if (!b->parent) {
|
|
|
+ /* Root filled up but didn't need to be split */
|
|
|
+ closure_sync(&cl);
|
|
|
+ bch_btree_set_root(n1);
|
|
|
|
|
|
- for (i = 0; i < KEY_PTRS(&b->key); i++) {
|
|
|
- uint8_t g = PTR_BUCKET(b->c, &b->key, i)->gen + 1;
|
|
|
+ btree_node_free(b);
|
|
|
+ } else {
|
|
|
+ /* Split a non root node */
|
|
|
+ closure_sync(&cl);
|
|
|
+ make_btree_freeing_key(b, parent_keys.top);
|
|
|
+ bch_keylist_push(&parent_keys);
|
|
|
|
|
|
- SET_PTR_GEN(op->keys.top, i, g);
|
|
|
- }
|
|
|
+ btree_node_free(b);
|
|
|
|
|
|
- bch_keylist_push(&op->keys);
|
|
|
- closure_sync(&op->cl);
|
|
|
- atomic_inc(&b->c->prio_blocked);
|
|
|
+ bch_btree_insert_node(b->parent, op, &parent_keys, NULL, NULL);
|
|
|
+ BUG_ON(!bch_keylist_empty(&parent_keys));
|
|
|
}
|
|
|
|
|
|
rw_unlock(true, n1);
|
|
|
- btree_node_free(b, op);
|
|
|
|
|
|
bch_time_stats_update(&b->c->btree_split_time, start_time);
|
|
|
|
|
|
return 0;
|
|
|
err_free2:
|
|
|
- __bkey_put(n2->c, &n2->key);
|
|
|
- btree_node_free(n2, op);
|
|
|
+ btree_node_free(n2);
|
|
|
rw_unlock(true, n2);
|
|
|
err_free1:
|
|
|
- __bkey_put(n1->c, &n1->key);
|
|
|
- btree_node_free(n1, op);
|
|
|
+ btree_node_free(n1);
|
|
|
rw_unlock(true, n1);
|
|
|
err:
|
|
|
if (n3 == ERR_PTR(-EAGAIN) ||
|
|
@@ -2009,116 +2141,126 @@ err:
|
|
|
return -ENOMEM;
|
|
|
}
|
|
|
|
|
|
-static int bch_btree_insert_recurse(struct btree *b, struct btree_op *op,
|
|
|
- struct keylist *stack_keys)
|
|
|
+static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
|
|
|
+ struct keylist *insert_keys,
|
|
|
+ atomic_t *journal_ref,
|
|
|
+ struct bkey *replace_key)
|
|
|
{
|
|
|
- if (b->level) {
|
|
|
- int ret;
|
|
|
- struct bkey *insert = op->keys.bottom;
|
|
|
- struct bkey *k = bch_next_recurse_key(b, &START_KEY(insert));
|
|
|
-
|
|
|
- if (!k) {
|
|
|
- btree_bug(b, "no key to recurse on at level %i/%i",
|
|
|
- b->level, b->c->root->level);
|
|
|
+ BUG_ON(b->level && replace_key);
|
|
|
|
|
|
- op->keys.top = op->keys.bottom;
|
|
|
- return -EIO;
|
|
|
+ if (should_split(b)) {
|
|
|
+ if (current->bio_list) {
|
|
|
+ op->lock = b->c->root->level + 1;
|
|
|
+ return -EAGAIN;
|
|
|
+ } else if (op->lock <= b->c->root->level) {
|
|
|
+ op->lock = b->c->root->level + 1;
|
|
|
+ return -EINTR;
|
|
|
+ } else {
|
|
|
+ /* Invalidated all iterators */
|
|
|
+ return btree_split(b, op, insert_keys, replace_key) ?:
|
|
|
+ -EINTR;
|
|
|
}
|
|
|
+ } else {
|
|
|
+ BUG_ON(write_block(b) != b->sets[b->nsets].data);
|
|
|
|
|
|
- if (bkey_cmp(insert, k) > 0) {
|
|
|
- unsigned i;
|
|
|
-
|
|
|
- if (op->type == BTREE_REPLACE) {
|
|
|
- __bkey_put(b->c, insert);
|
|
|
- op->keys.top = op->keys.bottom;
|
|
|
- op->insert_collision = true;
|
|
|
- return 0;
|
|
|
- }
|
|
|
+ if (bch_btree_insert_keys(b, op, insert_keys, replace_key)) {
|
|
|
+ if (!b->level)
|
|
|
+ bch_btree_leaf_dirty(b, journal_ref);
|
|
|
+ else
|
|
|
+ bch_btree_node_write_sync(b);
|
|
|
+ }
|
|
|
|
|
|
- for (i = 0; i < KEY_PTRS(insert); i++)
|
|
|
- atomic_inc(&PTR_BUCKET(b->c, insert, i)->pin);
|
|
|
+ return 0;
|
|
|
+ }
|
|
|
+}
|
|
|
|
|
|
- bkey_copy(stack_keys->top, insert);
|
|
|
+int bch_btree_insert_check_key(struct btree *b, struct btree_op *op,
|
|
|
+ struct bkey *check_key)
|
|
|
+{
|
|
|
+ int ret = -EINTR;
|
|
|
+ uint64_t btree_ptr = b->key.ptr[0];
|
|
|
+ unsigned long seq = b->seq;
|
|
|
+ struct keylist insert;
|
|
|
+ bool upgrade = op->lock == -1;
|
|
|
|
|
|
- bch_cut_back(k, insert);
|
|
|
- bch_cut_front(k, stack_keys->top);
|
|
|
+ bch_keylist_init(&insert);
|
|
|
|
|
|
- bch_keylist_push(stack_keys);
|
|
|
- }
|
|
|
+ if (upgrade) {
|
|
|
+ rw_unlock(false, b);
|
|
|
+ rw_lock(true, b, b->level);
|
|
|
|
|
|
- ret = btree(insert_recurse, k, b, op, stack_keys);
|
|
|
- if (ret)
|
|
|
- return ret;
|
|
|
+ if (b->key.ptr[0] != btree_ptr ||
|
|
|
+ b->seq != seq + 1)
|
|
|
+ goto out;
|
|
|
}
|
|
|
|
|
|
- if (!bch_keylist_empty(&op->keys)) {
|
|
|
- if (should_split(b)) {
|
|
|
- if (op->lock <= b->c->root->level) {
|
|
|
- BUG_ON(b->level);
|
|
|
- op->lock = b->c->root->level + 1;
|
|
|
- return -EINTR;
|
|
|
- }
|
|
|
- return btree_split(b, op);
|
|
|
- }
|
|
|
+ SET_KEY_PTRS(check_key, 1);
|
|
|
+ get_random_bytes(&check_key->ptr[0], sizeof(uint64_t));
|
|
|
|
|
|
- BUG_ON(write_block(b) != b->sets[b->nsets].data);
|
|
|
+ SET_PTR_DEV(check_key, 0, PTR_CHECK_DEV);
|
|
|
|
|
|
- if (bch_btree_insert_keys(b, op)) {
|
|
|
- if (!b->level)
|
|
|
- bch_btree_leaf_dirty(b, op);
|
|
|
- else
|
|
|
- bch_btree_node_write(b, &op->cl);
|
|
|
- }
|
|
|
- }
|
|
|
+ bch_keylist_add(&insert, check_key);
|
|
|
|
|
|
- return 0;
|
|
|
+ ret = bch_btree_insert_node(b, op, &insert, NULL, NULL);
|
|
|
+
|
|
|
+ BUG_ON(!ret && !bch_keylist_empty(&insert));
|
|
|
+out:
|
|
|
+ if (upgrade)
|
|
|
+ downgrade_write(&b->lock);
|
|
|
+ return ret;
|
|
|
}
|
|
|
|
|
|
-int bch_btree_insert(struct btree_op *op, struct cache_set *c)
|
|
|
+struct btree_insert_op {
|
|
|
+ struct btree_op op;
|
|
|
+ struct keylist *keys;
|
|
|
+ atomic_t *journal_ref;
|
|
|
+ struct bkey *replace_key;
|
|
|
+};
|
|
|
+
|
|
|
+int btree_insert_fn(struct btree_op *b_op, struct btree *b)
|
|
|
{
|
|
|
- int ret = 0;
|
|
|
- struct keylist stack_keys;
|
|
|
+ struct btree_insert_op *op = container_of(b_op,
|
|
|
+ struct btree_insert_op, op);
|
|
|
|
|
|
- /*
|
|
|
- * Don't want to block with the btree locked unless we have to,
|
|
|
- * otherwise we get deadlocks with try_harder and between split/gc
|
|
|
- */
|
|
|
- clear_closure_blocking(&op->cl);
|
|
|
-
|
|
|
- BUG_ON(bch_keylist_empty(&op->keys));
|
|
|
- bch_keylist_copy(&stack_keys, &op->keys);
|
|
|
- bch_keylist_init(&op->keys);
|
|
|
-
|
|
|
- while (!bch_keylist_empty(&stack_keys) ||
|
|
|
- !bch_keylist_empty(&op->keys)) {
|
|
|
- if (bch_keylist_empty(&op->keys)) {
|
|
|
- bch_keylist_add(&op->keys,
|
|
|
- bch_keylist_pop(&stack_keys));
|
|
|
- op->lock = 0;
|
|
|
- }
|
|
|
+ int ret = bch_btree_insert_node(b, &op->op, op->keys,
|
|
|
+ op->journal_ref, op->replace_key);
|
|
|
+ if (ret && !bch_keylist_empty(op->keys))
|
|
|
+ return ret;
|
|
|
+ else
|
|
|
+ return MAP_DONE;
|
|
|
+}
|
|
|
|
|
|
- ret = btree_root(insert_recurse, c, op, &stack_keys);
|
|
|
+int bch_btree_insert(struct cache_set *c, struct keylist *keys,
|
|
|
+ atomic_t *journal_ref, struct bkey *replace_key)
|
|
|
+{
|
|
|
+ struct btree_insert_op op;
|
|
|
+ int ret = 0;
|
|
|
|
|
|
- if (ret == -EAGAIN) {
|
|
|
- ret = 0;
|
|
|
- closure_sync(&op->cl);
|
|
|
- } else if (ret) {
|
|
|
- struct bkey *k;
|
|
|
+ BUG_ON(current->bio_list);
|
|
|
+ BUG_ON(bch_keylist_empty(keys));
|
|
|
+
|
|
|
+ bch_btree_op_init(&op.op, 0);
|
|
|
+ op.keys = keys;
|
|
|
+ op.journal_ref = journal_ref;
|
|
|
+ op.replace_key = replace_key;
|
|
|
+
|
|
|
+ while (!ret && !bch_keylist_empty(keys)) {
|
|
|
+ op.op.lock = 0;
|
|
|
+ ret = bch_btree_map_leaf_nodes(&op.op, c,
|
|
|
+ &START_KEY(keys->keys),
|
|
|
+ btree_insert_fn);
|
|
|
+ }
|
|
|
|
|
|
- pr_err("error %i trying to insert key for %s",
|
|
|
- ret, op_type(op));
|
|
|
+ if (ret) {
|
|
|
+ struct bkey *k;
|
|
|
|
|
|
- while ((k = bch_keylist_pop(&stack_keys) ?:
|
|
|
- bch_keylist_pop(&op->keys)))
|
|
|
- bkey_put(c, k, 0);
|
|
|
- }
|
|
|
- }
|
|
|
+ pr_err("error %i", ret);
|
|
|
|
|
|
- bch_keylist_free(&stack_keys);
|
|
|
+ while ((k = bch_keylist_pop(keys)))
|
|
|
+ bkey_put(c, k);
|
|
|
+ } else if (op.op.insert_collision)
|
|
|
+ ret = -ESRCH;
|
|
|
|
|
|
- if (op->journal)
|
|
|
- atomic_dec_bug(op->journal);
|
|
|
- op->journal = NULL;
|
|
|
return ret;
|
|
|
}
|
|
|
|
|
@@ -2141,132 +2283,81 @@ void bch_btree_set_root(struct btree *b)
|
|
|
mutex_unlock(&b->c->bucket_lock);
|
|
|
|
|
|
b->c->root = b;
|
|
|
- __bkey_put(b->c, &b->key);
|
|
|
|
|
|
bch_journal_meta(b->c, &cl);
|
|
|
closure_sync(&cl);
|
|
|
}
|
|
|
|
|
|
-/* Cache lookup */
|
|
|
+/* Map across nodes or keys */
|
|
|
|
|
|
-static int submit_partial_cache_miss(struct btree *b, struct btree_op *op,
|
|
|
- struct bkey *k)
|
|
|
+static int bch_btree_map_nodes_recurse(struct btree *b, struct btree_op *op,
|
|
|
+ struct bkey *from,
|
|
|
+ btree_map_nodes_fn *fn, int flags)
|
|
|
{
|
|
|
- struct search *s = container_of(op, struct search, op);
|
|
|
- struct bio *bio = &s->bio.bio;
|
|
|
- int ret = 0;
|
|
|
+ int ret = MAP_CONTINUE;
|
|
|
+
|
|
|
+ if (b->level) {
|
|
|
+ struct bkey *k;
|
|
|
+ struct btree_iter iter;
|
|
|
|
|
|
- while (!ret &&
|
|
|
- !op->lookup_done) {
|
|
|
- unsigned sectors = INT_MAX;
|
|
|
+ bch_btree_iter_init(b, &iter, from);
|
|
|
|
|
|
- if (KEY_INODE(k) == op->inode) {
|
|
|
- if (KEY_START(k) <= bio->bi_sector)
|
|
|
- break;
|
|
|
+ while ((k = bch_btree_iter_next_filter(&iter, b,
|
|
|
+ bch_ptr_bad))) {
|
|
|
+ ret = btree(map_nodes_recurse, k, b,
|
|
|
+ op, from, fn, flags);
|
|
|
+ from = NULL;
|
|
|
|
|
|
- sectors = min_t(uint64_t, sectors,
|
|
|
- KEY_START(k) - bio->bi_sector);
|
|
|
+ if (ret != MAP_CONTINUE)
|
|
|
+ return ret;
|
|
|
}
|
|
|
-
|
|
|
- ret = s->d->cache_miss(b, s, bio, sectors);
|
|
|
}
|
|
|
|
|
|
+ if (!b->level || flags == MAP_ALL_NODES)
|
|
|
+ ret = fn(op, b);
|
|
|
+
|
|
|
return ret;
|
|
|
}
|
|
|
|
|
|
-/*
|
|
|
- * Read from a single key, handling the initial cache miss if the key starts in
|
|
|
- * the middle of the bio
|
|
|
- */
|
|
|
-static int submit_partial_cache_hit(struct btree *b, struct btree_op *op,
|
|
|
- struct bkey *k)
|
|
|
+int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c,
|
|
|
+ struct bkey *from, btree_map_nodes_fn *fn, int flags)
|
|
|
{
|
|
|
- struct search *s = container_of(op, struct search, op);
|
|
|
- struct bio *bio = &s->bio.bio;
|
|
|
- unsigned ptr;
|
|
|
- struct bio *n;
|
|
|
-
|
|
|
- int ret = submit_partial_cache_miss(b, op, k);
|
|
|
- if (ret || op->lookup_done)
|
|
|
- return ret;
|
|
|
-
|
|
|
- /* XXX: figure out best pointer - for multiple cache devices */
|
|
|
- ptr = 0;
|
|
|
-
|
|
|
- PTR_BUCKET(b->c, k, ptr)->prio = INITIAL_PRIO;
|
|
|
-
|
|
|
- while (!op->lookup_done &&
|
|
|
- KEY_INODE(k) == op->inode &&
|
|
|
- bio->bi_sector < KEY_OFFSET(k)) {
|
|
|
- struct bkey *bio_key;
|
|
|
- sector_t sector = PTR_OFFSET(k, ptr) +
|
|
|
- (bio->bi_sector - KEY_START(k));
|
|
|
- unsigned sectors = min_t(uint64_t, INT_MAX,
|
|
|
- KEY_OFFSET(k) - bio->bi_sector);
|
|
|
-
|
|
|
- n = bch_bio_split(bio, sectors, GFP_NOIO, s->d->bio_split);
|
|
|
- if (n == bio)
|
|
|
- op->lookup_done = true;
|
|
|
-
|
|
|
- bio_key = &container_of(n, struct bbio, bio)->key;
|
|
|
-
|
|
|
- /*
|
|
|
- * The bucket we're reading from might be reused while our bio
|
|
|
- * is in flight, and we could then end up reading the wrong
|
|
|
- * data.
|
|
|
- *
|
|
|
- * We guard against this by checking (in cache_read_endio()) if
|
|
|
- * the pointer is stale again; if so, we treat it as an error
|
|
|
- * and reread from the backing device (but we don't pass that
|
|
|
- * error up anywhere).
|
|
|
- */
|
|
|
-
|
|
|
- bch_bkey_copy_single_ptr(bio_key, k, ptr);
|
|
|
- SET_PTR_OFFSET(bio_key, 0, sector);
|
|
|
-
|
|
|
- n->bi_end_io = bch_cache_read_endio;
|
|
|
- n->bi_private = &s->cl;
|
|
|
-
|
|
|
- __bch_submit_bbio(n, b->c);
|
|
|
- }
|
|
|
-
|
|
|
- return 0;
|
|
|
+ return btree_root(map_nodes_recurse, c, op, from, fn, flags);
|
|
|
}
|
|
|
|
|
|
-int bch_btree_search_recurse(struct btree *b, struct btree_op *op)
|
|
|
+static int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op,
|
|
|
+ struct bkey *from, btree_map_keys_fn *fn,
|
|
|
+ int flags)
|
|
|
{
|
|
|
- struct search *s = container_of(op, struct search, op);
|
|
|
- struct bio *bio = &s->bio.bio;
|
|
|
-
|
|
|
- int ret = 0;
|
|
|
+ int ret = MAP_CONTINUE;
|
|
|
struct bkey *k;
|
|
|
struct btree_iter iter;
|
|
|
- bch_btree_iter_init(b, &iter, &KEY(op->inode, bio->bi_sector, 0));
|
|
|
|
|
|
- do {
|
|
|
- k = bch_btree_iter_next_filter(&iter, b, bch_ptr_bad);
|
|
|
- if (!k) {
|
|
|
- /*
|
|
|
- * b->key would be exactly what we want, except that
|
|
|
- * pointers to btree nodes have nonzero size - we
|
|
|
- * wouldn't go far enough
|
|
|
- */
|
|
|
+ bch_btree_iter_init(b, &iter, from);
|
|
|
|
|
|
- ret = submit_partial_cache_miss(b, op,
|
|
|
- &KEY(KEY_INODE(&b->key),
|
|
|
- KEY_OFFSET(&b->key), 0));
|
|
|
- break;
|
|
|
- }
|
|
|
+ while ((k = bch_btree_iter_next_filter(&iter, b, bch_ptr_bad))) {
|
|
|
+ ret = !b->level
|
|
|
+ ? fn(op, b, k)
|
|
|
+ : btree(map_keys_recurse, k, b, op, from, fn, flags);
|
|
|
+ from = NULL;
|
|
|
+
|
|
|
+ if (ret != MAP_CONTINUE)
|
|
|
+ return ret;
|
|
|
+ }
|
|
|
|
|
|
- ret = b->level
|
|
|
- ? btree(search_recurse, k, b, op)
|
|
|
- : submit_partial_cache_hit(b, op, k);
|
|
|
- } while (!ret &&
|
|
|
- !op->lookup_done);
|
|
|
+ if (!b->level && (flags & MAP_END_KEY))
|
|
|
+ ret = fn(op, b, &KEY(KEY_INODE(&b->key),
|
|
|
+ KEY_OFFSET(&b->key), 0));
|
|
|
|
|
|
return ret;
|
|
|
}
|
|
|
|
|
|
+int bch_btree_map_keys(struct btree_op *op, struct cache_set *c,
|
|
|
+ struct bkey *from, btree_map_keys_fn *fn, int flags)
|
|
|
+{
|
|
|
+ return btree_root(map_keys_recurse, c, op, from, fn, flags);
|
|
|
+}
|
|
|
+
|
|
|
/* Keybuf code */
|
|
|
|
|
|
static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r)
|
|
@@ -2285,80 +2376,79 @@ static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l,
|
|
|
return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1);
|
|
|
}
|
|
|
|
|
|
-static int bch_btree_refill_keybuf(struct btree *b, struct btree_op *op,
|
|
|
- struct keybuf *buf, struct bkey *end,
|
|
|
- keybuf_pred_fn *pred)
|
|
|
-{
|
|
|
- struct btree_iter iter;
|
|
|
- bch_btree_iter_init(b, &iter, &buf->last_scanned);
|
|
|
-
|
|
|
- while (!array_freelist_empty(&buf->freelist)) {
|
|
|
- struct bkey *k = bch_btree_iter_next_filter(&iter, b,
|
|
|
- bch_ptr_bad);
|
|
|
-
|
|
|
- if (!b->level) {
|
|
|
- if (!k) {
|
|
|
- buf->last_scanned = b->key;
|
|
|
- break;
|
|
|
- }
|
|
|
+struct refill {
|
|
|
+ struct btree_op op;
|
|
|
+ unsigned nr_found;
|
|
|
+ struct keybuf *buf;
|
|
|
+ struct bkey *end;
|
|
|
+ keybuf_pred_fn *pred;
|
|
|
+};
|
|
|
|
|
|
- buf->last_scanned = *k;
|
|
|
- if (bkey_cmp(&buf->last_scanned, end) >= 0)
|
|
|
- break;
|
|
|
+static int refill_keybuf_fn(struct btree_op *op, struct btree *b,
|
|
|
+ struct bkey *k)
|
|
|
+{
|
|
|
+ struct refill *refill = container_of(op, struct refill, op);
|
|
|
+ struct keybuf *buf = refill->buf;
|
|
|
+ int ret = MAP_CONTINUE;
|
|
|
|
|
|
- if (pred(buf, k)) {
|
|
|
- struct keybuf_key *w;
|
|
|
+ if (bkey_cmp(k, refill->end) >= 0) {
|
|
|
+ ret = MAP_DONE;
|
|
|
+ goto out;
|
|
|
+ }
|
|
|
|
|
|
- spin_lock(&buf->lock);
|
|
|
+ if (!KEY_SIZE(k)) /* end key */
|
|
|
+ goto out;
|
|
|
|
|
|
- w = array_alloc(&buf->freelist);
|
|
|
+ if (refill->pred(buf, k)) {
|
|
|
+ struct keybuf_key *w;
|
|
|
|
|
|
- w->private = NULL;
|
|
|
- bkey_copy(&w->key, k);
|
|
|
+ spin_lock(&buf->lock);
|
|
|
|
|
|
- if (RB_INSERT(&buf->keys, w, node, keybuf_cmp))
|
|
|
- array_free(&buf->freelist, w);
|
|
|
+ w = array_alloc(&buf->freelist);
|
|
|
+ if (!w) {
|
|
|
+ spin_unlock(&buf->lock);
|
|
|
+ return MAP_DONE;
|
|
|
+ }
|
|
|
|
|
|
- spin_unlock(&buf->lock);
|
|
|
- }
|
|
|
- } else {
|
|
|
- if (!k)
|
|
|
- break;
|
|
|
+ w->private = NULL;
|
|
|
+ bkey_copy(&w->key, k);
|
|
|
|
|
|
- btree(refill_keybuf, k, b, op, buf, end, pred);
|
|
|
- /*
|
|
|
- * Might get an error here, but can't really do anything
|
|
|
- * and it'll get logged elsewhere. Just read what we
|
|
|
- * can.
|
|
|
- */
|
|
|
+ if (RB_INSERT(&buf->keys, w, node, keybuf_cmp))
|
|
|
+ array_free(&buf->freelist, w);
|
|
|
+ else
|
|
|
+ refill->nr_found++;
|
|
|
|
|
|
- if (bkey_cmp(&buf->last_scanned, end) >= 0)
|
|
|
- break;
|
|
|
+ if (array_freelist_empty(&buf->freelist))
|
|
|
+ ret = MAP_DONE;
|
|
|
|
|
|
- cond_resched();
|
|
|
- }
|
|
|
+ spin_unlock(&buf->lock);
|
|
|
}
|
|
|
-
|
|
|
- return 0;
|
|
|
+out:
|
|
|
+ buf->last_scanned = *k;
|
|
|
+ return ret;
|
|
|
}
|
|
|
|
|
|
void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf,
|
|
|
struct bkey *end, keybuf_pred_fn *pred)
|
|
|
{
|
|
|
struct bkey start = buf->last_scanned;
|
|
|
- struct btree_op op;
|
|
|
- bch_btree_op_init_stack(&op);
|
|
|
+ struct refill refill;
|
|
|
|
|
|
cond_resched();
|
|
|
|
|
|
- btree_root(refill_keybuf, c, &op, buf, end, pred);
|
|
|
- closure_sync(&op.cl);
|
|
|
+ bch_btree_op_init(&refill.op, -1);
|
|
|
+ refill.nr_found = 0;
|
|
|
+ refill.buf = buf;
|
|
|
+ refill.end = end;
|
|
|
+ refill.pred = pred;
|
|
|
+
|
|
|
+ bch_btree_map_keys(&refill.op, c, &buf->last_scanned,
|
|
|
+ refill_keybuf_fn, MAP_END_KEY);
|
|
|
|
|
|
- pr_debug("found %s keys from %llu:%llu to %llu:%llu",
|
|
|
- RB_EMPTY_ROOT(&buf->keys) ? "no" :
|
|
|
- array_freelist_empty(&buf->freelist) ? "some" : "a few",
|
|
|
- KEY_INODE(&start), KEY_OFFSET(&start),
|
|
|
- KEY_INODE(&buf->last_scanned), KEY_OFFSET(&buf->last_scanned));
|
|
|
+ trace_bcache_keyscan(refill.nr_found,
|
|
|
+ KEY_INODE(&start), KEY_OFFSET(&start),
|
|
|
+ KEY_INODE(&buf->last_scanned),
|
|
|
+ KEY_OFFSET(&buf->last_scanned));
|
|
|
|
|
|
spin_lock(&buf->lock);
|
|
|
|
|
@@ -2436,9 +2526,9 @@ struct keybuf_key *bch_keybuf_next(struct keybuf *buf)
|
|
|
}
|
|
|
|
|
|
struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c,
|
|
|
- struct keybuf *buf,
|
|
|
- struct bkey *end,
|
|
|
- keybuf_pred_fn *pred)
|
|
|
+ struct keybuf *buf,
|
|
|
+ struct bkey *end,
|
|
|
+ keybuf_pred_fn *pred)
|
|
|
{
|
|
|
struct keybuf_key *ret;
|
|
|
|
|
@@ -2471,14 +2561,12 @@ void bch_btree_exit(void)
|
|
|
{
|
|
|
if (btree_io_wq)
|
|
|
destroy_workqueue(btree_io_wq);
|
|
|
- if (bch_gc_wq)
|
|
|
- destroy_workqueue(bch_gc_wq);
|
|
|
}
|
|
|
|
|
|
int __init bch_btree_init(void)
|
|
|
{
|
|
|
- if (!(bch_gc_wq = create_singlethread_workqueue("bch_btree_gc")) ||
|
|
|
- !(btree_io_wq = create_singlethread_workqueue("bch_btree_io")))
|
|
|
+ btree_io_wq = create_singlethread_workqueue("bch_btree_io");
|
|
|
+ if (!btree_io_wq)
|
|
|
return -ENOMEM;
|
|
|
|
|
|
return 0;
|